ext4: correctly calculate number of blocks for fiemap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / extents.c
blob7d54850f7136ee79d047cf4f313206398141bc17
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
54 ext4_fsblk_t block;
56 block = le32_to_cpu(ex->ee_start_lo);
57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 return block;
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
67 ext4_fsblk_t block;
69 block = le32_to_cpu(ix->ei_leaf_lo);
70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 return block;
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 struct inode *inode,
98 int needed)
100 int err;
102 if (!ext4_handle_valid(handle))
103 return 0;
104 if (handle->h_buffer_credits > needed)
105 return 0;
106 err = ext4_journal_extend(handle, needed);
107 if (err <= 0)
108 return err;
109 err = ext4_truncate_restart_trans(handle, inode, needed);
111 * We have dropped i_data_sem so someone might have cached again
112 * an extent we are going to truncate.
114 ext4_ext_invalidate_cache(inode);
116 return err;
120 * could return:
121 * - EROFS
122 * - ENOMEM
124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
125 struct ext4_ext_path *path)
127 if (path->p_bh) {
128 /* path points to block */
129 return ext4_journal_get_write_access(handle, path->p_bh);
131 /* path points to leaf/index in inode body */
132 /* we use in-core data, no need to protect them */
133 return 0;
137 * could return:
138 * - EROFS
139 * - ENOMEM
140 * - EIO
142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
145 int err;
146 if (path->p_bh) {
147 /* path points to block */
148 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
149 } else {
150 /* path points to leaf/index in inode body */
151 err = ext4_mark_inode_dirty(handle, inode);
153 return err;
156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
157 struct ext4_ext_path *path,
158 ext4_lblk_t block)
160 struct ext4_inode_info *ei = EXT4_I(inode);
161 ext4_fsblk_t bg_start;
162 ext4_fsblk_t last_block;
163 ext4_grpblk_t colour;
164 ext4_group_t block_group;
165 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
166 int depth;
168 if (path) {
169 struct ext4_extent *ex;
170 depth = path->p_depth;
172 /* try to predict block placement */
173 ex = path[depth].p_ext;
174 if (ex)
175 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
177 /* it looks like index is empty;
178 * try to find starting block from index itself */
179 if (path[depth].p_bh)
180 return path[depth].p_bh->b_blocknr;
183 /* OK. use inode's group */
184 block_group = ei->i_block_group;
185 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
187 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
188 * block groups per flexgroup, reserve the first block
189 * group for directories and special files. Regular
190 * files will start at the second block group. This
191 * tends to speed up directory access and improves
192 * fsck times.
194 block_group &= ~(flex_size-1);
195 if (S_ISREG(inode->i_mode))
196 block_group++;
198 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
199 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
200 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
203 * If we are doing delayed allocation, we don't need take
204 * colour into account.
206 if (test_opt(inode->i_sb, DELALLOC))
207 return bg_start;
209 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
210 colour = (current->pid % 16) *
211 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
212 else
213 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
214 return bg_start + colour + block;
218 * Allocation for a meta data block
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 struct ext4_ext_path *path,
223 struct ext4_extent *ex, int *err)
225 ext4_fsblk_t goal, newblock;
227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
229 return newblock;
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 int size;
236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 / sizeof(struct ext4_extent);
238 if (!check) {
239 #ifdef AGGRESSIVE_TEST
240 if (size > 6)
241 size = 6;
242 #endif
244 return size;
247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
249 int size;
251 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
252 / sizeof(struct ext4_extent_idx);
253 if (!check) {
254 #ifdef AGGRESSIVE_TEST
255 if (size > 5)
256 size = 5;
257 #endif
259 return size;
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
264 int size;
266 size = sizeof(EXT4_I(inode)->i_data);
267 size -= sizeof(struct ext4_extent_header);
268 size /= sizeof(struct ext4_extent);
269 if (!check) {
270 #ifdef AGGRESSIVE_TEST
271 if (size > 3)
272 size = 3;
273 #endif
275 return size;
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
280 int size;
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 if (!check) {
286 #ifdef AGGRESSIVE_TEST
287 if (size > 4)
288 size = 4;
289 #endif
291 return size;
295 * Calculate the number of metadata blocks needed
296 * to allocate @blocks
297 * Worse case is one block per extent
299 int ext4_ext_calc_metadata_amount(struct inode *inode, sector_t lblock)
301 struct ext4_inode_info *ei = EXT4_I(inode);
302 int idxs, num = 0;
304 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
305 / sizeof(struct ext4_extent_idx));
308 * If the new delayed allocation block is contiguous with the
309 * previous da block, it can share index blocks with the
310 * previous block, so we only need to allocate a new index
311 * block every idxs leaf blocks. At ldxs**2 blocks, we need
312 * an additional index block, and at ldxs**3 blocks, yet
313 * another index blocks.
315 if (ei->i_da_metadata_calc_len &&
316 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
317 if ((ei->i_da_metadata_calc_len % idxs) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
320 num++;
321 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
322 num++;
323 ei->i_da_metadata_calc_len = 0;
324 } else
325 ei->i_da_metadata_calc_len++;
326 ei->i_da_metadata_calc_last_lblock++;
327 return num;
331 * In the worst case we need a new set of index blocks at
332 * every level of the inode's extent tree.
334 ei->i_da_metadata_calc_len = 1;
335 ei->i_da_metadata_calc_last_lblock = lblock;
336 return ext_depth(inode) + 1;
339 static int
340 ext4_ext_max_entries(struct inode *inode, int depth)
342 int max;
344 if (depth == ext_depth(inode)) {
345 if (depth == 0)
346 max = ext4_ext_space_root(inode, 1);
347 else
348 max = ext4_ext_space_root_idx(inode, 1);
349 } else {
350 if (depth == 0)
351 max = ext4_ext_space_block(inode, 1);
352 else
353 max = ext4_ext_space_block_idx(inode, 1);
356 return max;
359 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
361 ext4_fsblk_t block = ext_pblock(ext);
362 int len = ext4_ext_get_actual_len(ext);
364 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
367 static int ext4_valid_extent_idx(struct inode *inode,
368 struct ext4_extent_idx *ext_idx)
370 ext4_fsblk_t block = idx_pblock(ext_idx);
372 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
375 static int ext4_valid_extent_entries(struct inode *inode,
376 struct ext4_extent_header *eh,
377 int depth)
379 struct ext4_extent *ext;
380 struct ext4_extent_idx *ext_idx;
381 unsigned short entries;
382 if (eh->eh_entries == 0)
383 return 1;
385 entries = le16_to_cpu(eh->eh_entries);
387 if (depth == 0) {
388 /* leaf entries */
389 ext = EXT_FIRST_EXTENT(eh);
390 while (entries) {
391 if (!ext4_valid_extent(inode, ext))
392 return 0;
393 ext++;
394 entries--;
396 } else {
397 ext_idx = EXT_FIRST_INDEX(eh);
398 while (entries) {
399 if (!ext4_valid_extent_idx(inode, ext_idx))
400 return 0;
401 ext_idx++;
402 entries--;
405 return 1;
408 static int __ext4_ext_check(const char *function, struct inode *inode,
409 struct ext4_extent_header *eh,
410 int depth)
412 const char *error_msg;
413 int max = 0;
415 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
416 error_msg = "invalid magic";
417 goto corrupted;
419 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
420 error_msg = "unexpected eh_depth";
421 goto corrupted;
423 if (unlikely(eh->eh_max == 0)) {
424 error_msg = "invalid eh_max";
425 goto corrupted;
427 max = ext4_ext_max_entries(inode, depth);
428 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
429 error_msg = "too large eh_max";
430 goto corrupted;
432 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
433 error_msg = "invalid eh_entries";
434 goto corrupted;
436 if (!ext4_valid_extent_entries(inode, eh, depth)) {
437 error_msg = "invalid extent entries";
438 goto corrupted;
440 return 0;
442 corrupted:
443 __ext4_error(inode->i_sb, function,
444 "bad header/extent in inode #%lu: %s - magic %x, "
445 "entries %u, max %u(%u), depth %u(%u)",
446 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
447 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
448 max, le16_to_cpu(eh->eh_depth), depth);
450 return -EIO;
453 #define ext4_ext_check(inode, eh, depth) \
454 __ext4_ext_check(__func__, inode, eh, depth)
456 int ext4_ext_check_inode(struct inode *inode)
458 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
461 #ifdef EXT_DEBUG
462 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
464 int k, l = path->p_depth;
466 ext_debug("path:");
467 for (k = 0; k <= l; k++, path++) {
468 if (path->p_idx) {
469 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
470 idx_pblock(path->p_idx));
471 } else if (path->p_ext) {
472 ext_debug(" %d:[%d]%d:%llu ",
473 le32_to_cpu(path->p_ext->ee_block),
474 ext4_ext_is_uninitialized(path->p_ext),
475 ext4_ext_get_actual_len(path->p_ext),
476 ext_pblock(path->p_ext));
477 } else
478 ext_debug(" []");
480 ext_debug("\n");
483 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
485 int depth = ext_depth(inode);
486 struct ext4_extent_header *eh;
487 struct ext4_extent *ex;
488 int i;
490 if (!path)
491 return;
493 eh = path[depth].p_hdr;
494 ex = EXT_FIRST_EXTENT(eh);
496 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
498 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
499 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
500 ext4_ext_is_uninitialized(ex),
501 ext4_ext_get_actual_len(ex), ext_pblock(ex));
503 ext_debug("\n");
505 #else
506 #define ext4_ext_show_path(inode, path)
507 #define ext4_ext_show_leaf(inode, path)
508 #endif
510 void ext4_ext_drop_refs(struct ext4_ext_path *path)
512 int depth = path->p_depth;
513 int i;
515 for (i = 0; i <= depth; i++, path++)
516 if (path->p_bh) {
517 brelse(path->p_bh);
518 path->p_bh = NULL;
523 * ext4_ext_binsearch_idx:
524 * binary search for the closest index of the given block
525 * the header must be checked before calling this
527 static void
528 ext4_ext_binsearch_idx(struct inode *inode,
529 struct ext4_ext_path *path, ext4_lblk_t block)
531 struct ext4_extent_header *eh = path->p_hdr;
532 struct ext4_extent_idx *r, *l, *m;
535 ext_debug("binsearch for %u(idx): ", block);
537 l = EXT_FIRST_INDEX(eh) + 1;
538 r = EXT_LAST_INDEX(eh);
539 while (l <= r) {
540 m = l + (r - l) / 2;
541 if (block < le32_to_cpu(m->ei_block))
542 r = m - 1;
543 else
544 l = m + 1;
545 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
546 m, le32_to_cpu(m->ei_block),
547 r, le32_to_cpu(r->ei_block));
550 path->p_idx = l - 1;
551 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
552 idx_pblock(path->p_idx));
554 #ifdef CHECK_BINSEARCH
556 struct ext4_extent_idx *chix, *ix;
557 int k;
559 chix = ix = EXT_FIRST_INDEX(eh);
560 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
561 if (k != 0 &&
562 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
563 printk(KERN_DEBUG "k=%d, ix=0x%p, "
564 "first=0x%p\n", k,
565 ix, EXT_FIRST_INDEX(eh));
566 printk(KERN_DEBUG "%u <= %u\n",
567 le32_to_cpu(ix->ei_block),
568 le32_to_cpu(ix[-1].ei_block));
570 BUG_ON(k && le32_to_cpu(ix->ei_block)
571 <= le32_to_cpu(ix[-1].ei_block));
572 if (block < le32_to_cpu(ix->ei_block))
573 break;
574 chix = ix;
576 BUG_ON(chix != path->p_idx);
578 #endif
583 * ext4_ext_binsearch:
584 * binary search for closest extent of the given block
585 * the header must be checked before calling this
587 static void
588 ext4_ext_binsearch(struct inode *inode,
589 struct ext4_ext_path *path, ext4_lblk_t block)
591 struct ext4_extent_header *eh = path->p_hdr;
592 struct ext4_extent *r, *l, *m;
594 if (eh->eh_entries == 0) {
596 * this leaf is empty:
597 * we get such a leaf in split/add case
599 return;
602 ext_debug("binsearch for %u: ", block);
604 l = EXT_FIRST_EXTENT(eh) + 1;
605 r = EXT_LAST_EXTENT(eh);
607 while (l <= r) {
608 m = l + (r - l) / 2;
609 if (block < le32_to_cpu(m->ee_block))
610 r = m - 1;
611 else
612 l = m + 1;
613 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
614 m, le32_to_cpu(m->ee_block),
615 r, le32_to_cpu(r->ee_block));
618 path->p_ext = l - 1;
619 ext_debug(" -> %d:%llu:[%d]%d ",
620 le32_to_cpu(path->p_ext->ee_block),
621 ext_pblock(path->p_ext),
622 ext4_ext_is_uninitialized(path->p_ext),
623 ext4_ext_get_actual_len(path->p_ext));
625 #ifdef CHECK_BINSEARCH
627 struct ext4_extent *chex, *ex;
628 int k;
630 chex = ex = EXT_FIRST_EXTENT(eh);
631 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
632 BUG_ON(k && le32_to_cpu(ex->ee_block)
633 <= le32_to_cpu(ex[-1].ee_block));
634 if (block < le32_to_cpu(ex->ee_block))
635 break;
636 chex = ex;
638 BUG_ON(chex != path->p_ext);
640 #endif
644 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
646 struct ext4_extent_header *eh;
648 eh = ext_inode_hdr(inode);
649 eh->eh_depth = 0;
650 eh->eh_entries = 0;
651 eh->eh_magic = EXT4_EXT_MAGIC;
652 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
653 ext4_mark_inode_dirty(handle, inode);
654 ext4_ext_invalidate_cache(inode);
655 return 0;
658 struct ext4_ext_path *
659 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
660 struct ext4_ext_path *path)
662 struct ext4_extent_header *eh;
663 struct buffer_head *bh;
664 short int depth, i, ppos = 0, alloc = 0;
666 eh = ext_inode_hdr(inode);
667 depth = ext_depth(inode);
669 /* account possible depth increase */
670 if (!path) {
671 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
672 GFP_NOFS);
673 if (!path)
674 return ERR_PTR(-ENOMEM);
675 alloc = 1;
677 path[0].p_hdr = eh;
678 path[0].p_bh = NULL;
680 i = depth;
681 /* walk through the tree */
682 while (i) {
683 int need_to_validate = 0;
685 ext_debug("depth %d: num %d, max %d\n",
686 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
688 ext4_ext_binsearch_idx(inode, path + ppos, block);
689 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
690 path[ppos].p_depth = i;
691 path[ppos].p_ext = NULL;
693 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
694 if (unlikely(!bh))
695 goto err;
696 if (!bh_uptodate_or_lock(bh)) {
697 if (bh_submit_read(bh) < 0) {
698 put_bh(bh);
699 goto err;
701 /* validate the extent entries */
702 need_to_validate = 1;
704 eh = ext_block_hdr(bh);
705 ppos++;
706 BUG_ON(ppos > depth);
707 path[ppos].p_bh = bh;
708 path[ppos].p_hdr = eh;
709 i--;
711 if (need_to_validate && ext4_ext_check(inode, eh, i))
712 goto err;
715 path[ppos].p_depth = i;
716 path[ppos].p_ext = NULL;
717 path[ppos].p_idx = NULL;
719 /* find extent */
720 ext4_ext_binsearch(inode, path + ppos, block);
721 /* if not an empty leaf */
722 if (path[ppos].p_ext)
723 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
725 ext4_ext_show_path(inode, path);
727 return path;
729 err:
730 ext4_ext_drop_refs(path);
731 if (alloc)
732 kfree(path);
733 return ERR_PTR(-EIO);
737 * ext4_ext_insert_index:
738 * insert new index [@logical;@ptr] into the block at @curp;
739 * check where to insert: before @curp or after @curp
741 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
742 struct ext4_ext_path *curp,
743 int logical, ext4_fsblk_t ptr)
745 struct ext4_extent_idx *ix;
746 int len, err;
748 err = ext4_ext_get_access(handle, inode, curp);
749 if (err)
750 return err;
752 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
753 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
754 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
755 /* insert after */
756 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
757 len = (len - 1) * sizeof(struct ext4_extent_idx);
758 len = len < 0 ? 0 : len;
759 ext_debug("insert new index %d after: %llu. "
760 "move %d from 0x%p to 0x%p\n",
761 logical, ptr, len,
762 (curp->p_idx + 1), (curp->p_idx + 2));
763 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
765 ix = curp->p_idx + 1;
766 } else {
767 /* insert before */
768 len = len * sizeof(struct ext4_extent_idx);
769 len = len < 0 ? 0 : len;
770 ext_debug("insert new index %d before: %llu. "
771 "move %d from 0x%p to 0x%p\n",
772 logical, ptr, len,
773 curp->p_idx, (curp->p_idx + 1));
774 memmove(curp->p_idx + 1, curp->p_idx, len);
775 ix = curp->p_idx;
778 ix->ei_block = cpu_to_le32(logical);
779 ext4_idx_store_pblock(ix, ptr);
780 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
782 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
783 > le16_to_cpu(curp->p_hdr->eh_max));
784 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
786 err = ext4_ext_dirty(handle, inode, curp);
787 ext4_std_error(inode->i_sb, err);
789 return err;
793 * ext4_ext_split:
794 * inserts new subtree into the path, using free index entry
795 * at depth @at:
796 * - allocates all needed blocks (new leaf and all intermediate index blocks)
797 * - makes decision where to split
798 * - moves remaining extents and index entries (right to the split point)
799 * into the newly allocated blocks
800 * - initializes subtree
802 static int ext4_ext_split(handle_t *handle, struct inode *inode,
803 struct ext4_ext_path *path,
804 struct ext4_extent *newext, int at)
806 struct buffer_head *bh = NULL;
807 int depth = ext_depth(inode);
808 struct ext4_extent_header *neh;
809 struct ext4_extent_idx *fidx;
810 struct ext4_extent *ex;
811 int i = at, k, m, a;
812 ext4_fsblk_t newblock, oldblock;
813 __le32 border;
814 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
815 int err = 0;
817 /* make decision: where to split? */
818 /* FIXME: now decision is simplest: at current extent */
820 /* if current leaf will be split, then we should use
821 * border from split point */
822 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
823 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
824 border = path[depth].p_ext[1].ee_block;
825 ext_debug("leaf will be split."
826 " next leaf starts at %d\n",
827 le32_to_cpu(border));
828 } else {
829 border = newext->ee_block;
830 ext_debug("leaf will be added."
831 " next leaf starts at %d\n",
832 le32_to_cpu(border));
836 * If error occurs, then we break processing
837 * and mark filesystem read-only. index won't
838 * be inserted and tree will be in consistent
839 * state. Next mount will repair buffers too.
843 * Get array to track all allocated blocks.
844 * We need this to handle errors and free blocks
845 * upon them.
847 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
848 if (!ablocks)
849 return -ENOMEM;
851 /* allocate all needed blocks */
852 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
853 for (a = 0; a < depth - at; a++) {
854 newblock = ext4_ext_new_meta_block(handle, inode, path,
855 newext, &err);
856 if (newblock == 0)
857 goto cleanup;
858 ablocks[a] = newblock;
861 /* initialize new leaf */
862 newblock = ablocks[--a];
863 BUG_ON(newblock == 0);
864 bh = sb_getblk(inode->i_sb, newblock);
865 if (!bh) {
866 err = -EIO;
867 goto cleanup;
869 lock_buffer(bh);
871 err = ext4_journal_get_create_access(handle, bh);
872 if (err)
873 goto cleanup;
875 neh = ext_block_hdr(bh);
876 neh->eh_entries = 0;
877 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
878 neh->eh_magic = EXT4_EXT_MAGIC;
879 neh->eh_depth = 0;
880 ex = EXT_FIRST_EXTENT(neh);
882 /* move remainder of path[depth] to the new leaf */
883 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
884 /* start copy from next extent */
885 /* TODO: we could do it by single memmove */
886 m = 0;
887 path[depth].p_ext++;
888 while (path[depth].p_ext <=
889 EXT_MAX_EXTENT(path[depth].p_hdr)) {
890 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
891 le32_to_cpu(path[depth].p_ext->ee_block),
892 ext_pblock(path[depth].p_ext),
893 ext4_ext_is_uninitialized(path[depth].p_ext),
894 ext4_ext_get_actual_len(path[depth].p_ext),
895 newblock);
896 /*memmove(ex++, path[depth].p_ext++,
897 sizeof(struct ext4_extent));
898 neh->eh_entries++;*/
899 path[depth].p_ext++;
900 m++;
902 if (m) {
903 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
904 le16_add_cpu(&neh->eh_entries, m);
907 set_buffer_uptodate(bh);
908 unlock_buffer(bh);
910 err = ext4_handle_dirty_metadata(handle, inode, bh);
911 if (err)
912 goto cleanup;
913 brelse(bh);
914 bh = NULL;
916 /* correct old leaf */
917 if (m) {
918 err = ext4_ext_get_access(handle, inode, path + depth);
919 if (err)
920 goto cleanup;
921 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
922 err = ext4_ext_dirty(handle, inode, path + depth);
923 if (err)
924 goto cleanup;
928 /* create intermediate indexes */
929 k = depth - at - 1;
930 BUG_ON(k < 0);
931 if (k)
932 ext_debug("create %d intermediate indices\n", k);
933 /* insert new index into current index block */
934 /* current depth stored in i var */
935 i = depth - 1;
936 while (k--) {
937 oldblock = newblock;
938 newblock = ablocks[--a];
939 bh = sb_getblk(inode->i_sb, newblock);
940 if (!bh) {
941 err = -EIO;
942 goto cleanup;
944 lock_buffer(bh);
946 err = ext4_journal_get_create_access(handle, bh);
947 if (err)
948 goto cleanup;
950 neh = ext_block_hdr(bh);
951 neh->eh_entries = cpu_to_le16(1);
952 neh->eh_magic = EXT4_EXT_MAGIC;
953 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
954 neh->eh_depth = cpu_to_le16(depth - i);
955 fidx = EXT_FIRST_INDEX(neh);
956 fidx->ei_block = border;
957 ext4_idx_store_pblock(fidx, oldblock);
959 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
960 i, newblock, le32_to_cpu(border), oldblock);
961 /* copy indexes */
962 m = 0;
963 path[i].p_idx++;
965 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
966 EXT_MAX_INDEX(path[i].p_hdr));
967 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
968 EXT_LAST_INDEX(path[i].p_hdr));
969 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
970 ext_debug("%d: move %d:%llu in new index %llu\n", i,
971 le32_to_cpu(path[i].p_idx->ei_block),
972 idx_pblock(path[i].p_idx),
973 newblock);
974 /*memmove(++fidx, path[i].p_idx++,
975 sizeof(struct ext4_extent_idx));
976 neh->eh_entries++;
977 BUG_ON(neh->eh_entries > neh->eh_max);*/
978 path[i].p_idx++;
979 m++;
981 if (m) {
982 memmove(++fidx, path[i].p_idx - m,
983 sizeof(struct ext4_extent_idx) * m);
984 le16_add_cpu(&neh->eh_entries, m);
986 set_buffer_uptodate(bh);
987 unlock_buffer(bh);
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
990 if (err)
991 goto cleanup;
992 brelse(bh);
993 bh = NULL;
995 /* correct old index */
996 if (m) {
997 err = ext4_ext_get_access(handle, inode, path + i);
998 if (err)
999 goto cleanup;
1000 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1001 err = ext4_ext_dirty(handle, inode, path + i);
1002 if (err)
1003 goto cleanup;
1006 i--;
1009 /* insert new index */
1010 err = ext4_ext_insert_index(handle, inode, path + at,
1011 le32_to_cpu(border), newblock);
1013 cleanup:
1014 if (bh) {
1015 if (buffer_locked(bh))
1016 unlock_buffer(bh);
1017 brelse(bh);
1020 if (err) {
1021 /* free all allocated blocks in error case */
1022 for (i = 0; i < depth; i++) {
1023 if (!ablocks[i])
1024 continue;
1025 ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1026 EXT4_FREE_BLOCKS_METADATA);
1029 kfree(ablocks);
1031 return err;
1035 * ext4_ext_grow_indepth:
1036 * implements tree growing procedure:
1037 * - allocates new block
1038 * - moves top-level data (index block or leaf) into the new block
1039 * - initializes new top-level, creating index that points to the
1040 * just created block
1042 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1043 struct ext4_ext_path *path,
1044 struct ext4_extent *newext)
1046 struct ext4_ext_path *curp = path;
1047 struct ext4_extent_header *neh;
1048 struct ext4_extent_idx *fidx;
1049 struct buffer_head *bh;
1050 ext4_fsblk_t newblock;
1051 int err = 0;
1053 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1054 if (newblock == 0)
1055 return err;
1057 bh = sb_getblk(inode->i_sb, newblock);
1058 if (!bh) {
1059 err = -EIO;
1060 ext4_std_error(inode->i_sb, err);
1061 return err;
1063 lock_buffer(bh);
1065 err = ext4_journal_get_create_access(handle, bh);
1066 if (err) {
1067 unlock_buffer(bh);
1068 goto out;
1071 /* move top-level index/leaf into new block */
1072 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1074 /* set size of new block */
1075 neh = ext_block_hdr(bh);
1076 /* old root could have indexes or leaves
1077 * so calculate e_max right way */
1078 if (ext_depth(inode))
1079 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1080 else
1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1082 neh->eh_magic = EXT4_EXT_MAGIC;
1083 set_buffer_uptodate(bh);
1084 unlock_buffer(bh);
1086 err = ext4_handle_dirty_metadata(handle, inode, bh);
1087 if (err)
1088 goto out;
1090 /* create index in new top-level index: num,max,pointer */
1091 err = ext4_ext_get_access(handle, inode, curp);
1092 if (err)
1093 goto out;
1095 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1096 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1097 curp->p_hdr->eh_entries = cpu_to_le16(1);
1098 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1100 if (path[0].p_hdr->eh_depth)
1101 curp->p_idx->ei_block =
1102 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1103 else
1104 curp->p_idx->ei_block =
1105 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1106 ext4_idx_store_pblock(curp->p_idx, newblock);
1108 neh = ext_inode_hdr(inode);
1109 fidx = EXT_FIRST_INDEX(neh);
1110 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1111 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1112 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1114 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1115 err = ext4_ext_dirty(handle, inode, curp);
1116 out:
1117 brelse(bh);
1119 return err;
1123 * ext4_ext_create_new_leaf:
1124 * finds empty index and adds new leaf.
1125 * if no free index is found, then it requests in-depth growing.
1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128 struct ext4_ext_path *path,
1129 struct ext4_extent *newext)
1131 struct ext4_ext_path *curp;
1132 int depth, i, err = 0;
1134 repeat:
1135 i = depth = ext_depth(inode);
1137 /* walk up to the tree and look for free index entry */
1138 curp = path + depth;
1139 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1140 i--;
1141 curp--;
1144 /* we use already allocated block for index block,
1145 * so subsequent data blocks should be contiguous */
1146 if (EXT_HAS_FREE_INDEX(curp)) {
1147 /* if we found index with free entry, then use that
1148 * entry: create all needed subtree and add new leaf */
1149 err = ext4_ext_split(handle, inode, path, newext, i);
1150 if (err)
1151 goto out;
1153 /* refill path */
1154 ext4_ext_drop_refs(path);
1155 path = ext4_ext_find_extent(inode,
1156 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1157 path);
1158 if (IS_ERR(path))
1159 err = PTR_ERR(path);
1160 } else {
1161 /* tree is full, time to grow in depth */
1162 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1163 if (err)
1164 goto out;
1166 /* refill path */
1167 ext4_ext_drop_refs(path);
1168 path = ext4_ext_find_extent(inode,
1169 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1170 path);
1171 if (IS_ERR(path)) {
1172 err = PTR_ERR(path);
1173 goto out;
1177 * only first (depth 0 -> 1) produces free space;
1178 * in all other cases we have to split the grown tree
1180 depth = ext_depth(inode);
1181 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1182 /* now we need to split */
1183 goto repeat;
1187 out:
1188 return err;
1192 * search the closest allocated block to the left for *logical
1193 * and returns it at @logical + it's physical address at @phys
1194 * if *logical is the smallest allocated block, the function
1195 * returns 0 at @phys
1196 * return value contains 0 (success) or error code
1199 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1200 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1202 struct ext4_extent_idx *ix;
1203 struct ext4_extent *ex;
1204 int depth, ee_len;
1206 BUG_ON(path == NULL);
1207 depth = path->p_depth;
1208 *phys = 0;
1210 if (depth == 0 && path->p_ext == NULL)
1211 return 0;
1213 /* usually extent in the path covers blocks smaller
1214 * then *logical, but it can be that extent is the
1215 * first one in the file */
1217 ex = path[depth].p_ext;
1218 ee_len = ext4_ext_get_actual_len(ex);
1219 if (*logical < le32_to_cpu(ex->ee_block)) {
1220 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1221 while (--depth >= 0) {
1222 ix = path[depth].p_idx;
1223 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1225 return 0;
1228 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1230 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1231 *phys = ext_pblock(ex) + ee_len - 1;
1232 return 0;
1236 * search the closest allocated block to the right for *logical
1237 * and returns it at @logical + it's physical address at @phys
1238 * if *logical is the smallest allocated block, the function
1239 * returns 0 at @phys
1240 * return value contains 0 (success) or error code
1243 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1244 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1246 struct buffer_head *bh = NULL;
1247 struct ext4_extent_header *eh;
1248 struct ext4_extent_idx *ix;
1249 struct ext4_extent *ex;
1250 ext4_fsblk_t block;
1251 int depth; /* Note, NOT eh_depth; depth from top of tree */
1252 int ee_len;
1254 BUG_ON(path == NULL);
1255 depth = path->p_depth;
1256 *phys = 0;
1258 if (depth == 0 && path->p_ext == NULL)
1259 return 0;
1261 /* usually extent in the path covers blocks smaller
1262 * then *logical, but it can be that extent is the
1263 * first one in the file */
1265 ex = path[depth].p_ext;
1266 ee_len = ext4_ext_get_actual_len(ex);
1267 if (*logical < le32_to_cpu(ex->ee_block)) {
1268 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1269 while (--depth >= 0) {
1270 ix = path[depth].p_idx;
1271 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1273 *logical = le32_to_cpu(ex->ee_block);
1274 *phys = ext_pblock(ex);
1275 return 0;
1278 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1280 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1281 /* next allocated block in this leaf */
1282 ex++;
1283 *logical = le32_to_cpu(ex->ee_block);
1284 *phys = ext_pblock(ex);
1285 return 0;
1288 /* go up and search for index to the right */
1289 while (--depth >= 0) {
1290 ix = path[depth].p_idx;
1291 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1292 goto got_index;
1295 /* we've gone up to the root and found no index to the right */
1296 return 0;
1298 got_index:
1299 /* we've found index to the right, let's
1300 * follow it and find the closest allocated
1301 * block to the right */
1302 ix++;
1303 block = idx_pblock(ix);
1304 while (++depth < path->p_depth) {
1305 bh = sb_bread(inode->i_sb, block);
1306 if (bh == NULL)
1307 return -EIO;
1308 eh = ext_block_hdr(bh);
1309 /* subtract from p_depth to get proper eh_depth */
1310 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1311 put_bh(bh);
1312 return -EIO;
1314 ix = EXT_FIRST_INDEX(eh);
1315 block = idx_pblock(ix);
1316 put_bh(bh);
1319 bh = sb_bread(inode->i_sb, block);
1320 if (bh == NULL)
1321 return -EIO;
1322 eh = ext_block_hdr(bh);
1323 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1324 put_bh(bh);
1325 return -EIO;
1327 ex = EXT_FIRST_EXTENT(eh);
1328 *logical = le32_to_cpu(ex->ee_block);
1329 *phys = ext_pblock(ex);
1330 put_bh(bh);
1331 return 0;
1335 * ext4_ext_next_allocated_block:
1336 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1337 * NOTE: it considers block number from index entry as
1338 * allocated block. Thus, index entries have to be consistent
1339 * with leaves.
1341 static ext4_lblk_t
1342 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1344 int depth;
1346 BUG_ON(path == NULL);
1347 depth = path->p_depth;
1349 if (depth == 0 && path->p_ext == NULL)
1350 return EXT_MAX_BLOCK;
1352 while (depth >= 0) {
1353 if (depth == path->p_depth) {
1354 /* leaf */
1355 if (path[depth].p_ext !=
1356 EXT_LAST_EXTENT(path[depth].p_hdr))
1357 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1358 } else {
1359 /* index */
1360 if (path[depth].p_idx !=
1361 EXT_LAST_INDEX(path[depth].p_hdr))
1362 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1364 depth--;
1367 return EXT_MAX_BLOCK;
1371 * ext4_ext_next_leaf_block:
1372 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1374 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1375 struct ext4_ext_path *path)
1377 int depth;
1379 BUG_ON(path == NULL);
1380 depth = path->p_depth;
1382 /* zero-tree has no leaf blocks at all */
1383 if (depth == 0)
1384 return EXT_MAX_BLOCK;
1386 /* go to index block */
1387 depth--;
1389 while (depth >= 0) {
1390 if (path[depth].p_idx !=
1391 EXT_LAST_INDEX(path[depth].p_hdr))
1392 return (ext4_lblk_t)
1393 le32_to_cpu(path[depth].p_idx[1].ei_block);
1394 depth--;
1397 return EXT_MAX_BLOCK;
1401 * ext4_ext_correct_indexes:
1402 * if leaf gets modified and modified extent is first in the leaf,
1403 * then we have to correct all indexes above.
1404 * TODO: do we need to correct tree in all cases?
1406 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1407 struct ext4_ext_path *path)
1409 struct ext4_extent_header *eh;
1410 int depth = ext_depth(inode);
1411 struct ext4_extent *ex;
1412 __le32 border;
1413 int k, err = 0;
1415 eh = path[depth].p_hdr;
1416 ex = path[depth].p_ext;
1417 BUG_ON(ex == NULL);
1418 BUG_ON(eh == NULL);
1420 if (depth == 0) {
1421 /* there is no tree at all */
1422 return 0;
1425 if (ex != EXT_FIRST_EXTENT(eh)) {
1426 /* we correct tree if first leaf got modified only */
1427 return 0;
1431 * TODO: we need correction if border is smaller than current one
1433 k = depth - 1;
1434 border = path[depth].p_ext->ee_block;
1435 err = ext4_ext_get_access(handle, inode, path + k);
1436 if (err)
1437 return err;
1438 path[k].p_idx->ei_block = border;
1439 err = ext4_ext_dirty(handle, inode, path + k);
1440 if (err)
1441 return err;
1443 while (k--) {
1444 /* change all left-side indexes */
1445 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1446 break;
1447 err = ext4_ext_get_access(handle, inode, path + k);
1448 if (err)
1449 break;
1450 path[k].p_idx->ei_block = border;
1451 err = ext4_ext_dirty(handle, inode, path + k);
1452 if (err)
1453 break;
1456 return err;
1460 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1461 struct ext4_extent *ex2)
1463 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1466 * Make sure that either both extents are uninitialized, or
1467 * both are _not_.
1469 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1470 return 0;
1472 if (ext4_ext_is_uninitialized(ex1))
1473 max_len = EXT_UNINIT_MAX_LEN;
1474 else
1475 max_len = EXT_INIT_MAX_LEN;
1477 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1478 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1480 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1481 le32_to_cpu(ex2->ee_block))
1482 return 0;
1485 * To allow future support for preallocated extents to be added
1486 * as an RO_COMPAT feature, refuse to merge to extents if
1487 * this can result in the top bit of ee_len being set.
1489 if (ext1_ee_len + ext2_ee_len > max_len)
1490 return 0;
1491 #ifdef AGGRESSIVE_TEST
1492 if (ext1_ee_len >= 4)
1493 return 0;
1494 #endif
1496 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1497 return 1;
1498 return 0;
1502 * This function tries to merge the "ex" extent to the next extent in the tree.
1503 * It always tries to merge towards right. If you want to merge towards
1504 * left, pass "ex - 1" as argument instead of "ex".
1505 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1506 * 1 if they got merged.
1508 int ext4_ext_try_to_merge(struct inode *inode,
1509 struct ext4_ext_path *path,
1510 struct ext4_extent *ex)
1512 struct ext4_extent_header *eh;
1513 unsigned int depth, len;
1514 int merge_done = 0;
1515 int uninitialized = 0;
1517 depth = ext_depth(inode);
1518 BUG_ON(path[depth].p_hdr == NULL);
1519 eh = path[depth].p_hdr;
1521 while (ex < EXT_LAST_EXTENT(eh)) {
1522 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1523 break;
1524 /* merge with next extent! */
1525 if (ext4_ext_is_uninitialized(ex))
1526 uninitialized = 1;
1527 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1528 + ext4_ext_get_actual_len(ex + 1));
1529 if (uninitialized)
1530 ext4_ext_mark_uninitialized(ex);
1532 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1533 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1534 * sizeof(struct ext4_extent);
1535 memmove(ex + 1, ex + 2, len);
1537 le16_add_cpu(&eh->eh_entries, -1);
1538 merge_done = 1;
1539 WARN_ON(eh->eh_entries == 0);
1540 if (!eh->eh_entries)
1541 ext4_error(inode->i_sb,
1542 "inode#%lu, eh->eh_entries = 0!",
1543 inode->i_ino);
1546 return merge_done;
1550 * check if a portion of the "newext" extent overlaps with an
1551 * existing extent.
1553 * If there is an overlap discovered, it updates the length of the newext
1554 * such that there will be no overlap, and then returns 1.
1555 * If there is no overlap found, it returns 0.
1557 unsigned int ext4_ext_check_overlap(struct inode *inode,
1558 struct ext4_extent *newext,
1559 struct ext4_ext_path *path)
1561 ext4_lblk_t b1, b2;
1562 unsigned int depth, len1;
1563 unsigned int ret = 0;
1565 b1 = le32_to_cpu(newext->ee_block);
1566 len1 = ext4_ext_get_actual_len(newext);
1567 depth = ext_depth(inode);
1568 if (!path[depth].p_ext)
1569 goto out;
1570 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1573 * get the next allocated block if the extent in the path
1574 * is before the requested block(s)
1576 if (b2 < b1) {
1577 b2 = ext4_ext_next_allocated_block(path);
1578 if (b2 == EXT_MAX_BLOCK)
1579 goto out;
1582 /* check for wrap through zero on extent logical start block*/
1583 if (b1 + len1 < b1) {
1584 len1 = EXT_MAX_BLOCK - b1;
1585 newext->ee_len = cpu_to_le16(len1);
1586 ret = 1;
1589 /* check for overlap */
1590 if (b1 + len1 > b2) {
1591 newext->ee_len = cpu_to_le16(b2 - b1);
1592 ret = 1;
1594 out:
1595 return ret;
1599 * ext4_ext_insert_extent:
1600 * tries to merge requsted extent into the existing extent or
1601 * inserts requested extent as new one into the tree,
1602 * creating new leaf in the no-space case.
1604 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1605 struct ext4_ext_path *path,
1606 struct ext4_extent *newext, int flag)
1608 struct ext4_extent_header *eh;
1609 struct ext4_extent *ex, *fex;
1610 struct ext4_extent *nearex; /* nearest extent */
1611 struct ext4_ext_path *npath = NULL;
1612 int depth, len, err;
1613 ext4_lblk_t next;
1614 unsigned uninitialized = 0;
1616 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1617 depth = ext_depth(inode);
1618 ex = path[depth].p_ext;
1619 BUG_ON(path[depth].p_hdr == NULL);
1621 /* try to insert block into found extent and return */
1622 if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1623 && ext4_can_extents_be_merged(inode, ex, newext)) {
1624 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1625 ext4_ext_is_uninitialized(newext),
1626 ext4_ext_get_actual_len(newext),
1627 le32_to_cpu(ex->ee_block),
1628 ext4_ext_is_uninitialized(ex),
1629 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1630 err = ext4_ext_get_access(handle, inode, path + depth);
1631 if (err)
1632 return err;
1635 * ext4_can_extents_be_merged should have checked that either
1636 * both extents are uninitialized, or both aren't. Thus we
1637 * need to check only one of them here.
1639 if (ext4_ext_is_uninitialized(ex))
1640 uninitialized = 1;
1641 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1642 + ext4_ext_get_actual_len(newext));
1643 if (uninitialized)
1644 ext4_ext_mark_uninitialized(ex);
1645 eh = path[depth].p_hdr;
1646 nearex = ex;
1647 goto merge;
1650 repeat:
1651 depth = ext_depth(inode);
1652 eh = path[depth].p_hdr;
1653 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1654 goto has_space;
1656 /* probably next leaf has space for us? */
1657 fex = EXT_LAST_EXTENT(eh);
1658 next = ext4_ext_next_leaf_block(inode, path);
1659 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1660 && next != EXT_MAX_BLOCK) {
1661 ext_debug("next leaf block - %d\n", next);
1662 BUG_ON(npath != NULL);
1663 npath = ext4_ext_find_extent(inode, next, NULL);
1664 if (IS_ERR(npath))
1665 return PTR_ERR(npath);
1666 BUG_ON(npath->p_depth != path->p_depth);
1667 eh = npath[depth].p_hdr;
1668 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1669 ext_debug("next leaf isnt full(%d)\n",
1670 le16_to_cpu(eh->eh_entries));
1671 path = npath;
1672 goto repeat;
1674 ext_debug("next leaf has no free space(%d,%d)\n",
1675 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1679 * There is no free space in the found leaf.
1680 * We're gonna add a new leaf in the tree.
1682 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1683 if (err)
1684 goto cleanup;
1685 depth = ext_depth(inode);
1686 eh = path[depth].p_hdr;
1688 has_space:
1689 nearex = path[depth].p_ext;
1691 err = ext4_ext_get_access(handle, inode, path + depth);
1692 if (err)
1693 goto cleanup;
1695 if (!nearex) {
1696 /* there is no extent in this leaf, create first one */
1697 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1698 le32_to_cpu(newext->ee_block),
1699 ext_pblock(newext),
1700 ext4_ext_is_uninitialized(newext),
1701 ext4_ext_get_actual_len(newext));
1702 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1703 } else if (le32_to_cpu(newext->ee_block)
1704 > le32_to_cpu(nearex->ee_block)) {
1705 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1706 if (nearex != EXT_LAST_EXTENT(eh)) {
1707 len = EXT_MAX_EXTENT(eh) - nearex;
1708 len = (len - 1) * sizeof(struct ext4_extent);
1709 len = len < 0 ? 0 : len;
1710 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1711 "move %d from 0x%p to 0x%p\n",
1712 le32_to_cpu(newext->ee_block),
1713 ext_pblock(newext),
1714 ext4_ext_is_uninitialized(newext),
1715 ext4_ext_get_actual_len(newext),
1716 nearex, len, nearex + 1, nearex + 2);
1717 memmove(nearex + 2, nearex + 1, len);
1719 path[depth].p_ext = nearex + 1;
1720 } else {
1721 BUG_ON(newext->ee_block == nearex->ee_block);
1722 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1723 len = len < 0 ? 0 : len;
1724 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1725 "move %d from 0x%p to 0x%p\n",
1726 le32_to_cpu(newext->ee_block),
1727 ext_pblock(newext),
1728 ext4_ext_is_uninitialized(newext),
1729 ext4_ext_get_actual_len(newext),
1730 nearex, len, nearex + 1, nearex + 2);
1731 memmove(nearex + 1, nearex, len);
1732 path[depth].p_ext = nearex;
1735 le16_add_cpu(&eh->eh_entries, 1);
1736 nearex = path[depth].p_ext;
1737 nearex->ee_block = newext->ee_block;
1738 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1739 nearex->ee_len = newext->ee_len;
1741 merge:
1742 /* try to merge extents to the right */
1743 if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1744 ext4_ext_try_to_merge(inode, path, nearex);
1746 /* try to merge extents to the left */
1748 /* time to correct all indexes above */
1749 err = ext4_ext_correct_indexes(handle, inode, path);
1750 if (err)
1751 goto cleanup;
1753 err = ext4_ext_dirty(handle, inode, path + depth);
1755 cleanup:
1756 if (npath) {
1757 ext4_ext_drop_refs(npath);
1758 kfree(npath);
1760 ext4_ext_invalidate_cache(inode);
1761 return err;
1764 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1765 ext4_lblk_t num, ext_prepare_callback func,
1766 void *cbdata)
1768 struct ext4_ext_path *path = NULL;
1769 struct ext4_ext_cache cbex;
1770 struct ext4_extent *ex;
1771 ext4_lblk_t next, start = 0, end = 0;
1772 ext4_lblk_t last = block + num;
1773 int depth, exists, err = 0;
1775 BUG_ON(func == NULL);
1776 BUG_ON(inode == NULL);
1778 while (block < last && block != EXT_MAX_BLOCK) {
1779 num = last - block;
1780 /* find extent for this block */
1781 down_read(&EXT4_I(inode)->i_data_sem);
1782 path = ext4_ext_find_extent(inode, block, path);
1783 up_read(&EXT4_I(inode)->i_data_sem);
1784 if (IS_ERR(path)) {
1785 err = PTR_ERR(path);
1786 path = NULL;
1787 break;
1790 depth = ext_depth(inode);
1791 BUG_ON(path[depth].p_hdr == NULL);
1792 ex = path[depth].p_ext;
1793 next = ext4_ext_next_allocated_block(path);
1795 exists = 0;
1796 if (!ex) {
1797 /* there is no extent yet, so try to allocate
1798 * all requested space */
1799 start = block;
1800 end = block + num;
1801 } else if (le32_to_cpu(ex->ee_block) > block) {
1802 /* need to allocate space before found extent */
1803 start = block;
1804 end = le32_to_cpu(ex->ee_block);
1805 if (block + num < end)
1806 end = block + num;
1807 } else if (block >= le32_to_cpu(ex->ee_block)
1808 + ext4_ext_get_actual_len(ex)) {
1809 /* need to allocate space after found extent */
1810 start = block;
1811 end = block + num;
1812 if (end >= next)
1813 end = next;
1814 } else if (block >= le32_to_cpu(ex->ee_block)) {
1816 * some part of requested space is covered
1817 * by found extent
1819 start = block;
1820 end = le32_to_cpu(ex->ee_block)
1821 + ext4_ext_get_actual_len(ex);
1822 if (block + num < end)
1823 end = block + num;
1824 exists = 1;
1825 } else {
1826 BUG();
1828 BUG_ON(end <= start);
1830 if (!exists) {
1831 cbex.ec_block = start;
1832 cbex.ec_len = end - start;
1833 cbex.ec_start = 0;
1834 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1835 } else {
1836 cbex.ec_block = le32_to_cpu(ex->ee_block);
1837 cbex.ec_len = ext4_ext_get_actual_len(ex);
1838 cbex.ec_start = ext_pblock(ex);
1839 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1842 BUG_ON(cbex.ec_len == 0);
1843 err = func(inode, path, &cbex, ex, cbdata);
1844 ext4_ext_drop_refs(path);
1846 if (err < 0)
1847 break;
1849 if (err == EXT_REPEAT)
1850 continue;
1851 else if (err == EXT_BREAK) {
1852 err = 0;
1853 break;
1856 if (ext_depth(inode) != depth) {
1857 /* depth was changed. we have to realloc path */
1858 kfree(path);
1859 path = NULL;
1862 block = cbex.ec_block + cbex.ec_len;
1865 if (path) {
1866 ext4_ext_drop_refs(path);
1867 kfree(path);
1870 return err;
1873 static void
1874 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1875 __u32 len, ext4_fsblk_t start, int type)
1877 struct ext4_ext_cache *cex;
1878 BUG_ON(len == 0);
1879 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1880 cex = &EXT4_I(inode)->i_cached_extent;
1881 cex->ec_type = type;
1882 cex->ec_block = block;
1883 cex->ec_len = len;
1884 cex->ec_start = start;
1885 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1889 * ext4_ext_put_gap_in_cache:
1890 * calculate boundaries of the gap that the requested block fits into
1891 * and cache this gap
1893 static void
1894 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1895 ext4_lblk_t block)
1897 int depth = ext_depth(inode);
1898 unsigned long len;
1899 ext4_lblk_t lblock;
1900 struct ext4_extent *ex;
1902 ex = path[depth].p_ext;
1903 if (ex == NULL) {
1904 /* there is no extent yet, so gap is [0;-] */
1905 lblock = 0;
1906 len = EXT_MAX_BLOCK;
1907 ext_debug("cache gap(whole file):");
1908 } else if (block < le32_to_cpu(ex->ee_block)) {
1909 lblock = block;
1910 len = le32_to_cpu(ex->ee_block) - block;
1911 ext_debug("cache gap(before): %u [%u:%u]",
1912 block,
1913 le32_to_cpu(ex->ee_block),
1914 ext4_ext_get_actual_len(ex));
1915 } else if (block >= le32_to_cpu(ex->ee_block)
1916 + ext4_ext_get_actual_len(ex)) {
1917 ext4_lblk_t next;
1918 lblock = le32_to_cpu(ex->ee_block)
1919 + ext4_ext_get_actual_len(ex);
1921 next = ext4_ext_next_allocated_block(path);
1922 ext_debug("cache gap(after): [%u:%u] %u",
1923 le32_to_cpu(ex->ee_block),
1924 ext4_ext_get_actual_len(ex),
1925 block);
1926 BUG_ON(next == lblock);
1927 len = next - lblock;
1928 } else {
1929 lblock = len = 0;
1930 BUG();
1933 ext_debug(" -> %u:%lu\n", lblock, len);
1934 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1937 static int
1938 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1939 struct ext4_extent *ex)
1941 struct ext4_ext_cache *cex;
1942 int ret = EXT4_EXT_CACHE_NO;
1945 * We borrow i_block_reservation_lock to protect i_cached_extent
1947 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1948 cex = &EXT4_I(inode)->i_cached_extent;
1950 /* has cache valid data? */
1951 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1952 goto errout;
1954 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1955 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1956 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1957 ex->ee_block = cpu_to_le32(cex->ec_block);
1958 ext4_ext_store_pblock(ex, cex->ec_start);
1959 ex->ee_len = cpu_to_le16(cex->ec_len);
1960 ext_debug("%u cached by %u:%u:%llu\n",
1961 block,
1962 cex->ec_block, cex->ec_len, cex->ec_start);
1963 ret = cex->ec_type;
1965 errout:
1966 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1967 return ret;
1971 * ext4_ext_rm_idx:
1972 * removes index from the index block.
1973 * It's used in truncate case only, thus all requests are for
1974 * last index in the block only.
1976 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1977 struct ext4_ext_path *path)
1979 int err;
1980 ext4_fsblk_t leaf;
1982 /* free index block */
1983 path--;
1984 leaf = idx_pblock(path->p_idx);
1985 BUG_ON(path->p_hdr->eh_entries == 0);
1986 err = ext4_ext_get_access(handle, inode, path);
1987 if (err)
1988 return err;
1989 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1990 err = ext4_ext_dirty(handle, inode, path);
1991 if (err)
1992 return err;
1993 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1994 ext4_free_blocks(handle, inode, 0, leaf, 1,
1995 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1996 return err;
2000 * ext4_ext_calc_credits_for_single_extent:
2001 * This routine returns max. credits that needed to insert an extent
2002 * to the extent tree.
2003 * When pass the actual path, the caller should calculate credits
2004 * under i_data_sem.
2006 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2007 struct ext4_ext_path *path)
2009 if (path) {
2010 int depth = ext_depth(inode);
2011 int ret = 0;
2013 /* probably there is space in leaf? */
2014 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2015 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2018 * There are some space in the leaf tree, no
2019 * need to account for leaf block credit
2021 * bitmaps and block group descriptor blocks
2022 * and other metadat blocks still need to be
2023 * accounted.
2025 /* 1 bitmap, 1 block group descriptor */
2026 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2027 return ret;
2031 return ext4_chunk_trans_blocks(inode, nrblocks);
2035 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2037 * if nrblocks are fit in a single extent (chunk flag is 1), then
2038 * in the worse case, each tree level index/leaf need to be changed
2039 * if the tree split due to insert a new extent, then the old tree
2040 * index/leaf need to be updated too
2042 * If the nrblocks are discontiguous, they could cause
2043 * the whole tree split more than once, but this is really rare.
2045 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2047 int index;
2048 int depth = ext_depth(inode);
2050 if (chunk)
2051 index = depth * 2;
2052 else
2053 index = depth * 3;
2055 return index;
2058 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2059 struct ext4_extent *ex,
2060 ext4_lblk_t from, ext4_lblk_t to)
2062 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2063 int flags = EXT4_FREE_BLOCKS_FORGET;
2065 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2066 flags |= EXT4_FREE_BLOCKS_METADATA;
2067 #ifdef EXTENTS_STATS
2069 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2070 spin_lock(&sbi->s_ext_stats_lock);
2071 sbi->s_ext_blocks += ee_len;
2072 sbi->s_ext_extents++;
2073 if (ee_len < sbi->s_ext_min)
2074 sbi->s_ext_min = ee_len;
2075 if (ee_len > sbi->s_ext_max)
2076 sbi->s_ext_max = ee_len;
2077 if (ext_depth(inode) > sbi->s_depth_max)
2078 sbi->s_depth_max = ext_depth(inode);
2079 spin_unlock(&sbi->s_ext_stats_lock);
2081 #endif
2082 if (from >= le32_to_cpu(ex->ee_block)
2083 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2084 /* tail removal */
2085 ext4_lblk_t num;
2086 ext4_fsblk_t start;
2088 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2089 start = ext_pblock(ex) + ee_len - num;
2090 ext_debug("free last %u blocks starting %llu\n", num, start);
2091 ext4_free_blocks(handle, inode, 0, start, num, flags);
2092 } else if (from == le32_to_cpu(ex->ee_block)
2093 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2094 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2095 from, to, le32_to_cpu(ex->ee_block), ee_len);
2096 } else {
2097 printk(KERN_INFO "strange request: removal(2) "
2098 "%u-%u from %u:%u\n",
2099 from, to, le32_to_cpu(ex->ee_block), ee_len);
2101 return 0;
2104 static int
2105 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2106 struct ext4_ext_path *path, ext4_lblk_t start)
2108 int err = 0, correct_index = 0;
2109 int depth = ext_depth(inode), credits;
2110 struct ext4_extent_header *eh;
2111 ext4_lblk_t a, b, block;
2112 unsigned num;
2113 ext4_lblk_t ex_ee_block;
2114 unsigned short ex_ee_len;
2115 unsigned uninitialized = 0;
2116 struct ext4_extent *ex;
2118 /* the header must be checked already in ext4_ext_remove_space() */
2119 ext_debug("truncate since %u in leaf\n", start);
2120 if (!path[depth].p_hdr)
2121 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2122 eh = path[depth].p_hdr;
2123 BUG_ON(eh == NULL);
2125 /* find where to start removing */
2126 ex = EXT_LAST_EXTENT(eh);
2128 ex_ee_block = le32_to_cpu(ex->ee_block);
2129 ex_ee_len = ext4_ext_get_actual_len(ex);
2131 while (ex >= EXT_FIRST_EXTENT(eh) &&
2132 ex_ee_block + ex_ee_len > start) {
2134 if (ext4_ext_is_uninitialized(ex))
2135 uninitialized = 1;
2136 else
2137 uninitialized = 0;
2139 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2140 uninitialized, ex_ee_len);
2141 path[depth].p_ext = ex;
2143 a = ex_ee_block > start ? ex_ee_block : start;
2144 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2145 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2147 ext_debug(" border %u:%u\n", a, b);
2149 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2150 block = 0;
2151 num = 0;
2152 BUG();
2153 } else if (a != ex_ee_block) {
2154 /* remove tail of the extent */
2155 block = ex_ee_block;
2156 num = a - block;
2157 } else if (b != ex_ee_block + ex_ee_len - 1) {
2158 /* remove head of the extent */
2159 block = a;
2160 num = b - a;
2161 /* there is no "make a hole" API yet */
2162 BUG();
2163 } else {
2164 /* remove whole extent: excellent! */
2165 block = ex_ee_block;
2166 num = 0;
2167 BUG_ON(a != ex_ee_block);
2168 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2172 * 3 for leaf, sb, and inode plus 2 (bmap and group
2173 * descriptor) for each block group; assume two block
2174 * groups plus ex_ee_len/blocks_per_block_group for
2175 * the worst case
2177 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2178 if (ex == EXT_FIRST_EXTENT(eh)) {
2179 correct_index = 1;
2180 credits += (ext_depth(inode)) + 1;
2182 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2184 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2185 if (err)
2186 goto out;
2188 err = ext4_ext_get_access(handle, inode, path + depth);
2189 if (err)
2190 goto out;
2192 err = ext4_remove_blocks(handle, inode, ex, a, b);
2193 if (err)
2194 goto out;
2196 if (num == 0) {
2197 /* this extent is removed; mark slot entirely unused */
2198 ext4_ext_store_pblock(ex, 0);
2199 le16_add_cpu(&eh->eh_entries, -1);
2202 ex->ee_block = cpu_to_le32(block);
2203 ex->ee_len = cpu_to_le16(num);
2205 * Do not mark uninitialized if all the blocks in the
2206 * extent have been removed.
2208 if (uninitialized && num)
2209 ext4_ext_mark_uninitialized(ex);
2211 err = ext4_ext_dirty(handle, inode, path + depth);
2212 if (err)
2213 goto out;
2215 ext_debug("new extent: %u:%u:%llu\n", block, num,
2216 ext_pblock(ex));
2217 ex--;
2218 ex_ee_block = le32_to_cpu(ex->ee_block);
2219 ex_ee_len = ext4_ext_get_actual_len(ex);
2222 if (correct_index && eh->eh_entries)
2223 err = ext4_ext_correct_indexes(handle, inode, path);
2225 /* if this leaf is free, then we should
2226 * remove it from index block above */
2227 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2228 err = ext4_ext_rm_idx(handle, inode, path + depth);
2230 out:
2231 return err;
2235 * ext4_ext_more_to_rm:
2236 * returns 1 if current index has to be freed (even partial)
2238 static int
2239 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2241 BUG_ON(path->p_idx == NULL);
2243 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2244 return 0;
2247 * if truncate on deeper level happened, it wasn't partial,
2248 * so we have to consider current index for truncation
2250 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2251 return 0;
2252 return 1;
2255 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2257 struct super_block *sb = inode->i_sb;
2258 int depth = ext_depth(inode);
2259 struct ext4_ext_path *path;
2260 handle_t *handle;
2261 int i = 0, err = 0;
2263 ext_debug("truncate since %u\n", start);
2265 /* probably first extent we're gonna free will be last in block */
2266 handle = ext4_journal_start(inode, depth + 1);
2267 if (IS_ERR(handle))
2268 return PTR_ERR(handle);
2270 ext4_ext_invalidate_cache(inode);
2273 * We start scanning from right side, freeing all the blocks
2274 * after i_size and walking into the tree depth-wise.
2276 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2277 if (path == NULL) {
2278 ext4_journal_stop(handle);
2279 return -ENOMEM;
2281 path[0].p_hdr = ext_inode_hdr(inode);
2282 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2283 err = -EIO;
2284 goto out;
2286 path[0].p_depth = depth;
2288 while (i >= 0 && err == 0) {
2289 if (i == depth) {
2290 /* this is leaf block */
2291 err = ext4_ext_rm_leaf(handle, inode, path, start);
2292 /* root level has p_bh == NULL, brelse() eats this */
2293 brelse(path[i].p_bh);
2294 path[i].p_bh = NULL;
2295 i--;
2296 continue;
2299 /* this is index block */
2300 if (!path[i].p_hdr) {
2301 ext_debug("initialize header\n");
2302 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2305 if (!path[i].p_idx) {
2306 /* this level hasn't been touched yet */
2307 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2308 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2309 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2310 path[i].p_hdr,
2311 le16_to_cpu(path[i].p_hdr->eh_entries));
2312 } else {
2313 /* we were already here, see at next index */
2314 path[i].p_idx--;
2317 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2318 i, EXT_FIRST_INDEX(path[i].p_hdr),
2319 path[i].p_idx);
2320 if (ext4_ext_more_to_rm(path + i)) {
2321 struct buffer_head *bh;
2322 /* go to the next level */
2323 ext_debug("move to level %d (block %llu)\n",
2324 i + 1, idx_pblock(path[i].p_idx));
2325 memset(path + i + 1, 0, sizeof(*path));
2326 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2327 if (!bh) {
2328 /* should we reset i_size? */
2329 err = -EIO;
2330 break;
2332 if (WARN_ON(i + 1 > depth)) {
2333 err = -EIO;
2334 break;
2336 if (ext4_ext_check(inode, ext_block_hdr(bh),
2337 depth - i - 1)) {
2338 err = -EIO;
2339 break;
2341 path[i + 1].p_bh = bh;
2343 /* save actual number of indexes since this
2344 * number is changed at the next iteration */
2345 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2346 i++;
2347 } else {
2348 /* we finished processing this index, go up */
2349 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2350 /* index is empty, remove it;
2351 * handle must be already prepared by the
2352 * truncatei_leaf() */
2353 err = ext4_ext_rm_idx(handle, inode, path + i);
2355 /* root level has p_bh == NULL, brelse() eats this */
2356 brelse(path[i].p_bh);
2357 path[i].p_bh = NULL;
2358 i--;
2359 ext_debug("return to level %d\n", i);
2363 /* TODO: flexible tree reduction should be here */
2364 if (path->p_hdr->eh_entries == 0) {
2366 * truncate to zero freed all the tree,
2367 * so we need to correct eh_depth
2369 err = ext4_ext_get_access(handle, inode, path);
2370 if (err == 0) {
2371 ext_inode_hdr(inode)->eh_depth = 0;
2372 ext_inode_hdr(inode)->eh_max =
2373 cpu_to_le16(ext4_ext_space_root(inode, 0));
2374 err = ext4_ext_dirty(handle, inode, path);
2377 out:
2378 ext4_ext_drop_refs(path);
2379 kfree(path);
2380 ext4_journal_stop(handle);
2382 return err;
2386 * called at mount time
2388 void ext4_ext_init(struct super_block *sb)
2391 * possible initialization would be here
2394 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2395 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2396 printk(KERN_INFO "EXT4-fs: file extents enabled");
2397 #ifdef AGGRESSIVE_TEST
2398 printk(", aggressive tests");
2399 #endif
2400 #ifdef CHECK_BINSEARCH
2401 printk(", check binsearch");
2402 #endif
2403 #ifdef EXTENTS_STATS
2404 printk(", stats");
2405 #endif
2406 printk("\n");
2407 #endif
2408 #ifdef EXTENTS_STATS
2409 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2410 EXT4_SB(sb)->s_ext_min = 1 << 30;
2411 EXT4_SB(sb)->s_ext_max = 0;
2412 #endif
2417 * called at umount time
2419 void ext4_ext_release(struct super_block *sb)
2421 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2422 return;
2424 #ifdef EXTENTS_STATS
2425 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2426 struct ext4_sb_info *sbi = EXT4_SB(sb);
2427 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2428 sbi->s_ext_blocks, sbi->s_ext_extents,
2429 sbi->s_ext_blocks / sbi->s_ext_extents);
2430 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2431 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2433 #endif
2436 static void bi_complete(struct bio *bio, int error)
2438 complete((struct completion *)bio->bi_private);
2441 /* FIXME!! we need to try to merge to left or right after zero-out */
2442 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2444 int ret = -EIO;
2445 struct bio *bio;
2446 int blkbits, blocksize;
2447 sector_t ee_pblock;
2448 struct completion event;
2449 unsigned int ee_len, len, done, offset;
2452 blkbits = inode->i_blkbits;
2453 blocksize = inode->i_sb->s_blocksize;
2454 ee_len = ext4_ext_get_actual_len(ex);
2455 ee_pblock = ext_pblock(ex);
2457 /* convert ee_pblock to 512 byte sectors */
2458 ee_pblock = ee_pblock << (blkbits - 9);
2460 while (ee_len > 0) {
2462 if (ee_len > BIO_MAX_PAGES)
2463 len = BIO_MAX_PAGES;
2464 else
2465 len = ee_len;
2467 bio = bio_alloc(GFP_NOIO, len);
2468 bio->bi_sector = ee_pblock;
2469 bio->bi_bdev = inode->i_sb->s_bdev;
2471 done = 0;
2472 offset = 0;
2473 while (done < len) {
2474 ret = bio_add_page(bio, ZERO_PAGE(0),
2475 blocksize, offset);
2476 if (ret != blocksize) {
2478 * We can't add any more pages because of
2479 * hardware limitations. Start a new bio.
2481 break;
2483 done++;
2484 offset += blocksize;
2485 if (offset >= PAGE_CACHE_SIZE)
2486 offset = 0;
2489 init_completion(&event);
2490 bio->bi_private = &event;
2491 bio->bi_end_io = bi_complete;
2492 submit_bio(WRITE, bio);
2493 wait_for_completion(&event);
2495 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2496 ret = 0;
2497 else {
2498 ret = -EIO;
2499 break;
2501 bio_put(bio);
2502 ee_len -= done;
2503 ee_pblock += done << (blkbits - 9);
2505 return ret;
2508 #define EXT4_EXT_ZERO_LEN 7
2510 * This function is called by ext4_ext_get_blocks() if someone tries to write
2511 * to an uninitialized extent. It may result in splitting the uninitialized
2512 * extent into multiple extents (upto three - one initialized and two
2513 * uninitialized).
2514 * There are three possibilities:
2515 * a> There is no split required: Entire extent should be initialized
2516 * b> Splits in two extents: Write is happening at either end of the extent
2517 * c> Splits in three extents: Somone is writing in middle of the extent
2519 static int ext4_ext_convert_to_initialized(handle_t *handle,
2520 struct inode *inode,
2521 struct ext4_ext_path *path,
2522 ext4_lblk_t iblock,
2523 unsigned int max_blocks)
2525 struct ext4_extent *ex, newex, orig_ex;
2526 struct ext4_extent *ex1 = NULL;
2527 struct ext4_extent *ex2 = NULL;
2528 struct ext4_extent *ex3 = NULL;
2529 struct ext4_extent_header *eh;
2530 ext4_lblk_t ee_block;
2531 unsigned int allocated, ee_len, depth;
2532 ext4_fsblk_t newblock;
2533 int err = 0;
2534 int ret = 0;
2536 depth = ext_depth(inode);
2537 eh = path[depth].p_hdr;
2538 ex = path[depth].p_ext;
2539 ee_block = le32_to_cpu(ex->ee_block);
2540 ee_len = ext4_ext_get_actual_len(ex);
2541 allocated = ee_len - (iblock - ee_block);
2542 newblock = iblock - ee_block + ext_pblock(ex);
2543 ex2 = ex;
2544 orig_ex.ee_block = ex->ee_block;
2545 orig_ex.ee_len = cpu_to_le16(ee_len);
2546 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2548 err = ext4_ext_get_access(handle, inode, path + depth);
2549 if (err)
2550 goto out;
2551 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2552 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2553 err = ext4_ext_zeroout(inode, &orig_ex);
2554 if (err)
2555 goto fix_extent_len;
2556 /* update the extent length and mark as initialized */
2557 ex->ee_block = orig_ex.ee_block;
2558 ex->ee_len = orig_ex.ee_len;
2559 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2560 ext4_ext_dirty(handle, inode, path + depth);
2561 /* zeroed the full extent */
2562 return allocated;
2565 /* ex1: ee_block to iblock - 1 : uninitialized */
2566 if (iblock > ee_block) {
2567 ex1 = ex;
2568 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2569 ext4_ext_mark_uninitialized(ex1);
2570 ex2 = &newex;
2573 * for sanity, update the length of the ex2 extent before
2574 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2575 * overlap of blocks.
2577 if (!ex1 && allocated > max_blocks)
2578 ex2->ee_len = cpu_to_le16(max_blocks);
2579 /* ex3: to ee_block + ee_len : uninitialised */
2580 if (allocated > max_blocks) {
2581 unsigned int newdepth;
2582 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2583 if (allocated <= EXT4_EXT_ZERO_LEN) {
2585 * iblock == ee_block is handled by the zerouout
2586 * at the beginning.
2587 * Mark first half uninitialized.
2588 * Mark second half initialized and zero out the
2589 * initialized extent
2591 ex->ee_block = orig_ex.ee_block;
2592 ex->ee_len = cpu_to_le16(ee_len - allocated);
2593 ext4_ext_mark_uninitialized(ex);
2594 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2595 ext4_ext_dirty(handle, inode, path + depth);
2597 ex3 = &newex;
2598 ex3->ee_block = cpu_to_le32(iblock);
2599 ext4_ext_store_pblock(ex3, newblock);
2600 ex3->ee_len = cpu_to_le16(allocated);
2601 err = ext4_ext_insert_extent(handle, inode, path,
2602 ex3, 0);
2603 if (err == -ENOSPC) {
2604 err = ext4_ext_zeroout(inode, &orig_ex);
2605 if (err)
2606 goto fix_extent_len;
2607 ex->ee_block = orig_ex.ee_block;
2608 ex->ee_len = orig_ex.ee_len;
2609 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2610 ext4_ext_dirty(handle, inode, path + depth);
2611 /* blocks available from iblock */
2612 return allocated;
2614 } else if (err)
2615 goto fix_extent_len;
2618 * We need to zero out the second half because
2619 * an fallocate request can update file size and
2620 * converting the second half to initialized extent
2621 * implies that we can leak some junk data to user
2622 * space.
2624 err = ext4_ext_zeroout(inode, ex3);
2625 if (err) {
2627 * We should actually mark the
2628 * second half as uninit and return error
2629 * Insert would have changed the extent
2631 depth = ext_depth(inode);
2632 ext4_ext_drop_refs(path);
2633 path = ext4_ext_find_extent(inode,
2634 iblock, path);
2635 if (IS_ERR(path)) {
2636 err = PTR_ERR(path);
2637 return err;
2639 /* get the second half extent details */
2640 ex = path[depth].p_ext;
2641 err = ext4_ext_get_access(handle, inode,
2642 path + depth);
2643 if (err)
2644 return err;
2645 ext4_ext_mark_uninitialized(ex);
2646 ext4_ext_dirty(handle, inode, path + depth);
2647 return err;
2650 /* zeroed the second half */
2651 return allocated;
2653 ex3 = &newex;
2654 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2655 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2656 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2657 ext4_ext_mark_uninitialized(ex3);
2658 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2659 if (err == -ENOSPC) {
2660 err = ext4_ext_zeroout(inode, &orig_ex);
2661 if (err)
2662 goto fix_extent_len;
2663 /* update the extent length and mark as initialized */
2664 ex->ee_block = orig_ex.ee_block;
2665 ex->ee_len = orig_ex.ee_len;
2666 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2667 ext4_ext_dirty(handle, inode, path + depth);
2668 /* zeroed the full extent */
2669 /* blocks available from iblock */
2670 return allocated;
2672 } else if (err)
2673 goto fix_extent_len;
2675 * The depth, and hence eh & ex might change
2676 * as part of the insert above.
2678 newdepth = ext_depth(inode);
2680 * update the extent length after successful insert of the
2681 * split extent
2683 orig_ex.ee_len = cpu_to_le16(ee_len -
2684 ext4_ext_get_actual_len(ex3));
2685 depth = newdepth;
2686 ext4_ext_drop_refs(path);
2687 path = ext4_ext_find_extent(inode, iblock, path);
2688 if (IS_ERR(path)) {
2689 err = PTR_ERR(path);
2690 goto out;
2692 eh = path[depth].p_hdr;
2693 ex = path[depth].p_ext;
2694 if (ex2 != &newex)
2695 ex2 = ex;
2697 err = ext4_ext_get_access(handle, inode, path + depth);
2698 if (err)
2699 goto out;
2701 allocated = max_blocks;
2703 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2704 * to insert a extent in the middle zerout directly
2705 * otherwise give the extent a chance to merge to left
2707 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2708 iblock != ee_block) {
2709 err = ext4_ext_zeroout(inode, &orig_ex);
2710 if (err)
2711 goto fix_extent_len;
2712 /* update the extent length and mark as initialized */
2713 ex->ee_block = orig_ex.ee_block;
2714 ex->ee_len = orig_ex.ee_len;
2715 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2716 ext4_ext_dirty(handle, inode, path + depth);
2717 /* zero out the first half */
2718 /* blocks available from iblock */
2719 return allocated;
2723 * If there was a change of depth as part of the
2724 * insertion of ex3 above, we need to update the length
2725 * of the ex1 extent again here
2727 if (ex1 && ex1 != ex) {
2728 ex1 = ex;
2729 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2730 ext4_ext_mark_uninitialized(ex1);
2731 ex2 = &newex;
2733 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2734 ex2->ee_block = cpu_to_le32(iblock);
2735 ext4_ext_store_pblock(ex2, newblock);
2736 ex2->ee_len = cpu_to_le16(allocated);
2737 if (ex2 != ex)
2738 goto insert;
2740 * New (initialized) extent starts from the first block
2741 * in the current extent. i.e., ex2 == ex
2742 * We have to see if it can be merged with the extent
2743 * on the left.
2745 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2747 * To merge left, pass "ex2 - 1" to try_to_merge(),
2748 * since it merges towards right _only_.
2750 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2751 if (ret) {
2752 err = ext4_ext_correct_indexes(handle, inode, path);
2753 if (err)
2754 goto out;
2755 depth = ext_depth(inode);
2756 ex2--;
2760 * Try to Merge towards right. This might be required
2761 * only when the whole extent is being written to.
2762 * i.e. ex2 == ex and ex3 == NULL.
2764 if (!ex3) {
2765 ret = ext4_ext_try_to_merge(inode, path, ex2);
2766 if (ret) {
2767 err = ext4_ext_correct_indexes(handle, inode, path);
2768 if (err)
2769 goto out;
2772 /* Mark modified extent as dirty */
2773 err = ext4_ext_dirty(handle, inode, path + depth);
2774 goto out;
2775 insert:
2776 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2777 if (err == -ENOSPC) {
2778 err = ext4_ext_zeroout(inode, &orig_ex);
2779 if (err)
2780 goto fix_extent_len;
2781 /* update the extent length and mark as initialized */
2782 ex->ee_block = orig_ex.ee_block;
2783 ex->ee_len = orig_ex.ee_len;
2784 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2785 ext4_ext_dirty(handle, inode, path + depth);
2786 /* zero out the first half */
2787 return allocated;
2788 } else if (err)
2789 goto fix_extent_len;
2790 out:
2791 ext4_ext_show_leaf(inode, path);
2792 return err ? err : allocated;
2794 fix_extent_len:
2795 ex->ee_block = orig_ex.ee_block;
2796 ex->ee_len = orig_ex.ee_len;
2797 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2798 ext4_ext_mark_uninitialized(ex);
2799 ext4_ext_dirty(handle, inode, path + depth);
2800 return err;
2804 * This function is called by ext4_ext_get_blocks() from
2805 * ext4_get_blocks_dio_write() when DIO to write
2806 * to an uninitialized extent.
2808 * Writing to an uninitized extent may result in splitting the uninitialized
2809 * extent into multiple /intialized unintialized extents (up to three)
2810 * There are three possibilities:
2811 * a> There is no split required: Entire extent should be uninitialized
2812 * b> Splits in two extents: Write is happening at either end of the extent
2813 * c> Splits in three extents: Somone is writing in middle of the extent
2815 * One of more index blocks maybe needed if the extent tree grow after
2816 * the unintialized extent split. To prevent ENOSPC occur at the IO
2817 * complete, we need to split the uninitialized extent before DIO submit
2818 * the IO. The uninitilized extent called at this time will be split
2819 * into three uninitialized extent(at most). After IO complete, the part
2820 * being filled will be convert to initialized by the end_io callback function
2821 * via ext4_convert_unwritten_extents().
2823 * Returns the size of uninitialized extent to be written on success.
2825 static int ext4_split_unwritten_extents(handle_t *handle,
2826 struct inode *inode,
2827 struct ext4_ext_path *path,
2828 ext4_lblk_t iblock,
2829 unsigned int max_blocks,
2830 int flags)
2832 struct ext4_extent *ex, newex, orig_ex;
2833 struct ext4_extent *ex1 = NULL;
2834 struct ext4_extent *ex2 = NULL;
2835 struct ext4_extent *ex3 = NULL;
2836 struct ext4_extent_header *eh;
2837 ext4_lblk_t ee_block;
2838 unsigned int allocated, ee_len, depth;
2839 ext4_fsblk_t newblock;
2840 int err = 0;
2842 ext_debug("ext4_split_unwritten_extents: inode %lu,"
2843 "iblock %llu, max_blocks %u\n", inode->i_ino,
2844 (unsigned long long)iblock, max_blocks);
2845 depth = ext_depth(inode);
2846 eh = path[depth].p_hdr;
2847 ex = path[depth].p_ext;
2848 ee_block = le32_to_cpu(ex->ee_block);
2849 ee_len = ext4_ext_get_actual_len(ex);
2850 allocated = ee_len - (iblock - ee_block);
2851 newblock = iblock - ee_block + ext_pblock(ex);
2852 ex2 = ex;
2853 orig_ex.ee_block = ex->ee_block;
2854 orig_ex.ee_len = cpu_to_le16(ee_len);
2855 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2858 * If the uninitialized extent begins at the same logical
2859 * block where the write begins, and the write completely
2860 * covers the extent, then we don't need to split it.
2862 if ((iblock == ee_block) && (allocated <= max_blocks))
2863 return allocated;
2865 err = ext4_ext_get_access(handle, inode, path + depth);
2866 if (err)
2867 goto out;
2868 /* ex1: ee_block to iblock - 1 : uninitialized */
2869 if (iblock > ee_block) {
2870 ex1 = ex;
2871 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2872 ext4_ext_mark_uninitialized(ex1);
2873 ex2 = &newex;
2876 * for sanity, update the length of the ex2 extent before
2877 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2878 * overlap of blocks.
2880 if (!ex1 && allocated > max_blocks)
2881 ex2->ee_len = cpu_to_le16(max_blocks);
2882 /* ex3: to ee_block + ee_len : uninitialised */
2883 if (allocated > max_blocks) {
2884 unsigned int newdepth;
2885 ex3 = &newex;
2886 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2887 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2888 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2889 ext4_ext_mark_uninitialized(ex3);
2890 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2891 if (err == -ENOSPC) {
2892 err = ext4_ext_zeroout(inode, &orig_ex);
2893 if (err)
2894 goto fix_extent_len;
2895 /* update the extent length and mark as initialized */
2896 ex->ee_block = orig_ex.ee_block;
2897 ex->ee_len = orig_ex.ee_len;
2898 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2899 ext4_ext_dirty(handle, inode, path + depth);
2900 /* zeroed the full extent */
2901 /* blocks available from iblock */
2902 return allocated;
2904 } else if (err)
2905 goto fix_extent_len;
2907 * The depth, and hence eh & ex might change
2908 * as part of the insert above.
2910 newdepth = ext_depth(inode);
2912 * update the extent length after successful insert of the
2913 * split extent
2915 orig_ex.ee_len = cpu_to_le16(ee_len -
2916 ext4_ext_get_actual_len(ex3));
2917 depth = newdepth;
2918 ext4_ext_drop_refs(path);
2919 path = ext4_ext_find_extent(inode, iblock, path);
2920 if (IS_ERR(path)) {
2921 err = PTR_ERR(path);
2922 goto out;
2924 eh = path[depth].p_hdr;
2925 ex = path[depth].p_ext;
2926 if (ex2 != &newex)
2927 ex2 = ex;
2929 err = ext4_ext_get_access(handle, inode, path + depth);
2930 if (err)
2931 goto out;
2933 allocated = max_blocks;
2936 * If there was a change of depth as part of the
2937 * insertion of ex3 above, we need to update the length
2938 * of the ex1 extent again here
2940 if (ex1 && ex1 != ex) {
2941 ex1 = ex;
2942 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2943 ext4_ext_mark_uninitialized(ex1);
2944 ex2 = &newex;
2947 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written,
2948 * uninitialised still.
2950 ex2->ee_block = cpu_to_le32(iblock);
2951 ext4_ext_store_pblock(ex2, newblock);
2952 ex2->ee_len = cpu_to_le16(allocated);
2953 ext4_ext_mark_uninitialized(ex2);
2954 if (ex2 != ex)
2955 goto insert;
2956 /* Mark modified extent as dirty */
2957 err = ext4_ext_dirty(handle, inode, path + depth);
2958 ext_debug("out here\n");
2959 goto out;
2960 insert:
2961 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2962 if (err == -ENOSPC) {
2963 err = ext4_ext_zeroout(inode, &orig_ex);
2964 if (err)
2965 goto fix_extent_len;
2966 /* update the extent length and mark as initialized */
2967 ex->ee_block = orig_ex.ee_block;
2968 ex->ee_len = orig_ex.ee_len;
2969 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2970 ext4_ext_dirty(handle, inode, path + depth);
2971 /* zero out the first half */
2972 return allocated;
2973 } else if (err)
2974 goto fix_extent_len;
2975 out:
2976 ext4_ext_show_leaf(inode, path);
2977 return err ? err : allocated;
2979 fix_extent_len:
2980 ex->ee_block = orig_ex.ee_block;
2981 ex->ee_len = orig_ex.ee_len;
2982 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2983 ext4_ext_mark_uninitialized(ex);
2984 ext4_ext_dirty(handle, inode, path + depth);
2985 return err;
2987 static int ext4_convert_unwritten_extents_dio(handle_t *handle,
2988 struct inode *inode,
2989 struct ext4_ext_path *path)
2991 struct ext4_extent *ex;
2992 struct ext4_extent_header *eh;
2993 int depth;
2994 int err = 0;
2995 int ret = 0;
2997 depth = ext_depth(inode);
2998 eh = path[depth].p_hdr;
2999 ex = path[depth].p_ext;
3001 err = ext4_ext_get_access(handle, inode, path + depth);
3002 if (err)
3003 goto out;
3004 /* first mark the extent as initialized */
3005 ext4_ext_mark_initialized(ex);
3008 * We have to see if it can be merged with the extent
3009 * on the left.
3011 if (ex > EXT_FIRST_EXTENT(eh)) {
3013 * To merge left, pass "ex - 1" to try_to_merge(),
3014 * since it merges towards right _only_.
3016 ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3017 if (ret) {
3018 err = ext4_ext_correct_indexes(handle, inode, path);
3019 if (err)
3020 goto out;
3021 depth = ext_depth(inode);
3022 ex--;
3026 * Try to Merge towards right.
3028 ret = ext4_ext_try_to_merge(inode, path, ex);
3029 if (ret) {
3030 err = ext4_ext_correct_indexes(handle, inode, path);
3031 if (err)
3032 goto out;
3033 depth = ext_depth(inode);
3035 /* Mark modified extent as dirty */
3036 err = ext4_ext_dirty(handle, inode, path + depth);
3037 out:
3038 ext4_ext_show_leaf(inode, path);
3039 return err;
3042 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3043 sector_t block, int count)
3045 int i;
3046 for (i = 0; i < count; i++)
3047 unmap_underlying_metadata(bdev, block + i);
3050 static int
3051 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3052 ext4_lblk_t iblock, unsigned int max_blocks,
3053 struct ext4_ext_path *path, int flags,
3054 unsigned int allocated, struct buffer_head *bh_result,
3055 ext4_fsblk_t newblock)
3057 int ret = 0;
3058 int err = 0;
3059 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3061 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3062 "block %llu, max_blocks %u, flags %d, allocated %u",
3063 inode->i_ino, (unsigned long long)iblock, max_blocks,
3064 flags, allocated);
3065 ext4_ext_show_leaf(inode, path);
3067 /* DIO get_block() before submit the IO, split the extent */
3068 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3069 ret = ext4_split_unwritten_extents(handle,
3070 inode, path, iblock,
3071 max_blocks, flags);
3073 * Flag the inode(non aio case) or end_io struct (aio case)
3074 * that this IO needs to convertion to written when IO is
3075 * completed
3077 if (io)
3078 io->flag = DIO_AIO_UNWRITTEN;
3079 else
3080 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3081 goto out;
3083 /* async DIO end_io complete, convert the filled extent to written */
3084 if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) {
3085 ret = ext4_convert_unwritten_extents_dio(handle, inode,
3086 path);
3087 if (ret >= 0)
3088 ext4_update_inode_fsync_trans(handle, inode, 1);
3089 goto out2;
3091 /* buffered IO case */
3093 * repeat fallocate creation request
3094 * we already have an unwritten extent
3096 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3097 goto map_out;
3099 /* buffered READ or buffered write_begin() lookup */
3100 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3102 * We have blocks reserved already. We
3103 * return allocated blocks so that delalloc
3104 * won't do block reservation for us. But
3105 * the buffer head will be unmapped so that
3106 * a read from the block returns 0s.
3108 set_buffer_unwritten(bh_result);
3109 goto out1;
3112 /* buffered write, writepage time, convert*/
3113 ret = ext4_ext_convert_to_initialized(handle, inode,
3114 path, iblock,
3115 max_blocks);
3116 if (ret >= 0)
3117 ext4_update_inode_fsync_trans(handle, inode, 1);
3118 out:
3119 if (ret <= 0) {
3120 err = ret;
3121 goto out2;
3122 } else
3123 allocated = ret;
3124 set_buffer_new(bh_result);
3126 * if we allocated more blocks than requested
3127 * we need to make sure we unmap the extra block
3128 * allocated. The actual needed block will get
3129 * unmapped later when we find the buffer_head marked
3130 * new.
3132 if (allocated > max_blocks) {
3133 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3134 newblock + max_blocks,
3135 allocated - max_blocks);
3136 allocated = max_blocks;
3140 * If we have done fallocate with the offset that is already
3141 * delayed allocated, we would have block reservation
3142 * and quota reservation done in the delayed write path.
3143 * But fallocate would have already updated quota and block
3144 * count for this offset. So cancel these reservation
3146 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3147 ext4_da_update_reserve_space(inode, allocated, 0);
3149 map_out:
3150 set_buffer_mapped(bh_result);
3151 out1:
3152 if (allocated > max_blocks)
3153 allocated = max_blocks;
3154 ext4_ext_show_leaf(inode, path);
3155 bh_result->b_bdev = inode->i_sb->s_bdev;
3156 bh_result->b_blocknr = newblock;
3157 out2:
3158 if (path) {
3159 ext4_ext_drop_refs(path);
3160 kfree(path);
3162 return err ? err : allocated;
3165 * Block allocation/map/preallocation routine for extents based files
3168 * Need to be called with
3169 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3170 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3172 * return > 0, number of of blocks already mapped/allocated
3173 * if create == 0 and these are pre-allocated blocks
3174 * buffer head is unmapped
3175 * otherwise blocks are mapped
3177 * return = 0, if plain look up failed (blocks have not been allocated)
3178 * buffer head is unmapped
3180 * return < 0, error case.
3182 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
3183 ext4_lblk_t iblock,
3184 unsigned int max_blocks, struct buffer_head *bh_result,
3185 int flags)
3187 struct ext4_ext_path *path = NULL;
3188 struct ext4_extent_header *eh;
3189 struct ext4_extent newex, *ex;
3190 ext4_fsblk_t newblock;
3191 int err = 0, depth, ret, cache_type;
3192 unsigned int allocated = 0;
3193 struct ext4_allocation_request ar;
3194 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3196 __clear_bit(BH_New, &bh_result->b_state);
3197 ext_debug("blocks %u/%u requested for inode %lu\n",
3198 iblock, max_blocks, inode->i_ino);
3200 /* check in cache */
3201 cache_type = ext4_ext_in_cache(inode, iblock, &newex);
3202 if (cache_type) {
3203 if (cache_type == EXT4_EXT_CACHE_GAP) {
3204 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3206 * block isn't allocated yet and
3207 * user doesn't want to allocate it
3209 goto out2;
3211 /* we should allocate requested block */
3212 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3213 /* block is already allocated */
3214 newblock = iblock
3215 - le32_to_cpu(newex.ee_block)
3216 + ext_pblock(&newex);
3217 /* number of remaining blocks in the extent */
3218 allocated = ext4_ext_get_actual_len(&newex) -
3219 (iblock - le32_to_cpu(newex.ee_block));
3220 goto out;
3221 } else {
3222 BUG();
3226 /* find extent for this block */
3227 path = ext4_ext_find_extent(inode, iblock, NULL);
3228 if (IS_ERR(path)) {
3229 err = PTR_ERR(path);
3230 path = NULL;
3231 goto out2;
3234 depth = ext_depth(inode);
3237 * consistent leaf must not be empty;
3238 * this situation is possible, though, _during_ tree modification;
3239 * this is why assert can't be put in ext4_ext_find_extent()
3241 if (path[depth].p_ext == NULL && depth != 0) {
3242 ext4_error(inode->i_sb, "bad extent address "
3243 "inode: %lu, iblock: %d, depth: %d",
3244 inode->i_ino, iblock, depth);
3245 err = -EIO;
3246 goto out2;
3248 eh = path[depth].p_hdr;
3250 ex = path[depth].p_ext;
3251 if (ex) {
3252 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3253 ext4_fsblk_t ee_start = ext_pblock(ex);
3254 unsigned short ee_len;
3257 * Uninitialized extents are treated as holes, except that
3258 * we split out initialized portions during a write.
3260 ee_len = ext4_ext_get_actual_len(ex);
3261 /* if found extent covers block, simply return it */
3262 if (iblock >= ee_block && iblock < ee_block + ee_len) {
3263 newblock = iblock - ee_block + ee_start;
3264 /* number of remaining blocks in the extent */
3265 allocated = ee_len - (iblock - ee_block);
3266 ext_debug("%u fit into %u:%d -> %llu\n", iblock,
3267 ee_block, ee_len, newblock);
3269 /* Do not put uninitialized extent in the cache */
3270 if (!ext4_ext_is_uninitialized(ex)) {
3271 ext4_ext_put_in_cache(inode, ee_block,
3272 ee_len, ee_start,
3273 EXT4_EXT_CACHE_EXTENT);
3274 goto out;
3276 ret = ext4_ext_handle_uninitialized_extents(handle,
3277 inode, iblock, max_blocks, path,
3278 flags, allocated, bh_result, newblock);
3279 return ret;
3284 * requested block isn't allocated yet;
3285 * we couldn't try to create block if create flag is zero
3287 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3289 * put just found gap into cache to speed up
3290 * subsequent requests
3292 ext4_ext_put_gap_in_cache(inode, path, iblock);
3293 goto out2;
3296 * Okay, we need to do block allocation.
3299 /* find neighbour allocated blocks */
3300 ar.lleft = iblock;
3301 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3302 if (err)
3303 goto out2;
3304 ar.lright = iblock;
3305 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3306 if (err)
3307 goto out2;
3310 * See if request is beyond maximum number of blocks we can have in
3311 * a single extent. For an initialized extent this limit is
3312 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3313 * EXT_UNINIT_MAX_LEN.
3315 if (max_blocks > EXT_INIT_MAX_LEN &&
3316 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3317 max_blocks = EXT_INIT_MAX_LEN;
3318 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
3319 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3320 max_blocks = EXT_UNINIT_MAX_LEN;
3322 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
3323 newex.ee_block = cpu_to_le32(iblock);
3324 newex.ee_len = cpu_to_le16(max_blocks);
3325 err = ext4_ext_check_overlap(inode, &newex, path);
3326 if (err)
3327 allocated = ext4_ext_get_actual_len(&newex);
3328 else
3329 allocated = max_blocks;
3331 /* allocate new block */
3332 ar.inode = inode;
3333 ar.goal = ext4_ext_find_goal(inode, path, iblock);
3334 ar.logical = iblock;
3335 ar.len = allocated;
3336 if (S_ISREG(inode->i_mode))
3337 ar.flags = EXT4_MB_HINT_DATA;
3338 else
3339 /* disable in-core preallocation for non-regular files */
3340 ar.flags = 0;
3341 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3342 if (!newblock)
3343 goto out2;
3344 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3345 ar.goal, newblock, allocated);
3347 /* try to insert new extent into found leaf and return */
3348 ext4_ext_store_pblock(&newex, newblock);
3349 newex.ee_len = cpu_to_le16(ar.len);
3350 /* Mark uninitialized */
3351 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3352 ext4_ext_mark_uninitialized(&newex);
3354 * io_end structure was created for every async
3355 * direct IO write to the middle of the file.
3356 * To avoid unecessary convertion for every aio dio rewrite
3357 * to the mid of file, here we flag the IO that is really
3358 * need the convertion.
3359 * For non asycn direct IO case, flag the inode state
3360 * that we need to perform convertion when IO is done.
3362 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3363 if (io)
3364 io->flag = DIO_AIO_UNWRITTEN;
3365 else
3366 ext4_set_inode_state(inode,
3367 EXT4_STATE_DIO_UNWRITTEN);
3370 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3371 if (err) {
3372 /* free data blocks we just allocated */
3373 /* not a good idea to call discard here directly,
3374 * but otherwise we'd need to call it every free() */
3375 ext4_discard_preallocations(inode);
3376 ext4_free_blocks(handle, inode, 0, ext_pblock(&newex),
3377 ext4_ext_get_actual_len(&newex), 0);
3378 goto out2;
3381 /* previous routine could use block we allocated */
3382 newblock = ext_pblock(&newex);
3383 allocated = ext4_ext_get_actual_len(&newex);
3384 if (allocated > max_blocks)
3385 allocated = max_blocks;
3386 set_buffer_new(bh_result);
3389 * Update reserved blocks/metadata blocks after successful
3390 * block allocation which had been deferred till now.
3392 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3393 ext4_da_update_reserve_space(inode, allocated, 1);
3396 * Cache the extent and update transaction to commit on fdatasync only
3397 * when it is _not_ an uninitialized extent.
3399 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3400 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
3401 EXT4_EXT_CACHE_EXTENT);
3402 ext4_update_inode_fsync_trans(handle, inode, 1);
3403 } else
3404 ext4_update_inode_fsync_trans(handle, inode, 0);
3405 out:
3406 if (allocated > max_blocks)
3407 allocated = max_blocks;
3408 ext4_ext_show_leaf(inode, path);
3409 set_buffer_mapped(bh_result);
3410 bh_result->b_bdev = inode->i_sb->s_bdev;
3411 bh_result->b_blocknr = newblock;
3412 out2:
3413 if (path) {
3414 ext4_ext_drop_refs(path);
3415 kfree(path);
3417 return err ? err : allocated;
3420 void ext4_ext_truncate(struct inode *inode)
3422 struct address_space *mapping = inode->i_mapping;
3423 struct super_block *sb = inode->i_sb;
3424 ext4_lblk_t last_block;
3425 handle_t *handle;
3426 int err = 0;
3429 * probably first extent we're gonna free will be last in block
3431 err = ext4_writepage_trans_blocks(inode);
3432 handle = ext4_journal_start(inode, err);
3433 if (IS_ERR(handle))
3434 return;
3436 if (inode->i_size & (sb->s_blocksize - 1))
3437 ext4_block_truncate_page(handle, mapping, inode->i_size);
3439 if (ext4_orphan_add(handle, inode))
3440 goto out_stop;
3442 down_write(&EXT4_I(inode)->i_data_sem);
3443 ext4_ext_invalidate_cache(inode);
3445 ext4_discard_preallocations(inode);
3448 * TODO: optimization is possible here.
3449 * Probably we need not scan at all,
3450 * because page truncation is enough.
3453 /* we have to know where to truncate from in crash case */
3454 EXT4_I(inode)->i_disksize = inode->i_size;
3455 ext4_mark_inode_dirty(handle, inode);
3457 last_block = (inode->i_size + sb->s_blocksize - 1)
3458 >> EXT4_BLOCK_SIZE_BITS(sb);
3459 err = ext4_ext_remove_space(inode, last_block);
3461 /* In a multi-transaction truncate, we only make the final
3462 * transaction synchronous.
3464 if (IS_SYNC(inode))
3465 ext4_handle_sync(handle);
3467 out_stop:
3468 up_write(&EXT4_I(inode)->i_data_sem);
3470 * If this was a simple ftruncate() and the file will remain alive,
3471 * then we need to clear up the orphan record which we created above.
3472 * However, if this was a real unlink then we were called by
3473 * ext4_delete_inode(), and we allow that function to clean up the
3474 * orphan info for us.
3476 if (inode->i_nlink)
3477 ext4_orphan_del(handle, inode);
3479 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3480 ext4_mark_inode_dirty(handle, inode);
3481 ext4_journal_stop(handle);
3484 static void ext4_falloc_update_inode(struct inode *inode,
3485 int mode, loff_t new_size, int update_ctime)
3487 struct timespec now;
3489 if (update_ctime) {
3490 now = current_fs_time(inode->i_sb);
3491 if (!timespec_equal(&inode->i_ctime, &now))
3492 inode->i_ctime = now;
3495 * Update only when preallocation was requested beyond
3496 * the file size.
3498 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3499 if (new_size > i_size_read(inode))
3500 i_size_write(inode, new_size);
3501 if (new_size > EXT4_I(inode)->i_disksize)
3502 ext4_update_i_disksize(inode, new_size);
3508 * preallocate space for a file. This implements ext4's fallocate inode
3509 * operation, which gets called from sys_fallocate system call.
3510 * For block-mapped files, posix_fallocate should fall back to the method
3511 * of writing zeroes to the required new blocks (the same behavior which is
3512 * expected for file systems which do not support fallocate() system call).
3514 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3516 handle_t *handle;
3517 ext4_lblk_t block;
3518 loff_t new_size;
3519 unsigned int max_blocks;
3520 int ret = 0;
3521 int ret2 = 0;
3522 int retries = 0;
3523 struct buffer_head map_bh;
3524 unsigned int credits, blkbits = inode->i_blkbits;
3527 * currently supporting (pre)allocate mode for extent-based
3528 * files _only_
3530 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3531 return -EOPNOTSUPP;
3533 /* preallocation to directories is currently not supported */
3534 if (S_ISDIR(inode->i_mode))
3535 return -ENODEV;
3537 block = offset >> blkbits;
3539 * We can't just convert len to max_blocks because
3540 * If blocksize = 4096 offset = 3072 and len = 2048
3542 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3543 - block;
3545 * credits to insert 1 extent into extent tree
3547 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3548 mutex_lock(&inode->i_mutex);
3549 retry:
3550 while (ret >= 0 && ret < max_blocks) {
3551 block = block + ret;
3552 max_blocks = max_blocks - ret;
3553 handle = ext4_journal_start(inode, credits);
3554 if (IS_ERR(handle)) {
3555 ret = PTR_ERR(handle);
3556 break;
3558 map_bh.b_state = 0;
3559 ret = ext4_get_blocks(handle, inode, block,
3560 max_blocks, &map_bh,
3561 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3562 if (ret <= 0) {
3563 #ifdef EXT4FS_DEBUG
3564 WARN_ON(ret <= 0);
3565 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3566 "returned error inode#%lu, block=%u, "
3567 "max_blocks=%u", __func__,
3568 inode->i_ino, block, max_blocks);
3569 #endif
3570 ext4_mark_inode_dirty(handle, inode);
3571 ret2 = ext4_journal_stop(handle);
3572 break;
3574 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3575 blkbits) >> blkbits))
3576 new_size = offset + len;
3577 else
3578 new_size = (block + ret) << blkbits;
3580 ext4_falloc_update_inode(inode, mode, new_size,
3581 buffer_new(&map_bh));
3582 ext4_mark_inode_dirty(handle, inode);
3583 ret2 = ext4_journal_stop(handle);
3584 if (ret2)
3585 break;
3587 if (ret == -ENOSPC &&
3588 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3589 ret = 0;
3590 goto retry;
3592 mutex_unlock(&inode->i_mutex);
3593 return ret > 0 ? ret2 : ret;
3597 * This function convert a range of blocks to written extents
3598 * The caller of this function will pass the start offset and the size.
3599 * all unwritten extents within this range will be converted to
3600 * written extents.
3602 * This function is called from the direct IO end io call back
3603 * function, to convert the fallocated extents after IO is completed.
3604 * Returns 0 on success.
3606 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3607 ssize_t len)
3609 handle_t *handle;
3610 ext4_lblk_t block;
3611 unsigned int max_blocks;
3612 int ret = 0;
3613 int ret2 = 0;
3614 struct buffer_head map_bh;
3615 unsigned int credits, blkbits = inode->i_blkbits;
3617 block = offset >> blkbits;
3619 * We can't just convert len to max_blocks because
3620 * If blocksize = 4096 offset = 3072 and len = 2048
3622 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3623 - block;
3625 * credits to insert 1 extent into extent tree
3627 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3628 while (ret >= 0 && ret < max_blocks) {
3629 block = block + ret;
3630 max_blocks = max_blocks - ret;
3631 handle = ext4_journal_start(inode, credits);
3632 if (IS_ERR(handle)) {
3633 ret = PTR_ERR(handle);
3634 break;
3636 map_bh.b_state = 0;
3637 ret = ext4_get_blocks(handle, inode, block,
3638 max_blocks, &map_bh,
3639 EXT4_GET_BLOCKS_DIO_CONVERT_EXT);
3640 if (ret <= 0) {
3641 WARN_ON(ret <= 0);
3642 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3643 "returned error inode#%lu, block=%u, "
3644 "max_blocks=%u", __func__,
3645 inode->i_ino, block, max_blocks);
3647 ext4_mark_inode_dirty(handle, inode);
3648 ret2 = ext4_journal_stop(handle);
3649 if (ret <= 0 || ret2 )
3650 break;
3652 return ret > 0 ? ret2 : ret;
3655 * Callback function called for each extent to gather FIEMAP information.
3657 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3658 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3659 void *data)
3661 struct fiemap_extent_info *fieinfo = data;
3662 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3663 __u64 logical;
3664 __u64 physical;
3665 __u64 length;
3666 __u32 flags = 0;
3667 int error;
3669 logical = (__u64)newex->ec_block << blksize_bits;
3671 if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3672 pgoff_t offset;
3673 struct page *page;
3674 struct buffer_head *bh = NULL;
3676 offset = logical >> PAGE_SHIFT;
3677 page = find_get_page(inode->i_mapping, offset);
3678 if (!page || !page_has_buffers(page))
3679 return EXT_CONTINUE;
3681 bh = page_buffers(page);
3683 if (!bh)
3684 return EXT_CONTINUE;
3686 if (buffer_delay(bh)) {
3687 flags |= FIEMAP_EXTENT_DELALLOC;
3688 page_cache_release(page);
3689 } else {
3690 page_cache_release(page);
3691 return EXT_CONTINUE;
3695 physical = (__u64)newex->ec_start << blksize_bits;
3696 length = (__u64)newex->ec_len << blksize_bits;
3698 if (ex && ext4_ext_is_uninitialized(ex))
3699 flags |= FIEMAP_EXTENT_UNWRITTEN;
3702 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3704 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3705 * this also indicates no more allocated blocks.
3707 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3709 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3710 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3711 loff_t size = i_size_read(inode);
3712 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3714 flags |= FIEMAP_EXTENT_LAST;
3715 if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3716 logical+length > size)
3717 length = (size - logical + bs - 1) & ~(bs-1);
3720 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3721 length, flags);
3722 if (error < 0)
3723 return error;
3724 if (error == 1)
3725 return EXT_BREAK;
3727 return EXT_CONTINUE;
3730 /* fiemap flags we can handle specified here */
3731 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3733 static int ext4_xattr_fiemap(struct inode *inode,
3734 struct fiemap_extent_info *fieinfo)
3736 __u64 physical = 0;
3737 __u64 length;
3738 __u32 flags = FIEMAP_EXTENT_LAST;
3739 int blockbits = inode->i_sb->s_blocksize_bits;
3740 int error = 0;
3742 /* in-inode? */
3743 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3744 struct ext4_iloc iloc;
3745 int offset; /* offset of xattr in inode */
3747 error = ext4_get_inode_loc(inode, &iloc);
3748 if (error)
3749 return error;
3750 physical = iloc.bh->b_blocknr << blockbits;
3751 offset = EXT4_GOOD_OLD_INODE_SIZE +
3752 EXT4_I(inode)->i_extra_isize;
3753 physical += offset;
3754 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3755 flags |= FIEMAP_EXTENT_DATA_INLINE;
3756 } else { /* external block */
3757 physical = EXT4_I(inode)->i_file_acl << blockbits;
3758 length = inode->i_sb->s_blocksize;
3761 if (physical)
3762 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3763 length, flags);
3764 return (error < 0 ? error : 0);
3767 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3768 __u64 start, __u64 len)
3770 ext4_lblk_t start_blk;
3771 int error = 0;
3773 /* fallback to generic here if not in extents fmt */
3774 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3775 return generic_block_fiemap(inode, fieinfo, start, len,
3776 ext4_get_block);
3778 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3779 return -EBADR;
3781 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3782 error = ext4_xattr_fiemap(inode, fieinfo);
3783 } else {
3784 ext4_lblk_t len_blks;
3785 __u64 last_blk;
3787 start_blk = start >> inode->i_sb->s_blocksize_bits;
3788 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3789 if (last_blk >= EXT_MAX_BLOCK)
3790 last_blk = EXT_MAX_BLOCK-1;
3791 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3794 * Walk the extent tree gathering extent information.
3795 * ext4_ext_fiemap_cb will push extents back to user.
3797 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3798 ext4_ext_fiemap_cb, fieinfo);
3801 return error;