2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46 #include <linux/debugobjects.h>
48 #include <asm/uaccess.h>
51 * ktime_get - get the monotonic time in ktime_t format
53 * returns the time in ktime_t format
55 ktime_t
ktime_get(void)
61 return timespec_to_ktime(now
);
63 EXPORT_SYMBOL_GPL(ktime_get
);
66 * ktime_get_real - get the real (wall-) time in ktime_t format
68 * returns the time in ktime_t format
70 ktime_t
ktime_get_real(void)
76 return timespec_to_ktime(now
);
79 EXPORT_SYMBOL_GPL(ktime_get_real
);
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
90 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
96 .index
= CLOCK_REALTIME
,
97 .get_time
= &ktime_get_real
,
98 .resolution
= KTIME_LOW_RES
,
101 .index
= CLOCK_MONOTONIC
,
102 .get_time
= &ktime_get
,
103 .resolution
= KTIME_LOW_RES
,
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
116 void ktime_get_ts(struct timespec
*ts
)
118 struct timespec tomono
;
122 seq
= read_seqbegin(&xtime_lock
);
124 tomono
= wall_to_monotonic
;
126 } while (read_seqretry(&xtime_lock
, seq
));
128 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
129 ts
->tv_nsec
+ tomono
.tv_nsec
);
131 EXPORT_SYMBOL_GPL(ktime_get_ts
);
134 * Get the coarse grained time at the softirq based on xtime and
137 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
139 ktime_t xtim
, tomono
;
140 struct timespec xts
, tom
;
144 seq
= read_seqbegin(&xtime_lock
);
145 xts
= current_kernel_time();
146 tom
= wall_to_monotonic
;
147 } while (read_seqretry(&xtime_lock
, seq
));
149 xtim
= timespec_to_ktime(xts
);
150 tomono
= timespec_to_ktime(tom
);
151 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
152 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
153 ktime_add(xtim
, tomono
);
157 * Helper function to check, whether the timer is running the callback
160 static inline int hrtimer_callback_running(struct hrtimer
*timer
)
162 return timer
->state
& HRTIMER_STATE_CALLBACK
;
166 * Functions and macros which are different for UP/SMP systems are kept in a
172 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
173 * means that all timers which are tied to this base via timer->base are
174 * locked, and the base itself is locked too.
176 * So __run_timers/migrate_timers can safely modify all timers which could
177 * be found on the lists/queues.
179 * When the timer's base is locked, and the timer removed from list, it is
180 * possible to set timer->base = NULL and drop the lock: the timer remains
184 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
185 unsigned long *flags
)
187 struct hrtimer_clock_base
*base
;
191 if (likely(base
!= NULL
)) {
192 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
193 if (likely(base
== timer
->base
))
195 /* The timer has migrated to another CPU: */
196 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
203 * Switch the timer base to the current CPU when possible.
205 static inline struct hrtimer_clock_base
*
206 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
208 struct hrtimer_clock_base
*new_base
;
209 struct hrtimer_cpu_base
*new_cpu_base
;
211 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
212 new_base
= &new_cpu_base
->clock_base
[base
->index
];
214 if (base
!= new_base
) {
216 * We are trying to schedule the timer on the local CPU.
217 * However we can't change timer's base while it is running,
218 * so we keep it on the same CPU. No hassle vs. reprogramming
219 * the event source in the high resolution case. The softirq
220 * code will take care of this when the timer function has
221 * completed. There is no conflict as we hold the lock until
222 * the timer is enqueued.
224 if (unlikely(hrtimer_callback_running(timer
)))
227 /* See the comment in lock_timer_base() */
229 spin_unlock(&base
->cpu_base
->lock
);
230 spin_lock(&new_base
->cpu_base
->lock
);
231 timer
->base
= new_base
;
236 #else /* CONFIG_SMP */
238 static inline struct hrtimer_clock_base
*
239 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
241 struct hrtimer_clock_base
*base
= timer
->base
;
243 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
248 # define switch_hrtimer_base(t, b) (b)
250 #endif /* !CONFIG_SMP */
253 * Functions for the union type storage format of ktime_t which are
254 * too large for inlining:
256 #if BITS_PER_LONG < 64
257 # ifndef CONFIG_KTIME_SCALAR
259 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
261 * @nsec: the scalar nsec value to add
263 * Returns the sum of kt and nsec in ktime_t format
265 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
269 if (likely(nsec
< NSEC_PER_SEC
)) {
272 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
274 tmp
= ktime_set((long)nsec
, rem
);
277 return ktime_add(kt
, tmp
);
280 EXPORT_SYMBOL_GPL(ktime_add_ns
);
283 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
285 * @nsec: the scalar nsec value to subtract
287 * Returns the subtraction of @nsec from @kt in ktime_t format
289 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
293 if (likely(nsec
< NSEC_PER_SEC
)) {
296 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
298 tmp
= ktime_set((long)nsec
, rem
);
301 return ktime_sub(kt
, tmp
);
304 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
305 # endif /* !CONFIG_KTIME_SCALAR */
308 * Divide a ktime value by a nanosecond value
310 u64
ktime_divns(const ktime_t kt
, s64 div
)
315 dclc
= dns
= ktime_to_ns(kt
);
317 /* Make sure the divisor is less than 2^32: */
323 do_div(dclc
, (unsigned long) div
);
327 #endif /* BITS_PER_LONG >= 64 */
330 * Add two ktime values and do a safety check for overflow:
332 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
334 ktime_t res
= ktime_add(lhs
, rhs
);
337 * We use KTIME_SEC_MAX here, the maximum timeout which we can
338 * return to user space in a timespec:
340 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
341 res
= ktime_set(KTIME_SEC_MAX
, 0);
346 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
348 static struct debug_obj_descr hrtimer_debug_descr
;
351 * fixup_init is called when:
352 * - an active object is initialized
354 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
356 struct hrtimer
*timer
= addr
;
359 case ODEBUG_STATE_ACTIVE
:
360 hrtimer_cancel(timer
);
361 debug_object_init(timer
, &hrtimer_debug_descr
);
369 * fixup_activate is called when:
370 * - an active object is activated
371 * - an unknown object is activated (might be a statically initialized object)
373 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
377 case ODEBUG_STATE_NOTAVAILABLE
:
381 case ODEBUG_STATE_ACTIVE
:
390 * fixup_free is called when:
391 * - an active object is freed
393 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
395 struct hrtimer
*timer
= addr
;
398 case ODEBUG_STATE_ACTIVE
:
399 hrtimer_cancel(timer
);
400 debug_object_free(timer
, &hrtimer_debug_descr
);
407 static struct debug_obj_descr hrtimer_debug_descr
= {
409 .fixup_init
= hrtimer_fixup_init
,
410 .fixup_activate
= hrtimer_fixup_activate
,
411 .fixup_free
= hrtimer_fixup_free
,
414 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
416 debug_object_init(timer
, &hrtimer_debug_descr
);
419 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
421 debug_object_activate(timer
, &hrtimer_debug_descr
);
424 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
426 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
429 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
431 debug_object_free(timer
, &hrtimer_debug_descr
);
434 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
435 enum hrtimer_mode mode
);
437 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
438 enum hrtimer_mode mode
)
440 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
441 __hrtimer_init(timer
, clock_id
, mode
);
444 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
446 debug_object_free(timer
, &hrtimer_debug_descr
);
450 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
451 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
452 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
456 * Check, whether the timer is on the callback pending list
458 static inline int hrtimer_cb_pending(const struct hrtimer
*timer
)
460 return timer
->state
& HRTIMER_STATE_PENDING
;
464 * Remove a timer from the callback pending list
466 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
)
468 list_del_init(&timer
->cb_entry
);
471 /* High resolution timer related functions */
472 #ifdef CONFIG_HIGH_RES_TIMERS
475 * High resolution timer enabled ?
477 static int hrtimer_hres_enabled __read_mostly
= 1;
480 * Enable / Disable high resolution mode
482 static int __init
setup_hrtimer_hres(char *str
)
484 if (!strcmp(str
, "off"))
485 hrtimer_hres_enabled
= 0;
486 else if (!strcmp(str
, "on"))
487 hrtimer_hres_enabled
= 1;
493 __setup("highres=", setup_hrtimer_hres
);
496 * hrtimer_high_res_enabled - query, if the highres mode is enabled
498 static inline int hrtimer_is_hres_enabled(void)
500 return hrtimer_hres_enabled
;
504 * Is the high resolution mode active ?
506 static inline int hrtimer_hres_active(void)
508 return __get_cpu_var(hrtimer_bases
).hres_active
;
512 * Reprogram the event source with checking both queues for the
514 * Called with interrupts disabled and base->lock held
516 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
519 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
522 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
524 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
525 struct hrtimer
*timer
;
529 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
530 expires
= ktime_sub(timer
->expires
, base
->offset
);
531 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
532 cpu_base
->expires_next
= expires
;
535 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
536 tick_program_event(cpu_base
->expires_next
, 1);
540 * Shared reprogramming for clock_realtime and clock_monotonic
542 * When a timer is enqueued and expires earlier than the already enqueued
543 * timers, we have to check, whether it expires earlier than the timer for
544 * which the clock event device was armed.
546 * Called with interrupts disabled and base->cpu_base.lock held
548 static int hrtimer_reprogram(struct hrtimer
*timer
,
549 struct hrtimer_clock_base
*base
)
551 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
552 ktime_t expires
= ktime_sub(timer
->expires
, base
->offset
);
555 WARN_ON_ONCE(timer
->expires
.tv64
< 0);
558 * When the callback is running, we do not reprogram the clock event
559 * device. The timer callback is either running on a different CPU or
560 * the callback is executed in the hrtimer_interrupt context. The
561 * reprogramming is handled either by the softirq, which called the
562 * callback or at the end of the hrtimer_interrupt.
564 if (hrtimer_callback_running(timer
))
568 * CLOCK_REALTIME timer might be requested with an absolute
569 * expiry time which is less than base->offset. Nothing wrong
570 * about that, just avoid to call into the tick code, which
571 * has now objections against negative expiry values.
573 if (expires
.tv64
< 0)
576 if (expires
.tv64
>= expires_next
->tv64
)
580 * Clockevents returns -ETIME, when the event was in the past.
582 res
= tick_program_event(expires
, 0);
583 if (!IS_ERR_VALUE(res
))
584 *expires_next
= expires
;
590 * Retrigger next event is called after clock was set
592 * Called with interrupts disabled via on_each_cpu()
594 static void retrigger_next_event(void *arg
)
596 struct hrtimer_cpu_base
*base
;
597 struct timespec realtime_offset
;
600 if (!hrtimer_hres_active())
604 seq
= read_seqbegin(&xtime_lock
);
605 set_normalized_timespec(&realtime_offset
,
606 -wall_to_monotonic
.tv_sec
,
607 -wall_to_monotonic
.tv_nsec
);
608 } while (read_seqretry(&xtime_lock
, seq
));
610 base
= &__get_cpu_var(hrtimer_bases
);
612 /* Adjust CLOCK_REALTIME offset */
613 spin_lock(&base
->lock
);
614 base
->clock_base
[CLOCK_REALTIME
].offset
=
615 timespec_to_ktime(realtime_offset
);
617 hrtimer_force_reprogram(base
);
618 spin_unlock(&base
->lock
);
622 * Clock realtime was set
624 * Change the offset of the realtime clock vs. the monotonic
627 * We might have to reprogram the high resolution timer interrupt. On
628 * SMP we call the architecture specific code to retrigger _all_ high
629 * resolution timer interrupts. On UP we just disable interrupts and
630 * call the high resolution interrupt code.
632 void clock_was_set(void)
634 /* Retrigger the CPU local events everywhere */
635 on_each_cpu(retrigger_next_event
, NULL
, 0, 1);
639 * During resume we might have to reprogram the high resolution timer
640 * interrupt (on the local CPU):
642 void hres_timers_resume(void)
644 WARN_ON_ONCE(num_online_cpus() > 1);
646 /* Retrigger the CPU local events: */
647 retrigger_next_event(NULL
);
651 * Initialize the high resolution related parts of cpu_base
653 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
655 base
->expires_next
.tv64
= KTIME_MAX
;
656 base
->hres_active
= 0;
660 * Initialize the high resolution related parts of a hrtimer
662 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
667 * When High resolution timers are active, try to reprogram. Note, that in case
668 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
669 * check happens. The timer gets enqueued into the rbtree. The reprogramming
670 * and expiry check is done in the hrtimer_interrupt or in the softirq.
672 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
673 struct hrtimer_clock_base
*base
)
675 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
677 /* Timer is expired, act upon the callback mode */
678 switch(timer
->cb_mode
) {
679 case HRTIMER_CB_IRQSAFE_NO_RESTART
:
680 debug_hrtimer_deactivate(timer
);
682 * We can call the callback from here. No restart
683 * happens, so no danger of recursion
685 BUG_ON(timer
->function(timer
) != HRTIMER_NORESTART
);
687 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
:
689 * This is solely for the sched tick emulation with
690 * dynamic tick support to ensure that we do not
691 * restart the tick right on the edge and end up with
692 * the tick timer in the softirq ! The calling site
693 * takes care of this.
695 debug_hrtimer_deactivate(timer
);
697 case HRTIMER_CB_IRQSAFE
:
698 case HRTIMER_CB_SOFTIRQ
:
700 * Move everything else into the softirq pending list !
702 list_add_tail(&timer
->cb_entry
,
703 &base
->cpu_base
->cb_pending
);
704 timer
->state
= HRTIMER_STATE_PENDING
;
714 * Switch to high resolution mode
716 static int hrtimer_switch_to_hres(void)
718 int cpu
= smp_processor_id();
719 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
722 if (base
->hres_active
)
725 local_irq_save(flags
);
727 if (tick_init_highres()) {
728 local_irq_restore(flags
);
729 printk(KERN_WARNING
"Could not switch to high resolution "
730 "mode on CPU %d\n", cpu
);
733 base
->hres_active
= 1;
734 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
735 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
737 tick_setup_sched_timer();
739 /* "Retrigger" the interrupt to get things going */
740 retrigger_next_event(NULL
);
741 local_irq_restore(flags
);
742 printk(KERN_DEBUG
"Switched to high resolution mode on CPU %d\n",
747 static inline void hrtimer_raise_softirq(void)
749 raise_softirq(HRTIMER_SOFTIRQ
);
754 static inline int hrtimer_hres_active(void) { return 0; }
755 static inline int hrtimer_is_hres_enabled(void) { return 0; }
756 static inline int hrtimer_switch_to_hres(void) { return 0; }
757 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
758 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
759 struct hrtimer_clock_base
*base
)
763 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
764 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
765 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
766 struct hrtimer_clock_base
*base
)
770 static inline void hrtimer_raise_softirq(void) { }
772 #endif /* CONFIG_HIGH_RES_TIMERS */
774 #ifdef CONFIG_TIMER_STATS
775 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
777 if (timer
->start_site
)
780 timer
->start_site
= addr
;
781 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
782 timer
->start_pid
= current
->pid
;
787 * Counterpart to lock_hrtimer_base above:
790 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
792 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
796 * hrtimer_forward - forward the timer expiry
797 * @timer: hrtimer to forward
798 * @now: forward past this time
799 * @interval: the interval to forward
801 * Forward the timer expiry so it will expire in the future.
802 * Returns the number of overruns.
804 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
809 delta
= ktime_sub(now
, timer
->expires
);
814 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
815 interval
.tv64
= timer
->base
->resolution
.tv64
;
817 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
818 s64 incr
= ktime_to_ns(interval
);
820 orun
= ktime_divns(delta
, incr
);
821 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
822 if (timer
->expires
.tv64
> now
.tv64
)
825 * This (and the ktime_add() below) is the
826 * correction for exact:
830 timer
->expires
= ktime_add_safe(timer
->expires
, interval
);
834 EXPORT_SYMBOL_GPL(hrtimer_forward
);
837 * enqueue_hrtimer - internal function to (re)start a timer
839 * The timer is inserted in expiry order. Insertion into the
840 * red black tree is O(log(n)). Must hold the base lock.
842 static void enqueue_hrtimer(struct hrtimer
*timer
,
843 struct hrtimer_clock_base
*base
, int reprogram
)
845 struct rb_node
**link
= &base
->active
.rb_node
;
846 struct rb_node
*parent
= NULL
;
847 struct hrtimer
*entry
;
850 debug_hrtimer_activate(timer
);
853 * Find the right place in the rbtree:
857 entry
= rb_entry(parent
, struct hrtimer
, node
);
859 * We dont care about collisions. Nodes with
860 * the same expiry time stay together.
862 if (timer
->expires
.tv64
< entry
->expires
.tv64
) {
863 link
= &(*link
)->rb_left
;
865 link
= &(*link
)->rb_right
;
871 * Insert the timer to the rbtree and check whether it
872 * replaces the first pending timer
876 * Reprogram the clock event device. When the timer is already
877 * expired hrtimer_enqueue_reprogram has either called the
878 * callback or added it to the pending list and raised the
881 * This is a NOP for !HIGHRES
883 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
886 base
->first
= &timer
->node
;
889 rb_link_node(&timer
->node
, parent
, link
);
890 rb_insert_color(&timer
->node
, &base
->active
);
892 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
893 * state of a possibly running callback.
895 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
899 * __remove_hrtimer - internal function to remove a timer
901 * Caller must hold the base lock.
903 * High resolution timer mode reprograms the clock event device when the
904 * timer is the one which expires next. The caller can disable this by setting
905 * reprogram to zero. This is useful, when the context does a reprogramming
906 * anyway (e.g. timer interrupt)
908 static void __remove_hrtimer(struct hrtimer
*timer
,
909 struct hrtimer_clock_base
*base
,
910 unsigned long newstate
, int reprogram
)
912 /* High res. callback list. NOP for !HIGHRES */
913 if (hrtimer_cb_pending(timer
))
914 hrtimer_remove_cb_pending(timer
);
917 * Remove the timer from the rbtree and replace the
918 * first entry pointer if necessary.
920 if (base
->first
== &timer
->node
) {
921 base
->first
= rb_next(&timer
->node
);
922 /* Reprogram the clock event device. if enabled */
923 if (reprogram
&& hrtimer_hres_active())
924 hrtimer_force_reprogram(base
->cpu_base
);
926 rb_erase(&timer
->node
, &base
->active
);
928 timer
->state
= newstate
;
932 * remove hrtimer, called with base lock held
935 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
937 if (hrtimer_is_queued(timer
)) {
941 * Remove the timer and force reprogramming when high
942 * resolution mode is active and the timer is on the current
943 * CPU. If we remove a timer on another CPU, reprogramming is
944 * skipped. The interrupt event on this CPU is fired and
945 * reprogramming happens in the interrupt handler. This is a
946 * rare case and less expensive than a smp call.
948 debug_hrtimer_deactivate(timer
);
949 timer_stats_hrtimer_clear_start_info(timer
);
950 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
951 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
959 * hrtimer_start - (re)start an relative timer on the current CPU
960 * @timer: the timer to be added
962 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
966 * 1 when the timer was active
969 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
971 struct hrtimer_clock_base
*base
, *new_base
;
975 base
= lock_hrtimer_base(timer
, &flags
);
977 /* Remove an active timer from the queue: */
978 ret
= remove_hrtimer(timer
, base
);
980 /* Switch the timer base, if necessary: */
981 new_base
= switch_hrtimer_base(timer
, base
);
983 if (mode
== HRTIMER_MODE_REL
) {
984 tim
= ktime_add_safe(tim
, new_base
->get_time());
986 * CONFIG_TIME_LOW_RES is a temporary way for architectures
987 * to signal that they simply return xtime in
988 * do_gettimeoffset(). In this case we want to round up by
989 * resolution when starting a relative timer, to avoid short
990 * timeouts. This will go away with the GTOD framework.
992 #ifdef CONFIG_TIME_LOW_RES
993 tim
= ktime_add_safe(tim
, base
->resolution
);
997 timer
->expires
= tim
;
999 timer_stats_hrtimer_set_start_info(timer
);
1002 * Only allow reprogramming if the new base is on this CPU.
1003 * (it might still be on another CPU if the timer was pending)
1005 enqueue_hrtimer(timer
, new_base
,
1006 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
1009 * The timer may be expired and moved to the cb_pending
1010 * list. We can not raise the softirq with base lock held due
1011 * to a possible deadlock with runqueue lock.
1013 raise
= timer
->state
== HRTIMER_STATE_PENDING
;
1015 unlock_hrtimer_base(timer
, &flags
);
1018 hrtimer_raise_softirq();
1022 EXPORT_SYMBOL_GPL(hrtimer_start
);
1025 * hrtimer_try_to_cancel - try to deactivate a timer
1026 * @timer: hrtimer to stop
1029 * 0 when the timer was not active
1030 * 1 when the timer was active
1031 * -1 when the timer is currently excuting the callback function and
1034 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1036 struct hrtimer_clock_base
*base
;
1037 unsigned long flags
;
1040 base
= lock_hrtimer_base(timer
, &flags
);
1042 if (!hrtimer_callback_running(timer
))
1043 ret
= remove_hrtimer(timer
, base
);
1045 unlock_hrtimer_base(timer
, &flags
);
1050 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1053 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1054 * @timer: the timer to be cancelled
1057 * 0 when the timer was not active
1058 * 1 when the timer was active
1060 int hrtimer_cancel(struct hrtimer
*timer
)
1063 int ret
= hrtimer_try_to_cancel(timer
);
1070 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1073 * hrtimer_get_remaining - get remaining time for the timer
1074 * @timer: the timer to read
1076 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1078 struct hrtimer_clock_base
*base
;
1079 unsigned long flags
;
1082 base
= lock_hrtimer_base(timer
, &flags
);
1083 rem
= ktime_sub(timer
->expires
, base
->get_time());
1084 unlock_hrtimer_base(timer
, &flags
);
1088 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1090 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1092 * hrtimer_get_next_event - get the time until next expiry event
1094 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1097 ktime_t
hrtimer_get_next_event(void)
1099 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1100 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1101 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1102 unsigned long flags
;
1105 spin_lock_irqsave(&cpu_base
->lock
, flags
);
1107 if (!hrtimer_hres_active()) {
1108 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1109 struct hrtimer
*timer
;
1114 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
1115 delta
.tv64
= timer
->expires
.tv64
;
1116 delta
= ktime_sub(delta
, base
->get_time());
1117 if (delta
.tv64
< mindelta
.tv64
)
1118 mindelta
.tv64
= delta
.tv64
;
1122 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1124 if (mindelta
.tv64
< 0)
1130 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1131 enum hrtimer_mode mode
)
1133 struct hrtimer_cpu_base
*cpu_base
;
1135 memset(timer
, 0, sizeof(struct hrtimer
));
1137 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1139 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1140 clock_id
= CLOCK_MONOTONIC
;
1142 timer
->base
= &cpu_base
->clock_base
[clock_id
];
1143 INIT_LIST_HEAD(&timer
->cb_entry
);
1144 hrtimer_init_timer_hres(timer
);
1146 #ifdef CONFIG_TIMER_STATS
1147 timer
->start_site
= NULL
;
1148 timer
->start_pid
= -1;
1149 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1154 * hrtimer_init - initialize a timer to the given clock
1155 * @timer: the timer to be initialized
1156 * @clock_id: the clock to be used
1157 * @mode: timer mode abs/rel
1159 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1160 enum hrtimer_mode mode
)
1162 debug_hrtimer_init(timer
);
1163 __hrtimer_init(timer
, clock_id
, mode
);
1165 EXPORT_SYMBOL_GPL(hrtimer_init
);
1168 * hrtimer_get_res - get the timer resolution for a clock
1169 * @which_clock: which clock to query
1170 * @tp: pointer to timespec variable to store the resolution
1172 * Store the resolution of the clock selected by @which_clock in the
1173 * variable pointed to by @tp.
1175 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1177 struct hrtimer_cpu_base
*cpu_base
;
1179 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1180 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
1184 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1186 static void run_hrtimer_pending(struct hrtimer_cpu_base
*cpu_base
)
1188 spin_lock_irq(&cpu_base
->lock
);
1190 while (!list_empty(&cpu_base
->cb_pending
)) {
1191 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1192 struct hrtimer
*timer
;
1195 timer
= list_entry(cpu_base
->cb_pending
.next
,
1196 struct hrtimer
, cb_entry
);
1198 debug_hrtimer_deactivate(timer
);
1199 timer_stats_account_hrtimer(timer
);
1201 fn
= timer
->function
;
1202 __remove_hrtimer(timer
, timer
->base
, HRTIMER_STATE_CALLBACK
, 0);
1203 spin_unlock_irq(&cpu_base
->lock
);
1205 restart
= fn(timer
);
1207 spin_lock_irq(&cpu_base
->lock
);
1209 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1210 if (restart
== HRTIMER_RESTART
) {
1211 BUG_ON(hrtimer_active(timer
));
1213 * Enqueue the timer, allow reprogramming of the event
1216 enqueue_hrtimer(timer
, timer
->base
, 1);
1217 } else if (hrtimer_active(timer
)) {
1219 * If the timer was rearmed on another CPU, reprogram
1222 struct hrtimer_clock_base
*base
= timer
->base
;
1224 if (base
->first
== &timer
->node
&&
1225 hrtimer_reprogram(timer
, base
)) {
1227 * Timer is expired. Thus move it from tree to
1228 * pending list again.
1230 __remove_hrtimer(timer
, base
,
1231 HRTIMER_STATE_PENDING
, 0);
1232 list_add_tail(&timer
->cb_entry
,
1233 &base
->cpu_base
->cb_pending
);
1237 spin_unlock_irq(&cpu_base
->lock
);
1240 static void __run_hrtimer(struct hrtimer
*timer
)
1242 struct hrtimer_clock_base
*base
= timer
->base
;
1243 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1244 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1247 debug_hrtimer_deactivate(timer
);
1248 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1249 timer_stats_account_hrtimer(timer
);
1251 fn
= timer
->function
;
1252 if (timer
->cb_mode
== HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
) {
1254 * Used for scheduler timers, avoid lock inversion with
1255 * rq->lock and tasklist_lock.
1257 * These timers are required to deal with enqueue expiry
1258 * themselves and are not allowed to migrate.
1260 spin_unlock(&cpu_base
->lock
);
1261 restart
= fn(timer
);
1262 spin_lock(&cpu_base
->lock
);
1264 restart
= fn(timer
);
1267 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1268 * reprogramming of the event hardware. This happens at the end of this
1271 if (restart
!= HRTIMER_NORESTART
) {
1272 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1273 enqueue_hrtimer(timer
, base
, 0);
1275 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1278 #ifdef CONFIG_HIGH_RES_TIMERS
1281 * High resolution timer interrupt
1282 * Called with interrupts disabled
1284 void hrtimer_interrupt(struct clock_event_device
*dev
)
1286 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1287 struct hrtimer_clock_base
*base
;
1288 ktime_t expires_next
, now
;
1291 BUG_ON(!cpu_base
->hres_active
);
1292 cpu_base
->nr_events
++;
1293 dev
->next_event
.tv64
= KTIME_MAX
;
1298 expires_next
.tv64
= KTIME_MAX
;
1300 base
= cpu_base
->clock_base
;
1302 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1304 struct rb_node
*node
;
1306 spin_lock(&cpu_base
->lock
);
1308 basenow
= ktime_add(now
, base
->offset
);
1310 while ((node
= base
->first
)) {
1311 struct hrtimer
*timer
;
1313 timer
= rb_entry(node
, struct hrtimer
, node
);
1315 if (basenow
.tv64
< timer
->expires
.tv64
) {
1318 expires
= ktime_sub(timer
->expires
,
1320 if (expires
.tv64
< expires_next
.tv64
)
1321 expires_next
= expires
;
1325 /* Move softirq callbacks to the pending list */
1326 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1327 __remove_hrtimer(timer
, base
,
1328 HRTIMER_STATE_PENDING
, 0);
1329 list_add_tail(&timer
->cb_entry
,
1330 &base
->cpu_base
->cb_pending
);
1335 __run_hrtimer(timer
);
1337 spin_unlock(&cpu_base
->lock
);
1341 cpu_base
->expires_next
= expires_next
;
1343 /* Reprogramming necessary ? */
1344 if (expires_next
.tv64
!= KTIME_MAX
) {
1345 if (tick_program_event(expires_next
, 0))
1349 /* Raise softirq ? */
1351 raise_softirq(HRTIMER_SOFTIRQ
);
1354 static void run_hrtimer_softirq(struct softirq_action
*h
)
1356 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases
));
1359 #endif /* CONFIG_HIGH_RES_TIMERS */
1362 * Called from timer softirq every jiffy, expire hrtimers:
1364 * For HRT its the fall back code to run the softirq in the timer
1365 * softirq context in case the hrtimer initialization failed or has
1366 * not been done yet.
1368 void hrtimer_run_pending(void)
1370 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1372 if (hrtimer_hres_active())
1376 * This _is_ ugly: We have to check in the softirq context,
1377 * whether we can switch to highres and / or nohz mode. The
1378 * clocksource switch happens in the timer interrupt with
1379 * xtime_lock held. Notification from there only sets the
1380 * check bit in the tick_oneshot code, otherwise we might
1381 * deadlock vs. xtime_lock.
1383 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1384 hrtimer_switch_to_hres();
1386 run_hrtimer_pending(cpu_base
);
1390 * Called from hardirq context every jiffy
1392 void hrtimer_run_queues(void)
1394 struct rb_node
*node
;
1395 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1396 struct hrtimer_clock_base
*base
;
1397 int index
, gettime
= 1;
1399 if (hrtimer_hres_active())
1402 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1403 base
= &cpu_base
->clock_base
[index
];
1408 if (base
->get_softirq_time
)
1409 base
->softirq_time
= base
->get_softirq_time();
1411 hrtimer_get_softirq_time(cpu_base
);
1415 spin_lock(&cpu_base
->lock
);
1417 while ((node
= base
->first
)) {
1418 struct hrtimer
*timer
;
1420 timer
= rb_entry(node
, struct hrtimer
, node
);
1421 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
1424 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1425 __remove_hrtimer(timer
, base
,
1426 HRTIMER_STATE_PENDING
, 0);
1427 list_add_tail(&timer
->cb_entry
,
1428 &base
->cpu_base
->cb_pending
);
1432 __run_hrtimer(timer
);
1434 spin_unlock(&cpu_base
->lock
);
1439 * Sleep related functions:
1441 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1443 struct hrtimer_sleeper
*t
=
1444 container_of(timer
, struct hrtimer_sleeper
, timer
);
1445 struct task_struct
*task
= t
->task
;
1449 wake_up_process(task
);
1451 return HRTIMER_NORESTART
;
1454 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1456 sl
->timer
.function
= hrtimer_wakeup
;
1458 #ifdef CONFIG_HIGH_RES_TIMERS
1459 sl
->timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1463 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1465 hrtimer_init_sleeper(t
, current
);
1468 set_current_state(TASK_INTERRUPTIBLE
);
1469 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
1470 if (!hrtimer_active(&t
->timer
))
1473 if (likely(t
->task
))
1476 hrtimer_cancel(&t
->timer
);
1477 mode
= HRTIMER_MODE_ABS
;
1479 } while (t
->task
&& !signal_pending(current
));
1481 __set_current_state(TASK_RUNNING
);
1483 return t
->task
== NULL
;
1486 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1488 struct timespec rmt
;
1491 rem
= ktime_sub(timer
->expires
, timer
->base
->get_time());
1494 rmt
= ktime_to_timespec(rem
);
1496 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1502 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1504 struct hrtimer_sleeper t
;
1505 struct timespec __user
*rmtp
;
1508 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.index
,
1510 t
.timer
.expires
.tv64
= restart
->nanosleep
.expires
;
1512 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1515 rmtp
= restart
->nanosleep
.rmtp
;
1517 ret
= update_rmtp(&t
.timer
, rmtp
);
1522 /* The other values in restart are already filled in */
1523 ret
= -ERESTART_RESTARTBLOCK
;
1525 destroy_hrtimer_on_stack(&t
.timer
);
1529 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1530 const enum hrtimer_mode mode
, const clockid_t clockid
)
1532 struct restart_block
*restart
;
1533 struct hrtimer_sleeper t
;
1536 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1537 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
1538 if (do_nanosleep(&t
, mode
))
1541 /* Absolute timers do not update the rmtp value and restart: */
1542 if (mode
== HRTIMER_MODE_ABS
) {
1543 ret
= -ERESTARTNOHAND
;
1548 ret
= update_rmtp(&t
.timer
, rmtp
);
1553 restart
= ¤t_thread_info()->restart_block
;
1554 restart
->fn
= hrtimer_nanosleep_restart
;
1555 restart
->nanosleep
.index
= t
.timer
.base
->index
;
1556 restart
->nanosleep
.rmtp
= rmtp
;
1557 restart
->nanosleep
.expires
= t
.timer
.expires
.tv64
;
1559 ret
= -ERESTART_RESTARTBLOCK
;
1561 destroy_hrtimer_on_stack(&t
.timer
);
1566 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1570 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1573 if (!timespec_valid(&tu
))
1576 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1580 * Functions related to boot-time initialization:
1582 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1584 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1587 spin_lock_init(&cpu_base
->lock
);
1589 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1590 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1592 INIT_LIST_HEAD(&cpu_base
->cb_pending
);
1593 hrtimer_init_hres(cpu_base
);
1596 #ifdef CONFIG_HOTPLUG_CPU
1598 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1599 struct hrtimer_clock_base
*new_base
)
1601 struct hrtimer
*timer
;
1602 struct rb_node
*node
;
1604 while ((node
= rb_first(&old_base
->active
))) {
1605 timer
= rb_entry(node
, struct hrtimer
, node
);
1606 BUG_ON(hrtimer_callback_running(timer
));
1607 debug_hrtimer_deactivate(timer
);
1608 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
, 0);
1609 timer
->base
= new_base
;
1611 * Enqueue the timer. Allow reprogramming of the event device
1613 enqueue_hrtimer(timer
, new_base
, 1);
1617 static void migrate_hrtimers(int cpu
)
1619 struct hrtimer_cpu_base
*old_base
, *new_base
;
1622 BUG_ON(cpu_online(cpu
));
1623 old_base
= &per_cpu(hrtimer_bases
, cpu
);
1624 new_base
= &get_cpu_var(hrtimer_bases
);
1626 tick_cancel_sched_timer(cpu
);
1628 local_irq_disable();
1629 spin_lock(&new_base
->lock
);
1630 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1632 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1633 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1634 &new_base
->clock_base
[i
]);
1637 spin_unlock(&old_base
->lock
);
1638 spin_unlock(&new_base
->lock
);
1640 put_cpu_var(hrtimer_bases
);
1642 #endif /* CONFIG_HOTPLUG_CPU */
1644 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1645 unsigned long action
, void *hcpu
)
1647 unsigned int cpu
= (long)hcpu
;
1651 case CPU_UP_PREPARE
:
1652 case CPU_UP_PREPARE_FROZEN
:
1653 init_hrtimers_cpu(cpu
);
1656 #ifdef CONFIG_HOTPLUG_CPU
1658 case CPU_DEAD_FROZEN
:
1659 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &cpu
);
1660 migrate_hrtimers(cpu
);
1671 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1672 .notifier_call
= hrtimer_cpu_notify
,
1675 void __init
hrtimers_init(void)
1677 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1678 (void *)(long)smp_processor_id());
1679 register_cpu_notifier(&hrtimers_nb
);
1680 #ifdef CONFIG_HIGH_RES_TIMERS
1681 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
, NULL
);