Merge branches 'ehca', 'ipoib' and 'mlx4' into for-linus
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / binfmt_elf.c
blobe3ff2b9e602fd8fc8d35b24ae5a6dad841bc05f1
1 /*
2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48 int, int, unsigned long);
51 * If we don't support core dumping, then supply a NULL so we
52 * don't even try.
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump NULL
58 #endif
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN PAGE_SIZE
64 #endif
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
74 static struct linux_binfmt elf_format = {
75 .module = THIS_MODULE,
76 .load_binary = load_elf_binary,
77 .load_shlib = load_elf_library,
78 .core_dump = elf_core_dump,
79 .min_coredump = ELF_EXEC_PAGESIZE,
80 .hasvdso = 1
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85 static int set_brk(unsigned long start, unsigned long end)
87 start = ELF_PAGEALIGN(start);
88 end = ELF_PAGEALIGN(end);
89 if (end > start) {
90 unsigned long addr;
91 down_write(&current->mm->mmap_sem);
92 addr = do_brk(start, end - start);
93 up_write(&current->mm->mmap_sem);
94 if (BAD_ADDR(addr))
95 return addr;
97 current->mm->start_brk = current->mm->brk = end;
98 return 0;
101 /* We need to explicitly zero any fractional pages
102 after the data section (i.e. bss). This would
103 contain the junk from the file that should not
104 be in memory
106 static int padzero(unsigned long elf_bss)
108 unsigned long nbyte;
110 nbyte = ELF_PAGEOFFSET(elf_bss);
111 if (nbyte) {
112 nbyte = ELF_MIN_ALIGN - nbyte;
113 if (clear_user((void __user *) elf_bss, nbyte))
114 return -EFAULT;
116 return 0;
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126 old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130 (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
134 #ifndef ELF_BASE_PLATFORM
136 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138 * will be copied to the user stack in the same manner as AT_PLATFORM.
140 #define ELF_BASE_PLATFORM NULL
141 #endif
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145 unsigned long load_addr, unsigned long interp_load_addr)
147 unsigned long p = bprm->p;
148 int argc = bprm->argc;
149 int envc = bprm->envc;
150 elf_addr_t __user *argv;
151 elf_addr_t __user *envp;
152 elf_addr_t __user *sp;
153 elf_addr_t __user *u_platform;
154 elf_addr_t __user *u_base_platform;
155 elf_addr_t __user *u_rand_bytes;
156 const char *k_platform = ELF_PLATFORM;
157 const char *k_base_platform = ELF_BASE_PLATFORM;
158 unsigned char k_rand_bytes[16];
159 int items;
160 elf_addr_t *elf_info;
161 int ei_index = 0;
162 const struct cred *cred = current_cred();
163 struct vm_area_struct *vma;
166 * In some cases (e.g. Hyper-Threading), we want to avoid L1
167 * evictions by the processes running on the same package. One
168 * thing we can do is to shuffle the initial stack for them.
171 p = arch_align_stack(p);
174 * If this architecture has a platform capability string, copy it
175 * to userspace. In some cases (Sparc), this info is impossible
176 * for userspace to get any other way, in others (i386) it is
177 * merely difficult.
179 u_platform = NULL;
180 if (k_platform) {
181 size_t len = strlen(k_platform) + 1;
183 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
184 if (__copy_to_user(u_platform, k_platform, len))
185 return -EFAULT;
189 * If this architecture has a "base" platform capability
190 * string, copy it to userspace.
192 u_base_platform = NULL;
193 if (k_base_platform) {
194 size_t len = strlen(k_base_platform) + 1;
196 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 if (__copy_to_user(u_base_platform, k_base_platform, len))
198 return -EFAULT;
202 * Generate 16 random bytes for userspace PRNG seeding.
204 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
205 u_rand_bytes = (elf_addr_t __user *)
206 STACK_ALLOC(p, sizeof(k_rand_bytes));
207 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
208 return -EFAULT;
210 /* Create the ELF interpreter info */
211 elf_info = (elf_addr_t *)current->mm->saved_auxv;
212 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
213 #define NEW_AUX_ENT(id, val) \
214 do { \
215 elf_info[ei_index++] = id; \
216 elf_info[ei_index++] = val; \
217 } while (0)
219 #ifdef ARCH_DLINFO
221 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 * AUXV.
223 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
224 * ARCH_DLINFO changes
226 ARCH_DLINFO;
227 #endif
228 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
229 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
230 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
231 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
232 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
233 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
234 NEW_AUX_ENT(AT_BASE, interp_load_addr);
235 NEW_AUX_ENT(AT_FLAGS, 0);
236 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
237 NEW_AUX_ENT(AT_UID, cred->uid);
238 NEW_AUX_ENT(AT_EUID, cred->euid);
239 NEW_AUX_ENT(AT_GID, cred->gid);
240 NEW_AUX_ENT(AT_EGID, cred->egid);
241 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
242 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
243 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
244 if (k_platform) {
245 NEW_AUX_ENT(AT_PLATFORM,
246 (elf_addr_t)(unsigned long)u_platform);
248 if (k_base_platform) {
249 NEW_AUX_ENT(AT_BASE_PLATFORM,
250 (elf_addr_t)(unsigned long)u_base_platform);
252 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
253 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
255 #undef NEW_AUX_ENT
256 /* AT_NULL is zero; clear the rest too */
257 memset(&elf_info[ei_index], 0,
258 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
260 /* And advance past the AT_NULL entry. */
261 ei_index += 2;
263 sp = STACK_ADD(p, ei_index);
265 items = (argc + 1) + (envc + 1) + 1;
266 bprm->p = STACK_ROUND(sp, items);
268 /* Point sp at the lowest address on the stack */
269 #ifdef CONFIG_STACK_GROWSUP
270 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
271 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
272 #else
273 sp = (elf_addr_t __user *)bprm->p;
274 #endif
278 * Grow the stack manually; some architectures have a limit on how
279 * far ahead a user-space access may be in order to grow the stack.
281 vma = find_extend_vma(current->mm, bprm->p);
282 if (!vma)
283 return -EFAULT;
285 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
286 if (__put_user(argc, sp++))
287 return -EFAULT;
288 argv = sp;
289 envp = argv + argc + 1;
291 /* Populate argv and envp */
292 p = current->mm->arg_end = current->mm->arg_start;
293 while (argc-- > 0) {
294 size_t len;
295 if (__put_user((elf_addr_t)p, argv++))
296 return -EFAULT;
297 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298 if (!len || len > MAX_ARG_STRLEN)
299 return -EINVAL;
300 p += len;
302 if (__put_user(0, argv))
303 return -EFAULT;
304 current->mm->arg_end = current->mm->env_start = p;
305 while (envc-- > 0) {
306 size_t len;
307 if (__put_user((elf_addr_t)p, envp++))
308 return -EFAULT;
309 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
310 if (!len || len > MAX_ARG_STRLEN)
311 return -EINVAL;
312 p += len;
314 if (__put_user(0, envp))
315 return -EFAULT;
316 current->mm->env_end = p;
318 /* Put the elf_info on the stack in the right place. */
319 sp = (elf_addr_t __user *)envp + 1;
320 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
321 return -EFAULT;
322 return 0;
325 #ifndef elf_map
327 static unsigned long elf_map(struct file *filep, unsigned long addr,
328 struct elf_phdr *eppnt, int prot, int type,
329 unsigned long total_size)
331 unsigned long map_addr;
332 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
333 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
334 addr = ELF_PAGESTART(addr);
335 size = ELF_PAGEALIGN(size);
337 /* mmap() will return -EINVAL if given a zero size, but a
338 * segment with zero filesize is perfectly valid */
339 if (!size)
340 return addr;
342 down_write(&current->mm->mmap_sem);
344 * total_size is the size of the ELF (interpreter) image.
345 * The _first_ mmap needs to know the full size, otherwise
346 * randomization might put this image into an overlapping
347 * position with the ELF binary image. (since size < total_size)
348 * So we first map the 'big' image - and unmap the remainder at
349 * the end. (which unmap is needed for ELF images with holes.)
351 if (total_size) {
352 total_size = ELF_PAGEALIGN(total_size);
353 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
354 if (!BAD_ADDR(map_addr))
355 do_munmap(current->mm, map_addr+size, total_size-size);
356 } else
357 map_addr = do_mmap(filep, addr, size, prot, type, off);
359 up_write(&current->mm->mmap_sem);
360 return(map_addr);
363 #endif /* !elf_map */
365 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
367 int i, first_idx = -1, last_idx = -1;
369 for (i = 0; i < nr; i++) {
370 if (cmds[i].p_type == PT_LOAD) {
371 last_idx = i;
372 if (first_idx == -1)
373 first_idx = i;
376 if (first_idx == -1)
377 return 0;
379 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
380 ELF_PAGESTART(cmds[first_idx].p_vaddr);
384 /* This is much more generalized than the library routine read function,
385 so we keep this separate. Technically the library read function
386 is only provided so that we can read a.out libraries that have
387 an ELF header */
389 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
390 struct file *interpreter, unsigned long *interp_map_addr,
391 unsigned long no_base)
393 struct elf_phdr *elf_phdata;
394 struct elf_phdr *eppnt;
395 unsigned long load_addr = 0;
396 int load_addr_set = 0;
397 unsigned long last_bss = 0, elf_bss = 0;
398 unsigned long error = ~0UL;
399 unsigned long total_size;
400 int retval, i, size;
402 /* First of all, some simple consistency checks */
403 if (interp_elf_ex->e_type != ET_EXEC &&
404 interp_elf_ex->e_type != ET_DYN)
405 goto out;
406 if (!elf_check_arch(interp_elf_ex))
407 goto out;
408 if (!interpreter->f_op || !interpreter->f_op->mmap)
409 goto out;
412 * If the size of this structure has changed, then punt, since
413 * we will be doing the wrong thing.
415 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
416 goto out;
417 if (interp_elf_ex->e_phnum < 1 ||
418 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
419 goto out;
421 /* Now read in all of the header information */
422 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
423 if (size > ELF_MIN_ALIGN)
424 goto out;
425 elf_phdata = kmalloc(size, GFP_KERNEL);
426 if (!elf_phdata)
427 goto out;
429 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
430 (char *)elf_phdata,size);
431 error = -EIO;
432 if (retval != size) {
433 if (retval < 0)
434 error = retval;
435 goto out_close;
438 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
439 if (!total_size) {
440 error = -EINVAL;
441 goto out_close;
444 eppnt = elf_phdata;
445 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
446 if (eppnt->p_type == PT_LOAD) {
447 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
448 int elf_prot = 0;
449 unsigned long vaddr = 0;
450 unsigned long k, map_addr;
452 if (eppnt->p_flags & PF_R)
453 elf_prot = PROT_READ;
454 if (eppnt->p_flags & PF_W)
455 elf_prot |= PROT_WRITE;
456 if (eppnt->p_flags & PF_X)
457 elf_prot |= PROT_EXEC;
458 vaddr = eppnt->p_vaddr;
459 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
460 elf_type |= MAP_FIXED;
461 else if (no_base && interp_elf_ex->e_type == ET_DYN)
462 load_addr = -vaddr;
464 map_addr = elf_map(interpreter, load_addr + vaddr,
465 eppnt, elf_prot, elf_type, total_size);
466 total_size = 0;
467 if (!*interp_map_addr)
468 *interp_map_addr = map_addr;
469 error = map_addr;
470 if (BAD_ADDR(map_addr))
471 goto out_close;
473 if (!load_addr_set &&
474 interp_elf_ex->e_type == ET_DYN) {
475 load_addr = map_addr - ELF_PAGESTART(vaddr);
476 load_addr_set = 1;
480 * Check to see if the section's size will overflow the
481 * allowed task size. Note that p_filesz must always be
482 * <= p_memsize so it's only necessary to check p_memsz.
484 k = load_addr + eppnt->p_vaddr;
485 if (BAD_ADDR(k) ||
486 eppnt->p_filesz > eppnt->p_memsz ||
487 eppnt->p_memsz > TASK_SIZE ||
488 TASK_SIZE - eppnt->p_memsz < k) {
489 error = -ENOMEM;
490 goto out_close;
494 * Find the end of the file mapping for this phdr, and
495 * keep track of the largest address we see for this.
497 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
498 if (k > elf_bss)
499 elf_bss = k;
502 * Do the same thing for the memory mapping - between
503 * elf_bss and last_bss is the bss section.
505 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
506 if (k > last_bss)
507 last_bss = k;
512 * Now fill out the bss section. First pad the last page up
513 * to the page boundary, and then perform a mmap to make sure
514 * that there are zero-mapped pages up to and including the
515 * last bss page.
517 if (padzero(elf_bss)) {
518 error = -EFAULT;
519 goto out_close;
522 /* What we have mapped so far */
523 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
525 /* Map the last of the bss segment */
526 if (last_bss > elf_bss) {
527 down_write(&current->mm->mmap_sem);
528 error = do_brk(elf_bss, last_bss - elf_bss);
529 up_write(&current->mm->mmap_sem);
530 if (BAD_ADDR(error))
531 goto out_close;
534 error = load_addr;
536 out_close:
537 kfree(elf_phdata);
538 out:
539 return error;
543 * These are the functions used to load ELF style executables and shared
544 * libraries. There is no binary dependent code anywhere else.
547 #define INTERPRETER_NONE 0
548 #define INTERPRETER_ELF 2
550 #ifndef STACK_RND_MASK
551 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
552 #endif
554 static unsigned long randomize_stack_top(unsigned long stack_top)
556 unsigned int random_variable = 0;
558 if ((current->flags & PF_RANDOMIZE) &&
559 !(current->personality & ADDR_NO_RANDOMIZE)) {
560 random_variable = get_random_int() & STACK_RND_MASK;
561 random_variable <<= PAGE_SHIFT;
563 #ifdef CONFIG_STACK_GROWSUP
564 return PAGE_ALIGN(stack_top) + random_variable;
565 #else
566 return PAGE_ALIGN(stack_top) - random_variable;
567 #endif
570 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
572 struct file *interpreter = NULL; /* to shut gcc up */
573 unsigned long load_addr = 0, load_bias = 0;
574 int load_addr_set = 0;
575 char * elf_interpreter = NULL;
576 unsigned long error;
577 struct elf_phdr *elf_ppnt, *elf_phdata;
578 unsigned long elf_bss, elf_brk;
579 int elf_exec_fileno;
580 int retval, i;
581 unsigned int size;
582 unsigned long elf_entry;
583 unsigned long interp_load_addr = 0;
584 unsigned long start_code, end_code, start_data, end_data;
585 unsigned long reloc_func_desc = 0;
586 int executable_stack = EXSTACK_DEFAULT;
587 unsigned long def_flags = 0;
588 struct {
589 struct elfhdr elf_ex;
590 struct elfhdr interp_elf_ex;
591 } *loc;
593 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
594 if (!loc) {
595 retval = -ENOMEM;
596 goto out_ret;
599 /* Get the exec-header */
600 loc->elf_ex = *((struct elfhdr *)bprm->buf);
602 retval = -ENOEXEC;
603 /* First of all, some simple consistency checks */
604 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
605 goto out;
607 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
608 goto out;
609 if (!elf_check_arch(&loc->elf_ex))
610 goto out;
611 if (!bprm->file->f_op||!bprm->file->f_op->mmap)
612 goto out;
614 /* Now read in all of the header information */
615 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
616 goto out;
617 if (loc->elf_ex.e_phnum < 1 ||
618 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
619 goto out;
620 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
621 retval = -ENOMEM;
622 elf_phdata = kmalloc(size, GFP_KERNEL);
623 if (!elf_phdata)
624 goto out;
626 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
627 (char *)elf_phdata, size);
628 if (retval != size) {
629 if (retval >= 0)
630 retval = -EIO;
631 goto out_free_ph;
634 retval = get_unused_fd();
635 if (retval < 0)
636 goto out_free_ph;
637 get_file(bprm->file);
638 fd_install(elf_exec_fileno = retval, bprm->file);
640 elf_ppnt = elf_phdata;
641 elf_bss = 0;
642 elf_brk = 0;
644 start_code = ~0UL;
645 end_code = 0;
646 start_data = 0;
647 end_data = 0;
649 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
650 if (elf_ppnt->p_type == PT_INTERP) {
651 /* This is the program interpreter used for
652 * shared libraries - for now assume that this
653 * is an a.out format binary
655 retval = -ENOEXEC;
656 if (elf_ppnt->p_filesz > PATH_MAX ||
657 elf_ppnt->p_filesz < 2)
658 goto out_free_file;
660 retval = -ENOMEM;
661 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
662 GFP_KERNEL);
663 if (!elf_interpreter)
664 goto out_free_file;
666 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
667 elf_interpreter,
668 elf_ppnt->p_filesz);
669 if (retval != elf_ppnt->p_filesz) {
670 if (retval >= 0)
671 retval = -EIO;
672 goto out_free_interp;
674 /* make sure path is NULL terminated */
675 retval = -ENOEXEC;
676 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
677 goto out_free_interp;
680 * The early SET_PERSONALITY here is so that the lookup
681 * for the interpreter happens in the namespace of the
682 * to-be-execed image. SET_PERSONALITY can select an
683 * alternate root.
685 * However, SET_PERSONALITY is NOT allowed to switch
686 * this task into the new images's memory mapping
687 * policy - that is, TASK_SIZE must still evaluate to
688 * that which is appropriate to the execing application.
689 * This is because exit_mmap() needs to have TASK_SIZE
690 * evaluate to the size of the old image.
692 * So if (say) a 64-bit application is execing a 32-bit
693 * application it is the architecture's responsibility
694 * to defer changing the value of TASK_SIZE until the
695 * switch really is going to happen - do this in
696 * flush_thread(). - akpm
698 SET_PERSONALITY(loc->elf_ex);
700 interpreter = open_exec(elf_interpreter);
701 retval = PTR_ERR(interpreter);
702 if (IS_ERR(interpreter))
703 goto out_free_interp;
706 * If the binary is not readable then enforce
707 * mm->dumpable = 0 regardless of the interpreter's
708 * permissions.
710 if (file_permission(interpreter, MAY_READ) < 0)
711 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
713 retval = kernel_read(interpreter, 0, bprm->buf,
714 BINPRM_BUF_SIZE);
715 if (retval != BINPRM_BUF_SIZE) {
716 if (retval >= 0)
717 retval = -EIO;
718 goto out_free_dentry;
721 /* Get the exec headers */
722 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
723 break;
725 elf_ppnt++;
728 elf_ppnt = elf_phdata;
729 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
730 if (elf_ppnt->p_type == PT_GNU_STACK) {
731 if (elf_ppnt->p_flags & PF_X)
732 executable_stack = EXSTACK_ENABLE_X;
733 else
734 executable_stack = EXSTACK_DISABLE_X;
735 break;
738 /* Some simple consistency checks for the interpreter */
739 if (elf_interpreter) {
740 retval = -ELIBBAD;
741 /* Not an ELF interpreter */
742 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
743 goto out_free_dentry;
744 /* Verify the interpreter has a valid arch */
745 if (!elf_check_arch(&loc->interp_elf_ex))
746 goto out_free_dentry;
747 } else {
748 /* Executables without an interpreter also need a personality */
749 SET_PERSONALITY(loc->elf_ex);
752 /* Flush all traces of the currently running executable */
753 retval = flush_old_exec(bprm);
754 if (retval)
755 goto out_free_dentry;
757 /* OK, This is the point of no return */
758 current->flags &= ~PF_FORKNOEXEC;
759 current->mm->def_flags = def_flags;
761 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
762 may depend on the personality. */
763 SET_PERSONALITY(loc->elf_ex);
764 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
765 current->personality |= READ_IMPLIES_EXEC;
767 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
768 current->flags |= PF_RANDOMIZE;
769 arch_pick_mmap_layout(current->mm);
771 /* Do this so that we can load the interpreter, if need be. We will
772 change some of these later */
773 current->mm->free_area_cache = current->mm->mmap_base;
774 current->mm->cached_hole_size = 0;
775 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
776 executable_stack);
777 if (retval < 0) {
778 send_sig(SIGKILL, current, 0);
779 goto out_free_dentry;
782 current->mm->start_stack = bprm->p;
784 /* Now we do a little grungy work by mmaping the ELF image into
785 the correct location in memory. */
786 for(i = 0, elf_ppnt = elf_phdata;
787 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
788 int elf_prot = 0, elf_flags;
789 unsigned long k, vaddr;
791 if (elf_ppnt->p_type != PT_LOAD)
792 continue;
794 if (unlikely (elf_brk > elf_bss)) {
795 unsigned long nbyte;
797 /* There was a PT_LOAD segment with p_memsz > p_filesz
798 before this one. Map anonymous pages, if needed,
799 and clear the area. */
800 retval = set_brk (elf_bss + load_bias,
801 elf_brk + load_bias);
802 if (retval) {
803 send_sig(SIGKILL, current, 0);
804 goto out_free_dentry;
806 nbyte = ELF_PAGEOFFSET(elf_bss);
807 if (nbyte) {
808 nbyte = ELF_MIN_ALIGN - nbyte;
809 if (nbyte > elf_brk - elf_bss)
810 nbyte = elf_brk - elf_bss;
811 if (clear_user((void __user *)elf_bss +
812 load_bias, nbyte)) {
814 * This bss-zeroing can fail if the ELF
815 * file specifies odd protections. So
816 * we don't check the return value
822 if (elf_ppnt->p_flags & PF_R)
823 elf_prot |= PROT_READ;
824 if (elf_ppnt->p_flags & PF_W)
825 elf_prot |= PROT_WRITE;
826 if (elf_ppnt->p_flags & PF_X)
827 elf_prot |= PROT_EXEC;
829 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
831 vaddr = elf_ppnt->p_vaddr;
832 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
833 elf_flags |= MAP_FIXED;
834 } else if (loc->elf_ex.e_type == ET_DYN) {
835 /* Try and get dynamic programs out of the way of the
836 * default mmap base, as well as whatever program they
837 * might try to exec. This is because the brk will
838 * follow the loader, and is not movable. */
839 #ifdef CONFIG_X86
840 load_bias = 0;
841 #else
842 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
843 #endif
846 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
847 elf_prot, elf_flags, 0);
848 if (BAD_ADDR(error)) {
849 send_sig(SIGKILL, current, 0);
850 retval = IS_ERR((void *)error) ?
851 PTR_ERR((void*)error) : -EINVAL;
852 goto out_free_dentry;
855 if (!load_addr_set) {
856 load_addr_set = 1;
857 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
858 if (loc->elf_ex.e_type == ET_DYN) {
859 load_bias += error -
860 ELF_PAGESTART(load_bias + vaddr);
861 load_addr += load_bias;
862 reloc_func_desc = load_bias;
865 k = elf_ppnt->p_vaddr;
866 if (k < start_code)
867 start_code = k;
868 if (start_data < k)
869 start_data = k;
872 * Check to see if the section's size will overflow the
873 * allowed task size. Note that p_filesz must always be
874 * <= p_memsz so it is only necessary to check p_memsz.
876 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
877 elf_ppnt->p_memsz > TASK_SIZE ||
878 TASK_SIZE - elf_ppnt->p_memsz < k) {
879 /* set_brk can never work. Avoid overflows. */
880 send_sig(SIGKILL, current, 0);
881 retval = -EINVAL;
882 goto out_free_dentry;
885 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
887 if (k > elf_bss)
888 elf_bss = k;
889 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
890 end_code = k;
891 if (end_data < k)
892 end_data = k;
893 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
894 if (k > elf_brk)
895 elf_brk = k;
898 loc->elf_ex.e_entry += load_bias;
899 elf_bss += load_bias;
900 elf_brk += load_bias;
901 start_code += load_bias;
902 end_code += load_bias;
903 start_data += load_bias;
904 end_data += load_bias;
906 /* Calling set_brk effectively mmaps the pages that we need
907 * for the bss and break sections. We must do this before
908 * mapping in the interpreter, to make sure it doesn't wind
909 * up getting placed where the bss needs to go.
911 retval = set_brk(elf_bss, elf_brk);
912 if (retval) {
913 send_sig(SIGKILL, current, 0);
914 goto out_free_dentry;
916 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
917 send_sig(SIGSEGV, current, 0);
918 retval = -EFAULT; /* Nobody gets to see this, but.. */
919 goto out_free_dentry;
922 if (elf_interpreter) {
923 unsigned long uninitialized_var(interp_map_addr);
925 elf_entry = load_elf_interp(&loc->interp_elf_ex,
926 interpreter,
927 &interp_map_addr,
928 load_bias);
929 if (!IS_ERR((void *)elf_entry)) {
931 * load_elf_interp() returns relocation
932 * adjustment
934 interp_load_addr = elf_entry;
935 elf_entry += loc->interp_elf_ex.e_entry;
937 if (BAD_ADDR(elf_entry)) {
938 force_sig(SIGSEGV, current);
939 retval = IS_ERR((void *)elf_entry) ?
940 (int)elf_entry : -EINVAL;
941 goto out_free_dentry;
943 reloc_func_desc = interp_load_addr;
945 allow_write_access(interpreter);
946 fput(interpreter);
947 kfree(elf_interpreter);
948 } else {
949 elf_entry = loc->elf_ex.e_entry;
950 if (BAD_ADDR(elf_entry)) {
951 force_sig(SIGSEGV, current);
952 retval = -EINVAL;
953 goto out_free_dentry;
957 kfree(elf_phdata);
959 sys_close(elf_exec_fileno);
961 set_binfmt(&elf_format);
963 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
964 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
965 if (retval < 0) {
966 send_sig(SIGKILL, current, 0);
967 goto out;
969 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
971 install_exec_creds(bprm);
972 current->flags &= ~PF_FORKNOEXEC;
973 retval = create_elf_tables(bprm, &loc->elf_ex,
974 load_addr, interp_load_addr);
975 if (retval < 0) {
976 send_sig(SIGKILL, current, 0);
977 goto out;
979 /* N.B. passed_fileno might not be initialized? */
980 current->mm->end_code = end_code;
981 current->mm->start_code = start_code;
982 current->mm->start_data = start_data;
983 current->mm->end_data = end_data;
984 current->mm->start_stack = bprm->p;
986 #ifdef arch_randomize_brk
987 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
988 current->mm->brk = current->mm->start_brk =
989 arch_randomize_brk(current->mm);
990 #endif
992 if (current->personality & MMAP_PAGE_ZERO) {
993 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
994 and some applications "depend" upon this behavior.
995 Since we do not have the power to recompile these, we
996 emulate the SVr4 behavior. Sigh. */
997 down_write(&current->mm->mmap_sem);
998 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
999 MAP_FIXED | MAP_PRIVATE, 0);
1000 up_write(&current->mm->mmap_sem);
1003 #ifdef ELF_PLAT_INIT
1005 * The ABI may specify that certain registers be set up in special
1006 * ways (on i386 %edx is the address of a DT_FINI function, for
1007 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1008 * that the e_entry field is the address of the function descriptor
1009 * for the startup routine, rather than the address of the startup
1010 * routine itself. This macro performs whatever initialization to
1011 * the regs structure is required as well as any relocations to the
1012 * function descriptor entries when executing dynamically links apps.
1014 ELF_PLAT_INIT(regs, reloc_func_desc);
1015 #endif
1017 start_thread(regs, elf_entry, bprm->p);
1018 retval = 0;
1019 out:
1020 kfree(loc);
1021 out_ret:
1022 return retval;
1024 /* error cleanup */
1025 out_free_dentry:
1026 allow_write_access(interpreter);
1027 if (interpreter)
1028 fput(interpreter);
1029 out_free_interp:
1030 kfree(elf_interpreter);
1031 out_free_file:
1032 sys_close(elf_exec_fileno);
1033 out_free_ph:
1034 kfree(elf_phdata);
1035 goto out;
1038 /* This is really simpleminded and specialized - we are loading an
1039 a.out library that is given an ELF header. */
1040 static int load_elf_library(struct file *file)
1042 struct elf_phdr *elf_phdata;
1043 struct elf_phdr *eppnt;
1044 unsigned long elf_bss, bss, len;
1045 int retval, error, i, j;
1046 struct elfhdr elf_ex;
1048 error = -ENOEXEC;
1049 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1050 if (retval != sizeof(elf_ex))
1051 goto out;
1053 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1054 goto out;
1056 /* First of all, some simple consistency checks */
1057 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1058 !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1059 goto out;
1061 /* Now read in all of the header information */
1063 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1064 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1066 error = -ENOMEM;
1067 elf_phdata = kmalloc(j, GFP_KERNEL);
1068 if (!elf_phdata)
1069 goto out;
1071 eppnt = elf_phdata;
1072 error = -ENOEXEC;
1073 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1074 if (retval != j)
1075 goto out_free_ph;
1077 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1078 if ((eppnt + i)->p_type == PT_LOAD)
1079 j++;
1080 if (j != 1)
1081 goto out_free_ph;
1083 while (eppnt->p_type != PT_LOAD)
1084 eppnt++;
1086 /* Now use mmap to map the library into memory. */
1087 down_write(&current->mm->mmap_sem);
1088 error = do_mmap(file,
1089 ELF_PAGESTART(eppnt->p_vaddr),
1090 (eppnt->p_filesz +
1091 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1092 PROT_READ | PROT_WRITE | PROT_EXEC,
1093 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1094 (eppnt->p_offset -
1095 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1096 up_write(&current->mm->mmap_sem);
1097 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1098 goto out_free_ph;
1100 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1101 if (padzero(elf_bss)) {
1102 error = -EFAULT;
1103 goto out_free_ph;
1106 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1107 ELF_MIN_ALIGN - 1);
1108 bss = eppnt->p_memsz + eppnt->p_vaddr;
1109 if (bss > len) {
1110 down_write(&current->mm->mmap_sem);
1111 do_brk(len, bss - len);
1112 up_write(&current->mm->mmap_sem);
1114 error = 0;
1116 out_free_ph:
1117 kfree(elf_phdata);
1118 out:
1119 return error;
1123 * Note that some platforms still use traditional core dumps and not
1124 * the ELF core dump. Each platform can select it as appropriate.
1126 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1129 * ELF core dumper
1131 * Modelled on fs/exec.c:aout_core_dump()
1132 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1135 * These are the only things you should do on a core-file: use only these
1136 * functions to write out all the necessary info.
1138 static int dump_write(struct file *file, const void *addr, int nr)
1140 return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1143 static int dump_seek(struct file *file, loff_t off)
1145 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1146 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1147 return 0;
1148 } else {
1149 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1150 if (!buf)
1151 return 0;
1152 while (off > 0) {
1153 unsigned long n = off;
1154 if (n > PAGE_SIZE)
1155 n = PAGE_SIZE;
1156 if (!dump_write(file, buf, n))
1157 return 0;
1158 off -= n;
1160 free_page((unsigned long)buf);
1162 return 1;
1166 * Decide what to dump of a segment, part, all or none.
1168 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1169 unsigned long mm_flags)
1171 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1173 /* The vma can be set up to tell us the answer directly. */
1174 if (vma->vm_flags & VM_ALWAYSDUMP)
1175 goto whole;
1177 /* Hugetlb memory check */
1178 if (vma->vm_flags & VM_HUGETLB) {
1179 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1180 goto whole;
1181 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1182 goto whole;
1185 /* Do not dump I/O mapped devices or special mappings */
1186 if (vma->vm_flags & (VM_IO | VM_RESERVED))
1187 return 0;
1189 /* By default, dump shared memory if mapped from an anonymous file. */
1190 if (vma->vm_flags & VM_SHARED) {
1191 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1192 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1193 goto whole;
1194 return 0;
1197 /* Dump segments that have been written to. */
1198 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1199 goto whole;
1200 if (vma->vm_file == NULL)
1201 return 0;
1203 if (FILTER(MAPPED_PRIVATE))
1204 goto whole;
1207 * If this looks like the beginning of a DSO or executable mapping,
1208 * check for an ELF header. If we find one, dump the first page to
1209 * aid in determining what was mapped here.
1211 if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1212 u32 __user *header = (u32 __user *) vma->vm_start;
1213 u32 word;
1215 * Doing it this way gets the constant folded by GCC.
1217 union {
1218 u32 cmp;
1219 char elfmag[SELFMAG];
1220 } magic;
1221 BUILD_BUG_ON(SELFMAG != sizeof word);
1222 magic.elfmag[EI_MAG0] = ELFMAG0;
1223 magic.elfmag[EI_MAG1] = ELFMAG1;
1224 magic.elfmag[EI_MAG2] = ELFMAG2;
1225 magic.elfmag[EI_MAG3] = ELFMAG3;
1226 if (get_user(word, header) == 0 && word == magic.cmp)
1227 return PAGE_SIZE;
1230 #undef FILTER
1232 return 0;
1234 whole:
1235 return vma->vm_end - vma->vm_start;
1238 /* An ELF note in memory */
1239 struct memelfnote
1241 const char *name;
1242 int type;
1243 unsigned int datasz;
1244 void *data;
1247 static int notesize(struct memelfnote *en)
1249 int sz;
1251 sz = sizeof(struct elf_note);
1252 sz += roundup(strlen(en->name) + 1, 4);
1253 sz += roundup(en->datasz, 4);
1255 return sz;
1258 #define DUMP_WRITE(addr, nr, foffset) \
1259 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1261 static int alignfile(struct file *file, loff_t *foffset)
1263 static const char buf[4] = { 0, };
1264 DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1265 return 1;
1268 static int writenote(struct memelfnote *men, struct file *file,
1269 loff_t *foffset)
1271 struct elf_note en;
1272 en.n_namesz = strlen(men->name) + 1;
1273 en.n_descsz = men->datasz;
1274 en.n_type = men->type;
1276 DUMP_WRITE(&en, sizeof(en), foffset);
1277 DUMP_WRITE(men->name, en.n_namesz, foffset);
1278 if (!alignfile(file, foffset))
1279 return 0;
1280 DUMP_WRITE(men->data, men->datasz, foffset);
1281 if (!alignfile(file, foffset))
1282 return 0;
1284 return 1;
1286 #undef DUMP_WRITE
1288 #define DUMP_WRITE(addr, nr) \
1289 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1290 goto end_coredump;
1291 #define DUMP_SEEK(off) \
1292 if (!dump_seek(file, (off))) \
1293 goto end_coredump;
1295 static void fill_elf_header(struct elfhdr *elf, int segs,
1296 u16 machine, u32 flags, u8 osabi)
1298 memset(elf, 0, sizeof(*elf));
1300 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1301 elf->e_ident[EI_CLASS] = ELF_CLASS;
1302 elf->e_ident[EI_DATA] = ELF_DATA;
1303 elf->e_ident[EI_VERSION] = EV_CURRENT;
1304 elf->e_ident[EI_OSABI] = ELF_OSABI;
1306 elf->e_type = ET_CORE;
1307 elf->e_machine = machine;
1308 elf->e_version = EV_CURRENT;
1309 elf->e_phoff = sizeof(struct elfhdr);
1310 elf->e_flags = flags;
1311 elf->e_ehsize = sizeof(struct elfhdr);
1312 elf->e_phentsize = sizeof(struct elf_phdr);
1313 elf->e_phnum = segs;
1315 return;
1318 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1320 phdr->p_type = PT_NOTE;
1321 phdr->p_offset = offset;
1322 phdr->p_vaddr = 0;
1323 phdr->p_paddr = 0;
1324 phdr->p_filesz = sz;
1325 phdr->p_memsz = 0;
1326 phdr->p_flags = 0;
1327 phdr->p_align = 0;
1328 return;
1331 static void fill_note(struct memelfnote *note, const char *name, int type,
1332 unsigned int sz, void *data)
1334 note->name = name;
1335 note->type = type;
1336 note->datasz = sz;
1337 note->data = data;
1338 return;
1342 * fill up all the fields in prstatus from the given task struct, except
1343 * registers which need to be filled up separately.
1345 static void fill_prstatus(struct elf_prstatus *prstatus,
1346 struct task_struct *p, long signr)
1348 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1349 prstatus->pr_sigpend = p->pending.signal.sig[0];
1350 prstatus->pr_sighold = p->blocked.sig[0];
1351 prstatus->pr_pid = task_pid_vnr(p);
1352 prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1353 prstatus->pr_pgrp = task_pgrp_vnr(p);
1354 prstatus->pr_sid = task_session_vnr(p);
1355 if (thread_group_leader(p)) {
1356 struct task_cputime cputime;
1359 * This is the record for the group leader. It shows the
1360 * group-wide total, not its individual thread total.
1362 thread_group_cputime(p, &cputime);
1363 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1364 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1365 } else {
1366 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1367 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1369 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1370 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1373 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1374 struct mm_struct *mm)
1376 const struct cred *cred;
1377 unsigned int i, len;
1379 /* first copy the parameters from user space */
1380 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1382 len = mm->arg_end - mm->arg_start;
1383 if (len >= ELF_PRARGSZ)
1384 len = ELF_PRARGSZ-1;
1385 if (copy_from_user(&psinfo->pr_psargs,
1386 (const char __user *)mm->arg_start, len))
1387 return -EFAULT;
1388 for(i = 0; i < len; i++)
1389 if (psinfo->pr_psargs[i] == 0)
1390 psinfo->pr_psargs[i] = ' ';
1391 psinfo->pr_psargs[len] = 0;
1393 psinfo->pr_pid = task_pid_vnr(p);
1394 psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1395 psinfo->pr_pgrp = task_pgrp_vnr(p);
1396 psinfo->pr_sid = task_session_vnr(p);
1398 i = p->state ? ffz(~p->state) + 1 : 0;
1399 psinfo->pr_state = i;
1400 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1401 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1402 psinfo->pr_nice = task_nice(p);
1403 psinfo->pr_flag = p->flags;
1404 rcu_read_lock();
1405 cred = __task_cred(p);
1406 SET_UID(psinfo->pr_uid, cred->uid);
1407 SET_GID(psinfo->pr_gid, cred->gid);
1408 rcu_read_unlock();
1409 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1411 return 0;
1414 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1416 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1417 int i = 0;
1419 i += 2;
1420 while (auxv[i - 2] != AT_NULL);
1421 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1424 #ifdef CORE_DUMP_USE_REGSET
1425 #include <linux/regset.h>
1427 struct elf_thread_core_info {
1428 struct elf_thread_core_info *next;
1429 struct task_struct *task;
1430 struct elf_prstatus prstatus;
1431 struct memelfnote notes[0];
1434 struct elf_note_info {
1435 struct elf_thread_core_info *thread;
1436 struct memelfnote psinfo;
1437 struct memelfnote auxv;
1438 size_t size;
1439 int thread_notes;
1443 * When a regset has a writeback hook, we call it on each thread before
1444 * dumping user memory. On register window machines, this makes sure the
1445 * user memory backing the register data is up to date before we read it.
1447 static void do_thread_regset_writeback(struct task_struct *task,
1448 const struct user_regset *regset)
1450 if (regset->writeback)
1451 regset->writeback(task, regset, 1);
1454 static int fill_thread_core_info(struct elf_thread_core_info *t,
1455 const struct user_regset_view *view,
1456 long signr, size_t *total)
1458 unsigned int i;
1461 * NT_PRSTATUS is the one special case, because the regset data
1462 * goes into the pr_reg field inside the note contents, rather
1463 * than being the whole note contents. We fill the reset in here.
1464 * We assume that regset 0 is NT_PRSTATUS.
1466 fill_prstatus(&t->prstatus, t->task, signr);
1467 (void) view->regsets[0].get(t->task, &view->regsets[0],
1468 0, sizeof(t->prstatus.pr_reg),
1469 &t->prstatus.pr_reg, NULL);
1471 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1472 sizeof(t->prstatus), &t->prstatus);
1473 *total += notesize(&t->notes[0]);
1475 do_thread_regset_writeback(t->task, &view->regsets[0]);
1478 * Each other regset might generate a note too. For each regset
1479 * that has no core_note_type or is inactive, we leave t->notes[i]
1480 * all zero and we'll know to skip writing it later.
1482 for (i = 1; i < view->n; ++i) {
1483 const struct user_regset *regset = &view->regsets[i];
1484 do_thread_regset_writeback(t->task, regset);
1485 if (regset->core_note_type &&
1486 (!regset->active || regset->active(t->task, regset))) {
1487 int ret;
1488 size_t size = regset->n * regset->size;
1489 void *data = kmalloc(size, GFP_KERNEL);
1490 if (unlikely(!data))
1491 return 0;
1492 ret = regset->get(t->task, regset,
1493 0, size, data, NULL);
1494 if (unlikely(ret))
1495 kfree(data);
1496 else {
1497 if (regset->core_note_type != NT_PRFPREG)
1498 fill_note(&t->notes[i], "LINUX",
1499 regset->core_note_type,
1500 size, data);
1501 else {
1502 t->prstatus.pr_fpvalid = 1;
1503 fill_note(&t->notes[i], "CORE",
1504 NT_PRFPREG, size, data);
1506 *total += notesize(&t->notes[i]);
1511 return 1;
1514 static int fill_note_info(struct elfhdr *elf, int phdrs,
1515 struct elf_note_info *info,
1516 long signr, struct pt_regs *regs)
1518 struct task_struct *dump_task = current;
1519 const struct user_regset_view *view = task_user_regset_view(dump_task);
1520 struct elf_thread_core_info *t;
1521 struct elf_prpsinfo *psinfo;
1522 struct core_thread *ct;
1523 unsigned int i;
1525 info->size = 0;
1526 info->thread = NULL;
1528 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1529 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1531 if (psinfo == NULL)
1532 return 0;
1535 * Figure out how many notes we're going to need for each thread.
1537 info->thread_notes = 0;
1538 for (i = 0; i < view->n; ++i)
1539 if (view->regsets[i].core_note_type != 0)
1540 ++info->thread_notes;
1543 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1544 * since it is our one special case.
1546 if (unlikely(info->thread_notes == 0) ||
1547 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1548 WARN_ON(1);
1549 return 0;
1553 * Initialize the ELF file header.
1555 fill_elf_header(elf, phdrs,
1556 view->e_machine, view->e_flags, view->ei_osabi);
1559 * Allocate a structure for each thread.
1561 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1562 t = kzalloc(offsetof(struct elf_thread_core_info,
1563 notes[info->thread_notes]),
1564 GFP_KERNEL);
1565 if (unlikely(!t))
1566 return 0;
1568 t->task = ct->task;
1569 if (ct->task == dump_task || !info->thread) {
1570 t->next = info->thread;
1571 info->thread = t;
1572 } else {
1574 * Make sure to keep the original task at
1575 * the head of the list.
1577 t->next = info->thread->next;
1578 info->thread->next = t;
1583 * Now fill in each thread's information.
1585 for (t = info->thread; t != NULL; t = t->next)
1586 if (!fill_thread_core_info(t, view, signr, &info->size))
1587 return 0;
1590 * Fill in the two process-wide notes.
1592 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1593 info->size += notesize(&info->psinfo);
1595 fill_auxv_note(&info->auxv, current->mm);
1596 info->size += notesize(&info->auxv);
1598 return 1;
1601 static size_t get_note_info_size(struct elf_note_info *info)
1603 return info->size;
1607 * Write all the notes for each thread. When writing the first thread, the
1608 * process-wide notes are interleaved after the first thread-specific note.
1610 static int write_note_info(struct elf_note_info *info,
1611 struct file *file, loff_t *foffset)
1613 bool first = 1;
1614 struct elf_thread_core_info *t = info->thread;
1616 do {
1617 int i;
1619 if (!writenote(&t->notes[0], file, foffset))
1620 return 0;
1622 if (first && !writenote(&info->psinfo, file, foffset))
1623 return 0;
1624 if (first && !writenote(&info->auxv, file, foffset))
1625 return 0;
1627 for (i = 1; i < info->thread_notes; ++i)
1628 if (t->notes[i].data &&
1629 !writenote(&t->notes[i], file, foffset))
1630 return 0;
1632 first = 0;
1633 t = t->next;
1634 } while (t);
1636 return 1;
1639 static void free_note_info(struct elf_note_info *info)
1641 struct elf_thread_core_info *threads = info->thread;
1642 while (threads) {
1643 unsigned int i;
1644 struct elf_thread_core_info *t = threads;
1645 threads = t->next;
1646 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1647 for (i = 1; i < info->thread_notes; ++i)
1648 kfree(t->notes[i].data);
1649 kfree(t);
1651 kfree(info->psinfo.data);
1654 #else
1656 /* Here is the structure in which status of each thread is captured. */
1657 struct elf_thread_status
1659 struct list_head list;
1660 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1661 elf_fpregset_t fpu; /* NT_PRFPREG */
1662 struct task_struct *thread;
1663 #ifdef ELF_CORE_COPY_XFPREGS
1664 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1665 #endif
1666 struct memelfnote notes[3];
1667 int num_notes;
1671 * In order to add the specific thread information for the elf file format,
1672 * we need to keep a linked list of every threads pr_status and then create
1673 * a single section for them in the final core file.
1675 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1677 int sz = 0;
1678 struct task_struct *p = t->thread;
1679 t->num_notes = 0;
1681 fill_prstatus(&t->prstatus, p, signr);
1682 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1684 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1685 &(t->prstatus));
1686 t->num_notes++;
1687 sz += notesize(&t->notes[0]);
1689 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1690 &t->fpu))) {
1691 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1692 &(t->fpu));
1693 t->num_notes++;
1694 sz += notesize(&t->notes[1]);
1697 #ifdef ELF_CORE_COPY_XFPREGS
1698 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1699 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1700 sizeof(t->xfpu), &t->xfpu);
1701 t->num_notes++;
1702 sz += notesize(&t->notes[2]);
1704 #endif
1705 return sz;
1708 struct elf_note_info {
1709 struct memelfnote *notes;
1710 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1711 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1712 struct list_head thread_list;
1713 elf_fpregset_t *fpu;
1714 #ifdef ELF_CORE_COPY_XFPREGS
1715 elf_fpxregset_t *xfpu;
1716 #endif
1717 int thread_status_size;
1718 int numnote;
1721 static int fill_note_info(struct elfhdr *elf, int phdrs,
1722 struct elf_note_info *info,
1723 long signr, struct pt_regs *regs)
1725 #define NUM_NOTES 6
1726 struct list_head *t;
1728 info->notes = NULL;
1729 info->prstatus = NULL;
1730 info->psinfo = NULL;
1731 info->fpu = NULL;
1732 #ifdef ELF_CORE_COPY_XFPREGS
1733 info->xfpu = NULL;
1734 #endif
1735 INIT_LIST_HEAD(&info->thread_list);
1737 info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1738 GFP_KERNEL);
1739 if (!info->notes)
1740 return 0;
1741 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1742 if (!info->psinfo)
1743 return 0;
1744 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1745 if (!info->prstatus)
1746 return 0;
1747 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1748 if (!info->fpu)
1749 return 0;
1750 #ifdef ELF_CORE_COPY_XFPREGS
1751 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1752 if (!info->xfpu)
1753 return 0;
1754 #endif
1756 info->thread_status_size = 0;
1757 if (signr) {
1758 struct core_thread *ct;
1759 struct elf_thread_status *ets;
1761 for (ct = current->mm->core_state->dumper.next;
1762 ct; ct = ct->next) {
1763 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1764 if (!ets)
1765 return 0;
1767 ets->thread = ct->task;
1768 list_add(&ets->list, &info->thread_list);
1771 list_for_each(t, &info->thread_list) {
1772 int sz;
1774 ets = list_entry(t, struct elf_thread_status, list);
1775 sz = elf_dump_thread_status(signr, ets);
1776 info->thread_status_size += sz;
1779 /* now collect the dump for the current */
1780 memset(info->prstatus, 0, sizeof(*info->prstatus));
1781 fill_prstatus(info->prstatus, current, signr);
1782 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1784 /* Set up header */
1785 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1788 * Set up the notes in similar form to SVR4 core dumps made
1789 * with info from their /proc.
1792 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1793 sizeof(*info->prstatus), info->prstatus);
1794 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1795 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1796 sizeof(*info->psinfo), info->psinfo);
1798 info->numnote = 2;
1800 fill_auxv_note(&info->notes[info->numnote++], current->mm);
1802 /* Try to dump the FPU. */
1803 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1804 info->fpu);
1805 if (info->prstatus->pr_fpvalid)
1806 fill_note(info->notes + info->numnote++,
1807 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1808 #ifdef ELF_CORE_COPY_XFPREGS
1809 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1810 fill_note(info->notes + info->numnote++,
1811 "LINUX", ELF_CORE_XFPREG_TYPE,
1812 sizeof(*info->xfpu), info->xfpu);
1813 #endif
1815 return 1;
1817 #undef NUM_NOTES
1820 static size_t get_note_info_size(struct elf_note_info *info)
1822 int sz = 0;
1823 int i;
1825 for (i = 0; i < info->numnote; i++)
1826 sz += notesize(info->notes + i);
1828 sz += info->thread_status_size;
1830 return sz;
1833 static int write_note_info(struct elf_note_info *info,
1834 struct file *file, loff_t *foffset)
1836 int i;
1837 struct list_head *t;
1839 for (i = 0; i < info->numnote; i++)
1840 if (!writenote(info->notes + i, file, foffset))
1841 return 0;
1843 /* write out the thread status notes section */
1844 list_for_each(t, &info->thread_list) {
1845 struct elf_thread_status *tmp =
1846 list_entry(t, struct elf_thread_status, list);
1848 for (i = 0; i < tmp->num_notes; i++)
1849 if (!writenote(&tmp->notes[i], file, foffset))
1850 return 0;
1853 return 1;
1856 static void free_note_info(struct elf_note_info *info)
1858 while (!list_empty(&info->thread_list)) {
1859 struct list_head *tmp = info->thread_list.next;
1860 list_del(tmp);
1861 kfree(list_entry(tmp, struct elf_thread_status, list));
1864 kfree(info->prstatus);
1865 kfree(info->psinfo);
1866 kfree(info->notes);
1867 kfree(info->fpu);
1868 #ifdef ELF_CORE_COPY_XFPREGS
1869 kfree(info->xfpu);
1870 #endif
1873 #endif
1875 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1876 struct vm_area_struct *gate_vma)
1878 struct vm_area_struct *ret = tsk->mm->mmap;
1880 if (ret)
1881 return ret;
1882 return gate_vma;
1885 * Helper function for iterating across a vma list. It ensures that the caller
1886 * will visit `gate_vma' prior to terminating the search.
1888 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1889 struct vm_area_struct *gate_vma)
1891 struct vm_area_struct *ret;
1893 ret = this_vma->vm_next;
1894 if (ret)
1895 return ret;
1896 if (this_vma == gate_vma)
1897 return NULL;
1898 return gate_vma;
1902 * Actual dumper
1904 * This is a two-pass process; first we find the offsets of the bits,
1905 * and then they are actually written out. If we run out of core limit
1906 * we just truncate.
1908 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1910 int has_dumped = 0;
1911 mm_segment_t fs;
1912 int segs;
1913 size_t size = 0;
1914 struct vm_area_struct *vma, *gate_vma;
1915 struct elfhdr *elf = NULL;
1916 loff_t offset = 0, dataoff, foffset;
1917 unsigned long mm_flags;
1918 struct elf_note_info info;
1921 * We no longer stop all VM operations.
1923 * This is because those proceses that could possibly change map_count
1924 * or the mmap / vma pages are now blocked in do_exit on current
1925 * finishing this core dump.
1927 * Only ptrace can touch these memory addresses, but it doesn't change
1928 * the map_count or the pages allocated. So no possibility of crashing
1929 * exists while dumping the mm->vm_next areas to the core file.
1932 /* alloc memory for large data structures: too large to be on stack */
1933 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1934 if (!elf)
1935 goto out;
1937 segs = current->mm->map_count;
1938 #ifdef ELF_CORE_EXTRA_PHDRS
1939 segs += ELF_CORE_EXTRA_PHDRS;
1940 #endif
1942 gate_vma = get_gate_vma(current);
1943 if (gate_vma != NULL)
1944 segs++;
1947 * Collect all the non-memory information about the process for the
1948 * notes. This also sets up the file header.
1950 if (!fill_note_info(elf, segs + 1, /* including notes section */
1951 &info, signr, regs))
1952 goto cleanup;
1954 has_dumped = 1;
1955 current->flags |= PF_DUMPCORE;
1957 fs = get_fs();
1958 set_fs(KERNEL_DS);
1960 DUMP_WRITE(elf, sizeof(*elf));
1961 offset += sizeof(*elf); /* Elf header */
1962 offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1963 foffset = offset;
1965 /* Write notes phdr entry */
1967 struct elf_phdr phdr;
1968 size_t sz = get_note_info_size(&info);
1970 sz += elf_coredump_extra_notes_size();
1972 fill_elf_note_phdr(&phdr, sz, offset);
1973 offset += sz;
1974 DUMP_WRITE(&phdr, sizeof(phdr));
1977 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1980 * We must use the same mm->flags while dumping core to avoid
1981 * inconsistency between the program headers and bodies, otherwise an
1982 * unusable core file can be generated.
1984 mm_flags = current->mm->flags;
1986 /* Write program headers for segments dump */
1987 for (vma = first_vma(current, gate_vma); vma != NULL;
1988 vma = next_vma(vma, gate_vma)) {
1989 struct elf_phdr phdr;
1991 phdr.p_type = PT_LOAD;
1992 phdr.p_offset = offset;
1993 phdr.p_vaddr = vma->vm_start;
1994 phdr.p_paddr = 0;
1995 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1996 phdr.p_memsz = vma->vm_end - vma->vm_start;
1997 offset += phdr.p_filesz;
1998 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1999 if (vma->vm_flags & VM_WRITE)
2000 phdr.p_flags |= PF_W;
2001 if (vma->vm_flags & VM_EXEC)
2002 phdr.p_flags |= PF_X;
2003 phdr.p_align = ELF_EXEC_PAGESIZE;
2005 DUMP_WRITE(&phdr, sizeof(phdr));
2008 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2009 ELF_CORE_WRITE_EXTRA_PHDRS;
2010 #endif
2012 /* write out the notes section */
2013 if (!write_note_info(&info, file, &foffset))
2014 goto end_coredump;
2016 if (elf_coredump_extra_notes_write(file, &foffset))
2017 goto end_coredump;
2019 /* Align to page */
2020 DUMP_SEEK(dataoff - foffset);
2022 for (vma = first_vma(current, gate_vma); vma != NULL;
2023 vma = next_vma(vma, gate_vma)) {
2024 unsigned long addr;
2025 unsigned long end;
2027 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2029 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2030 struct page *page;
2031 struct vm_area_struct *tmp_vma;
2033 if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2034 &page, &tmp_vma) <= 0) {
2035 DUMP_SEEK(PAGE_SIZE);
2036 } else {
2037 if (page == ZERO_PAGE(0)) {
2038 if (!dump_seek(file, PAGE_SIZE)) {
2039 page_cache_release(page);
2040 goto end_coredump;
2042 } else {
2043 void *kaddr;
2044 flush_cache_page(tmp_vma, addr,
2045 page_to_pfn(page));
2046 kaddr = kmap(page);
2047 if ((size += PAGE_SIZE) > limit ||
2048 !dump_write(file, kaddr,
2049 PAGE_SIZE)) {
2050 kunmap(page);
2051 page_cache_release(page);
2052 goto end_coredump;
2054 kunmap(page);
2056 page_cache_release(page);
2061 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2062 ELF_CORE_WRITE_EXTRA_DATA;
2063 #endif
2065 end_coredump:
2066 set_fs(fs);
2068 cleanup:
2069 free_note_info(&info);
2070 kfree(elf);
2071 out:
2072 return has_dumped;
2075 #endif /* USE_ELF_CORE_DUMP */
2077 static int __init init_elf_binfmt(void)
2079 return register_binfmt(&elf_format);
2082 static void __exit exit_elf_binfmt(void)
2084 /* Remove the COFF and ELF loaders. */
2085 unregister_binfmt(&elf_format);
2088 core_initcall(init_elf_binfmt);
2089 module_exit(exit_elf_binfmt);
2090 MODULE_LICENSE("GPL");