ACPI: thinkpad-acpi: fix the module init failure path
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / mmzone.h
blob3ea68cd3b61f29a04b708c8c8f4043cccf6b2450
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29 * costly to service. That is between allocation orders which should
30 * coelesce naturally under reasonable reclaim pressure and those which
31 * will not.
33 #define PAGE_ALLOC_COSTLY_ORDER 3
35 struct free_area {
36 struct list_head free_list;
37 unsigned long nr_free;
40 struct pglist_data;
43 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44 * So add a wild amount of padding here to ensure that they fall into separate
45 * cachelines. There are very few zone structures in the machine, so space
46 * consumption is not a concern here.
48 #if defined(CONFIG_SMP)
49 struct zone_padding {
50 char x[0];
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name) struct zone_padding name;
53 #else
54 #define ZONE_PADDING(name)
55 #endif
57 enum zone_stat_item {
58 /* First 128 byte cacheline (assuming 64 bit words) */
59 NR_FREE_PAGES,
60 NR_INACTIVE,
61 NR_ACTIVE,
62 NR_ANON_PAGES, /* Mapped anonymous pages */
63 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
64 only modified from process context */
65 NR_FILE_PAGES,
66 NR_FILE_DIRTY,
67 NR_WRITEBACK,
68 /* Second 128 byte cacheline */
69 NR_SLAB_RECLAIMABLE,
70 NR_SLAB_UNRECLAIMABLE,
71 NR_PAGETABLE, /* used for pagetables */
72 NR_UNSTABLE_NFS, /* NFS unstable pages */
73 NR_BOUNCE,
74 NR_VMSCAN_WRITE,
75 #ifdef CONFIG_NUMA
76 NUMA_HIT, /* allocated in intended node */
77 NUMA_MISS, /* allocated in non intended node */
78 NUMA_FOREIGN, /* was intended here, hit elsewhere */
79 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
80 NUMA_LOCAL, /* allocation from local node */
81 NUMA_OTHER, /* allocation from other node */
82 #endif
83 NR_VM_ZONE_STAT_ITEMS };
85 struct per_cpu_pages {
86 int count; /* number of pages in the list */
87 int high; /* high watermark, emptying needed */
88 int batch; /* chunk size for buddy add/remove */
89 struct list_head list; /* the list of pages */
92 struct per_cpu_pageset {
93 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
94 #ifdef CONFIG_NUMA
95 s8 expire;
96 #endif
97 #ifdef CONFIG_SMP
98 s8 stat_threshold;
99 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
100 #endif
101 } ____cacheline_aligned_in_smp;
103 #ifdef CONFIG_NUMA
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
105 #else
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
107 #endif
109 enum zone_type {
110 #ifdef CONFIG_ZONE_DMA
112 * ZONE_DMA is used when there are devices that are not able
113 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 * carve out the portion of memory that is needed for these devices.
115 * The range is arch specific.
117 * Some examples
119 * Architecture Limit
120 * ---------------------------
121 * parisc, ia64, sparc <4G
122 * s390 <2G
123 * arm Various
124 * alpha Unlimited or 0-16MB.
126 * i386, x86_64 and multiple other arches
127 * <16M.
129 ZONE_DMA,
130 #endif
131 #ifdef CONFIG_ZONE_DMA32
133 * x86_64 needs two ZONE_DMAs because it supports devices that are
134 * only able to do DMA to the lower 16M but also 32 bit devices that
135 * can only do DMA areas below 4G.
137 ZONE_DMA32,
138 #endif
140 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
141 * performed on pages in ZONE_NORMAL if the DMA devices support
142 * transfers to all addressable memory.
144 ZONE_NORMAL,
145 #ifdef CONFIG_HIGHMEM
147 * A memory area that is only addressable by the kernel through
148 * mapping portions into its own address space. This is for example
149 * used by i386 to allow the kernel to address the memory beyond
150 * 900MB. The kernel will set up special mappings (page
151 * table entries on i386) for each page that the kernel needs to
152 * access.
154 ZONE_HIGHMEM,
155 #endif
156 ZONE_MOVABLE,
157 MAX_NR_ZONES
161 * When a memory allocation must conform to specific limitations (such
162 * as being suitable for DMA) the caller will pass in hints to the
163 * allocator in the gfp_mask, in the zone modifier bits. These bits
164 * are used to select a priority ordered list of memory zones which
165 * match the requested limits. See gfp_zone() in include/linux/gfp.h
169 * Count the active zones. Note that the use of defined(X) outside
170 * #if and family is not necessarily defined so ensure we cannot use
171 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
173 #define __ZONE_COUNT ( \
174 defined(CONFIG_ZONE_DMA) \
175 + defined(CONFIG_ZONE_DMA32) \
176 + 1 \
177 + defined(CONFIG_HIGHMEM) \
178 + 1 \
180 #if __ZONE_COUNT < 2
181 #define ZONES_SHIFT 0
182 #elif __ZONE_COUNT <= 2
183 #define ZONES_SHIFT 1
184 #elif __ZONE_COUNT <= 4
185 #define ZONES_SHIFT 2
186 #else
187 #error ZONES_SHIFT -- too many zones configured adjust calculation
188 #endif
189 #undef __ZONE_COUNT
191 struct zone {
192 /* Fields commonly accessed by the page allocator */
193 unsigned long pages_min, pages_low, pages_high;
195 * We don't know if the memory that we're going to allocate will be freeable
196 * or/and it will be released eventually, so to avoid totally wasting several
197 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
198 * to run OOM on the lower zones despite there's tons of freeable ram
199 * on the higher zones). This array is recalculated at runtime if the
200 * sysctl_lowmem_reserve_ratio sysctl changes.
202 unsigned long lowmem_reserve[MAX_NR_ZONES];
204 #ifdef CONFIG_NUMA
205 int node;
207 * zone reclaim becomes active if more unmapped pages exist.
209 unsigned long min_unmapped_pages;
210 unsigned long min_slab_pages;
211 struct per_cpu_pageset *pageset[NR_CPUS];
212 #else
213 struct per_cpu_pageset pageset[NR_CPUS];
214 #endif
216 * free areas of different sizes
218 spinlock_t lock;
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 /* see spanned/present_pages for more description */
221 seqlock_t span_seqlock;
222 #endif
223 struct free_area free_area[MAX_ORDER];
226 ZONE_PADDING(_pad1_)
228 /* Fields commonly accessed by the page reclaim scanner */
229 spinlock_t lru_lock;
230 struct list_head active_list;
231 struct list_head inactive_list;
232 unsigned long nr_scan_active;
233 unsigned long nr_scan_inactive;
234 unsigned long pages_scanned; /* since last reclaim */
235 int all_unreclaimable; /* All pages pinned */
237 /* A count of how many reclaimers are scanning this zone */
238 atomic_t reclaim_in_progress;
240 /* Zone statistics */
241 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
244 * prev_priority holds the scanning priority for this zone. It is
245 * defined as the scanning priority at which we achieved our reclaim
246 * target at the previous try_to_free_pages() or balance_pgdat()
247 * invokation.
249 * We use prev_priority as a measure of how much stress page reclaim is
250 * under - it drives the swappiness decision: whether to unmap mapped
251 * pages.
253 * Access to both this field is quite racy even on uniprocessor. But
254 * it is expected to average out OK.
256 int prev_priority;
259 ZONE_PADDING(_pad2_)
260 /* Rarely used or read-mostly fields */
263 * wait_table -- the array holding the hash table
264 * wait_table_hash_nr_entries -- the size of the hash table array
265 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
267 * The purpose of all these is to keep track of the people
268 * waiting for a page to become available and make them
269 * runnable again when possible. The trouble is that this
270 * consumes a lot of space, especially when so few things
271 * wait on pages at a given time. So instead of using
272 * per-page waitqueues, we use a waitqueue hash table.
274 * The bucket discipline is to sleep on the same queue when
275 * colliding and wake all in that wait queue when removing.
276 * When something wakes, it must check to be sure its page is
277 * truly available, a la thundering herd. The cost of a
278 * collision is great, but given the expected load of the
279 * table, they should be so rare as to be outweighed by the
280 * benefits from the saved space.
282 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
283 * primary users of these fields, and in mm/page_alloc.c
284 * free_area_init_core() performs the initialization of them.
286 wait_queue_head_t * wait_table;
287 unsigned long wait_table_hash_nr_entries;
288 unsigned long wait_table_bits;
291 * Discontig memory support fields.
293 struct pglist_data *zone_pgdat;
294 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
295 unsigned long zone_start_pfn;
298 * zone_start_pfn, spanned_pages and present_pages are all
299 * protected by span_seqlock. It is a seqlock because it has
300 * to be read outside of zone->lock, and it is done in the main
301 * allocator path. But, it is written quite infrequently.
303 * The lock is declared along with zone->lock because it is
304 * frequently read in proximity to zone->lock. It's good to
305 * give them a chance of being in the same cacheline.
307 unsigned long spanned_pages; /* total size, including holes */
308 unsigned long present_pages; /* amount of memory (excluding holes) */
311 * rarely used fields:
313 const char *name;
314 } ____cacheline_internodealigned_in_smp;
317 * The "priority" of VM scanning is how much of the queues we will scan in one
318 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
319 * queues ("queue_length >> 12") during an aging round.
321 #define DEF_PRIORITY 12
323 /* Maximum number of zones on a zonelist */
324 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
326 #ifdef CONFIG_NUMA
328 * We cache key information from each zonelist for smaller cache
329 * footprint when scanning for free pages in get_page_from_freelist().
331 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
332 * up short of free memory since the last time (last_fullzone_zap)
333 * we zero'd fullzones.
334 * 2) The array z_to_n[] maps each zone in the zonelist to its node
335 * id, so that we can efficiently evaluate whether that node is
336 * set in the current tasks mems_allowed.
338 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
339 * indexed by a zones offset in the zonelist zones[] array.
341 * The get_page_from_freelist() routine does two scans. During the
342 * first scan, we skip zones whose corresponding bit in 'fullzones'
343 * is set or whose corresponding node in current->mems_allowed (which
344 * comes from cpusets) is not set. During the second scan, we bypass
345 * this zonelist_cache, to ensure we look methodically at each zone.
347 * Once per second, we zero out (zap) fullzones, forcing us to
348 * reconsider nodes that might have regained more free memory.
349 * The field last_full_zap is the time we last zapped fullzones.
351 * This mechanism reduces the amount of time we waste repeatedly
352 * reexaming zones for free memory when they just came up low on
353 * memory momentarilly ago.
355 * The zonelist_cache struct members logically belong in struct
356 * zonelist. However, the mempolicy zonelists constructed for
357 * MPOL_BIND are intentionally variable length (and usually much
358 * shorter). A general purpose mechanism for handling structs with
359 * multiple variable length members is more mechanism than we want
360 * here. We resort to some special case hackery instead.
362 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
363 * part because they are shorter), so we put the fixed length stuff
364 * at the front of the zonelist struct, ending in a variable length
365 * zones[], as is needed by MPOL_BIND.
367 * Then we put the optional zonelist cache on the end of the zonelist
368 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
369 * the fixed length portion at the front of the struct. This pointer
370 * both enables us to find the zonelist cache, and in the case of
371 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
372 * to know that the zonelist cache is not there.
374 * The end result is that struct zonelists come in two flavors:
375 * 1) The full, fixed length version, shown below, and
376 * 2) The custom zonelists for MPOL_BIND.
377 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
379 * Even though there may be multiple CPU cores on a node modifying
380 * fullzones or last_full_zap in the same zonelist_cache at the same
381 * time, we don't lock it. This is just hint data - if it is wrong now
382 * and then, the allocator will still function, perhaps a bit slower.
386 struct zonelist_cache {
387 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
388 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
389 unsigned long last_full_zap; /* when last zap'd (jiffies) */
391 #else
392 struct zonelist_cache;
393 #endif
396 * One allocation request operates on a zonelist. A zonelist
397 * is a list of zones, the first one is the 'goal' of the
398 * allocation, the other zones are fallback zones, in decreasing
399 * priority.
401 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
402 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
405 struct zonelist {
406 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
407 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
408 #ifdef CONFIG_NUMA
409 struct zonelist_cache zlcache; // optional ...
410 #endif
413 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
414 struct node_active_region {
415 unsigned long start_pfn;
416 unsigned long end_pfn;
417 int nid;
419 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
421 #ifndef CONFIG_DISCONTIGMEM
422 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
423 extern struct page *mem_map;
424 #endif
427 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
428 * (mostly NUMA machines?) to denote a higher-level memory zone than the
429 * zone denotes.
431 * On NUMA machines, each NUMA node would have a pg_data_t to describe
432 * it's memory layout.
434 * Memory statistics and page replacement data structures are maintained on a
435 * per-zone basis.
437 struct bootmem_data;
438 typedef struct pglist_data {
439 struct zone node_zones[MAX_NR_ZONES];
440 struct zonelist node_zonelists[MAX_NR_ZONES];
441 int nr_zones;
442 #ifdef CONFIG_FLAT_NODE_MEM_MAP
443 struct page *node_mem_map;
444 #endif
445 struct bootmem_data *bdata;
446 #ifdef CONFIG_MEMORY_HOTPLUG
448 * Must be held any time you expect node_start_pfn, node_present_pages
449 * or node_spanned_pages stay constant. Holding this will also
450 * guarantee that any pfn_valid() stays that way.
452 * Nests above zone->lock and zone->size_seqlock.
454 spinlock_t node_size_lock;
455 #endif
456 unsigned long node_start_pfn;
457 unsigned long node_present_pages; /* total number of physical pages */
458 unsigned long node_spanned_pages; /* total size of physical page
459 range, including holes */
460 int node_id;
461 wait_queue_head_t kswapd_wait;
462 struct task_struct *kswapd;
463 int kswapd_max_order;
464 } pg_data_t;
466 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
467 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
468 #ifdef CONFIG_FLAT_NODE_MEM_MAP
469 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
470 #else
471 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
472 #endif
473 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
475 #include <linux/memory_hotplug.h>
477 void get_zone_counts(unsigned long *active, unsigned long *inactive,
478 unsigned long *free);
479 void build_all_zonelists(void);
480 void wakeup_kswapd(struct zone *zone, int order);
481 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
482 int classzone_idx, int alloc_flags);
483 enum memmap_context {
484 MEMMAP_EARLY,
485 MEMMAP_HOTPLUG,
487 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
488 unsigned long size,
489 enum memmap_context context);
491 #ifdef CONFIG_HAVE_MEMORY_PRESENT
492 void memory_present(int nid, unsigned long start, unsigned long end);
493 #else
494 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
495 #endif
497 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
498 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
499 #endif
502 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
504 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
506 static inline int populated_zone(struct zone *zone)
508 return (!!zone->present_pages);
511 extern int movable_zone;
513 static inline int zone_movable_is_highmem(void)
515 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
516 return movable_zone == ZONE_HIGHMEM;
517 #else
518 return 0;
519 #endif
522 static inline int is_highmem_idx(enum zone_type idx)
524 #ifdef CONFIG_HIGHMEM
525 return (idx == ZONE_HIGHMEM ||
526 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
527 #else
528 return 0;
529 #endif
532 static inline int is_normal_idx(enum zone_type idx)
534 return (idx == ZONE_NORMAL);
538 * is_highmem - helper function to quickly check if a struct zone is a
539 * highmem zone or not. This is an attempt to keep references
540 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
541 * @zone - pointer to struct zone variable
543 static inline int is_highmem(struct zone *zone)
545 #ifdef CONFIG_HIGHMEM
546 int zone_idx = zone - zone->zone_pgdat->node_zones;
547 return zone_idx == ZONE_HIGHMEM ||
548 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
549 #else
550 return 0;
551 #endif
554 static inline int is_normal(struct zone *zone)
556 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
559 static inline int is_dma32(struct zone *zone)
561 #ifdef CONFIG_ZONE_DMA32
562 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
563 #else
564 return 0;
565 #endif
568 static inline int is_dma(struct zone *zone)
570 #ifdef CONFIG_ZONE_DMA
571 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
572 #else
573 return 0;
574 #endif
577 /* These two functions are used to setup the per zone pages min values */
578 struct ctl_table;
579 struct file;
580 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
581 void __user *, size_t *, loff_t *);
582 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
583 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
584 void __user *, size_t *, loff_t *);
585 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
586 void __user *, size_t *, loff_t *);
587 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
588 struct file *, void __user *, size_t *, loff_t *);
589 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
590 struct file *, void __user *, size_t *, loff_t *);
592 extern int numa_zonelist_order_handler(struct ctl_table *, int,
593 struct file *, void __user *, size_t *, loff_t *);
594 extern char numa_zonelist_order[];
595 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
597 #include <linux/topology.h>
598 /* Returns the number of the current Node. */
599 #ifndef numa_node_id
600 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
601 #endif
603 #ifndef CONFIG_NEED_MULTIPLE_NODES
605 extern struct pglist_data contig_page_data;
606 #define NODE_DATA(nid) (&contig_page_data)
607 #define NODE_MEM_MAP(nid) mem_map
608 #define MAX_NODES_SHIFT 1
610 #else /* CONFIG_NEED_MULTIPLE_NODES */
612 #include <asm/mmzone.h>
614 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
616 extern struct pglist_data *first_online_pgdat(void);
617 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
618 extern struct zone *next_zone(struct zone *zone);
621 * for_each_pgdat - helper macro to iterate over all nodes
622 * @pgdat - pointer to a pg_data_t variable
624 #define for_each_online_pgdat(pgdat) \
625 for (pgdat = first_online_pgdat(); \
626 pgdat; \
627 pgdat = next_online_pgdat(pgdat))
629 * for_each_zone - helper macro to iterate over all memory zones
630 * @zone - pointer to struct zone variable
632 * The user only needs to declare the zone variable, for_each_zone
633 * fills it in.
635 #define for_each_zone(zone) \
636 for (zone = (first_online_pgdat())->node_zones; \
637 zone; \
638 zone = next_zone(zone))
640 #ifdef CONFIG_SPARSEMEM
641 #include <asm/sparsemem.h>
642 #endif
644 #if BITS_PER_LONG == 32
646 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
647 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
649 #define FLAGS_RESERVED 9
651 #elif BITS_PER_LONG == 64
653 * with 64 bit flags field, there's plenty of room.
655 #define FLAGS_RESERVED 32
657 #else
659 #error BITS_PER_LONG not defined
661 #endif
663 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
664 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
665 #define early_pfn_to_nid(nid) (0UL)
666 #endif
668 #ifdef CONFIG_FLATMEM
669 #define pfn_to_nid(pfn) (0)
670 #endif
672 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
673 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
675 #ifdef CONFIG_SPARSEMEM
678 * SECTION_SHIFT #bits space required to store a section #
680 * PA_SECTION_SHIFT physical address to/from section number
681 * PFN_SECTION_SHIFT pfn to/from section number
683 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
685 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
686 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
688 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
690 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
691 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
693 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
694 #error Allocator MAX_ORDER exceeds SECTION_SIZE
695 #endif
697 struct page;
698 struct mem_section {
700 * This is, logically, a pointer to an array of struct
701 * pages. However, it is stored with some other magic.
702 * (see sparse.c::sparse_init_one_section())
704 * Additionally during early boot we encode node id of
705 * the location of the section here to guide allocation.
706 * (see sparse.c::memory_present())
708 * Making it a UL at least makes someone do a cast
709 * before using it wrong.
711 unsigned long section_mem_map;
714 #ifdef CONFIG_SPARSEMEM_EXTREME
715 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
716 #else
717 #define SECTIONS_PER_ROOT 1
718 #endif
720 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
721 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
722 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
724 #ifdef CONFIG_SPARSEMEM_EXTREME
725 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
726 #else
727 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
728 #endif
730 static inline struct mem_section *__nr_to_section(unsigned long nr)
732 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
733 return NULL;
734 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
736 extern int __section_nr(struct mem_section* ms);
739 * We use the lower bits of the mem_map pointer to store
740 * a little bit of information. There should be at least
741 * 3 bits here due to 32-bit alignment.
743 #define SECTION_MARKED_PRESENT (1UL<<0)
744 #define SECTION_HAS_MEM_MAP (1UL<<1)
745 #define SECTION_MAP_LAST_BIT (1UL<<2)
746 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
747 #define SECTION_NID_SHIFT 2
749 static inline struct page *__section_mem_map_addr(struct mem_section *section)
751 unsigned long map = section->section_mem_map;
752 map &= SECTION_MAP_MASK;
753 return (struct page *)map;
756 static inline int valid_section(struct mem_section *section)
758 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
761 static inline int section_has_mem_map(struct mem_section *section)
763 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
766 static inline int valid_section_nr(unsigned long nr)
768 return valid_section(__nr_to_section(nr));
771 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
773 return __nr_to_section(pfn_to_section_nr(pfn));
776 static inline int pfn_valid(unsigned long pfn)
778 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
779 return 0;
780 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
784 * These are _only_ used during initialisation, therefore they
785 * can use __initdata ... They could have names to indicate
786 * this restriction.
788 #ifdef CONFIG_NUMA
789 #define pfn_to_nid(pfn) \
790 ({ \
791 unsigned long __pfn_to_nid_pfn = (pfn); \
792 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
794 #else
795 #define pfn_to_nid(pfn) (0)
796 #endif
798 #define early_pfn_valid(pfn) pfn_valid(pfn)
799 void sparse_init(void);
800 #else
801 #define sparse_init() do {} while (0)
802 #define sparse_index_init(_sec, _nid) do {} while (0)
803 #endif /* CONFIG_SPARSEMEM */
805 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
806 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
807 #else
808 #define early_pfn_in_nid(pfn, nid) (1)
809 #endif
811 #ifndef early_pfn_valid
812 #define early_pfn_valid(pfn) (1)
813 #endif
815 void memory_present(int nid, unsigned long start, unsigned long end);
816 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
819 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
820 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
821 * pfn_valid_within() should be used in this case; we optimise this away
822 * when we have no holes within a MAX_ORDER_NR_PAGES block.
824 #ifdef CONFIG_HOLES_IN_ZONE
825 #define pfn_valid_within(pfn) pfn_valid(pfn)
826 #else
827 #define pfn_valid_within(pfn) (1)
828 #endif
830 #endif /* !__ASSEMBLY__ */
831 #endif /* __KERNEL__ */
832 #endif /* _LINUX_MMZONE_H */