hugetlb: close a difficult to trigger reservation race
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob20e04c64468dd9b42b32d9af70a4386bd8336786
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
75 unsigned long address)
77 int nid;
78 struct page *page = NULL;
79 struct mempolicy *mpol;
80 struct zonelist *zonelist = huge_zonelist(vma, address,
81 htlb_alloc_mask, &mpol);
82 struct zone **z;
84 for (z = zonelist->zones; *z; z++) {
85 nid = zone_to_nid(*z);
86 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
87 !list_empty(&hugepage_freelists[nid])) {
88 page = list_entry(hugepage_freelists[nid].next,
89 struct page, lru);
90 list_del(&page->lru);
91 free_huge_pages--;
92 free_huge_pages_node[nid]--;
93 if (vma && vma->vm_flags & VM_MAYSHARE)
94 resv_huge_pages--;
95 break;
98 mpol_free(mpol); /* unref if mpol !NULL */
99 return page;
102 static void update_and_free_page(struct page *page)
104 int i;
105 nr_huge_pages--;
106 nr_huge_pages_node[page_to_nid(page)]--;
107 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
108 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
109 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
110 1 << PG_private | 1<< PG_writeback);
112 set_compound_page_dtor(page, NULL);
113 set_page_refcounted(page);
114 __free_pages(page, HUGETLB_PAGE_ORDER);
117 static void free_huge_page(struct page *page)
119 int nid = page_to_nid(page);
120 struct address_space *mapping;
122 mapping = (struct address_space *) page_private(page);
123 set_page_private(page, 0);
124 BUG_ON(page_count(page));
125 INIT_LIST_HEAD(&page->lru);
127 spin_lock(&hugetlb_lock);
128 if (surplus_huge_pages_node[nid]) {
129 update_and_free_page(page);
130 surplus_huge_pages--;
131 surplus_huge_pages_node[nid]--;
132 } else {
133 enqueue_huge_page(page);
135 spin_unlock(&hugetlb_lock);
136 if (mapping)
137 hugetlb_put_quota(mapping, 1);
141 * Increment or decrement surplus_huge_pages. Keep node-specific counters
142 * balanced by operating on them in a round-robin fashion.
143 * Returns 1 if an adjustment was made.
145 static int adjust_pool_surplus(int delta)
147 static int prev_nid;
148 int nid = prev_nid;
149 int ret = 0;
151 VM_BUG_ON(delta != -1 && delta != 1);
152 do {
153 nid = next_node(nid, node_online_map);
154 if (nid == MAX_NUMNODES)
155 nid = first_node(node_online_map);
157 /* To shrink on this node, there must be a surplus page */
158 if (delta < 0 && !surplus_huge_pages_node[nid])
159 continue;
160 /* Surplus cannot exceed the total number of pages */
161 if (delta > 0 && surplus_huge_pages_node[nid] >=
162 nr_huge_pages_node[nid])
163 continue;
165 surplus_huge_pages += delta;
166 surplus_huge_pages_node[nid] += delta;
167 ret = 1;
168 break;
169 } while (nid != prev_nid);
171 prev_nid = nid;
172 return ret;
175 static struct page *alloc_fresh_huge_page_node(int nid)
177 struct page *page;
179 page = alloc_pages_node(nid,
180 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
181 HUGETLB_PAGE_ORDER);
182 if (page) {
183 set_compound_page_dtor(page, free_huge_page);
184 spin_lock(&hugetlb_lock);
185 nr_huge_pages++;
186 nr_huge_pages_node[nid]++;
187 spin_unlock(&hugetlb_lock);
188 put_page(page); /* free it into the hugepage allocator */
191 return page;
194 static int alloc_fresh_huge_page(void)
196 struct page *page;
197 int start_nid;
198 int next_nid;
199 int ret = 0;
201 start_nid = hugetlb_next_nid;
203 do {
204 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
205 if (page)
206 ret = 1;
208 * Use a helper variable to find the next node and then
209 * copy it back to hugetlb_next_nid afterwards:
210 * otherwise there's a window in which a racer might
211 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
212 * But we don't need to use a spin_lock here: it really
213 * doesn't matter if occasionally a racer chooses the
214 * same nid as we do. Move nid forward in the mask even
215 * if we just successfully allocated a hugepage so that
216 * the next caller gets hugepages on the next node.
218 next_nid = next_node(hugetlb_next_nid, node_online_map);
219 if (next_nid == MAX_NUMNODES)
220 next_nid = first_node(node_online_map);
221 hugetlb_next_nid = next_nid;
222 } while (!page && hugetlb_next_nid != start_nid);
224 return ret;
227 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
228 unsigned long address)
230 struct page *page;
231 unsigned int nid;
234 * Assume we will successfully allocate the surplus page to
235 * prevent racing processes from causing the surplus to exceed
236 * overcommit
238 * This however introduces a different race, where a process B
239 * tries to grow the static hugepage pool while alloc_pages() is
240 * called by process A. B will only examine the per-node
241 * counters in determining if surplus huge pages can be
242 * converted to normal huge pages in adjust_pool_surplus(). A
243 * won't be able to increment the per-node counter, until the
244 * lock is dropped by B, but B doesn't drop hugetlb_lock until
245 * no more huge pages can be converted from surplus to normal
246 * state (and doesn't try to convert again). Thus, we have a
247 * case where a surplus huge page exists, the pool is grown, and
248 * the surplus huge page still exists after, even though it
249 * should just have been converted to a normal huge page. This
250 * does not leak memory, though, as the hugepage will be freed
251 * once it is out of use. It also does not allow the counters to
252 * go out of whack in adjust_pool_surplus() as we don't modify
253 * the node values until we've gotten the hugepage and only the
254 * per-node value is checked there.
256 spin_lock(&hugetlb_lock);
257 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
258 spin_unlock(&hugetlb_lock);
259 return NULL;
260 } else {
261 nr_huge_pages++;
262 surplus_huge_pages++;
264 spin_unlock(&hugetlb_lock);
266 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
267 HUGETLB_PAGE_ORDER);
269 spin_lock(&hugetlb_lock);
270 if (page) {
271 nid = page_to_nid(page);
272 set_compound_page_dtor(page, free_huge_page);
274 * We incremented the global counters already
276 nr_huge_pages_node[nid]++;
277 surplus_huge_pages_node[nid]++;
278 } else {
279 nr_huge_pages--;
280 surplus_huge_pages--;
282 spin_unlock(&hugetlb_lock);
284 return page;
288 * Increase the hugetlb pool such that it can accomodate a reservation
289 * of size 'delta'.
291 static int gather_surplus_pages(int delta)
293 struct list_head surplus_list;
294 struct page *page, *tmp;
295 int ret, i;
296 int needed, allocated;
298 needed = (resv_huge_pages + delta) - free_huge_pages;
299 if (needed <= 0) {
300 resv_huge_pages += delta;
301 return 0;
304 allocated = 0;
305 INIT_LIST_HEAD(&surplus_list);
307 ret = -ENOMEM;
308 retry:
309 spin_unlock(&hugetlb_lock);
310 for (i = 0; i < needed; i++) {
311 page = alloc_buddy_huge_page(NULL, 0);
312 if (!page) {
314 * We were not able to allocate enough pages to
315 * satisfy the entire reservation so we free what
316 * we've allocated so far.
318 spin_lock(&hugetlb_lock);
319 needed = 0;
320 goto free;
323 list_add(&page->lru, &surplus_list);
325 allocated += needed;
328 * After retaking hugetlb_lock, we need to recalculate 'needed'
329 * because either resv_huge_pages or free_huge_pages may have changed.
331 spin_lock(&hugetlb_lock);
332 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
333 if (needed > 0)
334 goto retry;
337 * The surplus_list now contains _at_least_ the number of extra pages
338 * needed to accomodate the reservation. Add the appropriate number
339 * of pages to the hugetlb pool and free the extras back to the buddy
340 * allocator. Commit the entire reservation here to prevent another
341 * process from stealing the pages as they are added to the pool but
342 * before they are reserved.
344 needed += allocated;
345 resv_huge_pages += delta;
346 ret = 0;
347 free:
348 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
349 list_del(&page->lru);
350 if ((--needed) >= 0)
351 enqueue_huge_page(page);
352 else {
354 * Decrement the refcount and free the page using its
355 * destructor. This must be done with hugetlb_lock
356 * unlocked which is safe because free_huge_page takes
357 * hugetlb_lock before deciding how to free the page.
359 spin_unlock(&hugetlb_lock);
360 put_page(page);
361 spin_lock(&hugetlb_lock);
365 return ret;
369 * When releasing a hugetlb pool reservation, any surplus pages that were
370 * allocated to satisfy the reservation must be explicitly freed if they were
371 * never used.
373 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
375 static int nid = -1;
376 struct page *page;
377 unsigned long nr_pages;
379 /* Uncommit the reservation */
380 resv_huge_pages -= unused_resv_pages;
382 nr_pages = min(unused_resv_pages, surplus_huge_pages);
384 while (nr_pages) {
385 nid = next_node(nid, node_online_map);
386 if (nid == MAX_NUMNODES)
387 nid = first_node(node_online_map);
389 if (!surplus_huge_pages_node[nid])
390 continue;
392 if (!list_empty(&hugepage_freelists[nid])) {
393 page = list_entry(hugepage_freelists[nid].next,
394 struct page, lru);
395 list_del(&page->lru);
396 update_and_free_page(page);
397 free_huge_pages--;
398 free_huge_pages_node[nid]--;
399 surplus_huge_pages--;
400 surplus_huge_pages_node[nid]--;
401 nr_pages--;
407 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
408 unsigned long addr)
410 struct page *page;
412 spin_lock(&hugetlb_lock);
413 page = dequeue_huge_page(vma, addr);
414 spin_unlock(&hugetlb_lock);
415 return page ? page : ERR_PTR(-VM_FAULT_OOM);
418 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
419 unsigned long addr)
421 struct page *page = NULL;
423 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
424 return ERR_PTR(-VM_FAULT_SIGBUS);
426 spin_lock(&hugetlb_lock);
427 if (free_huge_pages > resv_huge_pages)
428 page = dequeue_huge_page(vma, addr);
429 spin_unlock(&hugetlb_lock);
430 if (!page) {
431 page = alloc_buddy_huge_page(vma, addr);
432 if (!page) {
433 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
434 return ERR_PTR(-VM_FAULT_OOM);
437 return page;
440 static struct page *alloc_huge_page(struct vm_area_struct *vma,
441 unsigned long addr)
443 struct page *page;
444 struct address_space *mapping = vma->vm_file->f_mapping;
446 if (vma->vm_flags & VM_MAYSHARE)
447 page = alloc_huge_page_shared(vma, addr);
448 else
449 page = alloc_huge_page_private(vma, addr);
451 if (!IS_ERR(page)) {
452 set_page_refcounted(page);
453 set_page_private(page, (unsigned long) mapping);
455 return page;
458 static int __init hugetlb_init(void)
460 unsigned long i;
462 if (HPAGE_SHIFT == 0)
463 return 0;
465 for (i = 0; i < MAX_NUMNODES; ++i)
466 INIT_LIST_HEAD(&hugepage_freelists[i]);
468 hugetlb_next_nid = first_node(node_online_map);
470 for (i = 0; i < max_huge_pages; ++i) {
471 if (!alloc_fresh_huge_page())
472 break;
474 max_huge_pages = free_huge_pages = nr_huge_pages = i;
475 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
476 return 0;
478 module_init(hugetlb_init);
480 static int __init hugetlb_setup(char *s)
482 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
483 max_huge_pages = 0;
484 return 1;
486 __setup("hugepages=", hugetlb_setup);
488 static unsigned int cpuset_mems_nr(unsigned int *array)
490 int node;
491 unsigned int nr = 0;
493 for_each_node_mask(node, cpuset_current_mems_allowed)
494 nr += array[node];
496 return nr;
499 #ifdef CONFIG_SYSCTL
500 #ifdef CONFIG_HIGHMEM
501 static void try_to_free_low(unsigned long count)
503 int i;
505 for (i = 0; i < MAX_NUMNODES; ++i) {
506 struct page *page, *next;
507 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
508 if (count >= nr_huge_pages)
509 return;
510 if (PageHighMem(page))
511 continue;
512 list_del(&page->lru);
513 update_and_free_page(page);
514 free_huge_pages--;
515 free_huge_pages_node[page_to_nid(page)]--;
519 #else
520 static inline void try_to_free_low(unsigned long count)
523 #endif
525 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
526 static unsigned long set_max_huge_pages(unsigned long count)
528 unsigned long min_count, ret;
531 * Increase the pool size
532 * First take pages out of surplus state. Then make up the
533 * remaining difference by allocating fresh huge pages.
535 * We might race with alloc_buddy_huge_page() here and be unable
536 * to convert a surplus huge page to a normal huge page. That is
537 * not critical, though, it just means the overall size of the
538 * pool might be one hugepage larger than it needs to be, but
539 * within all the constraints specified by the sysctls.
541 spin_lock(&hugetlb_lock);
542 while (surplus_huge_pages && count > persistent_huge_pages) {
543 if (!adjust_pool_surplus(-1))
544 break;
547 while (count > persistent_huge_pages) {
548 int ret;
550 * If this allocation races such that we no longer need the
551 * page, free_huge_page will handle it by freeing the page
552 * and reducing the surplus.
554 spin_unlock(&hugetlb_lock);
555 ret = alloc_fresh_huge_page();
556 spin_lock(&hugetlb_lock);
557 if (!ret)
558 goto out;
563 * Decrease the pool size
564 * First return free pages to the buddy allocator (being careful
565 * to keep enough around to satisfy reservations). Then place
566 * pages into surplus state as needed so the pool will shrink
567 * to the desired size as pages become free.
569 * By placing pages into the surplus state independent of the
570 * overcommit value, we are allowing the surplus pool size to
571 * exceed overcommit. There are few sane options here. Since
572 * alloc_buddy_huge_page() is checking the global counter,
573 * though, we'll note that we're not allowed to exceed surplus
574 * and won't grow the pool anywhere else. Not until one of the
575 * sysctls are changed, or the surplus pages go out of use.
577 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
578 min_count = max(count, min_count);
579 try_to_free_low(min_count);
580 while (min_count < persistent_huge_pages) {
581 struct page *page = dequeue_huge_page(NULL, 0);
582 if (!page)
583 break;
584 update_and_free_page(page);
586 while (count < persistent_huge_pages) {
587 if (!adjust_pool_surplus(1))
588 break;
590 out:
591 ret = persistent_huge_pages;
592 spin_unlock(&hugetlb_lock);
593 return ret;
596 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
597 struct file *file, void __user *buffer,
598 size_t *length, loff_t *ppos)
600 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
601 max_huge_pages = set_max_huge_pages(max_huge_pages);
602 return 0;
605 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
606 struct file *file, void __user *buffer,
607 size_t *length, loff_t *ppos)
609 proc_dointvec(table, write, file, buffer, length, ppos);
610 if (hugepages_treat_as_movable)
611 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
612 else
613 htlb_alloc_mask = GFP_HIGHUSER;
614 return 0;
617 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
618 struct file *file, void __user *buffer,
619 size_t *length, loff_t *ppos)
621 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
622 spin_lock(&hugetlb_lock);
623 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
624 spin_unlock(&hugetlb_lock);
625 return 0;
628 #endif /* CONFIG_SYSCTL */
630 int hugetlb_report_meminfo(char *buf)
632 return sprintf(buf,
633 "HugePages_Total: %5lu\n"
634 "HugePages_Free: %5lu\n"
635 "HugePages_Rsvd: %5lu\n"
636 "HugePages_Surp: %5lu\n"
637 "Hugepagesize: %5lu kB\n",
638 nr_huge_pages,
639 free_huge_pages,
640 resv_huge_pages,
641 surplus_huge_pages,
642 HPAGE_SIZE/1024);
645 int hugetlb_report_node_meminfo(int nid, char *buf)
647 return sprintf(buf,
648 "Node %d HugePages_Total: %5u\n"
649 "Node %d HugePages_Free: %5u\n",
650 nid, nr_huge_pages_node[nid],
651 nid, free_huge_pages_node[nid]);
654 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
655 unsigned long hugetlb_total_pages(void)
657 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
661 * We cannot handle pagefaults against hugetlb pages at all. They cause
662 * handle_mm_fault() to try to instantiate regular-sized pages in the
663 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
664 * this far.
666 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
668 BUG();
669 return 0;
672 struct vm_operations_struct hugetlb_vm_ops = {
673 .fault = hugetlb_vm_op_fault,
676 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
677 int writable)
679 pte_t entry;
681 if (writable) {
682 entry =
683 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
684 } else {
685 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
687 entry = pte_mkyoung(entry);
688 entry = pte_mkhuge(entry);
690 return entry;
693 static void set_huge_ptep_writable(struct vm_area_struct *vma,
694 unsigned long address, pte_t *ptep)
696 pte_t entry;
698 entry = pte_mkwrite(pte_mkdirty(*ptep));
699 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
700 update_mmu_cache(vma, address, entry);
705 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
706 struct vm_area_struct *vma)
708 pte_t *src_pte, *dst_pte, entry;
709 struct page *ptepage;
710 unsigned long addr;
711 int cow;
713 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
715 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
716 src_pte = huge_pte_offset(src, addr);
717 if (!src_pte)
718 continue;
719 dst_pte = huge_pte_alloc(dst, addr);
720 if (!dst_pte)
721 goto nomem;
723 /* If the pagetables are shared don't copy or take references */
724 if (dst_pte == src_pte)
725 continue;
727 spin_lock(&dst->page_table_lock);
728 spin_lock(&src->page_table_lock);
729 if (!pte_none(*src_pte)) {
730 if (cow)
731 ptep_set_wrprotect(src, addr, src_pte);
732 entry = *src_pte;
733 ptepage = pte_page(entry);
734 get_page(ptepage);
735 set_huge_pte_at(dst, addr, dst_pte, entry);
737 spin_unlock(&src->page_table_lock);
738 spin_unlock(&dst->page_table_lock);
740 return 0;
742 nomem:
743 return -ENOMEM;
746 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
747 unsigned long end)
749 struct mm_struct *mm = vma->vm_mm;
750 unsigned long address;
751 pte_t *ptep;
752 pte_t pte;
753 struct page *page;
754 struct page *tmp;
756 * A page gathering list, protected by per file i_mmap_lock. The
757 * lock is used to avoid list corruption from multiple unmapping
758 * of the same page since we are using page->lru.
760 LIST_HEAD(page_list);
762 WARN_ON(!is_vm_hugetlb_page(vma));
763 BUG_ON(start & ~HPAGE_MASK);
764 BUG_ON(end & ~HPAGE_MASK);
766 spin_lock(&mm->page_table_lock);
767 for (address = start; address < end; address += HPAGE_SIZE) {
768 ptep = huge_pte_offset(mm, address);
769 if (!ptep)
770 continue;
772 if (huge_pmd_unshare(mm, &address, ptep))
773 continue;
775 pte = huge_ptep_get_and_clear(mm, address, ptep);
776 if (pte_none(pte))
777 continue;
779 page = pte_page(pte);
780 if (pte_dirty(pte))
781 set_page_dirty(page);
782 list_add(&page->lru, &page_list);
784 spin_unlock(&mm->page_table_lock);
785 flush_tlb_range(vma, start, end);
786 list_for_each_entry_safe(page, tmp, &page_list, lru) {
787 list_del(&page->lru);
788 put_page(page);
792 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
793 unsigned long end)
796 * It is undesirable to test vma->vm_file as it should be non-null
797 * for valid hugetlb area. However, vm_file will be NULL in the error
798 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
799 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
800 * to clean up. Since no pte has actually been setup, it is safe to
801 * do nothing in this case.
803 if (vma->vm_file) {
804 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
805 __unmap_hugepage_range(vma, start, end);
806 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
810 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
811 unsigned long address, pte_t *ptep, pte_t pte)
813 struct page *old_page, *new_page;
814 int avoidcopy;
816 old_page = pte_page(pte);
818 /* If no-one else is actually using this page, avoid the copy
819 * and just make the page writable */
820 avoidcopy = (page_count(old_page) == 1);
821 if (avoidcopy) {
822 set_huge_ptep_writable(vma, address, ptep);
823 return 0;
826 page_cache_get(old_page);
827 new_page = alloc_huge_page(vma, address);
829 if (IS_ERR(new_page)) {
830 page_cache_release(old_page);
831 return -PTR_ERR(new_page);
834 spin_unlock(&mm->page_table_lock);
835 copy_huge_page(new_page, old_page, address, vma);
836 __SetPageUptodate(new_page);
837 spin_lock(&mm->page_table_lock);
839 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
840 if (likely(pte_same(*ptep, pte))) {
841 /* Break COW */
842 set_huge_pte_at(mm, address, ptep,
843 make_huge_pte(vma, new_page, 1));
844 /* Make the old page be freed below */
845 new_page = old_page;
847 page_cache_release(new_page);
848 page_cache_release(old_page);
849 return 0;
852 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
853 unsigned long address, pte_t *ptep, int write_access)
855 int ret = VM_FAULT_SIGBUS;
856 unsigned long idx;
857 unsigned long size;
858 struct page *page;
859 struct address_space *mapping;
860 pte_t new_pte;
862 mapping = vma->vm_file->f_mapping;
863 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
864 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
867 * Use page lock to guard against racing truncation
868 * before we get page_table_lock.
870 retry:
871 page = find_lock_page(mapping, idx);
872 if (!page) {
873 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
874 if (idx >= size)
875 goto out;
876 page = alloc_huge_page(vma, address);
877 if (IS_ERR(page)) {
878 ret = -PTR_ERR(page);
879 goto out;
881 clear_huge_page(page, address);
882 __SetPageUptodate(page);
884 if (vma->vm_flags & VM_SHARED) {
885 int err;
886 struct inode *inode = mapping->host;
888 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
889 if (err) {
890 put_page(page);
891 if (err == -EEXIST)
892 goto retry;
893 goto out;
896 spin_lock(&inode->i_lock);
897 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
898 spin_unlock(&inode->i_lock);
899 } else
900 lock_page(page);
903 spin_lock(&mm->page_table_lock);
904 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
905 if (idx >= size)
906 goto backout;
908 ret = 0;
909 if (!pte_none(*ptep))
910 goto backout;
912 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
913 && (vma->vm_flags & VM_SHARED)));
914 set_huge_pte_at(mm, address, ptep, new_pte);
916 if (write_access && !(vma->vm_flags & VM_SHARED)) {
917 /* Optimization, do the COW without a second fault */
918 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
921 spin_unlock(&mm->page_table_lock);
922 unlock_page(page);
923 out:
924 return ret;
926 backout:
927 spin_unlock(&mm->page_table_lock);
928 unlock_page(page);
929 put_page(page);
930 goto out;
933 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
934 unsigned long address, int write_access)
936 pte_t *ptep;
937 pte_t entry;
938 int ret;
939 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
941 ptep = huge_pte_alloc(mm, address);
942 if (!ptep)
943 return VM_FAULT_OOM;
946 * Serialize hugepage allocation and instantiation, so that we don't
947 * get spurious allocation failures if two CPUs race to instantiate
948 * the same page in the page cache.
950 mutex_lock(&hugetlb_instantiation_mutex);
951 entry = *ptep;
952 if (pte_none(entry)) {
953 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
954 mutex_unlock(&hugetlb_instantiation_mutex);
955 return ret;
958 ret = 0;
960 spin_lock(&mm->page_table_lock);
961 /* Check for a racing update before calling hugetlb_cow */
962 if (likely(pte_same(entry, *ptep)))
963 if (write_access && !pte_write(entry))
964 ret = hugetlb_cow(mm, vma, address, ptep, entry);
965 spin_unlock(&mm->page_table_lock);
966 mutex_unlock(&hugetlb_instantiation_mutex);
968 return ret;
971 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
972 struct page **pages, struct vm_area_struct **vmas,
973 unsigned long *position, int *length, int i,
974 int write)
976 unsigned long pfn_offset;
977 unsigned long vaddr = *position;
978 int remainder = *length;
980 spin_lock(&mm->page_table_lock);
981 while (vaddr < vma->vm_end && remainder) {
982 pte_t *pte;
983 struct page *page;
986 * Some archs (sparc64, sh*) have multiple pte_ts to
987 * each hugepage. We have to make * sure we get the
988 * first, for the page indexing below to work.
990 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
992 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
993 int ret;
995 spin_unlock(&mm->page_table_lock);
996 ret = hugetlb_fault(mm, vma, vaddr, write);
997 spin_lock(&mm->page_table_lock);
998 if (!(ret & VM_FAULT_ERROR))
999 continue;
1001 remainder = 0;
1002 if (!i)
1003 i = -EFAULT;
1004 break;
1007 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1008 page = pte_page(*pte);
1009 same_page:
1010 if (pages) {
1011 get_page(page);
1012 pages[i] = page + pfn_offset;
1015 if (vmas)
1016 vmas[i] = vma;
1018 vaddr += PAGE_SIZE;
1019 ++pfn_offset;
1020 --remainder;
1021 ++i;
1022 if (vaddr < vma->vm_end && remainder &&
1023 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1025 * We use pfn_offset to avoid touching the pageframes
1026 * of this compound page.
1028 goto same_page;
1031 spin_unlock(&mm->page_table_lock);
1032 *length = remainder;
1033 *position = vaddr;
1035 return i;
1038 void hugetlb_change_protection(struct vm_area_struct *vma,
1039 unsigned long address, unsigned long end, pgprot_t newprot)
1041 struct mm_struct *mm = vma->vm_mm;
1042 unsigned long start = address;
1043 pte_t *ptep;
1044 pte_t pte;
1046 BUG_ON(address >= end);
1047 flush_cache_range(vma, address, end);
1049 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1050 spin_lock(&mm->page_table_lock);
1051 for (; address < end; address += HPAGE_SIZE) {
1052 ptep = huge_pte_offset(mm, address);
1053 if (!ptep)
1054 continue;
1055 if (huge_pmd_unshare(mm, &address, ptep))
1056 continue;
1057 if (!pte_none(*ptep)) {
1058 pte = huge_ptep_get_and_clear(mm, address, ptep);
1059 pte = pte_mkhuge(pte_modify(pte, newprot));
1060 set_huge_pte_at(mm, address, ptep, pte);
1063 spin_unlock(&mm->page_table_lock);
1064 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1066 flush_tlb_range(vma, start, end);
1069 struct file_region {
1070 struct list_head link;
1071 long from;
1072 long to;
1075 static long region_add(struct list_head *head, long f, long t)
1077 struct file_region *rg, *nrg, *trg;
1079 /* Locate the region we are either in or before. */
1080 list_for_each_entry(rg, head, link)
1081 if (f <= rg->to)
1082 break;
1084 /* Round our left edge to the current segment if it encloses us. */
1085 if (f > rg->from)
1086 f = rg->from;
1088 /* Check for and consume any regions we now overlap with. */
1089 nrg = rg;
1090 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1091 if (&rg->link == head)
1092 break;
1093 if (rg->from > t)
1094 break;
1096 /* If this area reaches higher then extend our area to
1097 * include it completely. If this is not the first area
1098 * which we intend to reuse, free it. */
1099 if (rg->to > t)
1100 t = rg->to;
1101 if (rg != nrg) {
1102 list_del(&rg->link);
1103 kfree(rg);
1106 nrg->from = f;
1107 nrg->to = t;
1108 return 0;
1111 static long region_chg(struct list_head *head, long f, long t)
1113 struct file_region *rg, *nrg;
1114 long chg = 0;
1116 /* Locate the region we are before or in. */
1117 list_for_each_entry(rg, head, link)
1118 if (f <= rg->to)
1119 break;
1121 /* If we are below the current region then a new region is required.
1122 * Subtle, allocate a new region at the position but make it zero
1123 * size such that we can guarantee to record the reservation. */
1124 if (&rg->link == head || t < rg->from) {
1125 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1126 if (!nrg)
1127 return -ENOMEM;
1128 nrg->from = f;
1129 nrg->to = f;
1130 INIT_LIST_HEAD(&nrg->link);
1131 list_add(&nrg->link, rg->link.prev);
1133 return t - f;
1136 /* Round our left edge to the current segment if it encloses us. */
1137 if (f > rg->from)
1138 f = rg->from;
1139 chg = t - f;
1141 /* Check for and consume any regions we now overlap with. */
1142 list_for_each_entry(rg, rg->link.prev, link) {
1143 if (&rg->link == head)
1144 break;
1145 if (rg->from > t)
1146 return chg;
1148 /* We overlap with this area, if it extends futher than
1149 * us then we must extend ourselves. Account for its
1150 * existing reservation. */
1151 if (rg->to > t) {
1152 chg += rg->to - t;
1153 t = rg->to;
1155 chg -= rg->to - rg->from;
1157 return chg;
1160 static long region_truncate(struct list_head *head, long end)
1162 struct file_region *rg, *trg;
1163 long chg = 0;
1165 /* Locate the region we are either in or before. */
1166 list_for_each_entry(rg, head, link)
1167 if (end <= rg->to)
1168 break;
1169 if (&rg->link == head)
1170 return 0;
1172 /* If we are in the middle of a region then adjust it. */
1173 if (end > rg->from) {
1174 chg = rg->to - end;
1175 rg->to = end;
1176 rg = list_entry(rg->link.next, typeof(*rg), link);
1179 /* Drop any remaining regions. */
1180 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1181 if (&rg->link == head)
1182 break;
1183 chg += rg->to - rg->from;
1184 list_del(&rg->link);
1185 kfree(rg);
1187 return chg;
1190 static int hugetlb_acct_memory(long delta)
1192 int ret = -ENOMEM;
1194 spin_lock(&hugetlb_lock);
1196 * When cpuset is configured, it breaks the strict hugetlb page
1197 * reservation as the accounting is done on a global variable. Such
1198 * reservation is completely rubbish in the presence of cpuset because
1199 * the reservation is not checked against page availability for the
1200 * current cpuset. Application can still potentially OOM'ed by kernel
1201 * with lack of free htlb page in cpuset that the task is in.
1202 * Attempt to enforce strict accounting with cpuset is almost
1203 * impossible (or too ugly) because cpuset is too fluid that
1204 * task or memory node can be dynamically moved between cpusets.
1206 * The change of semantics for shared hugetlb mapping with cpuset is
1207 * undesirable. However, in order to preserve some of the semantics,
1208 * we fall back to check against current free page availability as
1209 * a best attempt and hopefully to minimize the impact of changing
1210 * semantics that cpuset has.
1212 if (delta > 0) {
1213 if (gather_surplus_pages(delta) < 0)
1214 goto out;
1216 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1217 return_unused_surplus_pages(delta);
1218 goto out;
1222 ret = 0;
1223 if (delta < 0)
1224 return_unused_surplus_pages((unsigned long) -delta);
1226 out:
1227 spin_unlock(&hugetlb_lock);
1228 return ret;
1231 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1233 long ret, chg;
1235 chg = region_chg(&inode->i_mapping->private_list, from, to);
1236 if (chg < 0)
1237 return chg;
1239 if (hugetlb_get_quota(inode->i_mapping, chg))
1240 return -ENOSPC;
1241 ret = hugetlb_acct_memory(chg);
1242 if (ret < 0) {
1243 hugetlb_put_quota(inode->i_mapping, chg);
1244 return ret;
1246 region_add(&inode->i_mapping->private_list, from, to);
1247 return 0;
1250 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1252 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1254 spin_lock(&inode->i_lock);
1255 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1256 spin_unlock(&inode->i_lock);
1258 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1259 hugetlb_acct_memory(-(chg - freed));