4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
29 * This is needed for the following functions:
31 * - invalidate_inode_buffers
34 * FIXME: remove all knowledge of the buffer layer from this file
36 #include <linux/buffer_head.h>
39 * New inode.c implementation.
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
60 static unsigned int i_hash_mask __read_mostly
;
61 static unsigned int i_hash_shift __read_mostly
;
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
75 LIST_HEAD(inode_in_use
);
76 LIST_HEAD(inode_unused
);
77 static struct hlist_head
*inode_hashtable __read_mostly
;
80 * A simple spinlock to protect the list manipulations.
82 * NOTE! You also have to own the lock if you change
83 * the i_state of an inode while it is in use..
85 DEFINE_SPINLOCK(inode_lock
);
88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89 * icache shrinking path, and the umount path. Without this exclusion,
90 * by the time prune_icache calls iput for the inode whose pages it has
91 * been invalidating, or by the time it calls clear_inode & destroy_inode
92 * from its final dispose_list, the struct super_block they refer to
93 * (for inode->i_sb->s_op) may already have been freed and reused.
95 static DEFINE_MUTEX(iprune_mutex
);
98 * Statistics gathering..
100 struct inodes_stat_t inodes_stat
;
102 static struct kmem_cache
* inode_cachep __read_mostly
;
104 static void wake_up_inode(struct inode
*inode
)
107 * Prevent speculative execution through spin_unlock(&inode_lock);
110 wake_up_bit(&inode
->i_state
, __I_LOCK
);
114 * inode_init_always - perform inode structure intialisation
115 * @sb: superblock inode belongs to
116 * @inode: inode to initialise
118 * These are initializations that need to be done on every inode
119 * allocation as the fields are not initialised by slab allocation.
121 struct inode
*inode_init_always(struct super_block
*sb
, struct inode
*inode
)
123 static const struct address_space_operations empty_aops
;
124 static struct inode_operations empty_iops
;
125 static const struct file_operations empty_fops
;
127 struct address_space
* const mapping
= &inode
->i_data
;
130 inode
->i_blkbits
= sb
->s_blocksize_bits
;
132 atomic_set(&inode
->i_count
, 1);
133 inode
->i_op
= &empty_iops
;
134 inode
->i_fop
= &empty_fops
;
138 atomic_set(&inode
->i_writecount
, 0);
142 inode
->i_generation
= 0;
144 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
146 inode
->i_pipe
= NULL
;
147 inode
->i_bdev
= NULL
;
148 inode
->i_cdev
= NULL
;
150 inode
->dirtied_when
= 0;
152 if (security_inode_alloc(inode
))
155 /* allocate and initialize an i_integrity */
156 if (ima_inode_alloc(inode
))
157 goto out_free_security
;
159 spin_lock_init(&inode
->i_lock
);
160 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
162 mutex_init(&inode
->i_mutex
);
163 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
165 init_rwsem(&inode
->i_alloc_sem
);
166 lockdep_set_class(&inode
->i_alloc_sem
, &sb
->s_type
->i_alloc_sem_key
);
168 mapping
->a_ops
= &empty_aops
;
169 mapping
->host
= inode
;
171 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
172 mapping
->assoc_mapping
= NULL
;
173 mapping
->backing_dev_info
= &default_backing_dev_info
;
174 mapping
->writeback_index
= 0;
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
182 struct backing_dev_info
*bdi
;
184 bdi
= sb
->s_bdev
->bd_inode_backing_dev_info
;
186 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
187 mapping
->backing_dev_info
= bdi
;
189 inode
->i_private
= NULL
;
190 inode
->i_mapping
= mapping
;
195 security_inode_free(inode
);
197 if (inode
->i_sb
->s_op
->destroy_inode
)
198 inode
->i_sb
->s_op
->destroy_inode(inode
);
200 kmem_cache_free(inode_cachep
, (inode
));
203 EXPORT_SYMBOL(inode_init_always
);
205 static struct inode
*alloc_inode(struct super_block
*sb
)
209 if (sb
->s_op
->alloc_inode
)
210 inode
= sb
->s_op
->alloc_inode(sb
);
212 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
215 return inode_init_always(sb
, inode
);
219 void destroy_inode(struct inode
*inode
)
221 BUG_ON(inode_has_buffers(inode
));
222 security_inode_free(inode
);
223 if (inode
->i_sb
->s_op
->destroy_inode
)
224 inode
->i_sb
->s_op
->destroy_inode(inode
);
226 kmem_cache_free(inode_cachep
, (inode
));
228 EXPORT_SYMBOL(destroy_inode
);
232 * These are initializations that only need to be done
233 * once, because the fields are idempotent across use
234 * of the inode, so let the slab aware of that.
236 void inode_init_once(struct inode
*inode
)
238 memset(inode
, 0, sizeof(*inode
));
239 INIT_HLIST_NODE(&inode
->i_hash
);
240 INIT_LIST_HEAD(&inode
->i_dentry
);
241 INIT_LIST_HEAD(&inode
->i_devices
);
242 INIT_RADIX_TREE(&inode
->i_data
.page_tree
, GFP_ATOMIC
);
243 spin_lock_init(&inode
->i_data
.tree_lock
);
244 spin_lock_init(&inode
->i_data
.i_mmap_lock
);
245 INIT_LIST_HEAD(&inode
->i_data
.private_list
);
246 spin_lock_init(&inode
->i_data
.private_lock
);
247 INIT_RAW_PRIO_TREE_ROOT(&inode
->i_data
.i_mmap
);
248 INIT_LIST_HEAD(&inode
->i_data
.i_mmap_nonlinear
);
249 i_size_ordered_init(inode
);
250 #ifdef CONFIG_INOTIFY
251 INIT_LIST_HEAD(&inode
->inotify_watches
);
252 mutex_init(&inode
->inotify_mutex
);
256 EXPORT_SYMBOL(inode_init_once
);
258 static void init_once(void *foo
)
260 struct inode
* inode
= (struct inode
*) foo
;
262 inode_init_once(inode
);
266 * inode_lock must be held
268 void __iget(struct inode
* inode
)
270 if (atomic_read(&inode
->i_count
)) {
271 atomic_inc(&inode
->i_count
);
274 atomic_inc(&inode
->i_count
);
275 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
276 list_move(&inode
->i_list
, &inode_in_use
);
277 inodes_stat
.nr_unused
--;
281 * clear_inode - clear an inode
282 * @inode: inode to clear
284 * This is called by the filesystem to tell us
285 * that the inode is no longer useful. We just
286 * terminate it with extreme prejudice.
288 void clear_inode(struct inode
*inode
)
291 invalidate_inode_buffers(inode
);
293 BUG_ON(inode
->i_data
.nrpages
);
294 BUG_ON(!(inode
->i_state
& I_FREEING
));
295 BUG_ON(inode
->i_state
& I_CLEAR
);
296 inode_sync_wait(inode
);
298 if (inode
->i_sb
->s_op
->clear_inode
)
299 inode
->i_sb
->s_op
->clear_inode(inode
);
300 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
302 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
304 inode
->i_state
= I_CLEAR
;
307 EXPORT_SYMBOL(clear_inode
);
310 * dispose_list - dispose of the contents of a local list
311 * @head: the head of the list to free
313 * Dispose-list gets a local list with local inodes in it, so it doesn't
314 * need to worry about list corruption and SMP locks.
316 static void dispose_list(struct list_head
*head
)
320 while (!list_empty(head
)) {
323 inode
= list_first_entry(head
, struct inode
, i_list
);
324 list_del(&inode
->i_list
);
326 if (inode
->i_data
.nrpages
)
327 truncate_inode_pages(&inode
->i_data
, 0);
330 spin_lock(&inode_lock
);
331 hlist_del_init(&inode
->i_hash
);
332 list_del_init(&inode
->i_sb_list
);
333 spin_unlock(&inode_lock
);
335 wake_up_inode(inode
);
336 destroy_inode(inode
);
339 spin_lock(&inode_lock
);
340 inodes_stat
.nr_inodes
-= nr_disposed
;
341 spin_unlock(&inode_lock
);
345 * Invalidate all inodes for a device.
347 static int invalidate_list(struct list_head
*head
, struct list_head
*dispose
)
349 struct list_head
*next
;
350 int busy
= 0, count
= 0;
354 struct list_head
* tmp
= next
;
355 struct inode
* inode
;
358 * We can reschedule here without worrying about the list's
359 * consistency because the per-sb list of inodes must not
360 * change during umount anymore, and because iprune_mutex keeps
361 * shrink_icache_memory() away.
363 cond_resched_lock(&inode_lock
);
368 inode
= list_entry(tmp
, struct inode
, i_sb_list
);
369 invalidate_inode_buffers(inode
);
370 if (!atomic_read(&inode
->i_count
)) {
371 list_move(&inode
->i_list
, dispose
);
372 WARN_ON(inode
->i_state
& I_NEW
);
373 inode
->i_state
|= I_FREEING
;
379 /* only unused inodes may be cached with i_count zero */
380 inodes_stat
.nr_unused
-= count
;
385 * invalidate_inodes - discard the inodes on a device
388 * Discard all of the inodes for a given superblock. If the discard
389 * fails because there are busy inodes then a non zero value is returned.
390 * If the discard is successful all the inodes have been discarded.
392 int invalidate_inodes(struct super_block
* sb
)
395 LIST_HEAD(throw_away
);
397 mutex_lock(&iprune_mutex
);
398 spin_lock(&inode_lock
);
399 inotify_unmount_inodes(&sb
->s_inodes
);
400 busy
= invalidate_list(&sb
->s_inodes
, &throw_away
);
401 spin_unlock(&inode_lock
);
403 dispose_list(&throw_away
);
404 mutex_unlock(&iprune_mutex
);
409 EXPORT_SYMBOL(invalidate_inodes
);
411 static int can_unuse(struct inode
*inode
)
415 if (inode_has_buffers(inode
))
417 if (atomic_read(&inode
->i_count
))
419 if (inode
->i_data
.nrpages
)
425 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
426 * a temporary list and then are freed outside inode_lock by dispose_list().
428 * Any inodes which are pinned purely because of attached pagecache have their
429 * pagecache removed. We expect the final iput() on that inode to add it to
430 * the front of the inode_unused list. So look for it there and if the
431 * inode is still freeable, proceed. The right inode is found 99.9% of the
432 * time in testing on a 4-way.
434 * If the inode has metadata buffers attached to mapping->private_list then
435 * try to remove them.
437 static void prune_icache(int nr_to_scan
)
442 unsigned long reap
= 0;
444 mutex_lock(&iprune_mutex
);
445 spin_lock(&inode_lock
);
446 for (nr_scanned
= 0; nr_scanned
< nr_to_scan
; nr_scanned
++) {
449 if (list_empty(&inode_unused
))
452 inode
= list_entry(inode_unused
.prev
, struct inode
, i_list
);
454 if (inode
->i_state
|| atomic_read(&inode
->i_count
)) {
455 list_move(&inode
->i_list
, &inode_unused
);
458 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
460 spin_unlock(&inode_lock
);
461 if (remove_inode_buffers(inode
))
462 reap
+= invalidate_mapping_pages(&inode
->i_data
,
465 spin_lock(&inode_lock
);
467 if (inode
!= list_entry(inode_unused
.next
,
468 struct inode
, i_list
))
469 continue; /* wrong inode or list_empty */
470 if (!can_unuse(inode
))
473 list_move(&inode
->i_list
, &freeable
);
474 WARN_ON(inode
->i_state
& I_NEW
);
475 inode
->i_state
|= I_FREEING
;
478 inodes_stat
.nr_unused
-= nr_pruned
;
479 if (current_is_kswapd())
480 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
482 __count_vm_events(PGINODESTEAL
, reap
);
483 spin_unlock(&inode_lock
);
485 dispose_list(&freeable
);
486 mutex_unlock(&iprune_mutex
);
490 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
491 * "unused" means that no dentries are referring to the inodes: the files are
492 * not open and the dcache references to those inodes have already been
495 * This function is passed the number of inodes to scan, and it returns the
496 * total number of remaining possibly-reclaimable inodes.
498 static int shrink_icache_memory(int nr
, gfp_t gfp_mask
)
502 * Nasty deadlock avoidance. We may hold various FS locks,
503 * and we don't want to recurse into the FS that called us
504 * in clear_inode() and friends..
506 if (!(gfp_mask
& __GFP_FS
))
510 return (inodes_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
513 static struct shrinker icache_shrinker
= {
514 .shrink
= shrink_icache_memory
,
515 .seeks
= DEFAULT_SEEKS
,
518 static void __wait_on_freeing_inode(struct inode
*inode
);
520 * Called with the inode lock held.
521 * NOTE: we are not increasing the inode-refcount, you must call __iget()
522 * by hand after calling find_inode now! This simplifies iunique and won't
523 * add any additional branch in the common code.
525 static struct inode
* find_inode(struct super_block
* sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), void *data
)
527 struct hlist_node
*node
;
528 struct inode
* inode
= NULL
;
531 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
532 if (inode
->i_sb
!= sb
)
534 if (!test(inode
, data
))
536 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
537 __wait_on_freeing_inode(inode
);
542 return node
? inode
: NULL
;
546 * find_inode_fast is the fast path version of find_inode, see the comment at
547 * iget_locked for details.
549 static struct inode
* find_inode_fast(struct super_block
* sb
, struct hlist_head
*head
, unsigned long ino
)
551 struct hlist_node
*node
;
552 struct inode
* inode
= NULL
;
555 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
556 if (inode
->i_ino
!= ino
)
558 if (inode
->i_sb
!= sb
)
560 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
561 __wait_on_freeing_inode(inode
);
566 return node
? inode
: NULL
;
569 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
573 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
575 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> I_HASHBITS
);
576 return tmp
& I_HASHMASK
;
580 __inode_add_to_lists(struct super_block
*sb
, struct hlist_head
*head
,
583 inodes_stat
.nr_inodes
++;
584 list_add(&inode
->i_list
, &inode_in_use
);
585 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
587 hlist_add_head(&inode
->i_hash
, head
);
591 * inode_add_to_lists - add a new inode to relevant lists
592 * @sb: superblock inode belongs to
593 * @inode: inode to mark in use
595 * When an inode is allocated it needs to be accounted for, added to the in use
596 * list, the owning superblock and the inode hash. This needs to be done under
597 * the inode_lock, so export a function to do this rather than the inode lock
598 * itself. We calculate the hash list to add to here so it is all internal
599 * which requires the caller to have already set up the inode number in the
602 void inode_add_to_lists(struct super_block
*sb
, struct inode
*inode
)
604 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, inode
->i_ino
);
606 spin_lock(&inode_lock
);
607 __inode_add_to_lists(sb
, head
, inode
);
608 spin_unlock(&inode_lock
);
610 EXPORT_SYMBOL_GPL(inode_add_to_lists
);
613 * new_inode - obtain an inode
616 * Allocates a new inode for given superblock. The default gfp_mask
617 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
618 * If HIGHMEM pages are unsuitable or it is known that pages allocated
619 * for the page cache are not reclaimable or migratable,
620 * mapping_set_gfp_mask() must be called with suitable flags on the
621 * newly created inode's mapping
624 struct inode
*new_inode(struct super_block
*sb
)
627 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
628 * error if st_ino won't fit in target struct field. Use 32bit counter
629 * here to attempt to avoid that.
631 static unsigned int last_ino
;
632 struct inode
* inode
;
634 spin_lock_prefetch(&inode_lock
);
636 inode
= alloc_inode(sb
);
638 spin_lock(&inode_lock
);
639 __inode_add_to_lists(sb
, NULL
, inode
);
640 inode
->i_ino
= ++last_ino
;
642 spin_unlock(&inode_lock
);
647 EXPORT_SYMBOL(new_inode
);
649 void unlock_new_inode(struct inode
*inode
)
651 #ifdef CONFIG_DEBUG_LOCK_ALLOC
652 if (inode
->i_mode
& S_IFDIR
) {
653 struct file_system_type
*type
= inode
->i_sb
->s_type
;
656 * ensure nobody is actually holding i_mutex
658 mutex_destroy(&inode
->i_mutex
);
659 mutex_init(&inode
->i_mutex
);
660 lockdep_set_class(&inode
->i_mutex
, &type
->i_mutex_dir_key
);
664 * This is special! We do not need the spinlock
665 * when clearing I_LOCK, because we're guaranteed
666 * that nobody else tries to do anything about the
667 * state of the inode when it is locked, as we
668 * just created it (so there can be no old holders
669 * that haven't tested I_LOCK).
671 WARN_ON((inode
->i_state
& (I_LOCK
|I_NEW
)) != (I_LOCK
|I_NEW
));
672 inode
->i_state
&= ~(I_LOCK
|I_NEW
);
673 wake_up_inode(inode
);
676 EXPORT_SYMBOL(unlock_new_inode
);
679 * This is called without the inode lock held.. Be careful.
681 * We no longer cache the sb_flags in i_flags - see fs.h
682 * -- rmk@arm.uk.linux.org
684 static struct inode
* get_new_inode(struct super_block
*sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), int (*set
)(struct inode
*, void *), void *data
)
686 struct inode
* inode
;
688 inode
= alloc_inode(sb
);
692 spin_lock(&inode_lock
);
693 /* We released the lock, so.. */
694 old
= find_inode(sb
, head
, test
, data
);
696 if (set(inode
, data
))
699 __inode_add_to_lists(sb
, head
, inode
);
700 inode
->i_state
= I_LOCK
|I_NEW
;
701 spin_unlock(&inode_lock
);
703 /* Return the locked inode with I_NEW set, the
704 * caller is responsible for filling in the contents
710 * Uhhuh, somebody else created the same inode under
711 * us. Use the old inode instead of the one we just
715 spin_unlock(&inode_lock
);
716 destroy_inode(inode
);
718 wait_on_inode(inode
);
723 spin_unlock(&inode_lock
);
724 destroy_inode(inode
);
729 * get_new_inode_fast is the fast path version of get_new_inode, see the
730 * comment at iget_locked for details.
732 static struct inode
* get_new_inode_fast(struct super_block
*sb
, struct hlist_head
*head
, unsigned long ino
)
734 struct inode
* inode
;
736 inode
= alloc_inode(sb
);
740 spin_lock(&inode_lock
);
741 /* We released the lock, so.. */
742 old
= find_inode_fast(sb
, head
, ino
);
745 __inode_add_to_lists(sb
, head
, inode
);
746 inode
->i_state
= I_LOCK
|I_NEW
;
747 spin_unlock(&inode_lock
);
749 /* Return the locked inode with I_NEW set, the
750 * caller is responsible for filling in the contents
756 * Uhhuh, somebody else created the same inode under
757 * us. Use the old inode instead of the one we just
761 spin_unlock(&inode_lock
);
762 destroy_inode(inode
);
764 wait_on_inode(inode
);
770 * iunique - get a unique inode number
772 * @max_reserved: highest reserved inode number
774 * Obtain an inode number that is unique on the system for a given
775 * superblock. This is used by file systems that have no natural
776 * permanent inode numbering system. An inode number is returned that
777 * is higher than the reserved limit but unique.
780 * With a large number of inodes live on the file system this function
781 * currently becomes quite slow.
783 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
786 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
787 * error if st_ino won't fit in target struct field. Use 32bit counter
788 * here to attempt to avoid that.
790 static unsigned int counter
;
792 struct hlist_head
*head
;
795 spin_lock(&inode_lock
);
797 if (counter
<= max_reserved
)
798 counter
= max_reserved
+ 1;
800 head
= inode_hashtable
+ hash(sb
, res
);
801 inode
= find_inode_fast(sb
, head
, res
);
802 } while (inode
!= NULL
);
803 spin_unlock(&inode_lock
);
807 EXPORT_SYMBOL(iunique
);
809 struct inode
*igrab(struct inode
*inode
)
811 spin_lock(&inode_lock
);
812 if (!(inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)))
816 * Handle the case where s_op->clear_inode is not been
817 * called yet, and somebody is calling igrab
818 * while the inode is getting freed.
821 spin_unlock(&inode_lock
);
825 EXPORT_SYMBOL(igrab
);
828 * ifind - internal function, you want ilookup5() or iget5().
829 * @sb: super block of file system to search
830 * @head: the head of the list to search
831 * @test: callback used for comparisons between inodes
832 * @data: opaque data pointer to pass to @test
833 * @wait: if true wait for the inode to be unlocked, if false do not
835 * ifind() searches for the inode specified by @data in the inode
836 * cache. This is a generalized version of ifind_fast() for file systems where
837 * the inode number is not sufficient for unique identification of an inode.
839 * If the inode is in the cache, the inode is returned with an incremented
842 * Otherwise NULL is returned.
844 * Note, @test is called with the inode_lock held, so can't sleep.
846 static struct inode
*ifind(struct super_block
*sb
,
847 struct hlist_head
*head
, int (*test
)(struct inode
*, void *),
848 void *data
, const int wait
)
852 spin_lock(&inode_lock
);
853 inode
= find_inode(sb
, head
, test
, data
);
856 spin_unlock(&inode_lock
);
858 wait_on_inode(inode
);
861 spin_unlock(&inode_lock
);
866 * ifind_fast - internal function, you want ilookup() or iget().
867 * @sb: super block of file system to search
868 * @head: head of the list to search
869 * @ino: inode number to search for
871 * ifind_fast() searches for the inode @ino in the inode cache. This is for
872 * file systems where the inode number is sufficient for unique identification
875 * If the inode is in the cache, the inode is returned with an incremented
878 * Otherwise NULL is returned.
880 static struct inode
*ifind_fast(struct super_block
*sb
,
881 struct hlist_head
*head
, unsigned long ino
)
885 spin_lock(&inode_lock
);
886 inode
= find_inode_fast(sb
, head
, ino
);
889 spin_unlock(&inode_lock
);
890 wait_on_inode(inode
);
893 spin_unlock(&inode_lock
);
898 * ilookup5_nowait - search for an inode in the inode cache
899 * @sb: super block of file system to search
900 * @hashval: hash value (usually inode number) to search for
901 * @test: callback used for comparisons between inodes
902 * @data: opaque data pointer to pass to @test
904 * ilookup5() uses ifind() to search for the inode specified by @hashval and
905 * @data in the inode cache. This is a generalized version of ilookup() for
906 * file systems where the inode number is not sufficient for unique
907 * identification of an inode.
909 * If the inode is in the cache, the inode is returned with an incremented
910 * reference count. Note, the inode lock is not waited upon so you have to be
911 * very careful what you do with the returned inode. You probably should be
912 * using ilookup5() instead.
914 * Otherwise NULL is returned.
916 * Note, @test is called with the inode_lock held, so can't sleep.
918 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
919 int (*test
)(struct inode
*, void *), void *data
)
921 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
923 return ifind(sb
, head
, test
, data
, 0);
926 EXPORT_SYMBOL(ilookup5_nowait
);
929 * ilookup5 - search for an inode in the inode cache
930 * @sb: super block of file system to search
931 * @hashval: hash value (usually inode number) to search for
932 * @test: callback used for comparisons between inodes
933 * @data: opaque data pointer to pass to @test
935 * ilookup5() uses ifind() to search for the inode specified by @hashval and
936 * @data in the inode cache. This is a generalized version of ilookup() for
937 * file systems where the inode number is not sufficient for unique
938 * identification of an inode.
940 * If the inode is in the cache, the inode lock is waited upon and the inode is
941 * returned with an incremented reference count.
943 * Otherwise NULL is returned.
945 * Note, @test is called with the inode_lock held, so can't sleep.
947 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
948 int (*test
)(struct inode
*, void *), void *data
)
950 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
952 return ifind(sb
, head
, test
, data
, 1);
955 EXPORT_SYMBOL(ilookup5
);
958 * ilookup - search for an inode in the inode cache
959 * @sb: super block of file system to search
960 * @ino: inode number to search for
962 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
963 * This is for file systems where the inode number is sufficient for unique
964 * identification of an inode.
966 * If the inode is in the cache, the inode is returned with an incremented
969 * Otherwise NULL is returned.
971 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
973 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
975 return ifind_fast(sb
, head
, ino
);
978 EXPORT_SYMBOL(ilookup
);
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
988 * iget5_locked() uses ifind() to search for the inode specified by @hashval
989 * and @data in the inode cache and if present it is returned with an increased
990 * reference count. This is a generalized version of iget_locked() for file
991 * systems where the inode number is not sufficient for unique identification
994 * If the inode is not in cache, get_new_inode() is called to allocate a new
995 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
996 * file system gets to fill it in before unlocking it via unlock_new_inode().
998 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1000 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1001 int (*test
)(struct inode
*, void *),
1002 int (*set
)(struct inode
*, void *), void *data
)
1004 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1005 struct inode
*inode
;
1007 inode
= ifind(sb
, head
, test
, data
, 1);
1011 * get_new_inode() will do the right thing, re-trying the search
1012 * in case it had to block at any point.
1014 return get_new_inode(sb
, head
, test
, set
, data
);
1017 EXPORT_SYMBOL(iget5_locked
);
1020 * iget_locked - obtain an inode from a mounted file system
1021 * @sb: super block of file system
1022 * @ino: inode number to get
1024 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1025 * the inode cache and if present it is returned with an increased reference
1026 * count. This is for file systems where the inode number is sufficient for
1027 * unique identification of an inode.
1029 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1030 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1031 * The file system gets to fill it in before unlocking it via
1032 * unlock_new_inode().
1034 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1036 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1037 struct inode
*inode
;
1039 inode
= ifind_fast(sb
, head
, ino
);
1043 * get_new_inode_fast() will do the right thing, re-trying the search
1044 * in case it had to block at any point.
1046 return get_new_inode_fast(sb
, head
, ino
);
1049 EXPORT_SYMBOL(iget_locked
);
1051 int insert_inode_locked(struct inode
*inode
)
1053 struct super_block
*sb
= inode
->i_sb
;
1054 ino_t ino
= inode
->i_ino
;
1055 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1058 inode
->i_state
|= I_LOCK
|I_NEW
;
1060 spin_lock(&inode_lock
);
1061 old
= find_inode_fast(sb
, head
, ino
);
1063 hlist_add_head(&inode
->i_hash
, head
);
1064 spin_unlock(&inode_lock
);
1068 spin_unlock(&inode_lock
);
1070 if (unlikely(!hlist_unhashed(&old
->i_hash
))) {
1078 EXPORT_SYMBOL(insert_inode_locked
);
1080 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1081 int (*test
)(struct inode
*, void *), void *data
)
1083 struct super_block
*sb
= inode
->i_sb
;
1084 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1087 inode
->i_state
|= I_LOCK
|I_NEW
;
1090 spin_lock(&inode_lock
);
1091 old
= find_inode(sb
, head
, test
, data
);
1093 hlist_add_head(&inode
->i_hash
, head
);
1094 spin_unlock(&inode_lock
);
1098 spin_unlock(&inode_lock
);
1100 if (unlikely(!hlist_unhashed(&old
->i_hash
))) {
1108 EXPORT_SYMBOL(insert_inode_locked4
);
1111 * __insert_inode_hash - hash an inode
1112 * @inode: unhashed inode
1113 * @hashval: unsigned long value used to locate this object in the
1116 * Add an inode to the inode hash for this superblock.
1118 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
1120 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1121 spin_lock(&inode_lock
);
1122 hlist_add_head(&inode
->i_hash
, head
);
1123 spin_unlock(&inode_lock
);
1126 EXPORT_SYMBOL(__insert_inode_hash
);
1129 * remove_inode_hash - remove an inode from the hash
1130 * @inode: inode to unhash
1132 * Remove an inode from the superblock.
1134 void remove_inode_hash(struct inode
*inode
)
1136 spin_lock(&inode_lock
);
1137 hlist_del_init(&inode
->i_hash
);
1138 spin_unlock(&inode_lock
);
1141 EXPORT_SYMBOL(remove_inode_hash
);
1144 * Tell the filesystem that this inode is no longer of any interest and should
1145 * be completely destroyed.
1147 * We leave the inode in the inode hash table until *after* the filesystem's
1148 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1149 * instigate) will always find up-to-date information either in the hash or on
1152 * I_FREEING is set so that no-one will take a new reference to the inode while
1153 * it is being deleted.
1155 void generic_delete_inode(struct inode
*inode
)
1157 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1159 list_del_init(&inode
->i_list
);
1160 list_del_init(&inode
->i_sb_list
);
1161 WARN_ON(inode
->i_state
& I_NEW
);
1162 inode
->i_state
|= I_FREEING
;
1163 inodes_stat
.nr_inodes
--;
1164 spin_unlock(&inode_lock
);
1166 security_inode_delete(inode
);
1168 if (op
->delete_inode
) {
1169 void (*delete)(struct inode
*) = op
->delete_inode
;
1170 if (!is_bad_inode(inode
))
1172 /* Filesystems implementing their own
1173 * s_op->delete_inode are required to call
1174 * truncate_inode_pages and clear_inode()
1178 truncate_inode_pages(&inode
->i_data
, 0);
1181 spin_lock(&inode_lock
);
1182 hlist_del_init(&inode
->i_hash
);
1183 spin_unlock(&inode_lock
);
1184 wake_up_inode(inode
);
1185 BUG_ON(inode
->i_state
!= I_CLEAR
);
1186 destroy_inode(inode
);
1189 EXPORT_SYMBOL(generic_delete_inode
);
1191 static void generic_forget_inode(struct inode
*inode
)
1193 struct super_block
*sb
= inode
->i_sb
;
1195 if (!hlist_unhashed(&inode
->i_hash
)) {
1196 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1197 list_move(&inode
->i_list
, &inode_unused
);
1198 inodes_stat
.nr_unused
++;
1199 if (sb
->s_flags
& MS_ACTIVE
) {
1200 spin_unlock(&inode_lock
);
1203 WARN_ON(inode
->i_state
& I_NEW
);
1204 inode
->i_state
|= I_WILL_FREE
;
1205 spin_unlock(&inode_lock
);
1206 write_inode_now(inode
, 1);
1207 spin_lock(&inode_lock
);
1208 WARN_ON(inode
->i_state
& I_NEW
);
1209 inode
->i_state
&= ~I_WILL_FREE
;
1210 inodes_stat
.nr_unused
--;
1211 hlist_del_init(&inode
->i_hash
);
1213 list_del_init(&inode
->i_list
);
1214 list_del_init(&inode
->i_sb_list
);
1215 WARN_ON(inode
->i_state
& I_NEW
);
1216 inode
->i_state
|= I_FREEING
;
1217 inodes_stat
.nr_inodes
--;
1218 spin_unlock(&inode_lock
);
1219 if (inode
->i_data
.nrpages
)
1220 truncate_inode_pages(&inode
->i_data
, 0);
1222 wake_up_inode(inode
);
1223 destroy_inode(inode
);
1227 * Normal UNIX filesystem behaviour: delete the
1228 * inode when the usage count drops to zero, and
1231 void generic_drop_inode(struct inode
*inode
)
1233 if (!inode
->i_nlink
)
1234 generic_delete_inode(inode
);
1236 generic_forget_inode(inode
);
1239 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1242 * Called when we're dropping the last reference
1245 * Call the FS "drop()" function, defaulting to
1246 * the legacy UNIX filesystem behaviour..
1248 * NOTE! NOTE! NOTE! We're called with the inode lock
1249 * held, and the drop function is supposed to release
1252 static inline void iput_final(struct inode
*inode
)
1254 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1255 void (*drop
)(struct inode
*) = generic_drop_inode
;
1257 if (op
&& op
->drop_inode
)
1258 drop
= op
->drop_inode
;
1263 * iput - put an inode
1264 * @inode: inode to put
1266 * Puts an inode, dropping its usage count. If the inode use count hits
1267 * zero, the inode is then freed and may also be destroyed.
1269 * Consequently, iput() can sleep.
1271 void iput(struct inode
*inode
)
1274 BUG_ON(inode
->i_state
== I_CLEAR
);
1276 if (atomic_dec_and_lock(&inode
->i_count
, &inode_lock
))
1281 EXPORT_SYMBOL(iput
);
1284 * bmap - find a block number in a file
1285 * @inode: inode of file
1286 * @block: block to find
1288 * Returns the block number on the device holding the inode that
1289 * is the disk block number for the block of the file requested.
1290 * That is, asked for block 4 of inode 1 the function will return the
1291 * disk block relative to the disk start that holds that block of the
1294 sector_t
bmap(struct inode
* inode
, sector_t block
)
1297 if (inode
->i_mapping
->a_ops
->bmap
)
1298 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1301 EXPORT_SYMBOL(bmap
);
1304 * With relative atime, only update atime if the previous atime is
1305 * earlier than either the ctime or mtime or if at least a day has
1306 * passed since the last atime update.
1308 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1309 struct timespec now
)
1312 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1315 * Is mtime younger than atime? If yes, update atime:
1317 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1320 * Is ctime younger than atime? If yes, update atime:
1322 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1326 * Is the previous atime value older than a day? If yes,
1329 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1332 * Good, we can skip the atime update:
1338 * touch_atime - update the access time
1339 * @mnt: mount the inode is accessed on
1340 * @dentry: dentry accessed
1342 * Update the accessed time on an inode and mark it for writeback.
1343 * This function automatically handles read only file systems and media,
1344 * as well as the "noatime" flag and inode specific "noatime" markers.
1346 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1348 struct inode
*inode
= dentry
->d_inode
;
1349 struct timespec now
;
1351 if (mnt_want_write(mnt
))
1353 if (inode
->i_flags
& S_NOATIME
)
1355 if (IS_NOATIME(inode
))
1357 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1360 if (mnt
->mnt_flags
& MNT_NOATIME
)
1362 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1365 now
= current_fs_time(inode
->i_sb
);
1367 if (!relatime_need_update(mnt
, inode
, now
))
1370 if (timespec_equal(&inode
->i_atime
, &now
))
1373 inode
->i_atime
= now
;
1374 mark_inode_dirty_sync(inode
);
1376 mnt_drop_write(mnt
);
1378 EXPORT_SYMBOL(touch_atime
);
1381 * file_update_time - update mtime and ctime time
1382 * @file: file accessed
1384 * Update the mtime and ctime members of an inode and mark the inode
1385 * for writeback. Note that this function is meant exclusively for
1386 * usage in the file write path of filesystems, and filesystems may
1387 * choose to explicitly ignore update via this function with the
1388 * S_NOCTIME inode flag, e.g. for network filesystem where these
1389 * timestamps are handled by the server.
1392 void file_update_time(struct file
*file
)
1394 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1395 struct timespec now
;
1399 if (IS_NOCMTIME(inode
))
1402 err
= mnt_want_write(file
->f_path
.mnt
);
1406 now
= current_fs_time(inode
->i_sb
);
1407 if (!timespec_equal(&inode
->i_mtime
, &now
)) {
1408 inode
->i_mtime
= now
;
1412 if (!timespec_equal(&inode
->i_ctime
, &now
)) {
1413 inode
->i_ctime
= now
;
1417 if (IS_I_VERSION(inode
)) {
1418 inode_inc_iversion(inode
);
1423 mark_inode_dirty_sync(inode
);
1424 mnt_drop_write(file
->f_path
.mnt
);
1427 EXPORT_SYMBOL(file_update_time
);
1429 int inode_needs_sync(struct inode
*inode
)
1433 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1438 EXPORT_SYMBOL(inode_needs_sync
);
1440 int inode_wait(void *word
)
1445 EXPORT_SYMBOL(inode_wait
);
1448 * If we try to find an inode in the inode hash while it is being
1449 * deleted, we have to wait until the filesystem completes its
1450 * deletion before reporting that it isn't found. This function waits
1451 * until the deletion _might_ have completed. Callers are responsible
1452 * to recheck inode state.
1454 * It doesn't matter if I_LOCK is not set initially, a call to
1455 * wake_up_inode() after removing from the hash list will DTRT.
1457 * This is called with inode_lock held.
1459 static void __wait_on_freeing_inode(struct inode
*inode
)
1461 wait_queue_head_t
*wq
;
1462 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_LOCK
);
1463 wq
= bit_waitqueue(&inode
->i_state
, __I_LOCK
);
1464 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1465 spin_unlock(&inode_lock
);
1467 finish_wait(wq
, &wait
.wait
);
1468 spin_lock(&inode_lock
);
1472 * We rarely want to lock two inodes that do not have a parent/child
1473 * relationship (such as directory, child inode) simultaneously. The
1474 * vast majority of file systems should be able to get along fine
1475 * without this. Do not use these functions except as a last resort.
1477 void inode_double_lock(struct inode
*inode1
, struct inode
*inode2
)
1479 if (inode1
== NULL
|| inode2
== NULL
|| inode1
== inode2
) {
1481 mutex_lock(&inode1
->i_mutex
);
1483 mutex_lock(&inode2
->i_mutex
);
1487 if (inode1
< inode2
) {
1488 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
1489 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
1491 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_PARENT
);
1492 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_CHILD
);
1495 EXPORT_SYMBOL(inode_double_lock
);
1497 void inode_double_unlock(struct inode
*inode1
, struct inode
*inode2
)
1500 mutex_unlock(&inode1
->i_mutex
);
1502 if (inode2
&& inode2
!= inode1
)
1503 mutex_unlock(&inode2
->i_mutex
);
1505 EXPORT_SYMBOL(inode_double_unlock
);
1507 static __initdata
unsigned long ihash_entries
;
1508 static int __init
set_ihash_entries(char *str
)
1512 ihash_entries
= simple_strtoul(str
, &str
, 0);
1515 __setup("ihash_entries=", set_ihash_entries
);
1518 * Initialize the waitqueues and inode hash table.
1520 void __init
inode_init_early(void)
1524 /* If hashes are distributed across NUMA nodes, defer
1525 * hash allocation until vmalloc space is available.
1531 alloc_large_system_hash("Inode-cache",
1532 sizeof(struct hlist_head
),
1540 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1541 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1544 void __init
inode_init(void)
1548 /* inode slab cache */
1549 inode_cachep
= kmem_cache_create("inode_cache",
1550 sizeof(struct inode
),
1552 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1555 register_shrinker(&icache_shrinker
);
1557 /* Hash may have been set up in inode_init_early */
1562 alloc_large_system_hash("Inode-cache",
1563 sizeof(struct hlist_head
),
1571 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1572 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1575 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1577 inode
->i_mode
= mode
;
1578 if (S_ISCHR(mode
)) {
1579 inode
->i_fop
= &def_chr_fops
;
1580 inode
->i_rdev
= rdev
;
1581 } else if (S_ISBLK(mode
)) {
1582 inode
->i_fop
= &def_blk_fops
;
1583 inode
->i_rdev
= rdev
;
1584 } else if (S_ISFIFO(mode
))
1585 inode
->i_fop
= &def_fifo_fops
;
1586 else if (S_ISSOCK(mode
))
1587 inode
->i_fop
= &bad_sock_fops
;
1589 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o)\n",
1592 EXPORT_SYMBOL(init_special_inode
);