crypto: eseqiv - Fix IV generation for sync algorithms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blob643ac43e5a5c7d6f43fe938fd4c0df6c91e2e0ce
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
29 * This is needed for the following functions:
30 * - inode_has_buffers
31 * - invalidate_inode_buffers
32 * - invalidate_bdev
34 * FIXME: remove all knowledge of the buffer layer from this file
36 #include <linux/buffer_head.h>
39 * New inode.c implementation.
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
45 * Famous last words.
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
57 #define I_HASHBITS i_hash_shift
58 #define I_HASHMASK i_hash_mask
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
80 * A simple spinlock to protect the list manipulations.
82 * NOTE! You also have to own the lock if you change
83 * the i_state of an inode while it is in use..
85 DEFINE_SPINLOCK(inode_lock);
88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89 * icache shrinking path, and the umount path. Without this exclusion,
90 * by the time prune_icache calls iput for the inode whose pages it has
91 * been invalidating, or by the time it calls clear_inode & destroy_inode
92 * from its final dispose_list, the struct super_block they refer to
93 * (for inode->i_sb->s_op) may already have been freed and reused.
95 static DEFINE_MUTEX(iprune_mutex);
98 * Statistics gathering..
100 struct inodes_stat_t inodes_stat;
102 static struct kmem_cache * inode_cachep __read_mostly;
104 static void wake_up_inode(struct inode *inode)
107 * Prevent speculative execution through spin_unlock(&inode_lock);
109 smp_mb();
110 wake_up_bit(&inode->i_state, __I_LOCK);
114 * inode_init_always - perform inode structure intialisation
115 * @sb: superblock inode belongs to
116 * @inode: inode to initialise
118 * These are initializations that need to be done on every inode
119 * allocation as the fields are not initialised by slab allocation.
121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
123 static const struct address_space_operations empty_aops;
124 static struct inode_operations empty_iops;
125 static const struct file_operations empty_fops;
127 struct address_space * const mapping = &inode->i_data;
129 inode->i_sb = sb;
130 inode->i_blkbits = sb->s_blocksize_bits;
131 inode->i_flags = 0;
132 atomic_set(&inode->i_count, 1);
133 inode->i_op = &empty_iops;
134 inode->i_fop = &empty_fops;
135 inode->i_nlink = 1;
136 inode->i_uid = 0;
137 inode->i_gid = 0;
138 atomic_set(&inode->i_writecount, 0);
139 inode->i_size = 0;
140 inode->i_blocks = 0;
141 inode->i_bytes = 0;
142 inode->i_generation = 0;
143 #ifdef CONFIG_QUOTA
144 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
145 #endif
146 inode->i_pipe = NULL;
147 inode->i_bdev = NULL;
148 inode->i_cdev = NULL;
149 inode->i_rdev = 0;
150 inode->dirtied_when = 0;
152 if (security_inode_alloc(inode))
153 goto out_free_inode;
155 /* allocate and initialize an i_integrity */
156 if (ima_inode_alloc(inode))
157 goto out_free_security;
159 spin_lock_init(&inode->i_lock);
160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
162 mutex_init(&inode->i_mutex);
163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
165 init_rwsem(&inode->i_alloc_sem);
166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
168 mapping->a_ops = &empty_aops;
169 mapping->host = inode;
170 mapping->flags = 0;
171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 mapping->assoc_mapping = NULL;
173 mapping->backing_dev_info = &default_backing_dev_info;
174 mapping->writeback_index = 0;
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
179 * backing_dev_info.
181 if (sb->s_bdev) {
182 struct backing_dev_info *bdi;
184 bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 if (!bdi)
186 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 mapping->backing_dev_info = bdi;
189 inode->i_private = NULL;
190 inode->i_mapping = mapping;
192 return inode;
194 out_free_security:
195 security_inode_free(inode);
196 out_free_inode:
197 if (inode->i_sb->s_op->destroy_inode)
198 inode->i_sb->s_op->destroy_inode(inode);
199 else
200 kmem_cache_free(inode_cachep, (inode));
201 return NULL;
203 EXPORT_SYMBOL(inode_init_always);
205 static struct inode *alloc_inode(struct super_block *sb)
207 struct inode *inode;
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214 if (inode)
215 return inode_init_always(sb, inode);
216 return NULL;
219 void destroy_inode(struct inode *inode)
221 BUG_ON(inode_has_buffers(inode));
222 security_inode_free(inode);
223 if (inode->i_sb->s_op->destroy_inode)
224 inode->i_sb->s_op->destroy_inode(inode);
225 else
226 kmem_cache_free(inode_cachep, (inode));
228 EXPORT_SYMBOL(destroy_inode);
232 * These are initializations that only need to be done
233 * once, because the fields are idempotent across use
234 * of the inode, so let the slab aware of that.
236 void inode_init_once(struct inode *inode)
238 memset(inode, 0, sizeof(*inode));
239 INIT_HLIST_NODE(&inode->i_hash);
240 INIT_LIST_HEAD(&inode->i_dentry);
241 INIT_LIST_HEAD(&inode->i_devices);
242 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
243 spin_lock_init(&inode->i_data.tree_lock);
244 spin_lock_init(&inode->i_data.i_mmap_lock);
245 INIT_LIST_HEAD(&inode->i_data.private_list);
246 spin_lock_init(&inode->i_data.private_lock);
247 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
248 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
249 i_size_ordered_init(inode);
250 #ifdef CONFIG_INOTIFY
251 INIT_LIST_HEAD(&inode->inotify_watches);
252 mutex_init(&inode->inotify_mutex);
253 #endif
256 EXPORT_SYMBOL(inode_init_once);
258 static void init_once(void *foo)
260 struct inode * inode = (struct inode *) foo;
262 inode_init_once(inode);
266 * inode_lock must be held
268 void __iget(struct inode * inode)
270 if (atomic_read(&inode->i_count)) {
271 atomic_inc(&inode->i_count);
272 return;
274 atomic_inc(&inode->i_count);
275 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
276 list_move(&inode->i_list, &inode_in_use);
277 inodes_stat.nr_unused--;
281 * clear_inode - clear an inode
282 * @inode: inode to clear
284 * This is called by the filesystem to tell us
285 * that the inode is no longer useful. We just
286 * terminate it with extreme prejudice.
288 void clear_inode(struct inode *inode)
290 might_sleep();
291 invalidate_inode_buffers(inode);
293 BUG_ON(inode->i_data.nrpages);
294 BUG_ON(!(inode->i_state & I_FREEING));
295 BUG_ON(inode->i_state & I_CLEAR);
296 inode_sync_wait(inode);
297 DQUOT_DROP(inode);
298 if (inode->i_sb->s_op->clear_inode)
299 inode->i_sb->s_op->clear_inode(inode);
300 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
301 bd_forget(inode);
302 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
303 cd_forget(inode);
304 inode->i_state = I_CLEAR;
307 EXPORT_SYMBOL(clear_inode);
310 * dispose_list - dispose of the contents of a local list
311 * @head: the head of the list to free
313 * Dispose-list gets a local list with local inodes in it, so it doesn't
314 * need to worry about list corruption and SMP locks.
316 static void dispose_list(struct list_head *head)
318 int nr_disposed = 0;
320 while (!list_empty(head)) {
321 struct inode *inode;
323 inode = list_first_entry(head, struct inode, i_list);
324 list_del(&inode->i_list);
326 if (inode->i_data.nrpages)
327 truncate_inode_pages(&inode->i_data, 0);
328 clear_inode(inode);
330 spin_lock(&inode_lock);
331 hlist_del_init(&inode->i_hash);
332 list_del_init(&inode->i_sb_list);
333 spin_unlock(&inode_lock);
335 wake_up_inode(inode);
336 destroy_inode(inode);
337 nr_disposed++;
339 spin_lock(&inode_lock);
340 inodes_stat.nr_inodes -= nr_disposed;
341 spin_unlock(&inode_lock);
345 * Invalidate all inodes for a device.
347 static int invalidate_list(struct list_head *head, struct list_head *dispose)
349 struct list_head *next;
350 int busy = 0, count = 0;
352 next = head->next;
353 for (;;) {
354 struct list_head * tmp = next;
355 struct inode * inode;
358 * We can reschedule here without worrying about the list's
359 * consistency because the per-sb list of inodes must not
360 * change during umount anymore, and because iprune_mutex keeps
361 * shrink_icache_memory() away.
363 cond_resched_lock(&inode_lock);
365 next = next->next;
366 if (tmp == head)
367 break;
368 inode = list_entry(tmp, struct inode, i_sb_list);
369 invalidate_inode_buffers(inode);
370 if (!atomic_read(&inode->i_count)) {
371 list_move(&inode->i_list, dispose);
372 WARN_ON(inode->i_state & I_NEW);
373 inode->i_state |= I_FREEING;
374 count++;
375 continue;
377 busy = 1;
379 /* only unused inodes may be cached with i_count zero */
380 inodes_stat.nr_unused -= count;
381 return busy;
385 * invalidate_inodes - discard the inodes on a device
386 * @sb: superblock
388 * Discard all of the inodes for a given superblock. If the discard
389 * fails because there are busy inodes then a non zero value is returned.
390 * If the discard is successful all the inodes have been discarded.
392 int invalidate_inodes(struct super_block * sb)
394 int busy;
395 LIST_HEAD(throw_away);
397 mutex_lock(&iprune_mutex);
398 spin_lock(&inode_lock);
399 inotify_unmount_inodes(&sb->s_inodes);
400 busy = invalidate_list(&sb->s_inodes, &throw_away);
401 spin_unlock(&inode_lock);
403 dispose_list(&throw_away);
404 mutex_unlock(&iprune_mutex);
406 return busy;
409 EXPORT_SYMBOL(invalidate_inodes);
411 static int can_unuse(struct inode *inode)
413 if (inode->i_state)
414 return 0;
415 if (inode_has_buffers(inode))
416 return 0;
417 if (atomic_read(&inode->i_count))
418 return 0;
419 if (inode->i_data.nrpages)
420 return 0;
421 return 1;
425 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
426 * a temporary list and then are freed outside inode_lock by dispose_list().
428 * Any inodes which are pinned purely because of attached pagecache have their
429 * pagecache removed. We expect the final iput() on that inode to add it to
430 * the front of the inode_unused list. So look for it there and if the
431 * inode is still freeable, proceed. The right inode is found 99.9% of the
432 * time in testing on a 4-way.
434 * If the inode has metadata buffers attached to mapping->private_list then
435 * try to remove them.
437 static void prune_icache(int nr_to_scan)
439 LIST_HEAD(freeable);
440 int nr_pruned = 0;
441 int nr_scanned;
442 unsigned long reap = 0;
444 mutex_lock(&iprune_mutex);
445 spin_lock(&inode_lock);
446 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
447 struct inode *inode;
449 if (list_empty(&inode_unused))
450 break;
452 inode = list_entry(inode_unused.prev, struct inode, i_list);
454 if (inode->i_state || atomic_read(&inode->i_count)) {
455 list_move(&inode->i_list, &inode_unused);
456 continue;
458 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
459 __iget(inode);
460 spin_unlock(&inode_lock);
461 if (remove_inode_buffers(inode))
462 reap += invalidate_mapping_pages(&inode->i_data,
463 0, -1);
464 iput(inode);
465 spin_lock(&inode_lock);
467 if (inode != list_entry(inode_unused.next,
468 struct inode, i_list))
469 continue; /* wrong inode or list_empty */
470 if (!can_unuse(inode))
471 continue;
473 list_move(&inode->i_list, &freeable);
474 WARN_ON(inode->i_state & I_NEW);
475 inode->i_state |= I_FREEING;
476 nr_pruned++;
478 inodes_stat.nr_unused -= nr_pruned;
479 if (current_is_kswapd())
480 __count_vm_events(KSWAPD_INODESTEAL, reap);
481 else
482 __count_vm_events(PGINODESTEAL, reap);
483 spin_unlock(&inode_lock);
485 dispose_list(&freeable);
486 mutex_unlock(&iprune_mutex);
490 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
491 * "unused" means that no dentries are referring to the inodes: the files are
492 * not open and the dcache references to those inodes have already been
493 * reclaimed.
495 * This function is passed the number of inodes to scan, and it returns the
496 * total number of remaining possibly-reclaimable inodes.
498 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
500 if (nr) {
502 * Nasty deadlock avoidance. We may hold various FS locks,
503 * and we don't want to recurse into the FS that called us
504 * in clear_inode() and friends..
506 if (!(gfp_mask & __GFP_FS))
507 return -1;
508 prune_icache(nr);
510 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
513 static struct shrinker icache_shrinker = {
514 .shrink = shrink_icache_memory,
515 .seeks = DEFAULT_SEEKS,
518 static void __wait_on_freeing_inode(struct inode *inode);
520 * Called with the inode lock held.
521 * NOTE: we are not increasing the inode-refcount, you must call __iget()
522 * by hand after calling find_inode now! This simplifies iunique and won't
523 * add any additional branch in the common code.
525 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
527 struct hlist_node *node;
528 struct inode * inode = NULL;
530 repeat:
531 hlist_for_each_entry(inode, node, head, i_hash) {
532 if (inode->i_sb != sb)
533 continue;
534 if (!test(inode, data))
535 continue;
536 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
537 __wait_on_freeing_inode(inode);
538 goto repeat;
540 break;
542 return node ? inode : NULL;
546 * find_inode_fast is the fast path version of find_inode, see the comment at
547 * iget_locked for details.
549 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
551 struct hlist_node *node;
552 struct inode * inode = NULL;
554 repeat:
555 hlist_for_each_entry(inode, node, head, i_hash) {
556 if (inode->i_ino != ino)
557 continue;
558 if (inode->i_sb != sb)
559 continue;
560 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
561 __wait_on_freeing_inode(inode);
562 goto repeat;
564 break;
566 return node ? inode : NULL;
569 static unsigned long hash(struct super_block *sb, unsigned long hashval)
571 unsigned long tmp;
573 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
574 L1_CACHE_BYTES;
575 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
576 return tmp & I_HASHMASK;
579 static inline void
580 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
581 struct inode *inode)
583 inodes_stat.nr_inodes++;
584 list_add(&inode->i_list, &inode_in_use);
585 list_add(&inode->i_sb_list, &sb->s_inodes);
586 if (head)
587 hlist_add_head(&inode->i_hash, head);
591 * inode_add_to_lists - add a new inode to relevant lists
592 * @sb: superblock inode belongs to
593 * @inode: inode to mark in use
595 * When an inode is allocated it needs to be accounted for, added to the in use
596 * list, the owning superblock and the inode hash. This needs to be done under
597 * the inode_lock, so export a function to do this rather than the inode lock
598 * itself. We calculate the hash list to add to here so it is all internal
599 * which requires the caller to have already set up the inode number in the
600 * inode to add.
602 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
604 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
606 spin_lock(&inode_lock);
607 __inode_add_to_lists(sb, head, inode);
608 spin_unlock(&inode_lock);
610 EXPORT_SYMBOL_GPL(inode_add_to_lists);
613 * new_inode - obtain an inode
614 * @sb: superblock
616 * Allocates a new inode for given superblock. The default gfp_mask
617 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
618 * If HIGHMEM pages are unsuitable or it is known that pages allocated
619 * for the page cache are not reclaimable or migratable,
620 * mapping_set_gfp_mask() must be called with suitable flags on the
621 * newly created inode's mapping
624 struct inode *new_inode(struct super_block *sb)
627 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
628 * error if st_ino won't fit in target struct field. Use 32bit counter
629 * here to attempt to avoid that.
631 static unsigned int last_ino;
632 struct inode * inode;
634 spin_lock_prefetch(&inode_lock);
636 inode = alloc_inode(sb);
637 if (inode) {
638 spin_lock(&inode_lock);
639 __inode_add_to_lists(sb, NULL, inode);
640 inode->i_ino = ++last_ino;
641 inode->i_state = 0;
642 spin_unlock(&inode_lock);
644 return inode;
647 EXPORT_SYMBOL(new_inode);
649 void unlock_new_inode(struct inode *inode)
651 #ifdef CONFIG_DEBUG_LOCK_ALLOC
652 if (inode->i_mode & S_IFDIR) {
653 struct file_system_type *type = inode->i_sb->s_type;
656 * ensure nobody is actually holding i_mutex
658 mutex_destroy(&inode->i_mutex);
659 mutex_init(&inode->i_mutex);
660 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
662 #endif
664 * This is special! We do not need the spinlock
665 * when clearing I_LOCK, because we're guaranteed
666 * that nobody else tries to do anything about the
667 * state of the inode when it is locked, as we
668 * just created it (so there can be no old holders
669 * that haven't tested I_LOCK).
671 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
672 inode->i_state &= ~(I_LOCK|I_NEW);
673 wake_up_inode(inode);
676 EXPORT_SYMBOL(unlock_new_inode);
679 * This is called without the inode lock held.. Be careful.
681 * We no longer cache the sb_flags in i_flags - see fs.h
682 * -- rmk@arm.uk.linux.org
684 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
686 struct inode * inode;
688 inode = alloc_inode(sb);
689 if (inode) {
690 struct inode * old;
692 spin_lock(&inode_lock);
693 /* We released the lock, so.. */
694 old = find_inode(sb, head, test, data);
695 if (!old) {
696 if (set(inode, data))
697 goto set_failed;
699 __inode_add_to_lists(sb, head, inode);
700 inode->i_state = I_LOCK|I_NEW;
701 spin_unlock(&inode_lock);
703 /* Return the locked inode with I_NEW set, the
704 * caller is responsible for filling in the contents
706 return inode;
710 * Uhhuh, somebody else created the same inode under
711 * us. Use the old inode instead of the one we just
712 * allocated.
714 __iget(old);
715 spin_unlock(&inode_lock);
716 destroy_inode(inode);
717 inode = old;
718 wait_on_inode(inode);
720 return inode;
722 set_failed:
723 spin_unlock(&inode_lock);
724 destroy_inode(inode);
725 return NULL;
729 * get_new_inode_fast is the fast path version of get_new_inode, see the
730 * comment at iget_locked for details.
732 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
734 struct inode * inode;
736 inode = alloc_inode(sb);
737 if (inode) {
738 struct inode * old;
740 spin_lock(&inode_lock);
741 /* We released the lock, so.. */
742 old = find_inode_fast(sb, head, ino);
743 if (!old) {
744 inode->i_ino = ino;
745 __inode_add_to_lists(sb, head, inode);
746 inode->i_state = I_LOCK|I_NEW;
747 spin_unlock(&inode_lock);
749 /* Return the locked inode with I_NEW set, the
750 * caller is responsible for filling in the contents
752 return inode;
756 * Uhhuh, somebody else created the same inode under
757 * us. Use the old inode instead of the one we just
758 * allocated.
760 __iget(old);
761 spin_unlock(&inode_lock);
762 destroy_inode(inode);
763 inode = old;
764 wait_on_inode(inode);
766 return inode;
770 * iunique - get a unique inode number
771 * @sb: superblock
772 * @max_reserved: highest reserved inode number
774 * Obtain an inode number that is unique on the system for a given
775 * superblock. This is used by file systems that have no natural
776 * permanent inode numbering system. An inode number is returned that
777 * is higher than the reserved limit but unique.
779 * BUGS:
780 * With a large number of inodes live on the file system this function
781 * currently becomes quite slow.
783 ino_t iunique(struct super_block *sb, ino_t max_reserved)
786 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
787 * error if st_ino won't fit in target struct field. Use 32bit counter
788 * here to attempt to avoid that.
790 static unsigned int counter;
791 struct inode *inode;
792 struct hlist_head *head;
793 ino_t res;
795 spin_lock(&inode_lock);
796 do {
797 if (counter <= max_reserved)
798 counter = max_reserved + 1;
799 res = counter++;
800 head = inode_hashtable + hash(sb, res);
801 inode = find_inode_fast(sb, head, res);
802 } while (inode != NULL);
803 spin_unlock(&inode_lock);
805 return res;
807 EXPORT_SYMBOL(iunique);
809 struct inode *igrab(struct inode *inode)
811 spin_lock(&inode_lock);
812 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
813 __iget(inode);
814 else
816 * Handle the case where s_op->clear_inode is not been
817 * called yet, and somebody is calling igrab
818 * while the inode is getting freed.
820 inode = NULL;
821 spin_unlock(&inode_lock);
822 return inode;
825 EXPORT_SYMBOL(igrab);
828 * ifind - internal function, you want ilookup5() or iget5().
829 * @sb: super block of file system to search
830 * @head: the head of the list to search
831 * @test: callback used for comparisons between inodes
832 * @data: opaque data pointer to pass to @test
833 * @wait: if true wait for the inode to be unlocked, if false do not
835 * ifind() searches for the inode specified by @data in the inode
836 * cache. This is a generalized version of ifind_fast() for file systems where
837 * the inode number is not sufficient for unique identification of an inode.
839 * If the inode is in the cache, the inode is returned with an incremented
840 * reference count.
842 * Otherwise NULL is returned.
844 * Note, @test is called with the inode_lock held, so can't sleep.
846 static struct inode *ifind(struct super_block *sb,
847 struct hlist_head *head, int (*test)(struct inode *, void *),
848 void *data, const int wait)
850 struct inode *inode;
852 spin_lock(&inode_lock);
853 inode = find_inode(sb, head, test, data);
854 if (inode) {
855 __iget(inode);
856 spin_unlock(&inode_lock);
857 if (likely(wait))
858 wait_on_inode(inode);
859 return inode;
861 spin_unlock(&inode_lock);
862 return NULL;
866 * ifind_fast - internal function, you want ilookup() or iget().
867 * @sb: super block of file system to search
868 * @head: head of the list to search
869 * @ino: inode number to search for
871 * ifind_fast() searches for the inode @ino in the inode cache. This is for
872 * file systems where the inode number is sufficient for unique identification
873 * of an inode.
875 * If the inode is in the cache, the inode is returned with an incremented
876 * reference count.
878 * Otherwise NULL is returned.
880 static struct inode *ifind_fast(struct super_block *sb,
881 struct hlist_head *head, unsigned long ino)
883 struct inode *inode;
885 spin_lock(&inode_lock);
886 inode = find_inode_fast(sb, head, ino);
887 if (inode) {
888 __iget(inode);
889 spin_unlock(&inode_lock);
890 wait_on_inode(inode);
891 return inode;
893 spin_unlock(&inode_lock);
894 return NULL;
898 * ilookup5_nowait - search for an inode in the inode cache
899 * @sb: super block of file system to search
900 * @hashval: hash value (usually inode number) to search for
901 * @test: callback used for comparisons between inodes
902 * @data: opaque data pointer to pass to @test
904 * ilookup5() uses ifind() to search for the inode specified by @hashval and
905 * @data in the inode cache. This is a generalized version of ilookup() for
906 * file systems where the inode number is not sufficient for unique
907 * identification of an inode.
909 * If the inode is in the cache, the inode is returned with an incremented
910 * reference count. Note, the inode lock is not waited upon so you have to be
911 * very careful what you do with the returned inode. You probably should be
912 * using ilookup5() instead.
914 * Otherwise NULL is returned.
916 * Note, @test is called with the inode_lock held, so can't sleep.
918 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
919 int (*test)(struct inode *, void *), void *data)
921 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
923 return ifind(sb, head, test, data, 0);
926 EXPORT_SYMBOL(ilookup5_nowait);
929 * ilookup5 - search for an inode in the inode cache
930 * @sb: super block of file system to search
931 * @hashval: hash value (usually inode number) to search for
932 * @test: callback used for comparisons between inodes
933 * @data: opaque data pointer to pass to @test
935 * ilookup5() uses ifind() to search for the inode specified by @hashval and
936 * @data in the inode cache. This is a generalized version of ilookup() for
937 * file systems where the inode number is not sufficient for unique
938 * identification of an inode.
940 * If the inode is in the cache, the inode lock is waited upon and the inode is
941 * returned with an incremented reference count.
943 * Otherwise NULL is returned.
945 * Note, @test is called with the inode_lock held, so can't sleep.
947 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
948 int (*test)(struct inode *, void *), void *data)
950 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
952 return ifind(sb, head, test, data, 1);
955 EXPORT_SYMBOL(ilookup5);
958 * ilookup - search for an inode in the inode cache
959 * @sb: super block of file system to search
960 * @ino: inode number to search for
962 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
963 * This is for file systems where the inode number is sufficient for unique
964 * identification of an inode.
966 * If the inode is in the cache, the inode is returned with an incremented
967 * reference count.
969 * Otherwise NULL is returned.
971 struct inode *ilookup(struct super_block *sb, unsigned long ino)
973 struct hlist_head *head = inode_hashtable + hash(sb, ino);
975 return ifind_fast(sb, head, ino);
978 EXPORT_SYMBOL(ilookup);
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
988 * iget5_locked() uses ifind() to search for the inode specified by @hashval
989 * and @data in the inode cache and if present it is returned with an increased
990 * reference count. This is a generalized version of iget_locked() for file
991 * systems where the inode number is not sufficient for unique identification
992 * of an inode.
994 * If the inode is not in cache, get_new_inode() is called to allocate a new
995 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
996 * file system gets to fill it in before unlocking it via unlock_new_inode().
998 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1000 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 int (*test)(struct inode *, void *),
1002 int (*set)(struct inode *, void *), void *data)
1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 struct inode *inode;
1007 inode = ifind(sb, head, test, data, 1);
1008 if (inode)
1009 return inode;
1011 * get_new_inode() will do the right thing, re-trying the search
1012 * in case it had to block at any point.
1014 return get_new_inode(sb, head, test, set, data);
1017 EXPORT_SYMBOL(iget5_locked);
1020 * iget_locked - obtain an inode from a mounted file system
1021 * @sb: super block of file system
1022 * @ino: inode number to get
1024 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1025 * the inode cache and if present it is returned with an increased reference
1026 * count. This is for file systems where the inode number is sufficient for
1027 * unique identification of an inode.
1029 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1030 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1031 * The file system gets to fill it in before unlocking it via
1032 * unlock_new_inode().
1034 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1036 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1037 struct inode *inode;
1039 inode = ifind_fast(sb, head, ino);
1040 if (inode)
1041 return inode;
1043 * get_new_inode_fast() will do the right thing, re-trying the search
1044 * in case it had to block at any point.
1046 return get_new_inode_fast(sb, head, ino);
1049 EXPORT_SYMBOL(iget_locked);
1051 int insert_inode_locked(struct inode *inode)
1053 struct super_block *sb = inode->i_sb;
1054 ino_t ino = inode->i_ino;
1055 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1056 struct inode *old;
1058 inode->i_state |= I_LOCK|I_NEW;
1059 while (1) {
1060 spin_lock(&inode_lock);
1061 old = find_inode_fast(sb, head, ino);
1062 if (likely(!old)) {
1063 hlist_add_head(&inode->i_hash, head);
1064 spin_unlock(&inode_lock);
1065 return 0;
1067 __iget(old);
1068 spin_unlock(&inode_lock);
1069 wait_on_inode(old);
1070 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1071 iput(old);
1072 return -EBUSY;
1074 iput(old);
1078 EXPORT_SYMBOL(insert_inode_locked);
1080 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1081 int (*test)(struct inode *, void *), void *data)
1083 struct super_block *sb = inode->i_sb;
1084 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1085 struct inode *old;
1087 inode->i_state |= I_LOCK|I_NEW;
1089 while (1) {
1090 spin_lock(&inode_lock);
1091 old = find_inode(sb, head, test, data);
1092 if (likely(!old)) {
1093 hlist_add_head(&inode->i_hash, head);
1094 spin_unlock(&inode_lock);
1095 return 0;
1097 __iget(old);
1098 spin_unlock(&inode_lock);
1099 wait_on_inode(old);
1100 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1101 iput(old);
1102 return -EBUSY;
1104 iput(old);
1108 EXPORT_SYMBOL(insert_inode_locked4);
1111 * __insert_inode_hash - hash an inode
1112 * @inode: unhashed inode
1113 * @hashval: unsigned long value used to locate this object in the
1114 * inode_hashtable.
1116 * Add an inode to the inode hash for this superblock.
1118 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1120 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1121 spin_lock(&inode_lock);
1122 hlist_add_head(&inode->i_hash, head);
1123 spin_unlock(&inode_lock);
1126 EXPORT_SYMBOL(__insert_inode_hash);
1129 * remove_inode_hash - remove an inode from the hash
1130 * @inode: inode to unhash
1132 * Remove an inode from the superblock.
1134 void remove_inode_hash(struct inode *inode)
1136 spin_lock(&inode_lock);
1137 hlist_del_init(&inode->i_hash);
1138 spin_unlock(&inode_lock);
1141 EXPORT_SYMBOL(remove_inode_hash);
1144 * Tell the filesystem that this inode is no longer of any interest and should
1145 * be completely destroyed.
1147 * We leave the inode in the inode hash table until *after* the filesystem's
1148 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1149 * instigate) will always find up-to-date information either in the hash or on
1150 * disk.
1152 * I_FREEING is set so that no-one will take a new reference to the inode while
1153 * it is being deleted.
1155 void generic_delete_inode(struct inode *inode)
1157 const struct super_operations *op = inode->i_sb->s_op;
1159 list_del_init(&inode->i_list);
1160 list_del_init(&inode->i_sb_list);
1161 WARN_ON(inode->i_state & I_NEW);
1162 inode->i_state |= I_FREEING;
1163 inodes_stat.nr_inodes--;
1164 spin_unlock(&inode_lock);
1166 security_inode_delete(inode);
1168 if (op->delete_inode) {
1169 void (*delete)(struct inode *) = op->delete_inode;
1170 if (!is_bad_inode(inode))
1171 DQUOT_INIT(inode);
1172 /* Filesystems implementing their own
1173 * s_op->delete_inode are required to call
1174 * truncate_inode_pages and clear_inode()
1175 * internally */
1176 delete(inode);
1177 } else {
1178 truncate_inode_pages(&inode->i_data, 0);
1179 clear_inode(inode);
1181 spin_lock(&inode_lock);
1182 hlist_del_init(&inode->i_hash);
1183 spin_unlock(&inode_lock);
1184 wake_up_inode(inode);
1185 BUG_ON(inode->i_state != I_CLEAR);
1186 destroy_inode(inode);
1189 EXPORT_SYMBOL(generic_delete_inode);
1191 static void generic_forget_inode(struct inode *inode)
1193 struct super_block *sb = inode->i_sb;
1195 if (!hlist_unhashed(&inode->i_hash)) {
1196 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1197 list_move(&inode->i_list, &inode_unused);
1198 inodes_stat.nr_unused++;
1199 if (sb->s_flags & MS_ACTIVE) {
1200 spin_unlock(&inode_lock);
1201 return;
1203 WARN_ON(inode->i_state & I_NEW);
1204 inode->i_state |= I_WILL_FREE;
1205 spin_unlock(&inode_lock);
1206 write_inode_now(inode, 1);
1207 spin_lock(&inode_lock);
1208 WARN_ON(inode->i_state & I_NEW);
1209 inode->i_state &= ~I_WILL_FREE;
1210 inodes_stat.nr_unused--;
1211 hlist_del_init(&inode->i_hash);
1213 list_del_init(&inode->i_list);
1214 list_del_init(&inode->i_sb_list);
1215 WARN_ON(inode->i_state & I_NEW);
1216 inode->i_state |= I_FREEING;
1217 inodes_stat.nr_inodes--;
1218 spin_unlock(&inode_lock);
1219 if (inode->i_data.nrpages)
1220 truncate_inode_pages(&inode->i_data, 0);
1221 clear_inode(inode);
1222 wake_up_inode(inode);
1223 destroy_inode(inode);
1227 * Normal UNIX filesystem behaviour: delete the
1228 * inode when the usage count drops to zero, and
1229 * i_nlink is zero.
1231 void generic_drop_inode(struct inode *inode)
1233 if (!inode->i_nlink)
1234 generic_delete_inode(inode);
1235 else
1236 generic_forget_inode(inode);
1239 EXPORT_SYMBOL_GPL(generic_drop_inode);
1242 * Called when we're dropping the last reference
1243 * to an inode.
1245 * Call the FS "drop()" function, defaulting to
1246 * the legacy UNIX filesystem behaviour..
1248 * NOTE! NOTE! NOTE! We're called with the inode lock
1249 * held, and the drop function is supposed to release
1250 * the lock!
1252 static inline void iput_final(struct inode *inode)
1254 const struct super_operations *op = inode->i_sb->s_op;
1255 void (*drop)(struct inode *) = generic_drop_inode;
1257 if (op && op->drop_inode)
1258 drop = op->drop_inode;
1259 drop(inode);
1263 * iput - put an inode
1264 * @inode: inode to put
1266 * Puts an inode, dropping its usage count. If the inode use count hits
1267 * zero, the inode is then freed and may also be destroyed.
1269 * Consequently, iput() can sleep.
1271 void iput(struct inode *inode)
1273 if (inode) {
1274 BUG_ON(inode->i_state == I_CLEAR);
1276 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1277 iput_final(inode);
1281 EXPORT_SYMBOL(iput);
1284 * bmap - find a block number in a file
1285 * @inode: inode of file
1286 * @block: block to find
1288 * Returns the block number on the device holding the inode that
1289 * is the disk block number for the block of the file requested.
1290 * That is, asked for block 4 of inode 1 the function will return the
1291 * disk block relative to the disk start that holds that block of the
1292 * file.
1294 sector_t bmap(struct inode * inode, sector_t block)
1296 sector_t res = 0;
1297 if (inode->i_mapping->a_ops->bmap)
1298 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1299 return res;
1301 EXPORT_SYMBOL(bmap);
1304 * With relative atime, only update atime if the previous atime is
1305 * earlier than either the ctime or mtime or if at least a day has
1306 * passed since the last atime update.
1308 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1309 struct timespec now)
1312 if (!(mnt->mnt_flags & MNT_RELATIME))
1313 return 1;
1315 * Is mtime younger than atime? If yes, update atime:
1317 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1318 return 1;
1320 * Is ctime younger than atime? If yes, update atime:
1322 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1323 return 1;
1326 * Is the previous atime value older than a day? If yes,
1327 * update atime:
1329 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1330 return 1;
1332 * Good, we can skip the atime update:
1334 return 0;
1338 * touch_atime - update the access time
1339 * @mnt: mount the inode is accessed on
1340 * @dentry: dentry accessed
1342 * Update the accessed time on an inode and mark it for writeback.
1343 * This function automatically handles read only file systems and media,
1344 * as well as the "noatime" flag and inode specific "noatime" markers.
1346 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1348 struct inode *inode = dentry->d_inode;
1349 struct timespec now;
1351 if (mnt_want_write(mnt))
1352 return;
1353 if (inode->i_flags & S_NOATIME)
1354 goto out;
1355 if (IS_NOATIME(inode))
1356 goto out;
1357 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1358 goto out;
1360 if (mnt->mnt_flags & MNT_NOATIME)
1361 goto out;
1362 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1363 goto out;
1365 now = current_fs_time(inode->i_sb);
1367 if (!relatime_need_update(mnt, inode, now))
1368 goto out;
1370 if (timespec_equal(&inode->i_atime, &now))
1371 goto out;
1373 inode->i_atime = now;
1374 mark_inode_dirty_sync(inode);
1375 out:
1376 mnt_drop_write(mnt);
1378 EXPORT_SYMBOL(touch_atime);
1381 * file_update_time - update mtime and ctime time
1382 * @file: file accessed
1384 * Update the mtime and ctime members of an inode and mark the inode
1385 * for writeback. Note that this function is meant exclusively for
1386 * usage in the file write path of filesystems, and filesystems may
1387 * choose to explicitly ignore update via this function with the
1388 * S_NOCTIME inode flag, e.g. for network filesystem where these
1389 * timestamps are handled by the server.
1392 void file_update_time(struct file *file)
1394 struct inode *inode = file->f_path.dentry->d_inode;
1395 struct timespec now;
1396 int sync_it = 0;
1397 int err;
1399 if (IS_NOCMTIME(inode))
1400 return;
1402 err = mnt_want_write(file->f_path.mnt);
1403 if (err)
1404 return;
1406 now = current_fs_time(inode->i_sb);
1407 if (!timespec_equal(&inode->i_mtime, &now)) {
1408 inode->i_mtime = now;
1409 sync_it = 1;
1412 if (!timespec_equal(&inode->i_ctime, &now)) {
1413 inode->i_ctime = now;
1414 sync_it = 1;
1417 if (IS_I_VERSION(inode)) {
1418 inode_inc_iversion(inode);
1419 sync_it = 1;
1422 if (sync_it)
1423 mark_inode_dirty_sync(inode);
1424 mnt_drop_write(file->f_path.mnt);
1427 EXPORT_SYMBOL(file_update_time);
1429 int inode_needs_sync(struct inode *inode)
1431 if (IS_SYNC(inode))
1432 return 1;
1433 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1434 return 1;
1435 return 0;
1438 EXPORT_SYMBOL(inode_needs_sync);
1440 int inode_wait(void *word)
1442 schedule();
1443 return 0;
1445 EXPORT_SYMBOL(inode_wait);
1448 * If we try to find an inode in the inode hash while it is being
1449 * deleted, we have to wait until the filesystem completes its
1450 * deletion before reporting that it isn't found. This function waits
1451 * until the deletion _might_ have completed. Callers are responsible
1452 * to recheck inode state.
1454 * It doesn't matter if I_LOCK is not set initially, a call to
1455 * wake_up_inode() after removing from the hash list will DTRT.
1457 * This is called with inode_lock held.
1459 static void __wait_on_freeing_inode(struct inode *inode)
1461 wait_queue_head_t *wq;
1462 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1463 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1464 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1465 spin_unlock(&inode_lock);
1466 schedule();
1467 finish_wait(wq, &wait.wait);
1468 spin_lock(&inode_lock);
1472 * We rarely want to lock two inodes that do not have a parent/child
1473 * relationship (such as directory, child inode) simultaneously. The
1474 * vast majority of file systems should be able to get along fine
1475 * without this. Do not use these functions except as a last resort.
1477 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1479 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1480 if (inode1)
1481 mutex_lock(&inode1->i_mutex);
1482 else if (inode2)
1483 mutex_lock(&inode2->i_mutex);
1484 return;
1487 if (inode1 < inode2) {
1488 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1489 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1490 } else {
1491 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1492 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1495 EXPORT_SYMBOL(inode_double_lock);
1497 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1499 if (inode1)
1500 mutex_unlock(&inode1->i_mutex);
1502 if (inode2 && inode2 != inode1)
1503 mutex_unlock(&inode2->i_mutex);
1505 EXPORT_SYMBOL(inode_double_unlock);
1507 static __initdata unsigned long ihash_entries;
1508 static int __init set_ihash_entries(char *str)
1510 if (!str)
1511 return 0;
1512 ihash_entries = simple_strtoul(str, &str, 0);
1513 return 1;
1515 __setup("ihash_entries=", set_ihash_entries);
1518 * Initialize the waitqueues and inode hash table.
1520 void __init inode_init_early(void)
1522 int loop;
1524 /* If hashes are distributed across NUMA nodes, defer
1525 * hash allocation until vmalloc space is available.
1527 if (hashdist)
1528 return;
1530 inode_hashtable =
1531 alloc_large_system_hash("Inode-cache",
1532 sizeof(struct hlist_head),
1533 ihash_entries,
1535 HASH_EARLY,
1536 &i_hash_shift,
1537 &i_hash_mask,
1540 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1541 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1544 void __init inode_init(void)
1546 int loop;
1548 /* inode slab cache */
1549 inode_cachep = kmem_cache_create("inode_cache",
1550 sizeof(struct inode),
1552 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1553 SLAB_MEM_SPREAD),
1554 init_once);
1555 register_shrinker(&icache_shrinker);
1557 /* Hash may have been set up in inode_init_early */
1558 if (!hashdist)
1559 return;
1561 inode_hashtable =
1562 alloc_large_system_hash("Inode-cache",
1563 sizeof(struct hlist_head),
1564 ihash_entries,
1567 &i_hash_shift,
1568 &i_hash_mask,
1571 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1572 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1575 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1577 inode->i_mode = mode;
1578 if (S_ISCHR(mode)) {
1579 inode->i_fop = &def_chr_fops;
1580 inode->i_rdev = rdev;
1581 } else if (S_ISBLK(mode)) {
1582 inode->i_fop = &def_blk_fops;
1583 inode->i_rdev = rdev;
1584 } else if (S_ISFIFO(mode))
1585 inode->i_fop = &def_fifo_fops;
1586 else if (S_ISSOCK(mode))
1587 inode->i_fop = &bad_sock_fops;
1588 else
1589 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1590 mode);
1592 EXPORT_SYMBOL(init_special_inode);