Revert "usb: musb: restore INDEX register in resume path"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / selinux / hooks.c
bloba1067544c86b5ead3c5213e87cef0cd59f17788d
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92 #define NUM_SEL_MNT_OPTS 5
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
104 static int __init enforcing_setup(char *str)
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
111 __setup("enforcing=", enforcing_setup);
112 #endif
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117 static int __init selinux_enabled_setup(char *str)
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
131 * Minimal support for a secondary security module,
132 * just to allow the use of the capability module.
134 static struct security_operations *secondary_ops;
136 /* Lists of inode and superblock security structures initialized
137 before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
141 static struct kmem_cache *sel_inode_cache;
144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146 * Description:
147 * This function checks the SECMARK reference counter to see if any SECMARK
148 * targets are currently configured, if the reference counter is greater than
149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
150 * enabled, false (0) if SECMARK is disabled.
153 static int selinux_secmark_enabled(void)
155 return (atomic_read(&selinux_secmark_refcount) > 0);
159 * initialise the security for the init task
161 static void cred_init_security(void)
163 struct cred *cred = (struct cred *) current->real_cred;
164 struct task_security_struct *tsec;
166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 if (!tsec)
168 panic("SELinux: Failed to initialize initial task.\n");
170 tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 cred->security = tsec;
175 * get the security ID of a set of credentials
177 static inline u32 cred_sid(const struct cred *cred)
179 const struct task_security_struct *tsec;
181 tsec = cred->security;
182 return tsec->sid;
186 * get the objective security ID of a task
188 static inline u32 task_sid(const struct task_struct *task)
190 u32 sid;
192 rcu_read_lock();
193 sid = cred_sid(__task_cred(task));
194 rcu_read_unlock();
195 return sid;
199 * get the subjective security ID of the current task
201 static inline u32 current_sid(void)
203 const struct task_security_struct *tsec = current_cred()->security;
205 return tsec->sid;
208 /* Allocate and free functions for each kind of security blob. */
210 static int inode_alloc_security(struct inode *inode)
212 struct inode_security_struct *isec;
213 u32 sid = current_sid();
215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 if (!isec)
217 return -ENOMEM;
219 mutex_init(&isec->lock);
220 INIT_LIST_HEAD(&isec->list);
221 isec->inode = inode;
222 isec->sid = SECINITSID_UNLABELED;
223 isec->sclass = SECCLASS_FILE;
224 isec->task_sid = sid;
225 inode->i_security = isec;
227 return 0;
230 static void inode_free_security(struct inode *inode)
232 struct inode_security_struct *isec = inode->i_security;
233 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235 spin_lock(&sbsec->isec_lock);
236 if (!list_empty(&isec->list))
237 list_del_init(&isec->list);
238 spin_unlock(&sbsec->isec_lock);
240 inode->i_security = NULL;
241 kmem_cache_free(sel_inode_cache, isec);
244 static int file_alloc_security(struct file *file)
246 struct file_security_struct *fsec;
247 u32 sid = current_sid();
249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 if (!fsec)
251 return -ENOMEM;
253 fsec->sid = sid;
254 fsec->fown_sid = sid;
255 file->f_security = fsec;
257 return 0;
260 static void file_free_security(struct file *file)
262 struct file_security_struct *fsec = file->f_security;
263 file->f_security = NULL;
264 kfree(fsec);
267 static int superblock_alloc_security(struct super_block *sb)
269 struct superblock_security_struct *sbsec;
271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 if (!sbsec)
273 return -ENOMEM;
275 mutex_init(&sbsec->lock);
276 INIT_LIST_HEAD(&sbsec->list);
277 INIT_LIST_HEAD(&sbsec->isec_head);
278 spin_lock_init(&sbsec->isec_lock);
279 sbsec->sb = sb;
280 sbsec->sid = SECINITSID_UNLABELED;
281 sbsec->def_sid = SECINITSID_FILE;
282 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 sb->s_security = sbsec;
285 return 0;
288 static void superblock_free_security(struct super_block *sb)
290 struct superblock_security_struct *sbsec = sb->s_security;
292 spin_lock(&sb_security_lock);
293 if (!list_empty(&sbsec->list))
294 list_del_init(&sbsec->list);
295 spin_unlock(&sb_security_lock);
297 sb->s_security = NULL;
298 kfree(sbsec);
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 struct sk_security_struct *ssec;
305 ssec = kzalloc(sizeof(*ssec), priority);
306 if (!ssec)
307 return -ENOMEM;
309 ssec->peer_sid = SECINITSID_UNLABELED;
310 ssec->sid = SECINITSID_UNLABELED;
311 sk->sk_security = ssec;
313 selinux_netlbl_sk_security_reset(ssec);
315 return 0;
318 static void sk_free_security(struct sock *sk)
320 struct sk_security_struct *ssec = sk->sk_security;
322 sk->sk_security = NULL;
323 selinux_netlbl_sk_security_free(ssec);
324 kfree(ssec);
327 /* The security server must be initialized before
328 any labeling or access decisions can be provided. */
329 extern int ss_initialized;
331 /* The file system's label must be initialized prior to use. */
333 static char *labeling_behaviors[6] = {
334 "uses xattr",
335 "uses transition SIDs",
336 "uses task SIDs",
337 "uses genfs_contexts",
338 "not configured for labeling",
339 "uses mountpoint labeling",
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344 static inline int inode_doinit(struct inode *inode)
346 return inode_doinit_with_dentry(inode, NULL);
349 enum {
350 Opt_error = -1,
351 Opt_context = 1,
352 Opt_fscontext = 2,
353 Opt_defcontext = 3,
354 Opt_rootcontext = 4,
355 Opt_labelsupport = 5,
358 static const match_table_t tokens = {
359 {Opt_context, CONTEXT_STR "%s"},
360 {Opt_fscontext, FSCONTEXT_STR "%s"},
361 {Opt_defcontext, DEFCONTEXT_STR "%s"},
362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 {Opt_labelsupport, LABELSUPP_STR},
364 {Opt_error, NULL},
367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
369 static int may_context_mount_sb_relabel(u32 sid,
370 struct superblock_security_struct *sbsec,
371 const struct cred *cred)
373 const struct task_security_struct *tsec = cred->security;
374 int rc;
376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 FILESYSTEM__RELABELFROM, NULL);
378 if (rc)
379 return rc;
381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELTO, NULL);
383 return rc;
386 static int may_context_mount_inode_relabel(u32 sid,
387 struct superblock_security_struct *sbsec,
388 const struct cred *cred)
390 const struct task_security_struct *tsec = cred->security;
391 int rc;
392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 FILESYSTEM__RELABELFROM, NULL);
394 if (rc)
395 return rc;
397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 FILESYSTEM__ASSOCIATE, NULL);
399 return rc;
402 static int sb_finish_set_opts(struct super_block *sb)
404 struct superblock_security_struct *sbsec = sb->s_security;
405 struct dentry *root = sb->s_root;
406 struct inode *root_inode = root->d_inode;
407 int rc = 0;
409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 /* Make sure that the xattr handler exists and that no
411 error other than -ENODATA is returned by getxattr on
412 the root directory. -ENODATA is ok, as this may be
413 the first boot of the SELinux kernel before we have
414 assigned xattr values to the filesystem. */
415 if (!root_inode->i_op->getxattr) {
416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 "xattr support\n", sb->s_id, sb->s_type->name);
418 rc = -EOPNOTSUPP;
419 goto out;
421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 if (rc < 0 && rc != -ENODATA) {
423 if (rc == -EOPNOTSUPP)
424 printk(KERN_WARNING "SELinux: (dev %s, type "
425 "%s) has no security xattr handler\n",
426 sb->s_id, sb->s_type->name);
427 else
428 printk(KERN_WARNING "SELinux: (dev %s, type "
429 "%s) getxattr errno %d\n", sb->s_id,
430 sb->s_type->name, -rc);
431 goto out;
435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 sb->s_id, sb->s_type->name);
440 else
441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 sb->s_id, sb->s_type->name,
443 labeling_behaviors[sbsec->behavior-1]);
445 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 sbsec->behavior == SECURITY_FS_USE_NONE ||
448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 sbsec->flags &= ~SE_SBLABELSUPP;
451 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
452 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
453 sbsec->flags |= SE_SBLABELSUPP;
455 /* Initialize the root inode. */
456 rc = inode_doinit_with_dentry(root_inode, root);
458 /* Initialize any other inodes associated with the superblock, e.g.
459 inodes created prior to initial policy load or inodes created
460 during get_sb by a pseudo filesystem that directly
461 populates itself. */
462 spin_lock(&sbsec->isec_lock);
463 next_inode:
464 if (!list_empty(&sbsec->isec_head)) {
465 struct inode_security_struct *isec =
466 list_entry(sbsec->isec_head.next,
467 struct inode_security_struct, list);
468 struct inode *inode = isec->inode;
469 spin_unlock(&sbsec->isec_lock);
470 inode = igrab(inode);
471 if (inode) {
472 if (!IS_PRIVATE(inode))
473 inode_doinit(inode);
474 iput(inode);
476 spin_lock(&sbsec->isec_lock);
477 list_del_init(&isec->list);
478 goto next_inode;
480 spin_unlock(&sbsec->isec_lock);
481 out:
482 return rc;
486 * This function should allow an FS to ask what it's mount security
487 * options were so it can use those later for submounts, displaying
488 * mount options, or whatever.
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491 struct security_mnt_opts *opts)
493 int rc = 0, i;
494 struct superblock_security_struct *sbsec = sb->s_security;
495 char *context = NULL;
496 u32 len;
497 char tmp;
499 security_init_mnt_opts(opts);
501 if (!(sbsec->flags & SE_SBINITIALIZED))
502 return -EINVAL;
504 if (!ss_initialized)
505 return -EINVAL;
507 tmp = sbsec->flags & SE_MNTMASK;
508 /* count the number of mount options for this sb */
509 for (i = 0; i < 8; i++) {
510 if (tmp & 0x01)
511 opts->num_mnt_opts++;
512 tmp >>= 1;
514 /* Check if the Label support flag is set */
515 if (sbsec->flags & SE_SBLABELSUPP)
516 opts->num_mnt_opts++;
518 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
519 if (!opts->mnt_opts) {
520 rc = -ENOMEM;
521 goto out_free;
524 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
525 if (!opts->mnt_opts_flags) {
526 rc = -ENOMEM;
527 goto out_free;
530 i = 0;
531 if (sbsec->flags & FSCONTEXT_MNT) {
532 rc = security_sid_to_context(sbsec->sid, &context, &len);
533 if (rc)
534 goto out_free;
535 opts->mnt_opts[i] = context;
536 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
538 if (sbsec->flags & CONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
540 if (rc)
541 goto out_free;
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
545 if (sbsec->flags & DEFCONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
547 if (rc)
548 goto out_free;
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
552 if (sbsec->flags & ROOTCONTEXT_MNT) {
553 struct inode *root = sbsec->sb->s_root->d_inode;
554 struct inode_security_struct *isec = root->i_security;
556 rc = security_sid_to_context(isec->sid, &context, &len);
557 if (rc)
558 goto out_free;
559 opts->mnt_opts[i] = context;
560 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
562 if (sbsec->flags & SE_SBLABELSUPP) {
563 opts->mnt_opts[i] = NULL;
564 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
567 BUG_ON(i != opts->num_mnt_opts);
569 return 0;
571 out_free:
572 security_free_mnt_opts(opts);
573 return rc;
576 static int bad_option(struct superblock_security_struct *sbsec, char flag,
577 u32 old_sid, u32 new_sid)
579 char mnt_flags = sbsec->flags & SE_MNTMASK;
581 /* check if the old mount command had the same options */
582 if (sbsec->flags & SE_SBINITIALIZED)
583 if (!(sbsec->flags & flag) ||
584 (old_sid != new_sid))
585 return 1;
587 /* check if we were passed the same options twice,
588 * aka someone passed context=a,context=b
590 if (!(sbsec->flags & SE_SBINITIALIZED))
591 if (mnt_flags & flag)
592 return 1;
593 return 0;
597 * Allow filesystems with binary mount data to explicitly set mount point
598 * labeling information.
600 static int selinux_set_mnt_opts(struct super_block *sb,
601 struct security_mnt_opts *opts)
603 const struct cred *cred = current_cred();
604 int rc = 0, i;
605 struct superblock_security_struct *sbsec = sb->s_security;
606 const char *name = sb->s_type->name;
607 struct inode *inode = sbsec->sb->s_root->d_inode;
608 struct inode_security_struct *root_isec = inode->i_security;
609 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
610 u32 defcontext_sid = 0;
611 char **mount_options = opts->mnt_opts;
612 int *flags = opts->mnt_opts_flags;
613 int num_opts = opts->num_mnt_opts;
615 mutex_lock(&sbsec->lock);
617 if (!ss_initialized) {
618 if (!num_opts) {
619 /* Defer initialization until selinux_complete_init,
620 after the initial policy is loaded and the security
621 server is ready to handle calls. */
622 spin_lock(&sb_security_lock);
623 if (list_empty(&sbsec->list))
624 list_add(&sbsec->list, &superblock_security_head);
625 spin_unlock(&sb_security_lock);
626 goto out;
628 rc = -EINVAL;
629 printk(KERN_WARNING "SELinux: Unable to set superblock options "
630 "before the security server is initialized\n");
631 goto out;
635 * Binary mount data FS will come through this function twice. Once
636 * from an explicit call and once from the generic calls from the vfs.
637 * Since the generic VFS calls will not contain any security mount data
638 * we need to skip the double mount verification.
640 * This does open a hole in which we will not notice if the first
641 * mount using this sb set explict options and a second mount using
642 * this sb does not set any security options. (The first options
643 * will be used for both mounts)
645 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
646 && (num_opts == 0))
647 goto out;
650 * parse the mount options, check if they are valid sids.
651 * also check if someone is trying to mount the same sb more
652 * than once with different security options.
654 for (i = 0; i < num_opts; i++) {
655 u32 sid;
657 if (flags[i] == SE_SBLABELSUPP)
658 continue;
659 rc = security_context_to_sid(mount_options[i],
660 strlen(mount_options[i]), &sid);
661 if (rc) {
662 printk(KERN_WARNING "SELinux: security_context_to_sid"
663 "(%s) failed for (dev %s, type %s) errno=%d\n",
664 mount_options[i], sb->s_id, name, rc);
665 goto out;
667 switch (flags[i]) {
668 case FSCONTEXT_MNT:
669 fscontext_sid = sid;
671 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
672 fscontext_sid))
673 goto out_double_mount;
675 sbsec->flags |= FSCONTEXT_MNT;
676 break;
677 case CONTEXT_MNT:
678 context_sid = sid;
680 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
681 context_sid))
682 goto out_double_mount;
684 sbsec->flags |= CONTEXT_MNT;
685 break;
686 case ROOTCONTEXT_MNT:
687 rootcontext_sid = sid;
689 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
690 rootcontext_sid))
691 goto out_double_mount;
693 sbsec->flags |= ROOTCONTEXT_MNT;
695 break;
696 case DEFCONTEXT_MNT:
697 defcontext_sid = sid;
699 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
700 defcontext_sid))
701 goto out_double_mount;
703 sbsec->flags |= DEFCONTEXT_MNT;
705 break;
706 default:
707 rc = -EINVAL;
708 goto out;
712 if (sbsec->flags & SE_SBINITIALIZED) {
713 /* previously mounted with options, but not on this attempt? */
714 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
715 goto out_double_mount;
716 rc = 0;
717 goto out;
720 if (strcmp(sb->s_type->name, "proc") == 0)
721 sbsec->flags |= SE_SBPROC;
723 /* Determine the labeling behavior to use for this filesystem type. */
724 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
725 if (rc) {
726 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
727 __func__, sb->s_type->name, rc);
728 goto out;
731 /* sets the context of the superblock for the fs being mounted. */
732 if (fscontext_sid) {
733 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
734 if (rc)
735 goto out;
737 sbsec->sid = fscontext_sid;
741 * Switch to using mount point labeling behavior.
742 * sets the label used on all file below the mountpoint, and will set
743 * the superblock context if not already set.
745 if (context_sid) {
746 if (!fscontext_sid) {
747 rc = may_context_mount_sb_relabel(context_sid, sbsec,
748 cred);
749 if (rc)
750 goto out;
751 sbsec->sid = context_sid;
752 } else {
753 rc = may_context_mount_inode_relabel(context_sid, sbsec,
754 cred);
755 if (rc)
756 goto out;
758 if (!rootcontext_sid)
759 rootcontext_sid = context_sid;
761 sbsec->mntpoint_sid = context_sid;
762 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
765 if (rootcontext_sid) {
766 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
767 cred);
768 if (rc)
769 goto out;
771 root_isec->sid = rootcontext_sid;
772 root_isec->initialized = 1;
775 if (defcontext_sid) {
776 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
777 rc = -EINVAL;
778 printk(KERN_WARNING "SELinux: defcontext option is "
779 "invalid for this filesystem type\n");
780 goto out;
783 if (defcontext_sid != sbsec->def_sid) {
784 rc = may_context_mount_inode_relabel(defcontext_sid,
785 sbsec, cred);
786 if (rc)
787 goto out;
790 sbsec->def_sid = defcontext_sid;
793 rc = sb_finish_set_opts(sb);
794 out:
795 mutex_unlock(&sbsec->lock);
796 return rc;
797 out_double_mount:
798 rc = -EINVAL;
799 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
800 "security settings for (dev %s, type %s)\n", sb->s_id, name);
801 goto out;
804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
805 struct super_block *newsb)
807 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
808 struct superblock_security_struct *newsbsec = newsb->s_security;
810 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
811 int set_context = (oldsbsec->flags & CONTEXT_MNT);
812 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
815 * if the parent was able to be mounted it clearly had no special lsm
816 * mount options. thus we can safely put this sb on the list and deal
817 * with it later
819 if (!ss_initialized) {
820 spin_lock(&sb_security_lock);
821 if (list_empty(&newsbsec->list))
822 list_add(&newsbsec->list, &superblock_security_head);
823 spin_unlock(&sb_security_lock);
824 return;
827 /* how can we clone if the old one wasn't set up?? */
828 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
830 /* if fs is reusing a sb, just let its options stand... */
831 if (newsbsec->flags & SE_SBINITIALIZED)
832 return;
834 mutex_lock(&newsbsec->lock);
836 newsbsec->flags = oldsbsec->flags;
838 newsbsec->sid = oldsbsec->sid;
839 newsbsec->def_sid = oldsbsec->def_sid;
840 newsbsec->behavior = oldsbsec->behavior;
842 if (set_context) {
843 u32 sid = oldsbsec->mntpoint_sid;
845 if (!set_fscontext)
846 newsbsec->sid = sid;
847 if (!set_rootcontext) {
848 struct inode *newinode = newsb->s_root->d_inode;
849 struct inode_security_struct *newisec = newinode->i_security;
850 newisec->sid = sid;
852 newsbsec->mntpoint_sid = sid;
854 if (set_rootcontext) {
855 const struct inode *oldinode = oldsb->s_root->d_inode;
856 const struct inode_security_struct *oldisec = oldinode->i_security;
857 struct inode *newinode = newsb->s_root->d_inode;
858 struct inode_security_struct *newisec = newinode->i_security;
860 newisec->sid = oldisec->sid;
863 sb_finish_set_opts(newsb);
864 mutex_unlock(&newsbsec->lock);
867 static int selinux_parse_opts_str(char *options,
868 struct security_mnt_opts *opts)
870 char *p;
871 char *context = NULL, *defcontext = NULL;
872 char *fscontext = NULL, *rootcontext = NULL;
873 int rc, num_mnt_opts = 0;
875 opts->num_mnt_opts = 0;
877 /* Standard string-based options. */
878 while ((p = strsep(&options, "|")) != NULL) {
879 int token;
880 substring_t args[MAX_OPT_ARGS];
882 if (!*p)
883 continue;
885 token = match_token(p, tokens, args);
887 switch (token) {
888 case Opt_context:
889 if (context || defcontext) {
890 rc = -EINVAL;
891 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
892 goto out_err;
894 context = match_strdup(&args[0]);
895 if (!context) {
896 rc = -ENOMEM;
897 goto out_err;
899 break;
901 case Opt_fscontext:
902 if (fscontext) {
903 rc = -EINVAL;
904 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
905 goto out_err;
907 fscontext = match_strdup(&args[0]);
908 if (!fscontext) {
909 rc = -ENOMEM;
910 goto out_err;
912 break;
914 case Opt_rootcontext:
915 if (rootcontext) {
916 rc = -EINVAL;
917 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
918 goto out_err;
920 rootcontext = match_strdup(&args[0]);
921 if (!rootcontext) {
922 rc = -ENOMEM;
923 goto out_err;
925 break;
927 case Opt_defcontext:
928 if (context || defcontext) {
929 rc = -EINVAL;
930 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
931 goto out_err;
933 defcontext = match_strdup(&args[0]);
934 if (!defcontext) {
935 rc = -ENOMEM;
936 goto out_err;
938 break;
939 case Opt_labelsupport:
940 break;
941 default:
942 rc = -EINVAL;
943 printk(KERN_WARNING "SELinux: unknown mount option\n");
944 goto out_err;
949 rc = -ENOMEM;
950 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
951 if (!opts->mnt_opts)
952 goto out_err;
954 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
955 if (!opts->mnt_opts_flags) {
956 kfree(opts->mnt_opts);
957 goto out_err;
960 if (fscontext) {
961 opts->mnt_opts[num_mnt_opts] = fscontext;
962 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
964 if (context) {
965 opts->mnt_opts[num_mnt_opts] = context;
966 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
968 if (rootcontext) {
969 opts->mnt_opts[num_mnt_opts] = rootcontext;
970 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
972 if (defcontext) {
973 opts->mnt_opts[num_mnt_opts] = defcontext;
974 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
977 opts->num_mnt_opts = num_mnt_opts;
978 return 0;
980 out_err:
981 kfree(context);
982 kfree(defcontext);
983 kfree(fscontext);
984 kfree(rootcontext);
985 return rc;
988 * string mount options parsing and call set the sbsec
990 static int superblock_doinit(struct super_block *sb, void *data)
992 int rc = 0;
993 char *options = data;
994 struct security_mnt_opts opts;
996 security_init_mnt_opts(&opts);
998 if (!data)
999 goto out;
1001 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1003 rc = selinux_parse_opts_str(options, &opts);
1004 if (rc)
1005 goto out_err;
1007 out:
1008 rc = selinux_set_mnt_opts(sb, &opts);
1010 out_err:
1011 security_free_mnt_opts(&opts);
1012 return rc;
1015 static void selinux_write_opts(struct seq_file *m,
1016 struct security_mnt_opts *opts)
1018 int i;
1019 char *prefix;
1021 for (i = 0; i < opts->num_mnt_opts; i++) {
1022 char *has_comma;
1024 if (opts->mnt_opts[i])
1025 has_comma = strchr(opts->mnt_opts[i], ',');
1026 else
1027 has_comma = NULL;
1029 switch (opts->mnt_opts_flags[i]) {
1030 case CONTEXT_MNT:
1031 prefix = CONTEXT_STR;
1032 break;
1033 case FSCONTEXT_MNT:
1034 prefix = FSCONTEXT_STR;
1035 break;
1036 case ROOTCONTEXT_MNT:
1037 prefix = ROOTCONTEXT_STR;
1038 break;
1039 case DEFCONTEXT_MNT:
1040 prefix = DEFCONTEXT_STR;
1041 break;
1042 case SE_SBLABELSUPP:
1043 seq_putc(m, ',');
1044 seq_puts(m, LABELSUPP_STR);
1045 continue;
1046 default:
1047 BUG();
1049 /* we need a comma before each option */
1050 seq_putc(m, ',');
1051 seq_puts(m, prefix);
1052 if (has_comma)
1053 seq_putc(m, '\"');
1054 seq_puts(m, opts->mnt_opts[i]);
1055 if (has_comma)
1056 seq_putc(m, '\"');
1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1062 struct security_mnt_opts opts;
1063 int rc;
1065 rc = selinux_get_mnt_opts(sb, &opts);
1066 if (rc) {
1067 /* before policy load we may get EINVAL, don't show anything */
1068 if (rc == -EINVAL)
1069 rc = 0;
1070 return rc;
1073 selinux_write_opts(m, &opts);
1075 security_free_mnt_opts(&opts);
1077 return rc;
1080 static inline u16 inode_mode_to_security_class(umode_t mode)
1082 switch (mode & S_IFMT) {
1083 case S_IFSOCK:
1084 return SECCLASS_SOCK_FILE;
1085 case S_IFLNK:
1086 return SECCLASS_LNK_FILE;
1087 case S_IFREG:
1088 return SECCLASS_FILE;
1089 case S_IFBLK:
1090 return SECCLASS_BLK_FILE;
1091 case S_IFDIR:
1092 return SECCLASS_DIR;
1093 case S_IFCHR:
1094 return SECCLASS_CHR_FILE;
1095 case S_IFIFO:
1096 return SECCLASS_FIFO_FILE;
1100 return SECCLASS_FILE;
1103 static inline int default_protocol_stream(int protocol)
1105 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1108 static inline int default_protocol_dgram(int protocol)
1110 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1115 switch (family) {
1116 case PF_UNIX:
1117 switch (type) {
1118 case SOCK_STREAM:
1119 case SOCK_SEQPACKET:
1120 return SECCLASS_UNIX_STREAM_SOCKET;
1121 case SOCK_DGRAM:
1122 return SECCLASS_UNIX_DGRAM_SOCKET;
1124 break;
1125 case PF_INET:
1126 case PF_INET6:
1127 switch (type) {
1128 case SOCK_STREAM:
1129 if (default_protocol_stream(protocol))
1130 return SECCLASS_TCP_SOCKET;
1131 else
1132 return SECCLASS_RAWIP_SOCKET;
1133 case SOCK_DGRAM:
1134 if (default_protocol_dgram(protocol))
1135 return SECCLASS_UDP_SOCKET;
1136 else
1137 return SECCLASS_RAWIP_SOCKET;
1138 case SOCK_DCCP:
1139 return SECCLASS_DCCP_SOCKET;
1140 default:
1141 return SECCLASS_RAWIP_SOCKET;
1143 break;
1144 case PF_NETLINK:
1145 switch (protocol) {
1146 case NETLINK_ROUTE:
1147 return SECCLASS_NETLINK_ROUTE_SOCKET;
1148 case NETLINK_FIREWALL:
1149 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1150 case NETLINK_INET_DIAG:
1151 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1152 case NETLINK_NFLOG:
1153 return SECCLASS_NETLINK_NFLOG_SOCKET;
1154 case NETLINK_XFRM:
1155 return SECCLASS_NETLINK_XFRM_SOCKET;
1156 case NETLINK_SELINUX:
1157 return SECCLASS_NETLINK_SELINUX_SOCKET;
1158 case NETLINK_AUDIT:
1159 return SECCLASS_NETLINK_AUDIT_SOCKET;
1160 case NETLINK_IP6_FW:
1161 return SECCLASS_NETLINK_IP6FW_SOCKET;
1162 case NETLINK_DNRTMSG:
1163 return SECCLASS_NETLINK_DNRT_SOCKET;
1164 case NETLINK_KOBJECT_UEVENT:
1165 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1166 default:
1167 return SECCLASS_NETLINK_SOCKET;
1169 case PF_PACKET:
1170 return SECCLASS_PACKET_SOCKET;
1171 case PF_KEY:
1172 return SECCLASS_KEY_SOCKET;
1173 case PF_APPLETALK:
1174 return SECCLASS_APPLETALK_SOCKET;
1177 return SECCLASS_SOCKET;
1180 #ifdef CONFIG_PROC_FS
1181 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1182 u16 tclass,
1183 u32 *sid)
1185 int buflen, rc;
1186 char *buffer, *path, *end;
1188 buffer = (char *)__get_free_page(GFP_KERNEL);
1189 if (!buffer)
1190 return -ENOMEM;
1192 buflen = PAGE_SIZE;
1193 end = buffer+buflen;
1194 *--end = '\0';
1195 buflen--;
1196 path = end-1;
1197 *path = '/';
1198 while (de && de != de->parent) {
1199 buflen -= de->namelen + 1;
1200 if (buflen < 0)
1201 break;
1202 end -= de->namelen;
1203 memcpy(end, de->name, de->namelen);
1204 *--end = '/';
1205 path = end;
1206 de = de->parent;
1208 rc = security_genfs_sid("proc", path, tclass, sid);
1209 free_page((unsigned long)buffer);
1210 return rc;
1212 #else
1213 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1214 u16 tclass,
1215 u32 *sid)
1217 return -EINVAL;
1219 #endif
1221 /* The inode's security attributes must be initialized before first use. */
1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1224 struct superblock_security_struct *sbsec = NULL;
1225 struct inode_security_struct *isec = inode->i_security;
1226 u32 sid;
1227 struct dentry *dentry;
1228 #define INITCONTEXTLEN 255
1229 char *context = NULL;
1230 unsigned len = 0;
1231 int rc = 0;
1233 if (isec->initialized)
1234 goto out;
1236 mutex_lock(&isec->lock);
1237 if (isec->initialized)
1238 goto out_unlock;
1240 sbsec = inode->i_sb->s_security;
1241 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1242 /* Defer initialization until selinux_complete_init,
1243 after the initial policy is loaded and the security
1244 server is ready to handle calls. */
1245 spin_lock(&sbsec->isec_lock);
1246 if (list_empty(&isec->list))
1247 list_add(&isec->list, &sbsec->isec_head);
1248 spin_unlock(&sbsec->isec_lock);
1249 goto out_unlock;
1252 switch (sbsec->behavior) {
1253 case SECURITY_FS_USE_XATTR:
1254 if (!inode->i_op->getxattr) {
1255 isec->sid = sbsec->def_sid;
1256 break;
1259 /* Need a dentry, since the xattr API requires one.
1260 Life would be simpler if we could just pass the inode. */
1261 if (opt_dentry) {
1262 /* Called from d_instantiate or d_splice_alias. */
1263 dentry = dget(opt_dentry);
1264 } else {
1265 /* Called from selinux_complete_init, try to find a dentry. */
1266 dentry = d_find_alias(inode);
1268 if (!dentry) {
1270 * this is can be hit on boot when a file is accessed
1271 * before the policy is loaded. When we load policy we
1272 * may find inodes that have no dentry on the
1273 * sbsec->isec_head list. No reason to complain as these
1274 * will get fixed up the next time we go through
1275 * inode_doinit with a dentry, before these inodes could
1276 * be used again by userspace.
1278 goto out_unlock;
1281 len = INITCONTEXTLEN;
1282 context = kmalloc(len+1, GFP_NOFS);
1283 if (!context) {
1284 rc = -ENOMEM;
1285 dput(dentry);
1286 goto out_unlock;
1288 context[len] = '\0';
1289 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290 context, len);
1291 if (rc == -ERANGE) {
1292 kfree(context);
1294 /* Need a larger buffer. Query for the right size. */
1295 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1296 NULL, 0);
1297 if (rc < 0) {
1298 dput(dentry);
1299 goto out_unlock;
1301 len = rc;
1302 context = kmalloc(len+1, GFP_NOFS);
1303 if (!context) {
1304 rc = -ENOMEM;
1305 dput(dentry);
1306 goto out_unlock;
1308 context[len] = '\0';
1309 rc = inode->i_op->getxattr(dentry,
1310 XATTR_NAME_SELINUX,
1311 context, len);
1313 dput(dentry);
1314 if (rc < 0) {
1315 if (rc != -ENODATA) {
1316 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1317 "%d for dev=%s ino=%ld\n", __func__,
1318 -rc, inode->i_sb->s_id, inode->i_ino);
1319 kfree(context);
1320 goto out_unlock;
1322 /* Map ENODATA to the default file SID */
1323 sid = sbsec->def_sid;
1324 rc = 0;
1325 } else {
1326 rc = security_context_to_sid_default(context, rc, &sid,
1327 sbsec->def_sid,
1328 GFP_NOFS);
1329 if (rc) {
1330 char *dev = inode->i_sb->s_id;
1331 unsigned long ino = inode->i_ino;
1333 if (rc == -EINVAL) {
1334 if (printk_ratelimit())
1335 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1336 "context=%s. This indicates you may need to relabel the inode or the "
1337 "filesystem in question.\n", ino, dev, context);
1338 } else {
1339 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1340 "returned %d for dev=%s ino=%ld\n",
1341 __func__, context, -rc, dev, ino);
1343 kfree(context);
1344 /* Leave with the unlabeled SID */
1345 rc = 0;
1346 break;
1349 kfree(context);
1350 isec->sid = sid;
1351 break;
1352 case SECURITY_FS_USE_TASK:
1353 isec->sid = isec->task_sid;
1354 break;
1355 case SECURITY_FS_USE_TRANS:
1356 /* Default to the fs SID. */
1357 isec->sid = sbsec->sid;
1359 /* Try to obtain a transition SID. */
1360 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1361 rc = security_transition_sid(isec->task_sid,
1362 sbsec->sid,
1363 isec->sclass,
1364 &sid);
1365 if (rc)
1366 goto out_unlock;
1367 isec->sid = sid;
1368 break;
1369 case SECURITY_FS_USE_MNTPOINT:
1370 isec->sid = sbsec->mntpoint_sid;
1371 break;
1372 default:
1373 /* Default to the fs superblock SID. */
1374 isec->sid = sbsec->sid;
1376 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1377 struct proc_inode *proci = PROC_I(inode);
1378 if (proci->pde) {
1379 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380 rc = selinux_proc_get_sid(proci->pde,
1381 isec->sclass,
1382 &sid);
1383 if (rc)
1384 goto out_unlock;
1385 isec->sid = sid;
1388 break;
1391 isec->initialized = 1;
1393 out_unlock:
1394 mutex_unlock(&isec->lock);
1395 out:
1396 if (isec->sclass == SECCLASS_FILE)
1397 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1398 return rc;
1401 /* Convert a Linux signal to an access vector. */
1402 static inline u32 signal_to_av(int sig)
1404 u32 perm = 0;
1406 switch (sig) {
1407 case SIGCHLD:
1408 /* Commonly granted from child to parent. */
1409 perm = PROCESS__SIGCHLD;
1410 break;
1411 case SIGKILL:
1412 /* Cannot be caught or ignored */
1413 perm = PROCESS__SIGKILL;
1414 break;
1415 case SIGSTOP:
1416 /* Cannot be caught or ignored */
1417 perm = PROCESS__SIGSTOP;
1418 break;
1419 default:
1420 /* All other signals. */
1421 perm = PROCESS__SIGNAL;
1422 break;
1425 return perm;
1429 * Check permission between a pair of credentials
1430 * fork check, ptrace check, etc.
1432 static int cred_has_perm(const struct cred *actor,
1433 const struct cred *target,
1434 u32 perms)
1436 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1438 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1442 * Check permission between a pair of tasks, e.g. signal checks,
1443 * fork check, ptrace check, etc.
1444 * tsk1 is the actor and tsk2 is the target
1445 * - this uses the default subjective creds of tsk1
1447 static int task_has_perm(const struct task_struct *tsk1,
1448 const struct task_struct *tsk2,
1449 u32 perms)
1451 const struct task_security_struct *__tsec1, *__tsec2;
1452 u32 sid1, sid2;
1454 rcu_read_lock();
1455 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1456 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1457 rcu_read_unlock();
1458 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1462 * Check permission between current and another task, e.g. signal checks,
1463 * fork check, ptrace check, etc.
1464 * current is the actor and tsk2 is the target
1465 * - this uses current's subjective creds
1467 static int current_has_perm(const struct task_struct *tsk,
1468 u32 perms)
1470 u32 sid, tsid;
1472 sid = current_sid();
1473 tsid = task_sid(tsk);
1474 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1477 #if CAP_LAST_CAP > 63
1478 #error Fix SELinux to handle capabilities > 63.
1479 #endif
1481 /* Check whether a task is allowed to use a capability. */
1482 static int task_has_capability(struct task_struct *tsk,
1483 const struct cred *cred,
1484 int cap, int audit)
1486 struct common_audit_data ad;
1487 struct av_decision avd;
1488 u16 sclass;
1489 u32 sid = cred_sid(cred);
1490 u32 av = CAP_TO_MASK(cap);
1491 int rc;
1493 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1494 ad.tsk = tsk;
1495 ad.u.cap = cap;
1497 switch (CAP_TO_INDEX(cap)) {
1498 case 0:
1499 sclass = SECCLASS_CAPABILITY;
1500 break;
1501 case 1:
1502 sclass = SECCLASS_CAPABILITY2;
1503 break;
1504 default:
1505 printk(KERN_ERR
1506 "SELinux: out of range capability %d\n", cap);
1507 BUG();
1510 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1511 if (audit == SECURITY_CAP_AUDIT)
1512 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1513 return rc;
1516 /* Check whether a task is allowed to use a system operation. */
1517 static int task_has_system(struct task_struct *tsk,
1518 u32 perms)
1520 u32 sid = task_sid(tsk);
1522 return avc_has_perm(sid, SECINITSID_KERNEL,
1523 SECCLASS_SYSTEM, perms, NULL);
1526 /* Check whether a task has a particular permission to an inode.
1527 The 'adp' parameter is optional and allows other audit
1528 data to be passed (e.g. the dentry). */
1529 static int inode_has_perm(const struct cred *cred,
1530 struct inode *inode,
1531 u32 perms,
1532 struct common_audit_data *adp)
1534 struct inode_security_struct *isec;
1535 struct common_audit_data ad;
1536 u32 sid;
1538 validate_creds(cred);
1540 if (unlikely(IS_PRIVATE(inode)))
1541 return 0;
1543 sid = cred_sid(cred);
1544 isec = inode->i_security;
1546 if (!adp) {
1547 adp = &ad;
1548 COMMON_AUDIT_DATA_INIT(&ad, FS);
1549 ad.u.fs.inode = inode;
1552 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1555 /* Same as inode_has_perm, but pass explicit audit data containing
1556 the dentry to help the auditing code to more easily generate the
1557 pathname if needed. */
1558 static inline int dentry_has_perm(const struct cred *cred,
1559 struct vfsmount *mnt,
1560 struct dentry *dentry,
1561 u32 av)
1563 struct inode *inode = dentry->d_inode;
1564 struct common_audit_data ad;
1566 COMMON_AUDIT_DATA_INIT(&ad, FS);
1567 ad.u.fs.path.mnt = mnt;
1568 ad.u.fs.path.dentry = dentry;
1569 return inode_has_perm(cred, inode, av, &ad);
1572 /* Check whether a task can use an open file descriptor to
1573 access an inode in a given way. Check access to the
1574 descriptor itself, and then use dentry_has_perm to
1575 check a particular permission to the file.
1576 Access to the descriptor is implicitly granted if it
1577 has the same SID as the process. If av is zero, then
1578 access to the file is not checked, e.g. for cases
1579 where only the descriptor is affected like seek. */
1580 static int file_has_perm(const struct cred *cred,
1581 struct file *file,
1582 u32 av)
1584 struct file_security_struct *fsec = file->f_security;
1585 struct inode *inode = file->f_path.dentry->d_inode;
1586 struct common_audit_data ad;
1587 u32 sid = cred_sid(cred);
1588 int rc;
1590 COMMON_AUDIT_DATA_INIT(&ad, FS);
1591 ad.u.fs.path = file->f_path;
1593 if (sid != fsec->sid) {
1594 rc = avc_has_perm(sid, fsec->sid,
1595 SECCLASS_FD,
1596 FD__USE,
1597 &ad);
1598 if (rc)
1599 goto out;
1602 /* av is zero if only checking access to the descriptor. */
1603 rc = 0;
1604 if (av)
1605 rc = inode_has_perm(cred, inode, av, &ad);
1607 out:
1608 return rc;
1611 /* Check whether a task can create a file. */
1612 static int may_create(struct inode *dir,
1613 struct dentry *dentry,
1614 u16 tclass)
1616 const struct cred *cred = current_cred();
1617 const struct task_security_struct *tsec = cred->security;
1618 struct inode_security_struct *dsec;
1619 struct superblock_security_struct *sbsec;
1620 u32 sid, newsid;
1621 struct common_audit_data ad;
1622 int rc;
1624 dsec = dir->i_security;
1625 sbsec = dir->i_sb->s_security;
1627 sid = tsec->sid;
1628 newsid = tsec->create_sid;
1630 COMMON_AUDIT_DATA_INIT(&ad, FS);
1631 ad.u.fs.path.dentry = dentry;
1633 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1634 DIR__ADD_NAME | DIR__SEARCH,
1635 &ad);
1636 if (rc)
1637 return rc;
1639 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1640 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1641 if (rc)
1642 return rc;
1645 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1646 if (rc)
1647 return rc;
1649 return avc_has_perm(newsid, sbsec->sid,
1650 SECCLASS_FILESYSTEM,
1651 FILESYSTEM__ASSOCIATE, &ad);
1654 /* Check whether a task can create a key. */
1655 static int may_create_key(u32 ksid,
1656 struct task_struct *ctx)
1658 u32 sid = task_sid(ctx);
1660 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1663 #define MAY_LINK 0
1664 #define MAY_UNLINK 1
1665 #define MAY_RMDIR 2
1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1668 static int may_link(struct inode *dir,
1669 struct dentry *dentry,
1670 int kind)
1673 struct inode_security_struct *dsec, *isec;
1674 struct common_audit_data ad;
1675 u32 sid = current_sid();
1676 u32 av;
1677 int rc;
1679 dsec = dir->i_security;
1680 isec = dentry->d_inode->i_security;
1682 COMMON_AUDIT_DATA_INIT(&ad, FS);
1683 ad.u.fs.path.dentry = dentry;
1685 av = DIR__SEARCH;
1686 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1687 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1688 if (rc)
1689 return rc;
1691 switch (kind) {
1692 case MAY_LINK:
1693 av = FILE__LINK;
1694 break;
1695 case MAY_UNLINK:
1696 av = FILE__UNLINK;
1697 break;
1698 case MAY_RMDIR:
1699 av = DIR__RMDIR;
1700 break;
1701 default:
1702 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1703 __func__, kind);
1704 return 0;
1707 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1708 return rc;
1711 static inline int may_rename(struct inode *old_dir,
1712 struct dentry *old_dentry,
1713 struct inode *new_dir,
1714 struct dentry *new_dentry)
1716 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1717 struct common_audit_data ad;
1718 u32 sid = current_sid();
1719 u32 av;
1720 int old_is_dir, new_is_dir;
1721 int rc;
1723 old_dsec = old_dir->i_security;
1724 old_isec = old_dentry->d_inode->i_security;
1725 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1726 new_dsec = new_dir->i_security;
1728 COMMON_AUDIT_DATA_INIT(&ad, FS);
1730 ad.u.fs.path.dentry = old_dentry;
1731 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1732 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1733 if (rc)
1734 return rc;
1735 rc = avc_has_perm(sid, old_isec->sid,
1736 old_isec->sclass, FILE__RENAME, &ad);
1737 if (rc)
1738 return rc;
1739 if (old_is_dir && new_dir != old_dir) {
1740 rc = avc_has_perm(sid, old_isec->sid,
1741 old_isec->sclass, DIR__REPARENT, &ad);
1742 if (rc)
1743 return rc;
1746 ad.u.fs.path.dentry = new_dentry;
1747 av = DIR__ADD_NAME | DIR__SEARCH;
1748 if (new_dentry->d_inode)
1749 av |= DIR__REMOVE_NAME;
1750 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1751 if (rc)
1752 return rc;
1753 if (new_dentry->d_inode) {
1754 new_isec = new_dentry->d_inode->i_security;
1755 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1756 rc = avc_has_perm(sid, new_isec->sid,
1757 new_isec->sclass,
1758 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1759 if (rc)
1760 return rc;
1763 return 0;
1766 /* Check whether a task can perform a filesystem operation. */
1767 static int superblock_has_perm(const struct cred *cred,
1768 struct super_block *sb,
1769 u32 perms,
1770 struct common_audit_data *ad)
1772 struct superblock_security_struct *sbsec;
1773 u32 sid = cred_sid(cred);
1775 sbsec = sb->s_security;
1776 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1779 /* Convert a Linux mode and permission mask to an access vector. */
1780 static inline u32 file_mask_to_av(int mode, int mask)
1782 u32 av = 0;
1784 if ((mode & S_IFMT) != S_IFDIR) {
1785 if (mask & MAY_EXEC)
1786 av |= FILE__EXECUTE;
1787 if (mask & MAY_READ)
1788 av |= FILE__READ;
1790 if (mask & MAY_APPEND)
1791 av |= FILE__APPEND;
1792 else if (mask & MAY_WRITE)
1793 av |= FILE__WRITE;
1795 } else {
1796 if (mask & MAY_EXEC)
1797 av |= DIR__SEARCH;
1798 if (mask & MAY_WRITE)
1799 av |= DIR__WRITE;
1800 if (mask & MAY_READ)
1801 av |= DIR__READ;
1804 return av;
1807 /* Convert a Linux file to an access vector. */
1808 static inline u32 file_to_av(struct file *file)
1810 u32 av = 0;
1812 if (file->f_mode & FMODE_READ)
1813 av |= FILE__READ;
1814 if (file->f_mode & FMODE_WRITE) {
1815 if (file->f_flags & O_APPEND)
1816 av |= FILE__APPEND;
1817 else
1818 av |= FILE__WRITE;
1820 if (!av) {
1822 * Special file opened with flags 3 for ioctl-only use.
1824 av = FILE__IOCTL;
1827 return av;
1831 * Convert a file to an access vector and include the correct open
1832 * open permission.
1834 static inline u32 open_file_to_av(struct file *file)
1836 u32 av = file_to_av(file);
1838 if (selinux_policycap_openperm) {
1839 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1841 * lnk files and socks do not really have an 'open'
1843 if (S_ISREG(mode))
1844 av |= FILE__OPEN;
1845 else if (S_ISCHR(mode))
1846 av |= CHR_FILE__OPEN;
1847 else if (S_ISBLK(mode))
1848 av |= BLK_FILE__OPEN;
1849 else if (S_ISFIFO(mode))
1850 av |= FIFO_FILE__OPEN;
1851 else if (S_ISDIR(mode))
1852 av |= DIR__OPEN;
1853 else if (S_ISSOCK(mode))
1854 av |= SOCK_FILE__OPEN;
1855 else
1856 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1857 "unknown mode:%o\n", __func__, mode);
1859 return av;
1862 /* Hook functions begin here. */
1864 static int selinux_ptrace_access_check(struct task_struct *child,
1865 unsigned int mode)
1867 int rc;
1869 rc = cap_ptrace_access_check(child, mode);
1870 if (rc)
1871 return rc;
1873 if (mode == PTRACE_MODE_READ) {
1874 u32 sid = current_sid();
1875 u32 csid = task_sid(child);
1876 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1879 return current_has_perm(child, PROCESS__PTRACE);
1882 static int selinux_ptrace_traceme(struct task_struct *parent)
1884 int rc;
1886 rc = cap_ptrace_traceme(parent);
1887 if (rc)
1888 return rc;
1890 return task_has_perm(parent, current, PROCESS__PTRACE);
1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1894 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1896 int error;
1898 error = current_has_perm(target, PROCESS__GETCAP);
1899 if (error)
1900 return error;
1902 return cap_capget(target, effective, inheritable, permitted);
1905 static int selinux_capset(struct cred *new, const struct cred *old,
1906 const kernel_cap_t *effective,
1907 const kernel_cap_t *inheritable,
1908 const kernel_cap_t *permitted)
1910 int error;
1912 error = cap_capset(new, old,
1913 effective, inheritable, permitted);
1914 if (error)
1915 return error;
1917 return cred_has_perm(old, new, PROCESS__SETCAP);
1921 * (This comment used to live with the selinux_task_setuid hook,
1922 * which was removed).
1924 * Since setuid only affects the current process, and since the SELinux
1925 * controls are not based on the Linux identity attributes, SELinux does not
1926 * need to control this operation. However, SELinux does control the use of
1927 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1931 int cap, int audit)
1933 int rc;
1935 rc = cap_capable(tsk, cred, cap, audit);
1936 if (rc)
1937 return rc;
1939 return task_has_capability(tsk, cred, cap, audit);
1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1944 int buflen, rc;
1945 char *buffer, *path, *end;
1947 rc = -ENOMEM;
1948 buffer = (char *)__get_free_page(GFP_KERNEL);
1949 if (!buffer)
1950 goto out;
1952 buflen = PAGE_SIZE;
1953 end = buffer+buflen;
1954 *--end = '\0';
1955 buflen--;
1956 path = end-1;
1957 *path = '/';
1958 while (table) {
1959 const char *name = table->procname;
1960 size_t namelen = strlen(name);
1961 buflen -= namelen + 1;
1962 if (buflen < 0)
1963 goto out_free;
1964 end -= namelen;
1965 memcpy(end, name, namelen);
1966 *--end = '/';
1967 path = end;
1968 table = table->parent;
1970 buflen -= 4;
1971 if (buflen < 0)
1972 goto out_free;
1973 end -= 4;
1974 memcpy(end, "/sys", 4);
1975 path = end;
1976 rc = security_genfs_sid("proc", path, tclass, sid);
1977 out_free:
1978 free_page((unsigned long)buffer);
1979 out:
1980 return rc;
1983 static int selinux_sysctl(ctl_table *table, int op)
1985 int error = 0;
1986 u32 av;
1987 u32 tsid, sid;
1988 int rc;
1990 sid = current_sid();
1992 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1993 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1994 if (rc) {
1995 /* Default to the well-defined sysctl SID. */
1996 tsid = SECINITSID_SYSCTL;
1999 /* The op values are "defined" in sysctl.c, thereby creating
2000 * a bad coupling between this module and sysctl.c */
2001 if (op == 001) {
2002 error = avc_has_perm(sid, tsid,
2003 SECCLASS_DIR, DIR__SEARCH, NULL);
2004 } else {
2005 av = 0;
2006 if (op & 004)
2007 av |= FILE__READ;
2008 if (op & 002)
2009 av |= FILE__WRITE;
2010 if (av)
2011 error = avc_has_perm(sid, tsid,
2012 SECCLASS_FILE, av, NULL);
2015 return error;
2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2020 const struct cred *cred = current_cred();
2021 int rc = 0;
2023 if (!sb)
2024 return 0;
2026 switch (cmds) {
2027 case Q_SYNC:
2028 case Q_QUOTAON:
2029 case Q_QUOTAOFF:
2030 case Q_SETINFO:
2031 case Q_SETQUOTA:
2032 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2033 break;
2034 case Q_GETFMT:
2035 case Q_GETINFO:
2036 case Q_GETQUOTA:
2037 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2038 break;
2039 default:
2040 rc = 0; /* let the kernel handle invalid cmds */
2041 break;
2043 return rc;
2046 static int selinux_quota_on(struct dentry *dentry)
2048 const struct cred *cred = current_cred();
2050 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2053 static int selinux_syslog(int type)
2055 int rc;
2057 rc = cap_syslog(type);
2058 if (rc)
2059 return rc;
2061 switch (type) {
2062 case 3: /* Read last kernel messages */
2063 case 10: /* Return size of the log buffer */
2064 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2065 break;
2066 case 6: /* Disable logging to console */
2067 case 7: /* Enable logging to console */
2068 case 8: /* Set level of messages printed to console */
2069 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2070 break;
2071 case 0: /* Close log */
2072 case 1: /* Open log */
2073 case 2: /* Read from log */
2074 case 4: /* Read/clear last kernel messages */
2075 case 5: /* Clear ring buffer */
2076 default:
2077 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2078 break;
2080 return rc;
2084 * Check that a process has enough memory to allocate a new virtual
2085 * mapping. 0 means there is enough memory for the allocation to
2086 * succeed and -ENOMEM implies there is not.
2088 * Do not audit the selinux permission check, as this is applied to all
2089 * processes that allocate mappings.
2091 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2093 int rc, cap_sys_admin = 0;
2095 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2096 SECURITY_CAP_NOAUDIT);
2097 if (rc == 0)
2098 cap_sys_admin = 1;
2100 return __vm_enough_memory(mm, pages, cap_sys_admin);
2103 /* binprm security operations */
2105 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2107 const struct task_security_struct *old_tsec;
2108 struct task_security_struct *new_tsec;
2109 struct inode_security_struct *isec;
2110 struct common_audit_data ad;
2111 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2112 int rc;
2114 rc = cap_bprm_set_creds(bprm);
2115 if (rc)
2116 return rc;
2118 /* SELinux context only depends on initial program or script and not
2119 * the script interpreter */
2120 if (bprm->cred_prepared)
2121 return 0;
2123 old_tsec = current_security();
2124 new_tsec = bprm->cred->security;
2125 isec = inode->i_security;
2127 /* Default to the current task SID. */
2128 new_tsec->sid = old_tsec->sid;
2129 new_tsec->osid = old_tsec->sid;
2131 /* Reset fs, key, and sock SIDs on execve. */
2132 new_tsec->create_sid = 0;
2133 new_tsec->keycreate_sid = 0;
2134 new_tsec->sockcreate_sid = 0;
2136 if (old_tsec->exec_sid) {
2137 new_tsec->sid = old_tsec->exec_sid;
2138 /* Reset exec SID on execve. */
2139 new_tsec->exec_sid = 0;
2140 } else {
2141 /* Check for a default transition on this program. */
2142 rc = security_transition_sid(old_tsec->sid, isec->sid,
2143 SECCLASS_PROCESS, &new_tsec->sid);
2144 if (rc)
2145 return rc;
2148 COMMON_AUDIT_DATA_INIT(&ad, FS);
2149 ad.u.fs.path = bprm->file->f_path;
2151 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2152 new_tsec->sid = old_tsec->sid;
2154 if (new_tsec->sid == old_tsec->sid) {
2155 rc = avc_has_perm(old_tsec->sid, isec->sid,
2156 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2157 if (rc)
2158 return rc;
2159 } else {
2160 /* Check permissions for the transition. */
2161 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2162 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2163 if (rc)
2164 return rc;
2166 rc = avc_has_perm(new_tsec->sid, isec->sid,
2167 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2168 if (rc)
2169 return rc;
2171 /* Check for shared state */
2172 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2173 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2174 SECCLASS_PROCESS, PROCESS__SHARE,
2175 NULL);
2176 if (rc)
2177 return -EPERM;
2180 /* Make sure that anyone attempting to ptrace over a task that
2181 * changes its SID has the appropriate permit */
2182 if (bprm->unsafe &
2183 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2184 struct task_struct *tracer;
2185 struct task_security_struct *sec;
2186 u32 ptsid = 0;
2188 rcu_read_lock();
2189 tracer = tracehook_tracer_task(current);
2190 if (likely(tracer != NULL)) {
2191 sec = __task_cred(tracer)->security;
2192 ptsid = sec->sid;
2194 rcu_read_unlock();
2196 if (ptsid != 0) {
2197 rc = avc_has_perm(ptsid, new_tsec->sid,
2198 SECCLASS_PROCESS,
2199 PROCESS__PTRACE, NULL);
2200 if (rc)
2201 return -EPERM;
2205 /* Clear any possibly unsafe personality bits on exec: */
2206 bprm->per_clear |= PER_CLEAR_ON_SETID;
2209 return 0;
2212 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2214 const struct cred *cred = current_cred();
2215 const struct task_security_struct *tsec = cred->security;
2216 u32 sid, osid;
2217 int atsecure = 0;
2219 sid = tsec->sid;
2220 osid = tsec->osid;
2222 if (osid != sid) {
2223 /* Enable secure mode for SIDs transitions unless
2224 the noatsecure permission is granted between
2225 the two SIDs, i.e. ahp returns 0. */
2226 atsecure = avc_has_perm(osid, sid,
2227 SECCLASS_PROCESS,
2228 PROCESS__NOATSECURE, NULL);
2231 return (atsecure || cap_bprm_secureexec(bprm));
2234 extern struct vfsmount *selinuxfs_mount;
2235 extern struct dentry *selinux_null;
2237 /* Derived from fs/exec.c:flush_old_files. */
2238 static inline void flush_unauthorized_files(const struct cred *cred,
2239 struct files_struct *files)
2241 struct common_audit_data ad;
2242 struct file *file, *devnull = NULL;
2243 struct tty_struct *tty;
2244 struct fdtable *fdt;
2245 long j = -1;
2246 int drop_tty = 0;
2248 tty = get_current_tty();
2249 if (tty) {
2250 file_list_lock();
2251 if (!list_empty(&tty->tty_files)) {
2252 struct inode *inode;
2254 /* Revalidate access to controlling tty.
2255 Use inode_has_perm on the tty inode directly rather
2256 than using file_has_perm, as this particular open
2257 file may belong to another process and we are only
2258 interested in the inode-based check here. */
2259 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2260 inode = file->f_path.dentry->d_inode;
2261 if (inode_has_perm(cred, inode,
2262 FILE__READ | FILE__WRITE, NULL)) {
2263 drop_tty = 1;
2266 file_list_unlock();
2267 tty_kref_put(tty);
2269 /* Reset controlling tty. */
2270 if (drop_tty)
2271 no_tty();
2273 /* Revalidate access to inherited open files. */
2275 COMMON_AUDIT_DATA_INIT(&ad, FS);
2277 spin_lock(&files->file_lock);
2278 for (;;) {
2279 unsigned long set, i;
2280 int fd;
2282 j++;
2283 i = j * __NFDBITS;
2284 fdt = files_fdtable(files);
2285 if (i >= fdt->max_fds)
2286 break;
2287 set = fdt->open_fds->fds_bits[j];
2288 if (!set)
2289 continue;
2290 spin_unlock(&files->file_lock);
2291 for ( ; set ; i++, set >>= 1) {
2292 if (set & 1) {
2293 file = fget(i);
2294 if (!file)
2295 continue;
2296 if (file_has_perm(cred,
2297 file,
2298 file_to_av(file))) {
2299 sys_close(i);
2300 fd = get_unused_fd();
2301 if (fd != i) {
2302 if (fd >= 0)
2303 put_unused_fd(fd);
2304 fput(file);
2305 continue;
2307 if (devnull) {
2308 get_file(devnull);
2309 } else {
2310 devnull = dentry_open(
2311 dget(selinux_null),
2312 mntget(selinuxfs_mount),
2313 O_RDWR, cred);
2314 if (IS_ERR(devnull)) {
2315 devnull = NULL;
2316 put_unused_fd(fd);
2317 fput(file);
2318 continue;
2321 fd_install(fd, devnull);
2323 fput(file);
2326 spin_lock(&files->file_lock);
2329 spin_unlock(&files->file_lock);
2333 * Prepare a process for imminent new credential changes due to exec
2335 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2337 struct task_security_struct *new_tsec;
2338 struct rlimit *rlim, *initrlim;
2339 int rc, i;
2341 new_tsec = bprm->cred->security;
2342 if (new_tsec->sid == new_tsec->osid)
2343 return;
2345 /* Close files for which the new task SID is not authorized. */
2346 flush_unauthorized_files(bprm->cred, current->files);
2348 /* Always clear parent death signal on SID transitions. */
2349 current->pdeath_signal = 0;
2351 /* Check whether the new SID can inherit resource limits from the old
2352 * SID. If not, reset all soft limits to the lower of the current
2353 * task's hard limit and the init task's soft limit.
2355 * Note that the setting of hard limits (even to lower them) can be
2356 * controlled by the setrlimit check. The inclusion of the init task's
2357 * soft limit into the computation is to avoid resetting soft limits
2358 * higher than the default soft limit for cases where the default is
2359 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2361 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2362 PROCESS__RLIMITINH, NULL);
2363 if (rc) {
2364 for (i = 0; i < RLIM_NLIMITS; i++) {
2365 rlim = current->signal->rlim + i;
2366 initrlim = init_task.signal->rlim + i;
2367 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2369 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2374 * Clean up the process immediately after the installation of new credentials
2375 * due to exec
2377 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2379 const struct task_security_struct *tsec = current_security();
2380 struct itimerval itimer;
2381 u32 osid, sid;
2382 int rc, i;
2384 osid = tsec->osid;
2385 sid = tsec->sid;
2387 if (sid == osid)
2388 return;
2390 /* Check whether the new SID can inherit signal state from the old SID.
2391 * If not, clear itimers to avoid subsequent signal generation and
2392 * flush and unblock signals.
2394 * This must occur _after_ the task SID has been updated so that any
2395 * kill done after the flush will be checked against the new SID.
2397 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2398 if (rc) {
2399 memset(&itimer, 0, sizeof itimer);
2400 for (i = 0; i < 3; i++)
2401 do_setitimer(i, &itimer, NULL);
2402 spin_lock_irq(&current->sighand->siglock);
2403 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2404 __flush_signals(current);
2405 flush_signal_handlers(current, 1);
2406 sigemptyset(&current->blocked);
2408 spin_unlock_irq(&current->sighand->siglock);
2411 /* Wake up the parent if it is waiting so that it can recheck
2412 * wait permission to the new task SID. */
2413 read_lock(&tasklist_lock);
2414 __wake_up_parent(current, current->real_parent);
2415 read_unlock(&tasklist_lock);
2418 /* superblock security operations */
2420 static int selinux_sb_alloc_security(struct super_block *sb)
2422 return superblock_alloc_security(sb);
2425 static void selinux_sb_free_security(struct super_block *sb)
2427 superblock_free_security(sb);
2430 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2432 if (plen > olen)
2433 return 0;
2435 return !memcmp(prefix, option, plen);
2438 static inline int selinux_option(char *option, int len)
2440 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2441 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2442 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2443 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2444 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2447 static inline void take_option(char **to, char *from, int *first, int len)
2449 if (!*first) {
2450 **to = ',';
2451 *to += 1;
2452 } else
2453 *first = 0;
2454 memcpy(*to, from, len);
2455 *to += len;
2458 static inline void take_selinux_option(char **to, char *from, int *first,
2459 int len)
2461 int current_size = 0;
2463 if (!*first) {
2464 **to = '|';
2465 *to += 1;
2466 } else
2467 *first = 0;
2469 while (current_size < len) {
2470 if (*from != '"') {
2471 **to = *from;
2472 *to += 1;
2474 from += 1;
2475 current_size += 1;
2479 static int selinux_sb_copy_data(char *orig, char *copy)
2481 int fnosec, fsec, rc = 0;
2482 char *in_save, *in_curr, *in_end;
2483 char *sec_curr, *nosec_save, *nosec;
2484 int open_quote = 0;
2486 in_curr = orig;
2487 sec_curr = copy;
2489 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2490 if (!nosec) {
2491 rc = -ENOMEM;
2492 goto out;
2495 nosec_save = nosec;
2496 fnosec = fsec = 1;
2497 in_save = in_end = orig;
2499 do {
2500 if (*in_end == '"')
2501 open_quote = !open_quote;
2502 if ((*in_end == ',' && open_quote == 0) ||
2503 *in_end == '\0') {
2504 int len = in_end - in_curr;
2506 if (selinux_option(in_curr, len))
2507 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2508 else
2509 take_option(&nosec, in_curr, &fnosec, len);
2511 in_curr = in_end + 1;
2513 } while (*in_end++);
2515 strcpy(in_save, nosec_save);
2516 free_page((unsigned long)nosec_save);
2517 out:
2518 return rc;
2521 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2523 const struct cred *cred = current_cred();
2524 struct common_audit_data ad;
2525 int rc;
2527 rc = superblock_doinit(sb, data);
2528 if (rc)
2529 return rc;
2531 /* Allow all mounts performed by the kernel */
2532 if (flags & MS_KERNMOUNT)
2533 return 0;
2535 COMMON_AUDIT_DATA_INIT(&ad, FS);
2536 ad.u.fs.path.dentry = sb->s_root;
2537 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2540 static int selinux_sb_statfs(struct dentry *dentry)
2542 const struct cred *cred = current_cred();
2543 struct common_audit_data ad;
2545 COMMON_AUDIT_DATA_INIT(&ad, FS);
2546 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2547 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2550 static int selinux_mount(char *dev_name,
2551 struct path *path,
2552 char *type,
2553 unsigned long flags,
2554 void *data)
2556 const struct cred *cred = current_cred();
2558 if (flags & MS_REMOUNT)
2559 return superblock_has_perm(cred, path->mnt->mnt_sb,
2560 FILESYSTEM__REMOUNT, NULL);
2561 else
2562 return dentry_has_perm(cred, path->mnt, path->dentry,
2563 FILE__MOUNTON);
2566 static int selinux_umount(struct vfsmount *mnt, int flags)
2568 const struct cred *cred = current_cred();
2570 return superblock_has_perm(cred, mnt->mnt_sb,
2571 FILESYSTEM__UNMOUNT, NULL);
2574 /* inode security operations */
2576 static int selinux_inode_alloc_security(struct inode *inode)
2578 return inode_alloc_security(inode);
2581 static void selinux_inode_free_security(struct inode *inode)
2583 inode_free_security(inode);
2586 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2587 char **name, void **value,
2588 size_t *len)
2590 const struct cred *cred = current_cred();
2591 const struct task_security_struct *tsec = cred->security;
2592 struct inode_security_struct *dsec;
2593 struct superblock_security_struct *sbsec;
2594 u32 sid, newsid, clen;
2595 int rc;
2596 char *namep = NULL, *context;
2598 dsec = dir->i_security;
2599 sbsec = dir->i_sb->s_security;
2601 sid = tsec->sid;
2602 newsid = tsec->create_sid;
2604 if ((sbsec->flags & SE_SBINITIALIZED) &&
2605 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2606 newsid = sbsec->mntpoint_sid;
2607 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2608 rc = security_transition_sid(sid, dsec->sid,
2609 inode_mode_to_security_class(inode->i_mode),
2610 &newsid);
2611 if (rc) {
2612 printk(KERN_WARNING "%s: "
2613 "security_transition_sid failed, rc=%d (dev=%s "
2614 "ino=%ld)\n",
2615 __func__,
2616 -rc, inode->i_sb->s_id, inode->i_ino);
2617 return rc;
2621 /* Possibly defer initialization to selinux_complete_init. */
2622 if (sbsec->flags & SE_SBINITIALIZED) {
2623 struct inode_security_struct *isec = inode->i_security;
2624 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2625 isec->sid = newsid;
2626 isec->initialized = 1;
2629 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2630 return -EOPNOTSUPP;
2632 if (name) {
2633 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2634 if (!namep)
2635 return -ENOMEM;
2636 *name = namep;
2639 if (value && len) {
2640 rc = security_sid_to_context_force(newsid, &context, &clen);
2641 if (rc) {
2642 kfree(namep);
2643 return rc;
2645 *value = context;
2646 *len = clen;
2649 return 0;
2652 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2654 return may_create(dir, dentry, SECCLASS_FILE);
2657 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2659 return may_link(dir, old_dentry, MAY_LINK);
2662 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2664 return may_link(dir, dentry, MAY_UNLINK);
2667 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2669 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2672 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2674 return may_create(dir, dentry, SECCLASS_DIR);
2677 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2679 return may_link(dir, dentry, MAY_RMDIR);
2682 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2684 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2687 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2688 struct inode *new_inode, struct dentry *new_dentry)
2690 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2693 static int selinux_inode_readlink(struct dentry *dentry)
2695 const struct cred *cred = current_cred();
2697 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2700 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2702 const struct cred *cred = current_cred();
2704 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2707 static int selinux_inode_permission(struct inode *inode, int mask)
2709 const struct cred *cred = current_cred();
2711 if (!mask) {
2712 /* No permission to check. Existence test. */
2713 return 0;
2716 return inode_has_perm(cred, inode,
2717 file_mask_to_av(inode->i_mode, mask), NULL);
2720 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2722 const struct cred *cred = current_cred();
2723 unsigned int ia_valid = iattr->ia_valid;
2725 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2726 if (ia_valid & ATTR_FORCE) {
2727 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2728 ATTR_FORCE);
2729 if (!ia_valid)
2730 return 0;
2733 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2734 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2735 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2737 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2740 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2742 const struct cred *cred = current_cred();
2744 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2747 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2749 const struct cred *cred = current_cred();
2751 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2752 sizeof XATTR_SECURITY_PREFIX - 1)) {
2753 if (!strcmp(name, XATTR_NAME_CAPS)) {
2754 if (!capable(CAP_SETFCAP))
2755 return -EPERM;
2756 } else if (!capable(CAP_SYS_ADMIN)) {
2757 /* A different attribute in the security namespace.
2758 Restrict to administrator. */
2759 return -EPERM;
2763 /* Not an attribute we recognize, so just check the
2764 ordinary setattr permission. */
2765 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2768 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2769 const void *value, size_t size, int flags)
2771 struct inode *inode = dentry->d_inode;
2772 struct inode_security_struct *isec = inode->i_security;
2773 struct superblock_security_struct *sbsec;
2774 struct common_audit_data ad;
2775 u32 newsid, sid = current_sid();
2776 int rc = 0;
2778 if (strcmp(name, XATTR_NAME_SELINUX))
2779 return selinux_inode_setotherxattr(dentry, name);
2781 sbsec = inode->i_sb->s_security;
2782 if (!(sbsec->flags & SE_SBLABELSUPP))
2783 return -EOPNOTSUPP;
2785 if (!is_owner_or_cap(inode))
2786 return -EPERM;
2788 COMMON_AUDIT_DATA_INIT(&ad, FS);
2789 ad.u.fs.path.dentry = dentry;
2791 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2792 FILE__RELABELFROM, &ad);
2793 if (rc)
2794 return rc;
2796 rc = security_context_to_sid(value, size, &newsid);
2797 if (rc == -EINVAL) {
2798 if (!capable(CAP_MAC_ADMIN))
2799 return rc;
2800 rc = security_context_to_sid_force(value, size, &newsid);
2802 if (rc)
2803 return rc;
2805 rc = avc_has_perm(sid, newsid, isec->sclass,
2806 FILE__RELABELTO, &ad);
2807 if (rc)
2808 return rc;
2810 rc = security_validate_transition(isec->sid, newsid, sid,
2811 isec->sclass);
2812 if (rc)
2813 return rc;
2815 return avc_has_perm(newsid,
2816 sbsec->sid,
2817 SECCLASS_FILESYSTEM,
2818 FILESYSTEM__ASSOCIATE,
2819 &ad);
2822 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2823 const void *value, size_t size,
2824 int flags)
2826 struct inode *inode = dentry->d_inode;
2827 struct inode_security_struct *isec = inode->i_security;
2828 u32 newsid;
2829 int rc;
2831 if (strcmp(name, XATTR_NAME_SELINUX)) {
2832 /* Not an attribute we recognize, so nothing to do. */
2833 return;
2836 rc = security_context_to_sid_force(value, size, &newsid);
2837 if (rc) {
2838 printk(KERN_ERR "SELinux: unable to map context to SID"
2839 "for (%s, %lu), rc=%d\n",
2840 inode->i_sb->s_id, inode->i_ino, -rc);
2841 return;
2844 isec->sid = newsid;
2845 return;
2848 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2850 const struct cred *cred = current_cred();
2852 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2855 static int selinux_inode_listxattr(struct dentry *dentry)
2857 const struct cred *cred = current_cred();
2859 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2862 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2864 if (strcmp(name, XATTR_NAME_SELINUX))
2865 return selinux_inode_setotherxattr(dentry, name);
2867 /* No one is allowed to remove a SELinux security label.
2868 You can change the label, but all data must be labeled. */
2869 return -EACCES;
2873 * Copy the inode security context value to the user.
2875 * Permission check is handled by selinux_inode_getxattr hook.
2877 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2879 u32 size;
2880 int error;
2881 char *context = NULL;
2882 struct inode_security_struct *isec = inode->i_security;
2884 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2885 return -EOPNOTSUPP;
2888 * If the caller has CAP_MAC_ADMIN, then get the raw context
2889 * value even if it is not defined by current policy; otherwise,
2890 * use the in-core value under current policy.
2891 * Use the non-auditing forms of the permission checks since
2892 * getxattr may be called by unprivileged processes commonly
2893 * and lack of permission just means that we fall back to the
2894 * in-core context value, not a denial.
2896 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2897 SECURITY_CAP_NOAUDIT);
2898 if (!error)
2899 error = security_sid_to_context_force(isec->sid, &context,
2900 &size);
2901 else
2902 error = security_sid_to_context(isec->sid, &context, &size);
2903 if (error)
2904 return error;
2905 error = size;
2906 if (alloc) {
2907 *buffer = context;
2908 goto out_nofree;
2910 kfree(context);
2911 out_nofree:
2912 return error;
2915 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2916 const void *value, size_t size, int flags)
2918 struct inode_security_struct *isec = inode->i_security;
2919 u32 newsid;
2920 int rc;
2922 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2923 return -EOPNOTSUPP;
2925 if (!value || !size)
2926 return -EACCES;
2928 rc = security_context_to_sid((void *)value, size, &newsid);
2929 if (rc)
2930 return rc;
2932 isec->sid = newsid;
2933 isec->initialized = 1;
2934 return 0;
2937 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2939 const int len = sizeof(XATTR_NAME_SELINUX);
2940 if (buffer && len <= buffer_size)
2941 memcpy(buffer, XATTR_NAME_SELINUX, len);
2942 return len;
2945 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2947 struct inode_security_struct *isec = inode->i_security;
2948 *secid = isec->sid;
2951 /* file security operations */
2953 static int selinux_revalidate_file_permission(struct file *file, int mask)
2955 const struct cred *cred = current_cred();
2956 struct inode *inode = file->f_path.dentry->d_inode;
2958 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2959 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2960 mask |= MAY_APPEND;
2962 return file_has_perm(cred, file,
2963 file_mask_to_av(inode->i_mode, mask));
2966 static int selinux_file_permission(struct file *file, int mask)
2968 struct inode *inode = file->f_path.dentry->d_inode;
2969 struct file_security_struct *fsec = file->f_security;
2970 struct inode_security_struct *isec = inode->i_security;
2971 u32 sid = current_sid();
2973 if (!mask)
2974 /* No permission to check. Existence test. */
2975 return 0;
2977 if (sid == fsec->sid && fsec->isid == isec->sid &&
2978 fsec->pseqno == avc_policy_seqno())
2979 /* No change since dentry_open check. */
2980 return 0;
2982 return selinux_revalidate_file_permission(file, mask);
2985 static int selinux_file_alloc_security(struct file *file)
2987 return file_alloc_security(file);
2990 static void selinux_file_free_security(struct file *file)
2992 file_free_security(file);
2995 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2996 unsigned long arg)
2998 const struct cred *cred = current_cred();
2999 u32 av = 0;
3001 if (_IOC_DIR(cmd) & _IOC_WRITE)
3002 av |= FILE__WRITE;
3003 if (_IOC_DIR(cmd) & _IOC_READ)
3004 av |= FILE__READ;
3005 if (!av)
3006 av = FILE__IOCTL;
3008 return file_has_perm(cred, file, av);
3011 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3013 const struct cred *cred = current_cred();
3014 int rc = 0;
3016 #ifndef CONFIG_PPC32
3017 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3019 * We are making executable an anonymous mapping or a
3020 * private file mapping that will also be writable.
3021 * This has an additional check.
3023 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3024 if (rc)
3025 goto error;
3027 #endif
3029 if (file) {
3030 /* read access is always possible with a mapping */
3031 u32 av = FILE__READ;
3033 /* write access only matters if the mapping is shared */
3034 if (shared && (prot & PROT_WRITE))
3035 av |= FILE__WRITE;
3037 if (prot & PROT_EXEC)
3038 av |= FILE__EXECUTE;
3040 return file_has_perm(cred, file, av);
3043 error:
3044 return rc;
3047 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3048 unsigned long prot, unsigned long flags,
3049 unsigned long addr, unsigned long addr_only)
3051 int rc = 0;
3052 u32 sid = current_sid();
3055 * notice that we are intentionally putting the SELinux check before
3056 * the secondary cap_file_mmap check. This is such a likely attempt
3057 * at bad behaviour/exploit that we always want to get the AVC, even
3058 * if DAC would have also denied the operation.
3060 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3061 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3062 MEMPROTECT__MMAP_ZERO, NULL);
3063 if (rc)
3064 return rc;
3067 /* do DAC check on address space usage */
3068 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3069 if (rc || addr_only)
3070 return rc;
3072 if (selinux_checkreqprot)
3073 prot = reqprot;
3075 return file_map_prot_check(file, prot,
3076 (flags & MAP_TYPE) == MAP_SHARED);
3079 static int selinux_file_mprotect(struct vm_area_struct *vma,
3080 unsigned long reqprot,
3081 unsigned long prot)
3083 const struct cred *cred = current_cred();
3085 if (selinux_checkreqprot)
3086 prot = reqprot;
3088 #ifndef CONFIG_PPC32
3089 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3090 int rc = 0;
3091 if (vma->vm_start >= vma->vm_mm->start_brk &&
3092 vma->vm_end <= vma->vm_mm->brk) {
3093 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3094 } else if (!vma->vm_file &&
3095 vma->vm_start <= vma->vm_mm->start_stack &&
3096 vma->vm_end >= vma->vm_mm->start_stack) {
3097 rc = current_has_perm(current, PROCESS__EXECSTACK);
3098 } else if (vma->vm_file && vma->anon_vma) {
3100 * We are making executable a file mapping that has
3101 * had some COW done. Since pages might have been
3102 * written, check ability to execute the possibly
3103 * modified content. This typically should only
3104 * occur for text relocations.
3106 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3108 if (rc)
3109 return rc;
3111 #endif
3113 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3116 static int selinux_file_lock(struct file *file, unsigned int cmd)
3118 const struct cred *cred = current_cred();
3120 return file_has_perm(cred, file, FILE__LOCK);
3123 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3124 unsigned long arg)
3126 const struct cred *cred = current_cred();
3127 int err = 0;
3129 switch (cmd) {
3130 case F_SETFL:
3131 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3132 err = -EINVAL;
3133 break;
3136 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3137 err = file_has_perm(cred, file, FILE__WRITE);
3138 break;
3140 /* fall through */
3141 case F_SETOWN:
3142 case F_SETSIG:
3143 case F_GETFL:
3144 case F_GETOWN:
3145 case F_GETSIG:
3146 /* Just check FD__USE permission */
3147 err = file_has_perm(cred, file, 0);
3148 break;
3149 case F_GETLK:
3150 case F_SETLK:
3151 case F_SETLKW:
3152 #if BITS_PER_LONG == 32
3153 case F_GETLK64:
3154 case F_SETLK64:
3155 case F_SETLKW64:
3156 #endif
3157 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3158 err = -EINVAL;
3159 break;
3161 err = file_has_perm(cred, file, FILE__LOCK);
3162 break;
3165 return err;
3168 static int selinux_file_set_fowner(struct file *file)
3170 struct file_security_struct *fsec;
3172 fsec = file->f_security;
3173 fsec->fown_sid = current_sid();
3175 return 0;
3178 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3179 struct fown_struct *fown, int signum)
3181 struct file *file;
3182 u32 sid = task_sid(tsk);
3183 u32 perm;
3184 struct file_security_struct *fsec;
3186 /* struct fown_struct is never outside the context of a struct file */
3187 file = container_of(fown, struct file, f_owner);
3189 fsec = file->f_security;
3191 if (!signum)
3192 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3193 else
3194 perm = signal_to_av(signum);
3196 return avc_has_perm(fsec->fown_sid, sid,
3197 SECCLASS_PROCESS, perm, NULL);
3200 static int selinux_file_receive(struct file *file)
3202 const struct cred *cred = current_cred();
3204 return file_has_perm(cred, file, file_to_av(file));
3207 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3209 struct file_security_struct *fsec;
3210 struct inode *inode;
3211 struct inode_security_struct *isec;
3213 inode = file->f_path.dentry->d_inode;
3214 fsec = file->f_security;
3215 isec = inode->i_security;
3217 * Save inode label and policy sequence number
3218 * at open-time so that selinux_file_permission
3219 * can determine whether revalidation is necessary.
3220 * Task label is already saved in the file security
3221 * struct as its SID.
3223 fsec->isid = isec->sid;
3224 fsec->pseqno = avc_policy_seqno();
3226 * Since the inode label or policy seqno may have changed
3227 * between the selinux_inode_permission check and the saving
3228 * of state above, recheck that access is still permitted.
3229 * Otherwise, access might never be revalidated against the
3230 * new inode label or new policy.
3231 * This check is not redundant - do not remove.
3233 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3236 /* task security operations */
3238 static int selinux_task_create(unsigned long clone_flags)
3240 return current_has_perm(current, PROCESS__FORK);
3244 * allocate the SELinux part of blank credentials
3246 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3248 struct task_security_struct *tsec;
3250 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3251 if (!tsec)
3252 return -ENOMEM;
3254 cred->security = tsec;
3255 return 0;
3259 * detach and free the LSM part of a set of credentials
3261 static void selinux_cred_free(struct cred *cred)
3263 struct task_security_struct *tsec = cred->security;
3266 * cred->security == NULL if security_cred_alloc_blank() or
3267 * security_prepare_creds() returned an error.
3269 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3270 cred->security = (void *) 0x7UL;
3271 kfree(tsec);
3275 * prepare a new set of credentials for modification
3277 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3278 gfp_t gfp)
3280 const struct task_security_struct *old_tsec;
3281 struct task_security_struct *tsec;
3283 old_tsec = old->security;
3285 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3286 if (!tsec)
3287 return -ENOMEM;
3289 new->security = tsec;
3290 return 0;
3294 * transfer the SELinux data to a blank set of creds
3296 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3298 const struct task_security_struct *old_tsec = old->security;
3299 struct task_security_struct *tsec = new->security;
3301 *tsec = *old_tsec;
3305 * set the security data for a kernel service
3306 * - all the creation contexts are set to unlabelled
3308 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3310 struct task_security_struct *tsec = new->security;
3311 u32 sid = current_sid();
3312 int ret;
3314 ret = avc_has_perm(sid, secid,
3315 SECCLASS_KERNEL_SERVICE,
3316 KERNEL_SERVICE__USE_AS_OVERRIDE,
3317 NULL);
3318 if (ret == 0) {
3319 tsec->sid = secid;
3320 tsec->create_sid = 0;
3321 tsec->keycreate_sid = 0;
3322 tsec->sockcreate_sid = 0;
3324 return ret;
3328 * set the file creation context in a security record to the same as the
3329 * objective context of the specified inode
3331 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3333 struct inode_security_struct *isec = inode->i_security;
3334 struct task_security_struct *tsec = new->security;
3335 u32 sid = current_sid();
3336 int ret;
3338 ret = avc_has_perm(sid, isec->sid,
3339 SECCLASS_KERNEL_SERVICE,
3340 KERNEL_SERVICE__CREATE_FILES_AS,
3341 NULL);
3343 if (ret == 0)
3344 tsec->create_sid = isec->sid;
3345 return 0;
3348 static int selinux_kernel_module_request(void)
3350 return task_has_system(current, SYSTEM__MODULE_REQUEST);
3353 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3355 return current_has_perm(p, PROCESS__SETPGID);
3358 static int selinux_task_getpgid(struct task_struct *p)
3360 return current_has_perm(p, PROCESS__GETPGID);
3363 static int selinux_task_getsid(struct task_struct *p)
3365 return current_has_perm(p, PROCESS__GETSESSION);
3368 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3370 *secid = task_sid(p);
3373 static int selinux_task_setnice(struct task_struct *p, int nice)
3375 int rc;
3377 rc = cap_task_setnice(p, nice);
3378 if (rc)
3379 return rc;
3381 return current_has_perm(p, PROCESS__SETSCHED);
3384 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3386 int rc;
3388 rc = cap_task_setioprio(p, ioprio);
3389 if (rc)
3390 return rc;
3392 return current_has_perm(p, PROCESS__SETSCHED);
3395 static int selinux_task_getioprio(struct task_struct *p)
3397 return current_has_perm(p, PROCESS__GETSCHED);
3400 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3402 struct rlimit *old_rlim = current->signal->rlim + resource;
3404 /* Control the ability to change the hard limit (whether
3405 lowering or raising it), so that the hard limit can
3406 later be used as a safe reset point for the soft limit
3407 upon context transitions. See selinux_bprm_committing_creds. */
3408 if (old_rlim->rlim_max != new_rlim->rlim_max)
3409 return current_has_perm(current, PROCESS__SETRLIMIT);
3411 return 0;
3414 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3416 int rc;
3418 rc = cap_task_setscheduler(p, policy, lp);
3419 if (rc)
3420 return rc;
3422 return current_has_perm(p, PROCESS__SETSCHED);
3425 static int selinux_task_getscheduler(struct task_struct *p)
3427 return current_has_perm(p, PROCESS__GETSCHED);
3430 static int selinux_task_movememory(struct task_struct *p)
3432 return current_has_perm(p, PROCESS__SETSCHED);
3435 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3436 int sig, u32 secid)
3438 u32 perm;
3439 int rc;
3441 if (!sig)
3442 perm = PROCESS__SIGNULL; /* null signal; existence test */
3443 else
3444 perm = signal_to_av(sig);
3445 if (secid)
3446 rc = avc_has_perm(secid, task_sid(p),
3447 SECCLASS_PROCESS, perm, NULL);
3448 else
3449 rc = current_has_perm(p, perm);
3450 return rc;
3453 static int selinux_task_wait(struct task_struct *p)
3455 return task_has_perm(p, current, PROCESS__SIGCHLD);
3458 static void selinux_task_to_inode(struct task_struct *p,
3459 struct inode *inode)
3461 struct inode_security_struct *isec = inode->i_security;
3462 u32 sid = task_sid(p);
3464 isec->sid = sid;
3465 isec->initialized = 1;
3468 /* Returns error only if unable to parse addresses */
3469 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3470 struct common_audit_data *ad, u8 *proto)
3472 int offset, ihlen, ret = -EINVAL;
3473 struct iphdr _iph, *ih;
3475 offset = skb_network_offset(skb);
3476 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3477 if (ih == NULL)
3478 goto out;
3480 ihlen = ih->ihl * 4;
3481 if (ihlen < sizeof(_iph))
3482 goto out;
3484 ad->u.net.v4info.saddr = ih->saddr;
3485 ad->u.net.v4info.daddr = ih->daddr;
3486 ret = 0;
3488 if (proto)
3489 *proto = ih->protocol;
3491 switch (ih->protocol) {
3492 case IPPROTO_TCP: {
3493 struct tcphdr _tcph, *th;
3495 if (ntohs(ih->frag_off) & IP_OFFSET)
3496 break;
3498 offset += ihlen;
3499 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3500 if (th == NULL)
3501 break;
3503 ad->u.net.sport = th->source;
3504 ad->u.net.dport = th->dest;
3505 break;
3508 case IPPROTO_UDP: {
3509 struct udphdr _udph, *uh;
3511 if (ntohs(ih->frag_off) & IP_OFFSET)
3512 break;
3514 offset += ihlen;
3515 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3516 if (uh == NULL)
3517 break;
3519 ad->u.net.sport = uh->source;
3520 ad->u.net.dport = uh->dest;
3521 break;
3524 case IPPROTO_DCCP: {
3525 struct dccp_hdr _dccph, *dh;
3527 if (ntohs(ih->frag_off) & IP_OFFSET)
3528 break;
3530 offset += ihlen;
3531 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3532 if (dh == NULL)
3533 break;
3535 ad->u.net.sport = dh->dccph_sport;
3536 ad->u.net.dport = dh->dccph_dport;
3537 break;
3540 default:
3541 break;
3543 out:
3544 return ret;
3547 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3549 /* Returns error only if unable to parse addresses */
3550 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3551 struct common_audit_data *ad, u8 *proto)
3553 u8 nexthdr;
3554 int ret = -EINVAL, offset;
3555 struct ipv6hdr _ipv6h, *ip6;
3557 offset = skb_network_offset(skb);
3558 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3559 if (ip6 == NULL)
3560 goto out;
3562 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3563 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3564 ret = 0;
3566 nexthdr = ip6->nexthdr;
3567 offset += sizeof(_ipv6h);
3568 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3569 if (offset < 0)
3570 goto out;
3572 if (proto)
3573 *proto = nexthdr;
3575 switch (nexthdr) {
3576 case IPPROTO_TCP: {
3577 struct tcphdr _tcph, *th;
3579 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3580 if (th == NULL)
3581 break;
3583 ad->u.net.sport = th->source;
3584 ad->u.net.dport = th->dest;
3585 break;
3588 case IPPROTO_UDP: {
3589 struct udphdr _udph, *uh;
3591 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3592 if (uh == NULL)
3593 break;
3595 ad->u.net.sport = uh->source;
3596 ad->u.net.dport = uh->dest;
3597 break;
3600 case IPPROTO_DCCP: {
3601 struct dccp_hdr _dccph, *dh;
3603 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3604 if (dh == NULL)
3605 break;
3607 ad->u.net.sport = dh->dccph_sport;
3608 ad->u.net.dport = dh->dccph_dport;
3609 break;
3612 /* includes fragments */
3613 default:
3614 break;
3616 out:
3617 return ret;
3620 #endif /* IPV6 */
3622 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3623 char **_addrp, int src, u8 *proto)
3625 char *addrp;
3626 int ret;
3628 switch (ad->u.net.family) {
3629 case PF_INET:
3630 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3631 if (ret)
3632 goto parse_error;
3633 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3634 &ad->u.net.v4info.daddr);
3635 goto okay;
3637 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3638 case PF_INET6:
3639 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3640 if (ret)
3641 goto parse_error;
3642 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3643 &ad->u.net.v6info.daddr);
3644 goto okay;
3645 #endif /* IPV6 */
3646 default:
3647 addrp = NULL;
3648 goto okay;
3651 parse_error:
3652 printk(KERN_WARNING
3653 "SELinux: failure in selinux_parse_skb(),"
3654 " unable to parse packet\n");
3655 return ret;
3657 okay:
3658 if (_addrp)
3659 *_addrp = addrp;
3660 return 0;
3664 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3665 * @skb: the packet
3666 * @family: protocol family
3667 * @sid: the packet's peer label SID
3669 * Description:
3670 * Check the various different forms of network peer labeling and determine
3671 * the peer label/SID for the packet; most of the magic actually occurs in
3672 * the security server function security_net_peersid_cmp(). The function
3673 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3674 * or -EACCES if @sid is invalid due to inconsistencies with the different
3675 * peer labels.
3678 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3680 int err;
3681 u32 xfrm_sid;
3682 u32 nlbl_sid;
3683 u32 nlbl_type;
3685 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3686 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3688 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3689 if (unlikely(err)) {
3690 printk(KERN_WARNING
3691 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3692 " unable to determine packet's peer label\n");
3693 return -EACCES;
3696 return 0;
3699 /* socket security operations */
3700 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3701 u32 perms)
3703 struct inode_security_struct *isec;
3704 struct common_audit_data ad;
3705 u32 sid;
3706 int err = 0;
3708 isec = SOCK_INODE(sock)->i_security;
3710 if (isec->sid == SECINITSID_KERNEL)
3711 goto out;
3712 sid = task_sid(task);
3714 COMMON_AUDIT_DATA_INIT(&ad, NET);
3715 ad.u.net.sk = sock->sk;
3716 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3718 out:
3719 return err;
3722 static int selinux_socket_create(int family, int type,
3723 int protocol, int kern)
3725 const struct cred *cred = current_cred();
3726 const struct task_security_struct *tsec = cred->security;
3727 u32 sid, newsid;
3728 u16 secclass;
3729 int err = 0;
3731 if (kern)
3732 goto out;
3734 sid = tsec->sid;
3735 newsid = tsec->sockcreate_sid ?: sid;
3737 secclass = socket_type_to_security_class(family, type, protocol);
3738 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3740 out:
3741 return err;
3744 static int selinux_socket_post_create(struct socket *sock, int family,
3745 int type, int protocol, int kern)
3747 const struct cred *cred = current_cred();
3748 const struct task_security_struct *tsec = cred->security;
3749 struct inode_security_struct *isec;
3750 struct sk_security_struct *sksec;
3751 u32 sid, newsid;
3752 int err = 0;
3754 sid = tsec->sid;
3755 newsid = tsec->sockcreate_sid;
3757 isec = SOCK_INODE(sock)->i_security;
3759 if (kern)
3760 isec->sid = SECINITSID_KERNEL;
3761 else if (newsid)
3762 isec->sid = newsid;
3763 else
3764 isec->sid = sid;
3766 isec->sclass = socket_type_to_security_class(family, type, protocol);
3767 isec->initialized = 1;
3769 if (sock->sk) {
3770 sksec = sock->sk->sk_security;
3771 sksec->sid = isec->sid;
3772 sksec->sclass = isec->sclass;
3773 err = selinux_netlbl_socket_post_create(sock->sk, family);
3776 return err;
3779 /* Range of port numbers used to automatically bind.
3780 Need to determine whether we should perform a name_bind
3781 permission check between the socket and the port number. */
3783 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3785 u16 family;
3786 int err;
3788 err = socket_has_perm(current, sock, SOCKET__BIND);
3789 if (err)
3790 goto out;
3793 * If PF_INET or PF_INET6, check name_bind permission for the port.
3794 * Multiple address binding for SCTP is not supported yet: we just
3795 * check the first address now.
3797 family = sock->sk->sk_family;
3798 if (family == PF_INET || family == PF_INET6) {
3799 char *addrp;
3800 struct inode_security_struct *isec;
3801 struct common_audit_data ad;
3802 struct sockaddr_in *addr4 = NULL;
3803 struct sockaddr_in6 *addr6 = NULL;
3804 unsigned short snum;
3805 struct sock *sk = sock->sk;
3806 u32 sid, node_perm;
3808 isec = SOCK_INODE(sock)->i_security;
3810 if (family == PF_INET) {
3811 addr4 = (struct sockaddr_in *)address;
3812 snum = ntohs(addr4->sin_port);
3813 addrp = (char *)&addr4->sin_addr.s_addr;
3814 } else {
3815 addr6 = (struct sockaddr_in6 *)address;
3816 snum = ntohs(addr6->sin6_port);
3817 addrp = (char *)&addr6->sin6_addr.s6_addr;
3820 if (snum) {
3821 int low, high;
3823 inet_get_local_port_range(&low, &high);
3825 if (snum < max(PROT_SOCK, low) || snum > high) {
3826 err = sel_netport_sid(sk->sk_protocol,
3827 snum, &sid);
3828 if (err)
3829 goto out;
3830 COMMON_AUDIT_DATA_INIT(&ad, NET);
3831 ad.u.net.sport = htons(snum);
3832 ad.u.net.family = family;
3833 err = avc_has_perm(isec->sid, sid,
3834 isec->sclass,
3835 SOCKET__NAME_BIND, &ad);
3836 if (err)
3837 goto out;
3841 switch (isec->sclass) {
3842 case SECCLASS_TCP_SOCKET:
3843 node_perm = TCP_SOCKET__NODE_BIND;
3844 break;
3846 case SECCLASS_UDP_SOCKET:
3847 node_perm = UDP_SOCKET__NODE_BIND;
3848 break;
3850 case SECCLASS_DCCP_SOCKET:
3851 node_perm = DCCP_SOCKET__NODE_BIND;
3852 break;
3854 default:
3855 node_perm = RAWIP_SOCKET__NODE_BIND;
3856 break;
3859 err = sel_netnode_sid(addrp, family, &sid);
3860 if (err)
3861 goto out;
3863 COMMON_AUDIT_DATA_INIT(&ad, NET);
3864 ad.u.net.sport = htons(snum);
3865 ad.u.net.family = family;
3867 if (family == PF_INET)
3868 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3869 else
3870 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3872 err = avc_has_perm(isec->sid, sid,
3873 isec->sclass, node_perm, &ad);
3874 if (err)
3875 goto out;
3877 out:
3878 return err;
3881 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3883 struct sock *sk = sock->sk;
3884 struct inode_security_struct *isec;
3885 int err;
3887 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3888 if (err)
3889 return err;
3892 * If a TCP or DCCP socket, check name_connect permission for the port.
3894 isec = SOCK_INODE(sock)->i_security;
3895 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3896 isec->sclass == SECCLASS_DCCP_SOCKET) {
3897 struct common_audit_data ad;
3898 struct sockaddr_in *addr4 = NULL;
3899 struct sockaddr_in6 *addr6 = NULL;
3900 unsigned short snum;
3901 u32 sid, perm;
3903 if (sk->sk_family == PF_INET) {
3904 addr4 = (struct sockaddr_in *)address;
3905 if (addrlen < sizeof(struct sockaddr_in))
3906 return -EINVAL;
3907 snum = ntohs(addr4->sin_port);
3908 } else {
3909 addr6 = (struct sockaddr_in6 *)address;
3910 if (addrlen < SIN6_LEN_RFC2133)
3911 return -EINVAL;
3912 snum = ntohs(addr6->sin6_port);
3915 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3916 if (err)
3917 goto out;
3919 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3920 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3922 COMMON_AUDIT_DATA_INIT(&ad, NET);
3923 ad.u.net.dport = htons(snum);
3924 ad.u.net.family = sk->sk_family;
3925 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3926 if (err)
3927 goto out;
3930 err = selinux_netlbl_socket_connect(sk, address);
3932 out:
3933 return err;
3936 static int selinux_socket_listen(struct socket *sock, int backlog)
3938 return socket_has_perm(current, sock, SOCKET__LISTEN);
3941 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3943 int err;
3944 struct inode_security_struct *isec;
3945 struct inode_security_struct *newisec;
3947 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3948 if (err)
3949 return err;
3951 newisec = SOCK_INODE(newsock)->i_security;
3953 isec = SOCK_INODE(sock)->i_security;
3954 newisec->sclass = isec->sclass;
3955 newisec->sid = isec->sid;
3956 newisec->initialized = 1;
3958 return 0;
3961 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3962 int size)
3964 return socket_has_perm(current, sock, SOCKET__WRITE);
3967 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3968 int size, int flags)
3970 return socket_has_perm(current, sock, SOCKET__READ);
3973 static int selinux_socket_getsockname(struct socket *sock)
3975 return socket_has_perm(current, sock, SOCKET__GETATTR);
3978 static int selinux_socket_getpeername(struct socket *sock)
3980 return socket_has_perm(current, sock, SOCKET__GETATTR);
3983 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3985 int err;
3987 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3988 if (err)
3989 return err;
3991 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3994 static int selinux_socket_getsockopt(struct socket *sock, int level,
3995 int optname)
3997 return socket_has_perm(current, sock, SOCKET__GETOPT);
4000 static int selinux_socket_shutdown(struct socket *sock, int how)
4002 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
4005 static int selinux_socket_unix_stream_connect(struct socket *sock,
4006 struct socket *other,
4007 struct sock *newsk)
4009 struct sk_security_struct *ssec;
4010 struct inode_security_struct *isec;
4011 struct inode_security_struct *other_isec;
4012 struct common_audit_data ad;
4013 int err;
4015 isec = SOCK_INODE(sock)->i_security;
4016 other_isec = SOCK_INODE(other)->i_security;
4018 COMMON_AUDIT_DATA_INIT(&ad, NET);
4019 ad.u.net.sk = other->sk;
4021 err = avc_has_perm(isec->sid, other_isec->sid,
4022 isec->sclass,
4023 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4024 if (err)
4025 return err;
4027 /* connecting socket */
4028 ssec = sock->sk->sk_security;
4029 ssec->peer_sid = other_isec->sid;
4031 /* server child socket */
4032 ssec = newsk->sk_security;
4033 ssec->peer_sid = isec->sid;
4034 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4036 return err;
4039 static int selinux_socket_unix_may_send(struct socket *sock,
4040 struct socket *other)
4042 struct inode_security_struct *isec;
4043 struct inode_security_struct *other_isec;
4044 struct common_audit_data ad;
4045 int err;
4047 isec = SOCK_INODE(sock)->i_security;
4048 other_isec = SOCK_INODE(other)->i_security;
4050 COMMON_AUDIT_DATA_INIT(&ad, NET);
4051 ad.u.net.sk = other->sk;
4053 err = avc_has_perm(isec->sid, other_isec->sid,
4054 isec->sclass, SOCKET__SENDTO, &ad);
4055 if (err)
4056 return err;
4058 return 0;
4061 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4062 u32 peer_sid,
4063 struct common_audit_data *ad)
4065 int err;
4066 u32 if_sid;
4067 u32 node_sid;
4069 err = sel_netif_sid(ifindex, &if_sid);
4070 if (err)
4071 return err;
4072 err = avc_has_perm(peer_sid, if_sid,
4073 SECCLASS_NETIF, NETIF__INGRESS, ad);
4074 if (err)
4075 return err;
4077 err = sel_netnode_sid(addrp, family, &node_sid);
4078 if (err)
4079 return err;
4080 return avc_has_perm(peer_sid, node_sid,
4081 SECCLASS_NODE, NODE__RECVFROM, ad);
4084 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4085 u16 family)
4087 int err = 0;
4088 struct sk_security_struct *sksec = sk->sk_security;
4089 u32 peer_sid;
4090 u32 sk_sid = sksec->sid;
4091 struct common_audit_data ad;
4092 char *addrp;
4094 COMMON_AUDIT_DATA_INIT(&ad, NET);
4095 ad.u.net.netif = skb->iif;
4096 ad.u.net.family = family;
4097 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4098 if (err)
4099 return err;
4101 if (selinux_secmark_enabled()) {
4102 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4103 PACKET__RECV, &ad);
4104 if (err)
4105 return err;
4108 if (selinux_policycap_netpeer) {
4109 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4110 if (err)
4111 return err;
4112 err = avc_has_perm(sk_sid, peer_sid,
4113 SECCLASS_PEER, PEER__RECV, &ad);
4114 if (err)
4115 selinux_netlbl_err(skb, err, 0);
4116 } else {
4117 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4118 if (err)
4119 return err;
4120 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4123 return err;
4126 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4128 int err;
4129 struct sk_security_struct *sksec = sk->sk_security;
4130 u16 family = sk->sk_family;
4131 u32 sk_sid = sksec->sid;
4132 struct common_audit_data ad;
4133 char *addrp;
4134 u8 secmark_active;
4135 u8 peerlbl_active;
4137 if (family != PF_INET && family != PF_INET6)
4138 return 0;
4140 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4141 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4142 family = PF_INET;
4144 /* If any sort of compatibility mode is enabled then handoff processing
4145 * to the selinux_sock_rcv_skb_compat() function to deal with the
4146 * special handling. We do this in an attempt to keep this function
4147 * as fast and as clean as possible. */
4148 if (!selinux_policycap_netpeer)
4149 return selinux_sock_rcv_skb_compat(sk, skb, family);
4151 secmark_active = selinux_secmark_enabled();
4152 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4153 if (!secmark_active && !peerlbl_active)
4154 return 0;
4156 COMMON_AUDIT_DATA_INIT(&ad, NET);
4157 ad.u.net.netif = skb->iif;
4158 ad.u.net.family = family;
4159 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4160 if (err)
4161 return err;
4163 if (peerlbl_active) {
4164 u32 peer_sid;
4166 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4167 if (err)
4168 return err;
4169 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4170 peer_sid, &ad);
4171 if (err) {
4172 selinux_netlbl_err(skb, err, 0);
4173 return err;
4175 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4176 PEER__RECV, &ad);
4177 if (err)
4178 selinux_netlbl_err(skb, err, 0);
4181 if (secmark_active) {
4182 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4183 PACKET__RECV, &ad);
4184 if (err)
4185 return err;
4188 return err;
4191 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4192 int __user *optlen, unsigned len)
4194 int err = 0;
4195 char *scontext;
4196 u32 scontext_len;
4197 struct sk_security_struct *ssec;
4198 struct inode_security_struct *isec;
4199 u32 peer_sid = SECSID_NULL;
4201 isec = SOCK_INODE(sock)->i_security;
4203 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4204 isec->sclass == SECCLASS_TCP_SOCKET) {
4205 ssec = sock->sk->sk_security;
4206 peer_sid = ssec->peer_sid;
4208 if (peer_sid == SECSID_NULL) {
4209 err = -ENOPROTOOPT;
4210 goto out;
4213 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4215 if (err)
4216 goto out;
4218 if (scontext_len > len) {
4219 err = -ERANGE;
4220 goto out_len;
4223 if (copy_to_user(optval, scontext, scontext_len))
4224 err = -EFAULT;
4226 out_len:
4227 if (put_user(scontext_len, optlen))
4228 err = -EFAULT;
4230 kfree(scontext);
4231 out:
4232 return err;
4235 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4237 u32 peer_secid = SECSID_NULL;
4238 u16 family;
4240 if (skb && skb->protocol == htons(ETH_P_IP))
4241 family = PF_INET;
4242 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4243 family = PF_INET6;
4244 else if (sock)
4245 family = sock->sk->sk_family;
4246 else
4247 goto out;
4249 if (sock && family == PF_UNIX)
4250 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4251 else if (skb)
4252 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4254 out:
4255 *secid = peer_secid;
4256 if (peer_secid == SECSID_NULL)
4257 return -EINVAL;
4258 return 0;
4261 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4263 return sk_alloc_security(sk, family, priority);
4266 static void selinux_sk_free_security(struct sock *sk)
4268 sk_free_security(sk);
4271 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4273 struct sk_security_struct *ssec = sk->sk_security;
4274 struct sk_security_struct *newssec = newsk->sk_security;
4276 newssec->sid = ssec->sid;
4277 newssec->peer_sid = ssec->peer_sid;
4278 newssec->sclass = ssec->sclass;
4280 selinux_netlbl_sk_security_reset(newssec);
4283 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4285 if (!sk)
4286 *secid = SECINITSID_ANY_SOCKET;
4287 else {
4288 struct sk_security_struct *sksec = sk->sk_security;
4290 *secid = sksec->sid;
4294 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4296 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4297 struct sk_security_struct *sksec = sk->sk_security;
4299 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4300 sk->sk_family == PF_UNIX)
4301 isec->sid = sksec->sid;
4302 sksec->sclass = isec->sclass;
4305 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4306 struct request_sock *req)
4308 struct sk_security_struct *sksec = sk->sk_security;
4309 int err;
4310 u16 family = sk->sk_family;
4311 u32 newsid;
4312 u32 peersid;
4314 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4315 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4316 family = PF_INET;
4318 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4319 if (err)
4320 return err;
4321 if (peersid == SECSID_NULL) {
4322 req->secid = sksec->sid;
4323 req->peer_secid = SECSID_NULL;
4324 } else {
4325 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4326 if (err)
4327 return err;
4328 req->secid = newsid;
4329 req->peer_secid = peersid;
4332 return selinux_netlbl_inet_conn_request(req, family);
4335 static void selinux_inet_csk_clone(struct sock *newsk,
4336 const struct request_sock *req)
4338 struct sk_security_struct *newsksec = newsk->sk_security;
4340 newsksec->sid = req->secid;
4341 newsksec->peer_sid = req->peer_secid;
4342 /* NOTE: Ideally, we should also get the isec->sid for the
4343 new socket in sync, but we don't have the isec available yet.
4344 So we will wait until sock_graft to do it, by which
4345 time it will have been created and available. */
4347 /* We don't need to take any sort of lock here as we are the only
4348 * thread with access to newsksec */
4349 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4352 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4354 u16 family = sk->sk_family;
4355 struct sk_security_struct *sksec = sk->sk_security;
4357 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4358 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4359 family = PF_INET;
4361 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4364 static void selinux_req_classify_flow(const struct request_sock *req,
4365 struct flowi *fl)
4367 fl->secid = req->secid;
4370 static int selinux_tun_dev_create(void)
4372 u32 sid = current_sid();
4374 /* we aren't taking into account the "sockcreate" SID since the socket
4375 * that is being created here is not a socket in the traditional sense,
4376 * instead it is a private sock, accessible only to the kernel, and
4377 * representing a wide range of network traffic spanning multiple
4378 * connections unlike traditional sockets - check the TUN driver to
4379 * get a better understanding of why this socket is special */
4381 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4382 NULL);
4385 static void selinux_tun_dev_post_create(struct sock *sk)
4387 struct sk_security_struct *sksec = sk->sk_security;
4389 /* we don't currently perform any NetLabel based labeling here and it
4390 * isn't clear that we would want to do so anyway; while we could apply
4391 * labeling without the support of the TUN user the resulting labeled
4392 * traffic from the other end of the connection would almost certainly
4393 * cause confusion to the TUN user that had no idea network labeling
4394 * protocols were being used */
4396 /* see the comments in selinux_tun_dev_create() about why we don't use
4397 * the sockcreate SID here */
4399 sksec->sid = current_sid();
4400 sksec->sclass = SECCLASS_TUN_SOCKET;
4403 static int selinux_tun_dev_attach(struct sock *sk)
4405 struct sk_security_struct *sksec = sk->sk_security;
4406 u32 sid = current_sid();
4407 int err;
4409 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4410 TUN_SOCKET__RELABELFROM, NULL);
4411 if (err)
4412 return err;
4413 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4414 TUN_SOCKET__RELABELTO, NULL);
4415 if (err)
4416 return err;
4418 sksec->sid = sid;
4420 return 0;
4423 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4425 int err = 0;
4426 u32 perm;
4427 struct nlmsghdr *nlh;
4428 struct socket *sock = sk->sk_socket;
4429 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4431 if (skb->len < NLMSG_SPACE(0)) {
4432 err = -EINVAL;
4433 goto out;
4435 nlh = nlmsg_hdr(skb);
4437 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4438 if (err) {
4439 if (err == -EINVAL) {
4440 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4441 "SELinux: unrecognized netlink message"
4442 " type=%hu for sclass=%hu\n",
4443 nlh->nlmsg_type, isec->sclass);
4444 if (!selinux_enforcing || security_get_allow_unknown())
4445 err = 0;
4448 /* Ignore */
4449 if (err == -ENOENT)
4450 err = 0;
4451 goto out;
4454 err = socket_has_perm(current, sock, perm);
4455 out:
4456 return err;
4459 #ifdef CONFIG_NETFILTER
4461 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4462 u16 family)
4464 int err;
4465 char *addrp;
4466 u32 peer_sid;
4467 struct common_audit_data ad;
4468 u8 secmark_active;
4469 u8 netlbl_active;
4470 u8 peerlbl_active;
4472 if (!selinux_policycap_netpeer)
4473 return NF_ACCEPT;
4475 secmark_active = selinux_secmark_enabled();
4476 netlbl_active = netlbl_enabled();
4477 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4478 if (!secmark_active && !peerlbl_active)
4479 return NF_ACCEPT;
4481 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4482 return NF_DROP;
4484 COMMON_AUDIT_DATA_INIT(&ad, NET);
4485 ad.u.net.netif = ifindex;
4486 ad.u.net.family = family;
4487 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4488 return NF_DROP;
4490 if (peerlbl_active) {
4491 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4492 peer_sid, &ad);
4493 if (err) {
4494 selinux_netlbl_err(skb, err, 1);
4495 return NF_DROP;
4499 if (secmark_active)
4500 if (avc_has_perm(peer_sid, skb->secmark,
4501 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4502 return NF_DROP;
4504 if (netlbl_active)
4505 /* we do this in the FORWARD path and not the POST_ROUTING
4506 * path because we want to make sure we apply the necessary
4507 * labeling before IPsec is applied so we can leverage AH
4508 * protection */
4509 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4510 return NF_DROP;
4512 return NF_ACCEPT;
4515 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4516 struct sk_buff *skb,
4517 const struct net_device *in,
4518 const struct net_device *out,
4519 int (*okfn)(struct sk_buff *))
4521 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4524 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4525 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4526 struct sk_buff *skb,
4527 const struct net_device *in,
4528 const struct net_device *out,
4529 int (*okfn)(struct sk_buff *))
4531 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4533 #endif /* IPV6 */
4535 static unsigned int selinux_ip_output(struct sk_buff *skb,
4536 u16 family)
4538 u32 sid;
4540 if (!netlbl_enabled())
4541 return NF_ACCEPT;
4543 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4544 * because we want to make sure we apply the necessary labeling
4545 * before IPsec is applied so we can leverage AH protection */
4546 if (skb->sk) {
4547 struct sk_security_struct *sksec = skb->sk->sk_security;
4548 sid = sksec->sid;
4549 } else
4550 sid = SECINITSID_KERNEL;
4551 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4552 return NF_DROP;
4554 return NF_ACCEPT;
4557 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4558 struct sk_buff *skb,
4559 const struct net_device *in,
4560 const struct net_device *out,
4561 int (*okfn)(struct sk_buff *))
4563 return selinux_ip_output(skb, PF_INET);
4566 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4567 int ifindex,
4568 u16 family)
4570 struct sock *sk = skb->sk;
4571 struct sk_security_struct *sksec;
4572 struct common_audit_data ad;
4573 char *addrp;
4574 u8 proto;
4576 if (sk == NULL)
4577 return NF_ACCEPT;
4578 sksec = sk->sk_security;
4580 COMMON_AUDIT_DATA_INIT(&ad, NET);
4581 ad.u.net.netif = ifindex;
4582 ad.u.net.family = family;
4583 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4584 return NF_DROP;
4586 if (selinux_secmark_enabled())
4587 if (avc_has_perm(sksec->sid, skb->secmark,
4588 SECCLASS_PACKET, PACKET__SEND, &ad))
4589 return NF_DROP;
4591 if (selinux_policycap_netpeer)
4592 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4593 return NF_DROP;
4595 return NF_ACCEPT;
4598 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4599 u16 family)
4601 u32 secmark_perm;
4602 u32 peer_sid;
4603 struct sock *sk;
4604 struct common_audit_data ad;
4605 char *addrp;
4606 u8 secmark_active;
4607 u8 peerlbl_active;
4609 /* If any sort of compatibility mode is enabled then handoff processing
4610 * to the selinux_ip_postroute_compat() function to deal with the
4611 * special handling. We do this in an attempt to keep this function
4612 * as fast and as clean as possible. */
4613 if (!selinux_policycap_netpeer)
4614 return selinux_ip_postroute_compat(skb, ifindex, family);
4615 #ifdef CONFIG_XFRM
4616 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4617 * packet transformation so allow the packet to pass without any checks
4618 * since we'll have another chance to perform access control checks
4619 * when the packet is on it's final way out.
4620 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4621 * is NULL, in this case go ahead and apply access control. */
4622 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4623 return NF_ACCEPT;
4624 #endif
4625 secmark_active = selinux_secmark_enabled();
4626 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4627 if (!secmark_active && !peerlbl_active)
4628 return NF_ACCEPT;
4630 /* if the packet is being forwarded then get the peer label from the
4631 * packet itself; otherwise check to see if it is from a local
4632 * application or the kernel, if from an application get the peer label
4633 * from the sending socket, otherwise use the kernel's sid */
4634 sk = skb->sk;
4635 if (sk == NULL) {
4636 switch (family) {
4637 case PF_INET:
4638 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4639 secmark_perm = PACKET__FORWARD_OUT;
4640 else
4641 secmark_perm = PACKET__SEND;
4642 break;
4643 case PF_INET6:
4644 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4645 secmark_perm = PACKET__FORWARD_OUT;
4646 else
4647 secmark_perm = PACKET__SEND;
4648 break;
4649 default:
4650 return NF_DROP;
4652 if (secmark_perm == PACKET__FORWARD_OUT) {
4653 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4654 return NF_DROP;
4655 } else
4656 peer_sid = SECINITSID_KERNEL;
4657 } else {
4658 struct sk_security_struct *sksec = sk->sk_security;
4659 peer_sid = sksec->sid;
4660 secmark_perm = PACKET__SEND;
4663 COMMON_AUDIT_DATA_INIT(&ad, NET);
4664 ad.u.net.netif = ifindex;
4665 ad.u.net.family = family;
4666 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4667 return NF_DROP;
4669 if (secmark_active)
4670 if (avc_has_perm(peer_sid, skb->secmark,
4671 SECCLASS_PACKET, secmark_perm, &ad))
4672 return NF_DROP;
4674 if (peerlbl_active) {
4675 u32 if_sid;
4676 u32 node_sid;
4678 if (sel_netif_sid(ifindex, &if_sid))
4679 return NF_DROP;
4680 if (avc_has_perm(peer_sid, if_sid,
4681 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4682 return NF_DROP;
4684 if (sel_netnode_sid(addrp, family, &node_sid))
4685 return NF_DROP;
4686 if (avc_has_perm(peer_sid, node_sid,
4687 SECCLASS_NODE, NODE__SENDTO, &ad))
4688 return NF_DROP;
4691 return NF_ACCEPT;
4694 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4695 struct sk_buff *skb,
4696 const struct net_device *in,
4697 const struct net_device *out,
4698 int (*okfn)(struct sk_buff *))
4700 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4703 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4704 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4705 struct sk_buff *skb,
4706 const struct net_device *in,
4707 const struct net_device *out,
4708 int (*okfn)(struct sk_buff *))
4710 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4712 #endif /* IPV6 */
4714 #endif /* CONFIG_NETFILTER */
4716 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4718 int err;
4720 err = cap_netlink_send(sk, skb);
4721 if (err)
4722 return err;
4724 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4725 err = selinux_nlmsg_perm(sk, skb);
4727 return err;
4730 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4732 int err;
4733 struct common_audit_data ad;
4735 err = cap_netlink_recv(skb, capability);
4736 if (err)
4737 return err;
4739 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4740 ad.u.cap = capability;
4742 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4743 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4746 static int ipc_alloc_security(struct task_struct *task,
4747 struct kern_ipc_perm *perm,
4748 u16 sclass)
4750 struct ipc_security_struct *isec;
4751 u32 sid;
4753 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4754 if (!isec)
4755 return -ENOMEM;
4757 sid = task_sid(task);
4758 isec->sclass = sclass;
4759 isec->sid = sid;
4760 perm->security = isec;
4762 return 0;
4765 static void ipc_free_security(struct kern_ipc_perm *perm)
4767 struct ipc_security_struct *isec = perm->security;
4768 perm->security = NULL;
4769 kfree(isec);
4772 static int msg_msg_alloc_security(struct msg_msg *msg)
4774 struct msg_security_struct *msec;
4776 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4777 if (!msec)
4778 return -ENOMEM;
4780 msec->sid = SECINITSID_UNLABELED;
4781 msg->security = msec;
4783 return 0;
4786 static void msg_msg_free_security(struct msg_msg *msg)
4788 struct msg_security_struct *msec = msg->security;
4790 msg->security = NULL;
4791 kfree(msec);
4794 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4795 u32 perms)
4797 struct ipc_security_struct *isec;
4798 struct common_audit_data ad;
4799 u32 sid = current_sid();
4801 isec = ipc_perms->security;
4803 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4804 ad.u.ipc_id = ipc_perms->key;
4806 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4809 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4811 return msg_msg_alloc_security(msg);
4814 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4816 msg_msg_free_security(msg);
4819 /* message queue security operations */
4820 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4822 struct ipc_security_struct *isec;
4823 struct common_audit_data ad;
4824 u32 sid = current_sid();
4825 int rc;
4827 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4828 if (rc)
4829 return rc;
4831 isec = msq->q_perm.security;
4833 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4834 ad.u.ipc_id = msq->q_perm.key;
4836 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4837 MSGQ__CREATE, &ad);
4838 if (rc) {
4839 ipc_free_security(&msq->q_perm);
4840 return rc;
4842 return 0;
4845 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4847 ipc_free_security(&msq->q_perm);
4850 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4852 struct ipc_security_struct *isec;
4853 struct common_audit_data ad;
4854 u32 sid = current_sid();
4856 isec = msq->q_perm.security;
4858 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4859 ad.u.ipc_id = msq->q_perm.key;
4861 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4862 MSGQ__ASSOCIATE, &ad);
4865 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4867 int err;
4868 int perms;
4870 switch (cmd) {
4871 case IPC_INFO:
4872 case MSG_INFO:
4873 /* No specific object, just general system-wide information. */
4874 return task_has_system(current, SYSTEM__IPC_INFO);
4875 case IPC_STAT:
4876 case MSG_STAT:
4877 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4878 break;
4879 case IPC_SET:
4880 perms = MSGQ__SETATTR;
4881 break;
4882 case IPC_RMID:
4883 perms = MSGQ__DESTROY;
4884 break;
4885 default:
4886 return 0;
4889 err = ipc_has_perm(&msq->q_perm, perms);
4890 return err;
4893 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4895 struct ipc_security_struct *isec;
4896 struct msg_security_struct *msec;
4897 struct common_audit_data ad;
4898 u32 sid = current_sid();
4899 int rc;
4901 isec = msq->q_perm.security;
4902 msec = msg->security;
4905 * First time through, need to assign label to the message
4907 if (msec->sid == SECINITSID_UNLABELED) {
4909 * Compute new sid based on current process and
4910 * message queue this message will be stored in
4912 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4913 &msec->sid);
4914 if (rc)
4915 return rc;
4918 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4919 ad.u.ipc_id = msq->q_perm.key;
4921 /* Can this process write to the queue? */
4922 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4923 MSGQ__WRITE, &ad);
4924 if (!rc)
4925 /* Can this process send the message */
4926 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4927 MSG__SEND, &ad);
4928 if (!rc)
4929 /* Can the message be put in the queue? */
4930 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4931 MSGQ__ENQUEUE, &ad);
4933 return rc;
4936 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4937 struct task_struct *target,
4938 long type, int mode)
4940 struct ipc_security_struct *isec;
4941 struct msg_security_struct *msec;
4942 struct common_audit_data ad;
4943 u32 sid = task_sid(target);
4944 int rc;
4946 isec = msq->q_perm.security;
4947 msec = msg->security;
4949 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4950 ad.u.ipc_id = msq->q_perm.key;
4952 rc = avc_has_perm(sid, isec->sid,
4953 SECCLASS_MSGQ, MSGQ__READ, &ad);
4954 if (!rc)
4955 rc = avc_has_perm(sid, msec->sid,
4956 SECCLASS_MSG, MSG__RECEIVE, &ad);
4957 return rc;
4960 /* Shared Memory security operations */
4961 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4963 struct ipc_security_struct *isec;
4964 struct common_audit_data ad;
4965 u32 sid = current_sid();
4966 int rc;
4968 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4969 if (rc)
4970 return rc;
4972 isec = shp->shm_perm.security;
4974 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4975 ad.u.ipc_id = shp->shm_perm.key;
4977 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4978 SHM__CREATE, &ad);
4979 if (rc) {
4980 ipc_free_security(&shp->shm_perm);
4981 return rc;
4983 return 0;
4986 static void selinux_shm_free_security(struct shmid_kernel *shp)
4988 ipc_free_security(&shp->shm_perm);
4991 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4993 struct ipc_security_struct *isec;
4994 struct common_audit_data ad;
4995 u32 sid = current_sid();
4997 isec = shp->shm_perm.security;
4999 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5000 ad.u.ipc_id = shp->shm_perm.key;
5002 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5003 SHM__ASSOCIATE, &ad);
5006 /* Note, at this point, shp is locked down */
5007 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5009 int perms;
5010 int err;
5012 switch (cmd) {
5013 case IPC_INFO:
5014 case SHM_INFO:
5015 /* No specific object, just general system-wide information. */
5016 return task_has_system(current, SYSTEM__IPC_INFO);
5017 case IPC_STAT:
5018 case SHM_STAT:
5019 perms = SHM__GETATTR | SHM__ASSOCIATE;
5020 break;
5021 case IPC_SET:
5022 perms = SHM__SETATTR;
5023 break;
5024 case SHM_LOCK:
5025 case SHM_UNLOCK:
5026 perms = SHM__LOCK;
5027 break;
5028 case IPC_RMID:
5029 perms = SHM__DESTROY;
5030 break;
5031 default:
5032 return 0;
5035 err = ipc_has_perm(&shp->shm_perm, perms);
5036 return err;
5039 static int selinux_shm_shmat(struct shmid_kernel *shp,
5040 char __user *shmaddr, int shmflg)
5042 u32 perms;
5044 if (shmflg & SHM_RDONLY)
5045 perms = SHM__READ;
5046 else
5047 perms = SHM__READ | SHM__WRITE;
5049 return ipc_has_perm(&shp->shm_perm, perms);
5052 /* Semaphore security operations */
5053 static int selinux_sem_alloc_security(struct sem_array *sma)
5055 struct ipc_security_struct *isec;
5056 struct common_audit_data ad;
5057 u32 sid = current_sid();
5058 int rc;
5060 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5061 if (rc)
5062 return rc;
5064 isec = sma->sem_perm.security;
5066 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5067 ad.u.ipc_id = sma->sem_perm.key;
5069 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5070 SEM__CREATE, &ad);
5071 if (rc) {
5072 ipc_free_security(&sma->sem_perm);
5073 return rc;
5075 return 0;
5078 static void selinux_sem_free_security(struct sem_array *sma)
5080 ipc_free_security(&sma->sem_perm);
5083 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5085 struct ipc_security_struct *isec;
5086 struct common_audit_data ad;
5087 u32 sid = current_sid();
5089 isec = sma->sem_perm.security;
5091 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5092 ad.u.ipc_id = sma->sem_perm.key;
5094 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5095 SEM__ASSOCIATE, &ad);
5098 /* Note, at this point, sma is locked down */
5099 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5101 int err;
5102 u32 perms;
5104 switch (cmd) {
5105 case IPC_INFO:
5106 case SEM_INFO:
5107 /* No specific object, just general system-wide information. */
5108 return task_has_system(current, SYSTEM__IPC_INFO);
5109 case GETPID:
5110 case GETNCNT:
5111 case GETZCNT:
5112 perms = SEM__GETATTR;
5113 break;
5114 case GETVAL:
5115 case GETALL:
5116 perms = SEM__READ;
5117 break;
5118 case SETVAL:
5119 case SETALL:
5120 perms = SEM__WRITE;
5121 break;
5122 case IPC_RMID:
5123 perms = SEM__DESTROY;
5124 break;
5125 case IPC_SET:
5126 perms = SEM__SETATTR;
5127 break;
5128 case IPC_STAT:
5129 case SEM_STAT:
5130 perms = SEM__GETATTR | SEM__ASSOCIATE;
5131 break;
5132 default:
5133 return 0;
5136 err = ipc_has_perm(&sma->sem_perm, perms);
5137 return err;
5140 static int selinux_sem_semop(struct sem_array *sma,
5141 struct sembuf *sops, unsigned nsops, int alter)
5143 u32 perms;
5145 if (alter)
5146 perms = SEM__READ | SEM__WRITE;
5147 else
5148 perms = SEM__READ;
5150 return ipc_has_perm(&sma->sem_perm, perms);
5153 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5155 u32 av = 0;
5157 av = 0;
5158 if (flag & S_IRUGO)
5159 av |= IPC__UNIX_READ;
5160 if (flag & S_IWUGO)
5161 av |= IPC__UNIX_WRITE;
5163 if (av == 0)
5164 return 0;
5166 return ipc_has_perm(ipcp, av);
5169 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5171 struct ipc_security_struct *isec = ipcp->security;
5172 *secid = isec->sid;
5175 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5177 if (inode)
5178 inode_doinit_with_dentry(inode, dentry);
5181 static int selinux_getprocattr(struct task_struct *p,
5182 char *name, char **value)
5184 const struct task_security_struct *__tsec;
5185 u32 sid;
5186 int error;
5187 unsigned len;
5189 if (current != p) {
5190 error = current_has_perm(p, PROCESS__GETATTR);
5191 if (error)
5192 return error;
5195 rcu_read_lock();
5196 __tsec = __task_cred(p)->security;
5198 if (!strcmp(name, "current"))
5199 sid = __tsec->sid;
5200 else if (!strcmp(name, "prev"))
5201 sid = __tsec->osid;
5202 else if (!strcmp(name, "exec"))
5203 sid = __tsec->exec_sid;
5204 else if (!strcmp(name, "fscreate"))
5205 sid = __tsec->create_sid;
5206 else if (!strcmp(name, "keycreate"))
5207 sid = __tsec->keycreate_sid;
5208 else if (!strcmp(name, "sockcreate"))
5209 sid = __tsec->sockcreate_sid;
5210 else
5211 goto invalid;
5212 rcu_read_unlock();
5214 if (!sid)
5215 return 0;
5217 error = security_sid_to_context(sid, value, &len);
5218 if (error)
5219 return error;
5220 return len;
5222 invalid:
5223 rcu_read_unlock();
5224 return -EINVAL;
5227 static int selinux_setprocattr(struct task_struct *p,
5228 char *name, void *value, size_t size)
5230 struct task_security_struct *tsec;
5231 struct task_struct *tracer;
5232 struct cred *new;
5233 u32 sid = 0, ptsid;
5234 int error;
5235 char *str = value;
5237 if (current != p) {
5238 /* SELinux only allows a process to change its own
5239 security attributes. */
5240 return -EACCES;
5244 * Basic control over ability to set these attributes at all.
5245 * current == p, but we'll pass them separately in case the
5246 * above restriction is ever removed.
5248 if (!strcmp(name, "exec"))
5249 error = current_has_perm(p, PROCESS__SETEXEC);
5250 else if (!strcmp(name, "fscreate"))
5251 error = current_has_perm(p, PROCESS__SETFSCREATE);
5252 else if (!strcmp(name, "keycreate"))
5253 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5254 else if (!strcmp(name, "sockcreate"))
5255 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5256 else if (!strcmp(name, "current"))
5257 error = current_has_perm(p, PROCESS__SETCURRENT);
5258 else
5259 error = -EINVAL;
5260 if (error)
5261 return error;
5263 /* Obtain a SID for the context, if one was specified. */
5264 if (size && str[1] && str[1] != '\n') {
5265 if (str[size-1] == '\n') {
5266 str[size-1] = 0;
5267 size--;
5269 error = security_context_to_sid(value, size, &sid);
5270 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5271 if (!capable(CAP_MAC_ADMIN))
5272 return error;
5273 error = security_context_to_sid_force(value, size,
5274 &sid);
5276 if (error)
5277 return error;
5280 new = prepare_creds();
5281 if (!new)
5282 return -ENOMEM;
5284 /* Permission checking based on the specified context is
5285 performed during the actual operation (execve,
5286 open/mkdir/...), when we know the full context of the
5287 operation. See selinux_bprm_set_creds for the execve
5288 checks and may_create for the file creation checks. The
5289 operation will then fail if the context is not permitted. */
5290 tsec = new->security;
5291 if (!strcmp(name, "exec")) {
5292 tsec->exec_sid = sid;
5293 } else if (!strcmp(name, "fscreate")) {
5294 tsec->create_sid = sid;
5295 } else if (!strcmp(name, "keycreate")) {
5296 error = may_create_key(sid, p);
5297 if (error)
5298 goto abort_change;
5299 tsec->keycreate_sid = sid;
5300 } else if (!strcmp(name, "sockcreate")) {
5301 tsec->sockcreate_sid = sid;
5302 } else if (!strcmp(name, "current")) {
5303 error = -EINVAL;
5304 if (sid == 0)
5305 goto abort_change;
5307 /* Only allow single threaded processes to change context */
5308 error = -EPERM;
5309 if (!current_is_single_threaded()) {
5310 error = security_bounded_transition(tsec->sid, sid);
5311 if (error)
5312 goto abort_change;
5315 /* Check permissions for the transition. */
5316 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5317 PROCESS__DYNTRANSITION, NULL);
5318 if (error)
5319 goto abort_change;
5321 /* Check for ptracing, and update the task SID if ok.
5322 Otherwise, leave SID unchanged and fail. */
5323 ptsid = 0;
5324 task_lock(p);
5325 tracer = tracehook_tracer_task(p);
5326 if (tracer)
5327 ptsid = task_sid(tracer);
5328 task_unlock(p);
5330 if (tracer) {
5331 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5332 PROCESS__PTRACE, NULL);
5333 if (error)
5334 goto abort_change;
5337 tsec->sid = sid;
5338 } else {
5339 error = -EINVAL;
5340 goto abort_change;
5343 commit_creds(new);
5344 return size;
5346 abort_change:
5347 abort_creds(new);
5348 return error;
5351 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5353 return security_sid_to_context(secid, secdata, seclen);
5356 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5358 return security_context_to_sid(secdata, seclen, secid);
5361 static void selinux_release_secctx(char *secdata, u32 seclen)
5363 kfree(secdata);
5367 * called with inode->i_mutex locked
5369 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5371 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5375 * called with inode->i_mutex locked
5377 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5379 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5382 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5384 int len = 0;
5385 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5386 ctx, true);
5387 if (len < 0)
5388 return len;
5389 *ctxlen = len;
5390 return 0;
5392 #ifdef CONFIG_KEYS
5394 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5395 unsigned long flags)
5397 const struct task_security_struct *tsec;
5398 struct key_security_struct *ksec;
5400 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5401 if (!ksec)
5402 return -ENOMEM;
5404 tsec = cred->security;
5405 if (tsec->keycreate_sid)
5406 ksec->sid = tsec->keycreate_sid;
5407 else
5408 ksec->sid = tsec->sid;
5410 k->security = ksec;
5411 return 0;
5414 static void selinux_key_free(struct key *k)
5416 struct key_security_struct *ksec = k->security;
5418 k->security = NULL;
5419 kfree(ksec);
5422 static int selinux_key_permission(key_ref_t key_ref,
5423 const struct cred *cred,
5424 key_perm_t perm)
5426 struct key *key;
5427 struct key_security_struct *ksec;
5428 u32 sid;
5430 /* if no specific permissions are requested, we skip the
5431 permission check. No serious, additional covert channels
5432 appear to be created. */
5433 if (perm == 0)
5434 return 0;
5436 sid = cred_sid(cred);
5438 key = key_ref_to_ptr(key_ref);
5439 ksec = key->security;
5441 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5444 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5446 struct key_security_struct *ksec = key->security;
5447 char *context = NULL;
5448 unsigned len;
5449 int rc;
5451 rc = security_sid_to_context(ksec->sid, &context, &len);
5452 if (!rc)
5453 rc = len;
5454 *_buffer = context;
5455 return rc;
5458 #endif
5460 static struct security_operations selinux_ops = {
5461 .name = "selinux",
5463 .ptrace_access_check = selinux_ptrace_access_check,
5464 .ptrace_traceme = selinux_ptrace_traceme,
5465 .capget = selinux_capget,
5466 .capset = selinux_capset,
5467 .sysctl = selinux_sysctl,
5468 .capable = selinux_capable,
5469 .quotactl = selinux_quotactl,
5470 .quota_on = selinux_quota_on,
5471 .syslog = selinux_syslog,
5472 .vm_enough_memory = selinux_vm_enough_memory,
5474 .netlink_send = selinux_netlink_send,
5475 .netlink_recv = selinux_netlink_recv,
5477 .bprm_set_creds = selinux_bprm_set_creds,
5478 .bprm_committing_creds = selinux_bprm_committing_creds,
5479 .bprm_committed_creds = selinux_bprm_committed_creds,
5480 .bprm_secureexec = selinux_bprm_secureexec,
5482 .sb_alloc_security = selinux_sb_alloc_security,
5483 .sb_free_security = selinux_sb_free_security,
5484 .sb_copy_data = selinux_sb_copy_data,
5485 .sb_kern_mount = selinux_sb_kern_mount,
5486 .sb_show_options = selinux_sb_show_options,
5487 .sb_statfs = selinux_sb_statfs,
5488 .sb_mount = selinux_mount,
5489 .sb_umount = selinux_umount,
5490 .sb_set_mnt_opts = selinux_set_mnt_opts,
5491 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5492 .sb_parse_opts_str = selinux_parse_opts_str,
5495 .inode_alloc_security = selinux_inode_alloc_security,
5496 .inode_free_security = selinux_inode_free_security,
5497 .inode_init_security = selinux_inode_init_security,
5498 .inode_create = selinux_inode_create,
5499 .inode_link = selinux_inode_link,
5500 .inode_unlink = selinux_inode_unlink,
5501 .inode_symlink = selinux_inode_symlink,
5502 .inode_mkdir = selinux_inode_mkdir,
5503 .inode_rmdir = selinux_inode_rmdir,
5504 .inode_mknod = selinux_inode_mknod,
5505 .inode_rename = selinux_inode_rename,
5506 .inode_readlink = selinux_inode_readlink,
5507 .inode_follow_link = selinux_inode_follow_link,
5508 .inode_permission = selinux_inode_permission,
5509 .inode_setattr = selinux_inode_setattr,
5510 .inode_getattr = selinux_inode_getattr,
5511 .inode_setxattr = selinux_inode_setxattr,
5512 .inode_post_setxattr = selinux_inode_post_setxattr,
5513 .inode_getxattr = selinux_inode_getxattr,
5514 .inode_listxattr = selinux_inode_listxattr,
5515 .inode_removexattr = selinux_inode_removexattr,
5516 .inode_getsecurity = selinux_inode_getsecurity,
5517 .inode_setsecurity = selinux_inode_setsecurity,
5518 .inode_listsecurity = selinux_inode_listsecurity,
5519 .inode_getsecid = selinux_inode_getsecid,
5521 .file_permission = selinux_file_permission,
5522 .file_alloc_security = selinux_file_alloc_security,
5523 .file_free_security = selinux_file_free_security,
5524 .file_ioctl = selinux_file_ioctl,
5525 .file_mmap = selinux_file_mmap,
5526 .file_mprotect = selinux_file_mprotect,
5527 .file_lock = selinux_file_lock,
5528 .file_fcntl = selinux_file_fcntl,
5529 .file_set_fowner = selinux_file_set_fowner,
5530 .file_send_sigiotask = selinux_file_send_sigiotask,
5531 .file_receive = selinux_file_receive,
5533 .dentry_open = selinux_dentry_open,
5535 .task_create = selinux_task_create,
5536 .cred_alloc_blank = selinux_cred_alloc_blank,
5537 .cred_free = selinux_cred_free,
5538 .cred_prepare = selinux_cred_prepare,
5539 .cred_transfer = selinux_cred_transfer,
5540 .kernel_act_as = selinux_kernel_act_as,
5541 .kernel_create_files_as = selinux_kernel_create_files_as,
5542 .kernel_module_request = selinux_kernel_module_request,
5543 .task_setpgid = selinux_task_setpgid,
5544 .task_getpgid = selinux_task_getpgid,
5545 .task_getsid = selinux_task_getsid,
5546 .task_getsecid = selinux_task_getsecid,
5547 .task_setnice = selinux_task_setnice,
5548 .task_setioprio = selinux_task_setioprio,
5549 .task_getioprio = selinux_task_getioprio,
5550 .task_setrlimit = selinux_task_setrlimit,
5551 .task_setscheduler = selinux_task_setscheduler,
5552 .task_getscheduler = selinux_task_getscheduler,
5553 .task_movememory = selinux_task_movememory,
5554 .task_kill = selinux_task_kill,
5555 .task_wait = selinux_task_wait,
5556 .task_to_inode = selinux_task_to_inode,
5558 .ipc_permission = selinux_ipc_permission,
5559 .ipc_getsecid = selinux_ipc_getsecid,
5561 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5562 .msg_msg_free_security = selinux_msg_msg_free_security,
5564 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5565 .msg_queue_free_security = selinux_msg_queue_free_security,
5566 .msg_queue_associate = selinux_msg_queue_associate,
5567 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5568 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5569 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5571 .shm_alloc_security = selinux_shm_alloc_security,
5572 .shm_free_security = selinux_shm_free_security,
5573 .shm_associate = selinux_shm_associate,
5574 .shm_shmctl = selinux_shm_shmctl,
5575 .shm_shmat = selinux_shm_shmat,
5577 .sem_alloc_security = selinux_sem_alloc_security,
5578 .sem_free_security = selinux_sem_free_security,
5579 .sem_associate = selinux_sem_associate,
5580 .sem_semctl = selinux_sem_semctl,
5581 .sem_semop = selinux_sem_semop,
5583 .d_instantiate = selinux_d_instantiate,
5585 .getprocattr = selinux_getprocattr,
5586 .setprocattr = selinux_setprocattr,
5588 .secid_to_secctx = selinux_secid_to_secctx,
5589 .secctx_to_secid = selinux_secctx_to_secid,
5590 .release_secctx = selinux_release_secctx,
5591 .inode_notifysecctx = selinux_inode_notifysecctx,
5592 .inode_setsecctx = selinux_inode_setsecctx,
5593 .inode_getsecctx = selinux_inode_getsecctx,
5595 .unix_stream_connect = selinux_socket_unix_stream_connect,
5596 .unix_may_send = selinux_socket_unix_may_send,
5598 .socket_create = selinux_socket_create,
5599 .socket_post_create = selinux_socket_post_create,
5600 .socket_bind = selinux_socket_bind,
5601 .socket_connect = selinux_socket_connect,
5602 .socket_listen = selinux_socket_listen,
5603 .socket_accept = selinux_socket_accept,
5604 .socket_sendmsg = selinux_socket_sendmsg,
5605 .socket_recvmsg = selinux_socket_recvmsg,
5606 .socket_getsockname = selinux_socket_getsockname,
5607 .socket_getpeername = selinux_socket_getpeername,
5608 .socket_getsockopt = selinux_socket_getsockopt,
5609 .socket_setsockopt = selinux_socket_setsockopt,
5610 .socket_shutdown = selinux_socket_shutdown,
5611 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5612 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5613 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5614 .sk_alloc_security = selinux_sk_alloc_security,
5615 .sk_free_security = selinux_sk_free_security,
5616 .sk_clone_security = selinux_sk_clone_security,
5617 .sk_getsecid = selinux_sk_getsecid,
5618 .sock_graft = selinux_sock_graft,
5619 .inet_conn_request = selinux_inet_conn_request,
5620 .inet_csk_clone = selinux_inet_csk_clone,
5621 .inet_conn_established = selinux_inet_conn_established,
5622 .req_classify_flow = selinux_req_classify_flow,
5623 .tun_dev_create = selinux_tun_dev_create,
5624 .tun_dev_post_create = selinux_tun_dev_post_create,
5625 .tun_dev_attach = selinux_tun_dev_attach,
5627 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5628 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5629 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5630 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5631 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5632 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5633 .xfrm_state_free_security = selinux_xfrm_state_free,
5634 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5635 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5636 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5637 .xfrm_decode_session = selinux_xfrm_decode_session,
5638 #endif
5640 #ifdef CONFIG_KEYS
5641 .key_alloc = selinux_key_alloc,
5642 .key_free = selinux_key_free,
5643 .key_permission = selinux_key_permission,
5644 .key_getsecurity = selinux_key_getsecurity,
5645 #endif
5647 #ifdef CONFIG_AUDIT
5648 .audit_rule_init = selinux_audit_rule_init,
5649 .audit_rule_known = selinux_audit_rule_known,
5650 .audit_rule_match = selinux_audit_rule_match,
5651 .audit_rule_free = selinux_audit_rule_free,
5652 #endif
5655 static __init int selinux_init(void)
5657 if (!security_module_enable(&selinux_ops)) {
5658 selinux_enabled = 0;
5659 return 0;
5662 if (!selinux_enabled) {
5663 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5664 return 0;
5667 printk(KERN_INFO "SELinux: Initializing.\n");
5669 /* Set the security state for the initial task. */
5670 cred_init_security();
5672 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5673 sizeof(struct inode_security_struct),
5674 0, SLAB_PANIC, NULL);
5675 avc_init();
5677 secondary_ops = security_ops;
5678 if (!secondary_ops)
5679 panic("SELinux: No initial security operations\n");
5680 if (register_security(&selinux_ops))
5681 panic("SELinux: Unable to register with kernel.\n");
5683 if (selinux_enforcing)
5684 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5685 else
5686 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5688 return 0;
5691 void selinux_complete_init(void)
5693 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5695 /* Set up any superblocks initialized prior to the policy load. */
5696 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5697 spin_lock(&sb_lock);
5698 spin_lock(&sb_security_lock);
5699 next_sb:
5700 if (!list_empty(&superblock_security_head)) {
5701 struct superblock_security_struct *sbsec =
5702 list_entry(superblock_security_head.next,
5703 struct superblock_security_struct,
5704 list);
5705 struct super_block *sb = sbsec->sb;
5706 sb->s_count++;
5707 spin_unlock(&sb_security_lock);
5708 spin_unlock(&sb_lock);
5709 down_read(&sb->s_umount);
5710 if (sb->s_root)
5711 superblock_doinit(sb, NULL);
5712 drop_super(sb);
5713 spin_lock(&sb_lock);
5714 spin_lock(&sb_security_lock);
5715 list_del_init(&sbsec->list);
5716 goto next_sb;
5718 spin_unlock(&sb_security_lock);
5719 spin_unlock(&sb_lock);
5722 /* SELinux requires early initialization in order to label
5723 all processes and objects when they are created. */
5724 security_initcall(selinux_init);
5726 #if defined(CONFIG_NETFILTER)
5728 static struct nf_hook_ops selinux_ipv4_ops[] = {
5730 .hook = selinux_ipv4_postroute,
5731 .owner = THIS_MODULE,
5732 .pf = PF_INET,
5733 .hooknum = NF_INET_POST_ROUTING,
5734 .priority = NF_IP_PRI_SELINUX_LAST,
5737 .hook = selinux_ipv4_forward,
5738 .owner = THIS_MODULE,
5739 .pf = PF_INET,
5740 .hooknum = NF_INET_FORWARD,
5741 .priority = NF_IP_PRI_SELINUX_FIRST,
5744 .hook = selinux_ipv4_output,
5745 .owner = THIS_MODULE,
5746 .pf = PF_INET,
5747 .hooknum = NF_INET_LOCAL_OUT,
5748 .priority = NF_IP_PRI_SELINUX_FIRST,
5752 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5754 static struct nf_hook_ops selinux_ipv6_ops[] = {
5756 .hook = selinux_ipv6_postroute,
5757 .owner = THIS_MODULE,
5758 .pf = PF_INET6,
5759 .hooknum = NF_INET_POST_ROUTING,
5760 .priority = NF_IP6_PRI_SELINUX_LAST,
5763 .hook = selinux_ipv6_forward,
5764 .owner = THIS_MODULE,
5765 .pf = PF_INET6,
5766 .hooknum = NF_INET_FORWARD,
5767 .priority = NF_IP6_PRI_SELINUX_FIRST,
5771 #endif /* IPV6 */
5773 static int __init selinux_nf_ip_init(void)
5775 int err = 0;
5777 if (!selinux_enabled)
5778 goto out;
5780 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5782 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5783 if (err)
5784 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5786 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5787 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5788 if (err)
5789 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5790 #endif /* IPV6 */
5792 out:
5793 return err;
5796 __initcall(selinux_nf_ip_init);
5798 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5799 static void selinux_nf_ip_exit(void)
5801 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5803 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5804 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5805 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5806 #endif /* IPV6 */
5808 #endif
5810 #else /* CONFIG_NETFILTER */
5812 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5813 #define selinux_nf_ip_exit()
5814 #endif
5816 #endif /* CONFIG_NETFILTER */
5818 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5819 static int selinux_disabled;
5821 int selinux_disable(void)
5823 extern void exit_sel_fs(void);
5825 if (ss_initialized) {
5826 /* Not permitted after initial policy load. */
5827 return -EINVAL;
5830 if (selinux_disabled) {
5831 /* Only do this once. */
5832 return -EINVAL;
5835 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5837 selinux_disabled = 1;
5838 selinux_enabled = 0;
5840 /* Try to destroy the avc node cache */
5841 avc_disable();
5843 /* Reset security_ops to the secondary module, dummy or capability. */
5844 security_ops = secondary_ops;
5846 /* Unregister netfilter hooks. */
5847 selinux_nf_ip_exit();
5849 /* Unregister selinuxfs. */
5850 exit_sel_fs();
5852 return 0;
5854 #endif