Revert "usb: musb: restore INDEX register in resume path"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / timer.c
blobcb3c1f19a2f6f001952cca2cb32cc69c45298820
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/perf_event.h>
41 #include <linux/sched.h>
43 #include <asm/uaccess.h>
44 #include <asm/unistd.h>
45 #include <asm/div64.h>
46 #include <asm/timex.h>
47 #include <asm/io.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/timer.h>
52 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54 EXPORT_SYMBOL(jiffies_64);
57 * per-CPU timer vector definitions:
59 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
60 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
61 #define TVN_SIZE (1 << TVN_BITS)
62 #define TVR_SIZE (1 << TVR_BITS)
63 #define TVN_MASK (TVN_SIZE - 1)
64 #define TVR_MASK (TVR_SIZE - 1)
66 struct tvec {
67 struct list_head vec[TVN_SIZE];
70 struct tvec_root {
71 struct list_head vec[TVR_SIZE];
74 struct tvec_base {
75 spinlock_t lock;
76 struct timer_list *running_timer;
77 unsigned long timer_jiffies;
78 unsigned long next_timer;
79 struct tvec_root tv1;
80 struct tvec tv2;
81 struct tvec tv3;
82 struct tvec tv4;
83 struct tvec tv5;
84 } ____cacheline_aligned;
86 struct tvec_base boot_tvec_bases;
87 EXPORT_SYMBOL(boot_tvec_bases);
88 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91 * Note that all tvec_bases are 2 byte aligned and lower bit of
92 * base in timer_list is guaranteed to be zero. Use the LSB for
93 * the new flag to indicate whether the timer is deferrable
95 #define TBASE_DEFERRABLE_FLAG (0x1)
97 /* Functions below help us manage 'deferrable' flag */
98 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
100 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
103 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
105 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
108 static inline void timer_set_deferrable(struct timer_list *timer)
110 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
111 TBASE_DEFERRABLE_FLAG));
114 static inline void
115 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
117 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
118 tbase_get_deferrable(timer->base));
121 static unsigned long round_jiffies_common(unsigned long j, int cpu,
122 bool force_up)
124 int rem;
125 unsigned long original = j;
128 * We don't want all cpus firing their timers at once hitting the
129 * same lock or cachelines, so we skew each extra cpu with an extra
130 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
131 * already did this.
132 * The skew is done by adding 3*cpunr, then round, then subtract this
133 * extra offset again.
135 j += cpu * 3;
137 rem = j % HZ;
140 * If the target jiffie is just after a whole second (which can happen
141 * due to delays of the timer irq, long irq off times etc etc) then
142 * we should round down to the whole second, not up. Use 1/4th second
143 * as cutoff for this rounding as an extreme upper bound for this.
144 * But never round down if @force_up is set.
146 if (rem < HZ/4 && !force_up) /* round down */
147 j = j - rem;
148 else /* round up */
149 j = j - rem + HZ;
151 /* now that we have rounded, subtract the extra skew again */
152 j -= cpu * 3;
154 if (j <= jiffies) /* rounding ate our timeout entirely; */
155 return original;
156 return j;
160 * __round_jiffies - function to round jiffies to a full second
161 * @j: the time in (absolute) jiffies that should be rounded
162 * @cpu: the processor number on which the timeout will happen
164 * __round_jiffies() rounds an absolute time in the future (in jiffies)
165 * up or down to (approximately) full seconds. This is useful for timers
166 * for which the exact time they fire does not matter too much, as long as
167 * they fire approximately every X seconds.
169 * By rounding these timers to whole seconds, all such timers will fire
170 * at the same time, rather than at various times spread out. The goal
171 * of this is to have the CPU wake up less, which saves power.
173 * The exact rounding is skewed for each processor to avoid all
174 * processors firing at the exact same time, which could lead
175 * to lock contention or spurious cache line bouncing.
177 * The return value is the rounded version of the @j parameter.
179 unsigned long __round_jiffies(unsigned long j, int cpu)
181 return round_jiffies_common(j, cpu, false);
183 EXPORT_SYMBOL_GPL(__round_jiffies);
186 * __round_jiffies_relative - function to round jiffies to a full second
187 * @j: the time in (relative) jiffies that should be rounded
188 * @cpu: the processor number on which the timeout will happen
190 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
191 * up or down to (approximately) full seconds. This is useful for timers
192 * for which the exact time they fire does not matter too much, as long as
193 * they fire approximately every X seconds.
195 * By rounding these timers to whole seconds, all such timers will fire
196 * at the same time, rather than at various times spread out. The goal
197 * of this is to have the CPU wake up less, which saves power.
199 * The exact rounding is skewed for each processor to avoid all
200 * processors firing at the exact same time, which could lead
201 * to lock contention or spurious cache line bouncing.
203 * The return value is the rounded version of the @j parameter.
205 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207 unsigned long j0 = jiffies;
209 /* Use j0 because jiffies might change while we run */
210 return round_jiffies_common(j + j0, cpu, false) - j0;
212 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
215 * round_jiffies - function to round jiffies to a full second
216 * @j: the time in (absolute) jiffies that should be rounded
218 * round_jiffies() rounds an absolute time in the future (in jiffies)
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
227 * The return value is the rounded version of the @j parameter.
229 unsigned long round_jiffies(unsigned long j)
231 return round_jiffies_common(j, raw_smp_processor_id(), false);
233 EXPORT_SYMBOL_GPL(round_jiffies);
236 * round_jiffies_relative - function to round jiffies to a full second
237 * @j: the time in (relative) jiffies that should be rounded
239 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
240 * up or down to (approximately) full seconds. This is useful for timers
241 * for which the exact time they fire does not matter too much, as long as
242 * they fire approximately every X seconds.
244 * By rounding these timers to whole seconds, all such timers will fire
245 * at the same time, rather than at various times spread out. The goal
246 * of this is to have the CPU wake up less, which saves power.
248 * The return value is the rounded version of the @j parameter.
250 unsigned long round_jiffies_relative(unsigned long j)
252 return __round_jiffies_relative(j, raw_smp_processor_id());
254 EXPORT_SYMBOL_GPL(round_jiffies_relative);
257 * __round_jiffies_up - function to round jiffies up to a full second
258 * @j: the time in (absolute) jiffies that should be rounded
259 * @cpu: the processor number on which the timeout will happen
261 * This is the same as __round_jiffies() except that it will never
262 * round down. This is useful for timeouts for which the exact time
263 * of firing does not matter too much, as long as they don't fire too
264 * early.
266 unsigned long __round_jiffies_up(unsigned long j, int cpu)
268 return round_jiffies_common(j, cpu, true);
270 EXPORT_SYMBOL_GPL(__round_jiffies_up);
273 * __round_jiffies_up_relative - function to round jiffies up to a full second
274 * @j: the time in (relative) jiffies that should be rounded
275 * @cpu: the processor number on which the timeout will happen
277 * This is the same as __round_jiffies_relative() except that it will never
278 * round down. This is useful for timeouts for which the exact time
279 * of firing does not matter too much, as long as they don't fire too
280 * early.
282 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284 unsigned long j0 = jiffies;
286 /* Use j0 because jiffies might change while we run */
287 return round_jiffies_common(j + j0, cpu, true) - j0;
289 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
292 * round_jiffies_up - function to round jiffies up to a full second
293 * @j: the time in (absolute) jiffies that should be rounded
295 * This is the same as round_jiffies() except that it will never
296 * round down. This is useful for timeouts for which the exact time
297 * of firing does not matter too much, as long as they don't fire too
298 * early.
300 unsigned long round_jiffies_up(unsigned long j)
302 return round_jiffies_common(j, raw_smp_processor_id(), true);
304 EXPORT_SYMBOL_GPL(round_jiffies_up);
307 * round_jiffies_up_relative - function to round jiffies up to a full second
308 * @j: the time in (relative) jiffies that should be rounded
310 * This is the same as round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
315 unsigned long round_jiffies_up_relative(unsigned long j)
317 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
322 static inline void set_running_timer(struct tvec_base *base,
323 struct timer_list *timer)
325 #ifdef CONFIG_SMP
326 base->running_timer = timer;
327 #endif
330 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
332 unsigned long expires = timer->expires;
333 unsigned long idx = expires - base->timer_jiffies;
334 struct list_head *vec;
336 if (idx < TVR_SIZE) {
337 int i = expires & TVR_MASK;
338 vec = base->tv1.vec + i;
339 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
340 int i = (expires >> TVR_BITS) & TVN_MASK;
341 vec = base->tv2.vec + i;
342 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
343 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
344 vec = base->tv3.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
347 vec = base->tv4.vec + i;
348 } else if ((signed long) idx < 0) {
350 * Can happen if you add a timer with expires == jiffies,
351 * or you set a timer to go off in the past
353 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
354 } else {
355 int i;
356 /* If the timeout is larger than 0xffffffff on 64-bit
357 * architectures then we use the maximum timeout:
359 if (idx > 0xffffffffUL) {
360 idx = 0xffffffffUL;
361 expires = idx + base->timer_jiffies;
363 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
364 vec = base->tv5.vec + i;
367 * Timers are FIFO:
369 list_add_tail(&timer->entry, vec);
372 #ifdef CONFIG_TIMER_STATS
373 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
375 if (timer->start_site)
376 return;
378 timer->start_site = addr;
379 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
380 timer->start_pid = current->pid;
383 static void timer_stats_account_timer(struct timer_list *timer)
385 unsigned int flag = 0;
387 if (likely(!timer->start_site))
388 return;
389 if (unlikely(tbase_get_deferrable(timer->base)))
390 flag |= TIMER_STATS_FLAG_DEFERRABLE;
392 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
393 timer->function, timer->start_comm, flag);
396 #else
397 static void timer_stats_account_timer(struct timer_list *timer) {}
398 #endif
400 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
402 static struct debug_obj_descr timer_debug_descr;
405 * fixup_init is called when:
406 * - an active object is initialized
408 static int timer_fixup_init(void *addr, enum debug_obj_state state)
410 struct timer_list *timer = addr;
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 del_timer_sync(timer);
415 debug_object_init(timer, &timer_debug_descr);
416 return 1;
417 default:
418 return 0;
423 * fixup_activate is called when:
424 * - an active object is activated
425 * - an unknown object is activated (might be a statically initialized object)
427 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
429 struct timer_list *timer = addr;
431 switch (state) {
433 case ODEBUG_STATE_NOTAVAILABLE:
435 * This is not really a fixup. The timer was
436 * statically initialized. We just make sure that it
437 * is tracked in the object tracker.
439 if (timer->entry.next == NULL &&
440 timer->entry.prev == TIMER_ENTRY_STATIC) {
441 debug_object_init(timer, &timer_debug_descr);
442 debug_object_activate(timer, &timer_debug_descr);
443 return 0;
444 } else {
445 WARN_ON_ONCE(1);
447 return 0;
449 case ODEBUG_STATE_ACTIVE:
450 WARN_ON(1);
452 default:
453 return 0;
458 * fixup_free is called when:
459 * - an active object is freed
461 static int timer_fixup_free(void *addr, enum debug_obj_state state)
463 struct timer_list *timer = addr;
465 switch (state) {
466 case ODEBUG_STATE_ACTIVE:
467 del_timer_sync(timer);
468 debug_object_free(timer, &timer_debug_descr);
469 return 1;
470 default:
471 return 0;
475 static struct debug_obj_descr timer_debug_descr = {
476 .name = "timer_list",
477 .fixup_init = timer_fixup_init,
478 .fixup_activate = timer_fixup_activate,
479 .fixup_free = timer_fixup_free,
482 static inline void debug_timer_init(struct timer_list *timer)
484 debug_object_init(timer, &timer_debug_descr);
487 static inline void debug_timer_activate(struct timer_list *timer)
489 debug_object_activate(timer, &timer_debug_descr);
492 static inline void debug_timer_deactivate(struct timer_list *timer)
494 debug_object_deactivate(timer, &timer_debug_descr);
497 static inline void debug_timer_free(struct timer_list *timer)
499 debug_object_free(timer, &timer_debug_descr);
502 static void __init_timer(struct timer_list *timer,
503 const char *name,
504 struct lock_class_key *key);
506 void init_timer_on_stack_key(struct timer_list *timer,
507 const char *name,
508 struct lock_class_key *key)
510 debug_object_init_on_stack(timer, &timer_debug_descr);
511 __init_timer(timer, name, key);
513 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
515 void destroy_timer_on_stack(struct timer_list *timer)
517 debug_object_free(timer, &timer_debug_descr);
519 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
521 #else
522 static inline void debug_timer_init(struct timer_list *timer) { }
523 static inline void debug_timer_activate(struct timer_list *timer) { }
524 static inline void debug_timer_deactivate(struct timer_list *timer) { }
525 #endif
527 static inline void debug_init(struct timer_list *timer)
529 debug_timer_init(timer);
530 trace_timer_init(timer);
533 static inline void
534 debug_activate(struct timer_list *timer, unsigned long expires)
536 debug_timer_activate(timer);
537 trace_timer_start(timer, expires);
540 static inline void debug_deactivate(struct timer_list *timer)
542 debug_timer_deactivate(timer);
543 trace_timer_cancel(timer);
546 static void __init_timer(struct timer_list *timer,
547 const char *name,
548 struct lock_class_key *key)
550 timer->entry.next = NULL;
551 timer->base = __raw_get_cpu_var(tvec_bases);
552 #ifdef CONFIG_TIMER_STATS
553 timer->start_site = NULL;
554 timer->start_pid = -1;
555 memset(timer->start_comm, 0, TASK_COMM_LEN);
556 #endif
557 lockdep_init_map(&timer->lockdep_map, name, key, 0);
561 * init_timer_key - initialize a timer
562 * @timer: the timer to be initialized
563 * @name: name of the timer
564 * @key: lockdep class key of the fake lock used for tracking timer
565 * sync lock dependencies
567 * init_timer_key() must be done to a timer prior calling *any* of the
568 * other timer functions.
570 void init_timer_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
574 debug_init(timer);
575 __init_timer(timer, name, key);
577 EXPORT_SYMBOL(init_timer_key);
579 void init_timer_deferrable_key(struct timer_list *timer,
580 const char *name,
581 struct lock_class_key *key)
583 init_timer_key(timer, name, key);
584 timer_set_deferrable(timer);
586 EXPORT_SYMBOL(init_timer_deferrable_key);
588 static inline void detach_timer(struct timer_list *timer,
589 int clear_pending)
591 struct list_head *entry = &timer->entry;
593 debug_deactivate(timer);
595 __list_del(entry->prev, entry->next);
596 if (clear_pending)
597 entry->next = NULL;
598 entry->prev = LIST_POISON2;
602 * We are using hashed locking: holding per_cpu(tvec_bases).lock
603 * means that all timers which are tied to this base via timer->base are
604 * locked, and the base itself is locked too.
606 * So __run_timers/migrate_timers can safely modify all timers which could
607 * be found on ->tvX lists.
609 * When the timer's base is locked, and the timer removed from list, it is
610 * possible to set timer->base = NULL and drop the lock: the timer remains
611 * locked.
613 static struct tvec_base *lock_timer_base(struct timer_list *timer,
614 unsigned long *flags)
615 __acquires(timer->base->lock)
617 struct tvec_base *base;
619 for (;;) {
620 struct tvec_base *prelock_base = timer->base;
621 base = tbase_get_base(prelock_base);
622 if (likely(base != NULL)) {
623 spin_lock_irqsave(&base->lock, *flags);
624 if (likely(prelock_base == timer->base))
625 return base;
626 /* The timer has migrated to another CPU */
627 spin_unlock_irqrestore(&base->lock, *flags);
629 cpu_relax();
633 static inline int
634 __mod_timer(struct timer_list *timer, unsigned long expires,
635 bool pending_only, int pinned)
637 struct tvec_base *base, *new_base;
638 unsigned long flags;
639 int ret = 0 , cpu;
641 timer_stats_timer_set_start_info(timer);
642 BUG_ON(!timer->function);
644 base = lock_timer_base(timer, &flags);
646 if (timer_pending(timer)) {
647 detach_timer(timer, 0);
648 if (timer->expires == base->next_timer &&
649 !tbase_get_deferrable(timer->base))
650 base->next_timer = base->timer_jiffies;
651 ret = 1;
652 } else {
653 if (pending_only)
654 goto out_unlock;
657 debug_activate(timer, expires);
659 new_base = __get_cpu_var(tvec_bases);
661 cpu = smp_processor_id();
663 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
664 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
665 int preferred_cpu = get_nohz_load_balancer();
667 if (preferred_cpu >= 0)
668 cpu = preferred_cpu;
670 #endif
671 new_base = per_cpu(tvec_bases, cpu);
673 if (base != new_base) {
675 * We are trying to schedule the timer on the local CPU.
676 * However we can't change timer's base while it is running,
677 * otherwise del_timer_sync() can't detect that the timer's
678 * handler yet has not finished. This also guarantees that
679 * the timer is serialized wrt itself.
681 if (likely(base->running_timer != timer)) {
682 /* See the comment in lock_timer_base() */
683 timer_set_base(timer, NULL);
684 spin_unlock(&base->lock);
685 base = new_base;
686 spin_lock(&base->lock);
687 timer_set_base(timer, base);
691 timer->expires = expires;
692 if (time_before(timer->expires, base->next_timer) &&
693 !tbase_get_deferrable(timer->base))
694 base->next_timer = timer->expires;
695 internal_add_timer(base, timer);
697 out_unlock:
698 spin_unlock_irqrestore(&base->lock, flags);
700 return ret;
704 * mod_timer_pending - modify a pending timer's timeout
705 * @timer: the pending timer to be modified
706 * @expires: new timeout in jiffies
708 * mod_timer_pending() is the same for pending timers as mod_timer(),
709 * but will not re-activate and modify already deleted timers.
711 * It is useful for unserialized use of timers.
713 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
715 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
717 EXPORT_SYMBOL(mod_timer_pending);
720 * mod_timer - modify a timer's timeout
721 * @timer: the timer to be modified
722 * @expires: new timeout in jiffies
724 * mod_timer() is a more efficient way to update the expire field of an
725 * active timer (if the timer is inactive it will be activated)
727 * mod_timer(timer, expires) is equivalent to:
729 * del_timer(timer); timer->expires = expires; add_timer(timer);
731 * Note that if there are multiple unserialized concurrent users of the
732 * same timer, then mod_timer() is the only safe way to modify the timeout,
733 * since add_timer() cannot modify an already running timer.
735 * The function returns whether it has modified a pending timer or not.
736 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
737 * active timer returns 1.)
739 int mod_timer(struct timer_list *timer, unsigned long expires)
742 * This is a common optimization triggered by the
743 * networking code - if the timer is re-modified
744 * to be the same thing then just return:
746 if (timer_pending(timer) && timer->expires == expires)
747 return 1;
749 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
751 EXPORT_SYMBOL(mod_timer);
754 * mod_timer_pinned - modify a timer's timeout
755 * @timer: the timer to be modified
756 * @expires: new timeout in jiffies
758 * mod_timer_pinned() is a way to update the expire field of an
759 * active timer (if the timer is inactive it will be activated)
760 * and not allow the timer to be migrated to a different CPU.
762 * mod_timer_pinned(timer, expires) is equivalent to:
764 * del_timer(timer); timer->expires = expires; add_timer(timer);
766 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
768 if (timer->expires == expires && timer_pending(timer))
769 return 1;
771 return __mod_timer(timer, expires, false, TIMER_PINNED);
773 EXPORT_SYMBOL(mod_timer_pinned);
776 * add_timer - start a timer
777 * @timer: the timer to be added
779 * The kernel will do a ->function(->data) callback from the
780 * timer interrupt at the ->expires point in the future. The
781 * current time is 'jiffies'.
783 * The timer's ->expires, ->function (and if the handler uses it, ->data)
784 * fields must be set prior calling this function.
786 * Timers with an ->expires field in the past will be executed in the next
787 * timer tick.
789 void add_timer(struct timer_list *timer)
791 BUG_ON(timer_pending(timer));
792 mod_timer(timer, timer->expires);
794 EXPORT_SYMBOL(add_timer);
797 * add_timer_on - start a timer on a particular CPU
798 * @timer: the timer to be added
799 * @cpu: the CPU to start it on
801 * This is not very scalable on SMP. Double adds are not possible.
803 void add_timer_on(struct timer_list *timer, int cpu)
805 struct tvec_base *base = per_cpu(tvec_bases, cpu);
806 unsigned long flags;
808 timer_stats_timer_set_start_info(timer);
809 BUG_ON(timer_pending(timer) || !timer->function);
810 spin_lock_irqsave(&base->lock, flags);
811 timer_set_base(timer, base);
812 debug_activate(timer, timer->expires);
813 if (time_before(timer->expires, base->next_timer) &&
814 !tbase_get_deferrable(timer->base))
815 base->next_timer = timer->expires;
816 internal_add_timer(base, timer);
818 * Check whether the other CPU is idle and needs to be
819 * triggered to reevaluate the timer wheel when nohz is
820 * active. We are protected against the other CPU fiddling
821 * with the timer by holding the timer base lock. This also
822 * makes sure that a CPU on the way to idle can not evaluate
823 * the timer wheel.
825 wake_up_idle_cpu(cpu);
826 spin_unlock_irqrestore(&base->lock, flags);
828 EXPORT_SYMBOL_GPL(add_timer_on);
831 * del_timer - deactive a timer.
832 * @timer: the timer to be deactivated
834 * del_timer() deactivates a timer - this works on both active and inactive
835 * timers.
837 * The function returns whether it has deactivated a pending timer or not.
838 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
839 * active timer returns 1.)
841 int del_timer(struct timer_list *timer)
843 struct tvec_base *base;
844 unsigned long flags;
845 int ret = 0;
847 timer_stats_timer_clear_start_info(timer);
848 if (timer_pending(timer)) {
849 base = lock_timer_base(timer, &flags);
850 if (timer_pending(timer)) {
851 detach_timer(timer, 1);
852 if (timer->expires == base->next_timer &&
853 !tbase_get_deferrable(timer->base))
854 base->next_timer = base->timer_jiffies;
855 ret = 1;
857 spin_unlock_irqrestore(&base->lock, flags);
860 return ret;
862 EXPORT_SYMBOL(del_timer);
864 #ifdef CONFIG_SMP
866 * try_to_del_timer_sync - Try to deactivate a timer
867 * @timer: timer do del
869 * This function tries to deactivate a timer. Upon successful (ret >= 0)
870 * exit the timer is not queued and the handler is not running on any CPU.
872 * It must not be called from interrupt contexts.
874 int try_to_del_timer_sync(struct timer_list *timer)
876 struct tvec_base *base;
877 unsigned long flags;
878 int ret = -1;
880 base = lock_timer_base(timer, &flags);
882 if (base->running_timer == timer)
883 goto out;
885 ret = 0;
886 if (timer_pending(timer)) {
887 detach_timer(timer, 1);
888 if (timer->expires == base->next_timer &&
889 !tbase_get_deferrable(timer->base))
890 base->next_timer = base->timer_jiffies;
891 ret = 1;
893 out:
894 spin_unlock_irqrestore(&base->lock, flags);
896 return ret;
898 EXPORT_SYMBOL(try_to_del_timer_sync);
901 * del_timer_sync - deactivate a timer and wait for the handler to finish.
902 * @timer: the timer to be deactivated
904 * This function only differs from del_timer() on SMP: besides deactivating
905 * the timer it also makes sure the handler has finished executing on other
906 * CPUs.
908 * Synchronization rules: Callers must prevent restarting of the timer,
909 * otherwise this function is meaningless. It must not be called from
910 * interrupt contexts. The caller must not hold locks which would prevent
911 * completion of the timer's handler. The timer's handler must not call
912 * add_timer_on(). Upon exit the timer is not queued and the handler is
913 * not running on any CPU.
915 * The function returns whether it has deactivated a pending timer or not.
917 int del_timer_sync(struct timer_list *timer)
919 #ifdef CONFIG_LOCKDEP
920 unsigned long flags;
922 local_irq_save(flags);
923 lock_map_acquire(&timer->lockdep_map);
924 lock_map_release(&timer->lockdep_map);
925 local_irq_restore(flags);
926 #endif
928 for (;;) {
929 int ret = try_to_del_timer_sync(timer);
930 if (ret >= 0)
931 return ret;
932 cpu_relax();
935 EXPORT_SYMBOL(del_timer_sync);
936 #endif
938 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
940 /* cascade all the timers from tv up one level */
941 struct timer_list *timer, *tmp;
942 struct list_head tv_list;
944 list_replace_init(tv->vec + index, &tv_list);
947 * We are removing _all_ timers from the list, so we
948 * don't have to detach them individually.
950 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
951 BUG_ON(tbase_get_base(timer->base) != base);
952 internal_add_timer(base, timer);
955 return index;
958 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
961 * __run_timers - run all expired timers (if any) on this CPU.
962 * @base: the timer vector to be processed.
964 * This function cascades all vectors and executes all expired timer
965 * vectors.
967 static inline void __run_timers(struct tvec_base *base)
969 struct timer_list *timer;
971 spin_lock_irq(&base->lock);
972 while (time_after_eq(jiffies, base->timer_jiffies)) {
973 struct list_head work_list;
974 struct list_head *head = &work_list;
975 int index = base->timer_jiffies & TVR_MASK;
978 * Cascade timers:
980 if (!index &&
981 (!cascade(base, &base->tv2, INDEX(0))) &&
982 (!cascade(base, &base->tv3, INDEX(1))) &&
983 !cascade(base, &base->tv4, INDEX(2)))
984 cascade(base, &base->tv5, INDEX(3));
985 ++base->timer_jiffies;
986 list_replace_init(base->tv1.vec + index, &work_list);
987 while (!list_empty(head)) {
988 void (*fn)(unsigned long);
989 unsigned long data;
991 timer = list_first_entry(head, struct timer_list,entry);
992 fn = timer->function;
993 data = timer->data;
995 timer_stats_account_timer(timer);
997 set_running_timer(base, timer);
998 detach_timer(timer, 1);
1000 spin_unlock_irq(&base->lock);
1002 int preempt_count = preempt_count();
1004 #ifdef CONFIG_LOCKDEP
1006 * It is permissible to free the timer from
1007 * inside the function that is called from
1008 * it, this we need to take into account for
1009 * lockdep too. To avoid bogus "held lock
1010 * freed" warnings as well as problems when
1011 * looking into timer->lockdep_map, make a
1012 * copy and use that here.
1014 struct lockdep_map lockdep_map =
1015 timer->lockdep_map;
1016 #endif
1018 * Couple the lock chain with the lock chain at
1019 * del_timer_sync() by acquiring the lock_map
1020 * around the fn() call here and in
1021 * del_timer_sync().
1023 lock_map_acquire(&lockdep_map);
1025 trace_timer_expire_entry(timer);
1026 fn(data);
1027 trace_timer_expire_exit(timer);
1029 lock_map_release(&lockdep_map);
1031 if (preempt_count != preempt_count()) {
1032 printk(KERN_ERR "huh, entered %p "
1033 "with preempt_count %08x, exited"
1034 " with %08x?\n",
1035 fn, preempt_count,
1036 preempt_count());
1037 BUG();
1040 spin_lock_irq(&base->lock);
1043 set_running_timer(base, NULL);
1044 spin_unlock_irq(&base->lock);
1047 #ifdef CONFIG_NO_HZ
1049 * Find out when the next timer event is due to happen. This
1050 * is used on S/390 to stop all activity when a CPU is idle.
1051 * This function needs to be called with interrupts disabled.
1053 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1055 unsigned long timer_jiffies = base->timer_jiffies;
1056 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1057 int index, slot, array, found = 0;
1058 struct timer_list *nte;
1059 struct tvec *varray[4];
1061 /* Look for timer events in tv1. */
1062 index = slot = timer_jiffies & TVR_MASK;
1063 do {
1064 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1065 if (tbase_get_deferrable(nte->base))
1066 continue;
1068 found = 1;
1069 expires = nte->expires;
1070 /* Look at the cascade bucket(s)? */
1071 if (!index || slot < index)
1072 goto cascade;
1073 return expires;
1075 slot = (slot + 1) & TVR_MASK;
1076 } while (slot != index);
1078 cascade:
1079 /* Calculate the next cascade event */
1080 if (index)
1081 timer_jiffies += TVR_SIZE - index;
1082 timer_jiffies >>= TVR_BITS;
1084 /* Check tv2-tv5. */
1085 varray[0] = &base->tv2;
1086 varray[1] = &base->tv3;
1087 varray[2] = &base->tv4;
1088 varray[3] = &base->tv5;
1090 for (array = 0; array < 4; array++) {
1091 struct tvec *varp = varray[array];
1093 index = slot = timer_jiffies & TVN_MASK;
1094 do {
1095 list_for_each_entry(nte, varp->vec + slot, entry) {
1096 if (tbase_get_deferrable(nte->base))
1097 continue;
1099 found = 1;
1100 if (time_before(nte->expires, expires))
1101 expires = nte->expires;
1104 * Do we still search for the first timer or are
1105 * we looking up the cascade buckets ?
1107 if (found) {
1108 /* Look at the cascade bucket(s)? */
1109 if (!index || slot < index)
1110 break;
1111 return expires;
1113 slot = (slot + 1) & TVN_MASK;
1114 } while (slot != index);
1116 if (index)
1117 timer_jiffies += TVN_SIZE - index;
1118 timer_jiffies >>= TVN_BITS;
1120 return expires;
1124 * Check, if the next hrtimer event is before the next timer wheel
1125 * event:
1127 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1128 unsigned long expires)
1130 ktime_t hr_delta = hrtimer_get_next_event();
1131 struct timespec tsdelta;
1132 unsigned long delta;
1134 if (hr_delta.tv64 == KTIME_MAX)
1135 return expires;
1138 * Expired timer available, let it expire in the next tick
1140 if (hr_delta.tv64 <= 0)
1141 return now + 1;
1143 tsdelta = ktime_to_timespec(hr_delta);
1144 delta = timespec_to_jiffies(&tsdelta);
1147 * Limit the delta to the max value, which is checked in
1148 * tick_nohz_stop_sched_tick():
1150 if (delta > NEXT_TIMER_MAX_DELTA)
1151 delta = NEXT_TIMER_MAX_DELTA;
1154 * Take rounding errors in to account and make sure, that it
1155 * expires in the next tick. Otherwise we go into an endless
1156 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1157 * the timer softirq
1159 if (delta < 1)
1160 delta = 1;
1161 now += delta;
1162 if (time_before(now, expires))
1163 return now;
1164 return expires;
1168 * get_next_timer_interrupt - return the jiffy of the next pending timer
1169 * @now: current time (in jiffies)
1171 unsigned long get_next_timer_interrupt(unsigned long now)
1173 struct tvec_base *base = __get_cpu_var(tvec_bases);
1174 unsigned long expires;
1177 * Pretend that there is no timer pending if the cpu is offline.
1178 * Possible pending timers will be migrated later to an active cpu.
1180 if (cpu_is_offline(smp_processor_id()))
1181 return now + NEXT_TIMER_MAX_DELTA;
1182 spin_lock(&base->lock);
1183 if (time_before_eq(base->next_timer, base->timer_jiffies))
1184 base->next_timer = __next_timer_interrupt(base);
1185 expires = base->next_timer;
1186 spin_unlock(&base->lock);
1188 if (time_before_eq(expires, now))
1189 return now;
1191 return cmp_next_hrtimer_event(now, expires);
1193 #endif
1196 * Called from the timer interrupt handler to charge one tick to the current
1197 * process. user_tick is 1 if the tick is user time, 0 for system.
1199 void update_process_times(int user_tick)
1201 struct task_struct *p = current;
1202 int cpu = smp_processor_id();
1204 /* Note: this timer irq context must be accounted for as well. */
1205 account_process_tick(p, user_tick);
1206 run_local_timers();
1207 rcu_check_callbacks(cpu, user_tick);
1208 printk_tick();
1209 scheduler_tick();
1210 run_posix_cpu_timers(p);
1214 * This function runs timers and the timer-tq in bottom half context.
1216 static void run_timer_softirq(struct softirq_action *h)
1218 struct tvec_base *base = __get_cpu_var(tvec_bases);
1220 perf_event_do_pending();
1222 hrtimer_run_pending();
1224 if (time_after_eq(jiffies, base->timer_jiffies))
1225 __run_timers(base);
1229 * Called by the local, per-CPU timer interrupt on SMP.
1231 void run_local_timers(void)
1233 hrtimer_run_queues();
1234 raise_softirq(TIMER_SOFTIRQ);
1235 softlockup_tick();
1239 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1240 * without sampling the sequence number in xtime_lock.
1241 * jiffies is defined in the linker script...
1244 void do_timer(unsigned long ticks)
1246 jiffies_64 += ticks;
1247 update_wall_time();
1248 calc_global_load();
1251 #ifdef __ARCH_WANT_SYS_ALARM
1254 * For backwards compatibility? This can be done in libc so Alpha
1255 * and all newer ports shouldn't need it.
1257 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1259 return alarm_setitimer(seconds);
1262 #endif
1264 #ifndef __alpha__
1267 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1268 * should be moved into arch/i386 instead?
1272 * sys_getpid - return the thread group id of the current process
1274 * Note, despite the name, this returns the tgid not the pid. The tgid and
1275 * the pid are identical unless CLONE_THREAD was specified on clone() in
1276 * which case the tgid is the same in all threads of the same group.
1278 * This is SMP safe as current->tgid does not change.
1280 SYSCALL_DEFINE0(getpid)
1282 return task_tgid_vnr(current);
1286 * Accessing ->real_parent is not SMP-safe, it could
1287 * change from under us. However, we can use a stale
1288 * value of ->real_parent under rcu_read_lock(), see
1289 * release_task()->call_rcu(delayed_put_task_struct).
1291 SYSCALL_DEFINE0(getppid)
1293 int pid;
1295 rcu_read_lock();
1296 pid = task_tgid_vnr(current->real_parent);
1297 rcu_read_unlock();
1299 return pid;
1302 SYSCALL_DEFINE0(getuid)
1304 /* Only we change this so SMP safe */
1305 return current_uid();
1308 SYSCALL_DEFINE0(geteuid)
1310 /* Only we change this so SMP safe */
1311 return current_euid();
1314 SYSCALL_DEFINE0(getgid)
1316 /* Only we change this so SMP safe */
1317 return current_gid();
1320 SYSCALL_DEFINE0(getegid)
1322 /* Only we change this so SMP safe */
1323 return current_egid();
1326 #endif
1328 static void process_timeout(unsigned long __data)
1330 wake_up_process((struct task_struct *)__data);
1334 * schedule_timeout - sleep until timeout
1335 * @timeout: timeout value in jiffies
1337 * Make the current task sleep until @timeout jiffies have
1338 * elapsed. The routine will return immediately unless
1339 * the current task state has been set (see set_current_state()).
1341 * You can set the task state as follows -
1343 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1344 * pass before the routine returns. The routine will return 0
1346 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1347 * delivered to the current task. In this case the remaining time
1348 * in jiffies will be returned, or 0 if the timer expired in time
1350 * The current task state is guaranteed to be TASK_RUNNING when this
1351 * routine returns.
1353 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1354 * the CPU away without a bound on the timeout. In this case the return
1355 * value will be %MAX_SCHEDULE_TIMEOUT.
1357 * In all cases the return value is guaranteed to be non-negative.
1359 signed long __sched schedule_timeout(signed long timeout)
1361 struct timer_list timer;
1362 unsigned long expire;
1364 switch (timeout)
1366 case MAX_SCHEDULE_TIMEOUT:
1368 * These two special cases are useful to be comfortable
1369 * in the caller. Nothing more. We could take
1370 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1371 * but I' d like to return a valid offset (>=0) to allow
1372 * the caller to do everything it want with the retval.
1374 schedule();
1375 goto out;
1376 default:
1378 * Another bit of PARANOID. Note that the retval will be
1379 * 0 since no piece of kernel is supposed to do a check
1380 * for a negative retval of schedule_timeout() (since it
1381 * should never happens anyway). You just have the printk()
1382 * that will tell you if something is gone wrong and where.
1384 if (timeout < 0) {
1385 printk(KERN_ERR "schedule_timeout: wrong timeout "
1386 "value %lx\n", timeout);
1387 dump_stack();
1388 current->state = TASK_RUNNING;
1389 goto out;
1393 expire = timeout + jiffies;
1395 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1396 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1397 schedule();
1398 del_singleshot_timer_sync(&timer);
1400 /* Remove the timer from the object tracker */
1401 destroy_timer_on_stack(&timer);
1403 timeout = expire - jiffies;
1405 out:
1406 return timeout < 0 ? 0 : timeout;
1408 EXPORT_SYMBOL(schedule_timeout);
1411 * We can use __set_current_state() here because schedule_timeout() calls
1412 * schedule() unconditionally.
1414 signed long __sched schedule_timeout_interruptible(signed long timeout)
1416 __set_current_state(TASK_INTERRUPTIBLE);
1417 return schedule_timeout(timeout);
1419 EXPORT_SYMBOL(schedule_timeout_interruptible);
1421 signed long __sched schedule_timeout_killable(signed long timeout)
1423 __set_current_state(TASK_KILLABLE);
1424 return schedule_timeout(timeout);
1426 EXPORT_SYMBOL(schedule_timeout_killable);
1428 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1430 __set_current_state(TASK_UNINTERRUPTIBLE);
1431 return schedule_timeout(timeout);
1433 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1435 /* Thread ID - the internal kernel "pid" */
1436 SYSCALL_DEFINE0(gettid)
1438 return task_pid_vnr(current);
1442 * do_sysinfo - fill in sysinfo struct
1443 * @info: pointer to buffer to fill
1445 int do_sysinfo(struct sysinfo *info)
1447 unsigned long mem_total, sav_total;
1448 unsigned int mem_unit, bitcount;
1449 struct timespec tp;
1451 memset(info, 0, sizeof(struct sysinfo));
1453 ktime_get_ts(&tp);
1454 monotonic_to_bootbased(&tp);
1455 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1457 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1459 info->procs = nr_threads;
1461 si_meminfo(info);
1462 si_swapinfo(info);
1465 * If the sum of all the available memory (i.e. ram + swap)
1466 * is less than can be stored in a 32 bit unsigned long then
1467 * we can be binary compatible with 2.2.x kernels. If not,
1468 * well, in that case 2.2.x was broken anyways...
1470 * -Erik Andersen <andersee@debian.org>
1473 mem_total = info->totalram + info->totalswap;
1474 if (mem_total < info->totalram || mem_total < info->totalswap)
1475 goto out;
1476 bitcount = 0;
1477 mem_unit = info->mem_unit;
1478 while (mem_unit > 1) {
1479 bitcount++;
1480 mem_unit >>= 1;
1481 sav_total = mem_total;
1482 mem_total <<= 1;
1483 if (mem_total < sav_total)
1484 goto out;
1488 * If mem_total did not overflow, multiply all memory values by
1489 * info->mem_unit and set it to 1. This leaves things compatible
1490 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1491 * kernels...
1494 info->mem_unit = 1;
1495 info->totalram <<= bitcount;
1496 info->freeram <<= bitcount;
1497 info->sharedram <<= bitcount;
1498 info->bufferram <<= bitcount;
1499 info->totalswap <<= bitcount;
1500 info->freeswap <<= bitcount;
1501 info->totalhigh <<= bitcount;
1502 info->freehigh <<= bitcount;
1504 out:
1505 return 0;
1508 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1510 struct sysinfo val;
1512 do_sysinfo(&val);
1514 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1515 return -EFAULT;
1517 return 0;
1520 static int __cpuinit init_timers_cpu(int cpu)
1522 int j;
1523 struct tvec_base *base;
1524 static char __cpuinitdata tvec_base_done[NR_CPUS];
1526 if (!tvec_base_done[cpu]) {
1527 static char boot_done;
1529 if (boot_done) {
1531 * The APs use this path later in boot
1533 base = kmalloc_node(sizeof(*base),
1534 GFP_KERNEL | __GFP_ZERO,
1535 cpu_to_node(cpu));
1536 if (!base)
1537 return -ENOMEM;
1539 /* Make sure that tvec_base is 2 byte aligned */
1540 if (tbase_get_deferrable(base)) {
1541 WARN_ON(1);
1542 kfree(base);
1543 return -ENOMEM;
1545 per_cpu(tvec_bases, cpu) = base;
1546 } else {
1548 * This is for the boot CPU - we use compile-time
1549 * static initialisation because per-cpu memory isn't
1550 * ready yet and because the memory allocators are not
1551 * initialised either.
1553 boot_done = 1;
1554 base = &boot_tvec_bases;
1556 tvec_base_done[cpu] = 1;
1557 } else {
1558 base = per_cpu(tvec_bases, cpu);
1561 spin_lock_init(&base->lock);
1563 for (j = 0; j < TVN_SIZE; j++) {
1564 INIT_LIST_HEAD(base->tv5.vec + j);
1565 INIT_LIST_HEAD(base->tv4.vec + j);
1566 INIT_LIST_HEAD(base->tv3.vec + j);
1567 INIT_LIST_HEAD(base->tv2.vec + j);
1569 for (j = 0; j < TVR_SIZE; j++)
1570 INIT_LIST_HEAD(base->tv1.vec + j);
1572 base->timer_jiffies = jiffies;
1573 base->next_timer = base->timer_jiffies;
1574 return 0;
1577 #ifdef CONFIG_HOTPLUG_CPU
1578 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1580 struct timer_list *timer;
1582 while (!list_empty(head)) {
1583 timer = list_first_entry(head, struct timer_list, entry);
1584 detach_timer(timer, 0);
1585 timer_set_base(timer, new_base);
1586 if (time_before(timer->expires, new_base->next_timer) &&
1587 !tbase_get_deferrable(timer->base))
1588 new_base->next_timer = timer->expires;
1589 internal_add_timer(new_base, timer);
1593 static void __cpuinit migrate_timers(int cpu)
1595 struct tvec_base *old_base;
1596 struct tvec_base *new_base;
1597 int i;
1599 BUG_ON(cpu_online(cpu));
1600 old_base = per_cpu(tvec_bases, cpu);
1601 new_base = get_cpu_var(tvec_bases);
1603 * The caller is globally serialized and nobody else
1604 * takes two locks at once, deadlock is not possible.
1606 spin_lock_irq(&new_base->lock);
1607 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1609 BUG_ON(old_base->running_timer);
1611 for (i = 0; i < TVR_SIZE; i++)
1612 migrate_timer_list(new_base, old_base->tv1.vec + i);
1613 for (i = 0; i < TVN_SIZE; i++) {
1614 migrate_timer_list(new_base, old_base->tv2.vec + i);
1615 migrate_timer_list(new_base, old_base->tv3.vec + i);
1616 migrate_timer_list(new_base, old_base->tv4.vec + i);
1617 migrate_timer_list(new_base, old_base->tv5.vec + i);
1620 spin_unlock(&old_base->lock);
1621 spin_unlock_irq(&new_base->lock);
1622 put_cpu_var(tvec_bases);
1624 #endif /* CONFIG_HOTPLUG_CPU */
1626 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1627 unsigned long action, void *hcpu)
1629 long cpu = (long)hcpu;
1630 switch(action) {
1631 case CPU_UP_PREPARE:
1632 case CPU_UP_PREPARE_FROZEN:
1633 if (init_timers_cpu(cpu) < 0)
1634 return NOTIFY_BAD;
1635 break;
1636 #ifdef CONFIG_HOTPLUG_CPU
1637 case CPU_DEAD:
1638 case CPU_DEAD_FROZEN:
1639 migrate_timers(cpu);
1640 break;
1641 #endif
1642 default:
1643 break;
1645 return NOTIFY_OK;
1648 static struct notifier_block __cpuinitdata timers_nb = {
1649 .notifier_call = timer_cpu_notify,
1653 void __init init_timers(void)
1655 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1656 (void *)(long)smp_processor_id());
1658 init_timer_stats();
1660 BUG_ON(err == NOTIFY_BAD);
1661 register_cpu_notifier(&timers_nb);
1662 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1666 * msleep - sleep safely even with waitqueue interruptions
1667 * @msecs: Time in milliseconds to sleep for
1669 void msleep(unsigned int msecs)
1671 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1673 while (timeout)
1674 timeout = schedule_timeout_uninterruptible(timeout);
1677 EXPORT_SYMBOL(msleep);
1680 * msleep_interruptible - sleep waiting for signals
1681 * @msecs: Time in milliseconds to sleep for
1683 unsigned long msleep_interruptible(unsigned int msecs)
1685 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1687 while (timeout && !signal_pending(current))
1688 timeout = schedule_timeout_interruptible(timeout);
1689 return jiffies_to_msecs(timeout);
1692 EXPORT_SYMBOL(msleep_interruptible);