md/raid5: be more careful about write ordering when reshaping.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ide / ide-timings.c
blob81f527af8fae75f097d4ba29d80d9d7929a15b74
1 /*
2 * Copyright (c) 1999-2001 Vojtech Pavlik
3 * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Should you need to contact me, the author, you can do so either by
20 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
21 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
24 #include <linux/kernel.h>
25 #include <linux/ide.h>
26 #include <linux/module.h>
29 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
30 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
31 * for PIO 5, which is a nonstandard extension and UDMA6, which
32 * is currently supported only by Maxtor drives.
35 static struct ide_timing ide_timing[] = {
37 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
38 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
39 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
40 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
42 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
43 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
44 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
46 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
47 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
48 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
50 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
51 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
52 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
54 { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
55 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
56 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
58 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
59 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
60 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
62 { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
64 { 0xff }
67 struct ide_timing *ide_timing_find_mode(u8 speed)
69 struct ide_timing *t;
71 for (t = ide_timing; t->mode != speed; t++)
72 if (t->mode == 0xff)
73 return NULL;
74 return t;
76 EXPORT_SYMBOL_GPL(ide_timing_find_mode);
78 u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
80 u16 *id = drive->id;
81 struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
82 u16 cycle = 0;
84 if (id[ATA_ID_FIELD_VALID] & 2) {
85 if (ata_id_has_iordy(drive->id))
86 cycle = id[ATA_ID_EIDE_PIO_IORDY];
87 else
88 cycle = id[ATA_ID_EIDE_PIO];
90 /* conservative "downgrade" for all pre-ATA2 drives */
91 if (pio < 3 && cycle < t->cycle)
92 cycle = 0; /* use standard timing */
95 return cycle ? cycle : t->cycle;
97 EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
99 #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
100 #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
102 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
103 int T, int UT)
105 q->setup = EZ(t->setup * 1000, T);
106 q->act8b = EZ(t->act8b * 1000, T);
107 q->rec8b = EZ(t->rec8b * 1000, T);
108 q->cyc8b = EZ(t->cyc8b * 1000, T);
109 q->active = EZ(t->active * 1000, T);
110 q->recover = EZ(t->recover * 1000, T);
111 q->cycle = EZ(t->cycle * 1000, T);
112 q->udma = EZ(t->udma * 1000, UT);
115 void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
116 struct ide_timing *m, unsigned int what)
118 if (what & IDE_TIMING_SETUP)
119 m->setup = max(a->setup, b->setup);
120 if (what & IDE_TIMING_ACT8B)
121 m->act8b = max(a->act8b, b->act8b);
122 if (what & IDE_TIMING_REC8B)
123 m->rec8b = max(a->rec8b, b->rec8b);
124 if (what & IDE_TIMING_CYC8B)
125 m->cyc8b = max(a->cyc8b, b->cyc8b);
126 if (what & IDE_TIMING_ACTIVE)
127 m->active = max(a->active, b->active);
128 if (what & IDE_TIMING_RECOVER)
129 m->recover = max(a->recover, b->recover);
130 if (what & IDE_TIMING_CYCLE)
131 m->cycle = max(a->cycle, b->cycle);
132 if (what & IDE_TIMING_UDMA)
133 m->udma = max(a->udma, b->udma);
135 EXPORT_SYMBOL_GPL(ide_timing_merge);
137 int ide_timing_compute(ide_drive_t *drive, u8 speed,
138 struct ide_timing *t, int T, int UT)
140 u16 *id = drive->id;
141 struct ide_timing *s, p;
144 * Find the mode.
146 s = ide_timing_find_mode(speed);
147 if (s == NULL)
148 return -EINVAL;
151 * Copy the timing from the table.
153 *t = *s;
156 * If the drive is an EIDE drive, it can tell us it needs extended
157 * PIO/MWDMA cycle timing.
159 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
160 memset(&p, 0, sizeof(p));
162 if (speed <= XFER_PIO_2)
163 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
164 else if (speed <= XFER_PIO_5)
165 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
166 else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
167 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
169 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
173 * Convert the timing to bus clock counts.
175 ide_timing_quantize(t, t, T, UT);
178 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
179 * S.M.A.R.T and some other commands. We have to ensure that the
180 * DMA cycle timing is slower/equal than the fastest PIO timing.
182 if (speed >= XFER_SW_DMA_0) {
183 u8 pio = ide_get_best_pio_mode(drive, 255, 5);
184 ide_timing_compute(drive, XFER_PIO_0 + pio, &p, T, UT);
185 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
189 * Lengthen active & recovery time so that cycle time is correct.
191 if (t->act8b + t->rec8b < t->cyc8b) {
192 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
193 t->rec8b = t->cyc8b - t->act8b;
196 if (t->active + t->recover < t->cycle) {
197 t->active += (t->cycle - (t->active + t->recover)) / 2;
198 t->recover = t->cycle - t->active;
201 return 0;
203 EXPORT_SYMBOL_GPL(ide_timing_compute);