sfc: Move test of rx_checksum_enabled from nic.c to rx.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / sfc / nic.c
blob2594f39c3ba4929379dcec205f8cf11491c9b8a2
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
24 /**************************************************************************
26 * Configurable values
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* If EFX_MAX_INT_ERRORS internal errors occur within
45 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
46 * disable it.
48 #define EFX_INT_ERROR_EXPIRE 3600
49 #define EFX_MAX_INT_ERRORS 5
51 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
53 #define EFX_FLUSH_INTERVAL 10
54 #define EFX_FLUSH_POLL_COUNT 100
56 /* Size and alignment of special buffers (4KB) */
57 #define EFX_BUF_SIZE 4096
59 /* Depth of RX flush request fifo */
60 #define EFX_RX_FLUSH_COUNT 4
62 /* Generated event code for efx_generate_test_event() */
63 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
64 (0x00010100 + (_channel)->channel)
66 /* Generated event code for efx_generate_fill_event() */
67 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
68 (0x00010200 + (_channel)->channel)
70 /**************************************************************************
72 * Solarstorm hardware access
74 **************************************************************************/
76 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
77 unsigned int index)
79 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
80 value, index);
83 /* Read the current event from the event queue */
84 static inline efx_qword_t *efx_event(struct efx_channel *channel,
85 unsigned int index)
87 return ((efx_qword_t *) (channel->eventq.addr)) + index;
90 /* See if an event is present
92 * We check both the high and low dword of the event for all ones. We
93 * wrote all ones when we cleared the event, and no valid event can
94 * have all ones in either its high or low dwords. This approach is
95 * robust against reordering.
97 * Note that using a single 64-bit comparison is incorrect; even
98 * though the CPU read will be atomic, the DMA write may not be.
100 static inline int efx_event_present(efx_qword_t *event)
102 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
103 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
106 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
107 const efx_oword_t *mask)
109 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
110 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
113 int efx_nic_test_registers(struct efx_nic *efx,
114 const struct efx_nic_register_test *regs,
115 size_t n_regs)
117 unsigned address = 0, i, j;
118 efx_oword_t mask, imask, original, reg, buf;
120 /* Falcon should be in loopback to isolate the XMAC from the PHY */
121 WARN_ON(!LOOPBACK_INTERNAL(efx));
123 for (i = 0; i < n_regs; ++i) {
124 address = regs[i].address;
125 mask = imask = regs[i].mask;
126 EFX_INVERT_OWORD(imask);
128 efx_reado(efx, &original, address);
130 /* bit sweep on and off */
131 for (j = 0; j < 128; j++) {
132 if (!EFX_EXTRACT_OWORD32(mask, j, j))
133 continue;
135 /* Test this testable bit can be set in isolation */
136 EFX_AND_OWORD(reg, original, mask);
137 EFX_SET_OWORD32(reg, j, j, 1);
139 efx_writeo(efx, &reg, address);
140 efx_reado(efx, &buf, address);
142 if (efx_masked_compare_oword(&reg, &buf, &mask))
143 goto fail;
145 /* Test this testable bit can be cleared in isolation */
146 EFX_OR_OWORD(reg, original, mask);
147 EFX_SET_OWORD32(reg, j, j, 0);
149 efx_writeo(efx, &reg, address);
150 efx_reado(efx, &buf, address);
152 if (efx_masked_compare_oword(&reg, &buf, &mask))
153 goto fail;
156 efx_writeo(efx, &original, address);
159 return 0;
161 fail:
162 netif_err(efx, hw, efx->net_dev,
163 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
164 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
165 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
166 return -EIO;
169 /**************************************************************************
171 * Special buffer handling
172 * Special buffers are used for event queues and the TX and RX
173 * descriptor rings.
175 *************************************************************************/
178 * Initialise a special buffer
180 * This will define a buffer (previously allocated via
181 * efx_alloc_special_buffer()) in the buffer table, allowing
182 * it to be used for event queues, descriptor rings etc.
184 static void
185 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
187 efx_qword_t buf_desc;
188 int index;
189 dma_addr_t dma_addr;
190 int i;
192 EFX_BUG_ON_PARANOID(!buffer->addr);
194 /* Write buffer descriptors to NIC */
195 for (i = 0; i < buffer->entries; i++) {
196 index = buffer->index + i;
197 dma_addr = buffer->dma_addr + (i * 4096);
198 netif_dbg(efx, probe, efx->net_dev,
199 "mapping special buffer %d at %llx\n",
200 index, (unsigned long long)dma_addr);
201 EFX_POPULATE_QWORD_3(buf_desc,
202 FRF_AZ_BUF_ADR_REGION, 0,
203 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
204 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
205 efx_write_buf_tbl(efx, &buf_desc, index);
209 /* Unmaps a buffer and clears the buffer table entries */
210 static void
211 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
213 efx_oword_t buf_tbl_upd;
214 unsigned int start = buffer->index;
215 unsigned int end = (buffer->index + buffer->entries - 1);
217 if (!buffer->entries)
218 return;
220 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
221 buffer->index, buffer->index + buffer->entries - 1);
223 EFX_POPULATE_OWORD_4(buf_tbl_upd,
224 FRF_AZ_BUF_UPD_CMD, 0,
225 FRF_AZ_BUF_CLR_CMD, 1,
226 FRF_AZ_BUF_CLR_END_ID, end,
227 FRF_AZ_BUF_CLR_START_ID, start);
228 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
232 * Allocate a new special buffer
234 * This allocates memory for a new buffer, clears it and allocates a
235 * new buffer ID range. It does not write into the buffer table.
237 * This call will allocate 4KB buffers, since 8KB buffers can't be
238 * used for event queues and descriptor rings.
240 static int efx_alloc_special_buffer(struct efx_nic *efx,
241 struct efx_special_buffer *buffer,
242 unsigned int len)
244 len = ALIGN(len, EFX_BUF_SIZE);
246 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
247 &buffer->dma_addr, GFP_KERNEL);
248 if (!buffer->addr)
249 return -ENOMEM;
250 buffer->len = len;
251 buffer->entries = len / EFX_BUF_SIZE;
252 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
254 /* All zeros is a potentially valid event so memset to 0xff */
255 memset(buffer->addr, 0xff, len);
257 /* Select new buffer ID */
258 buffer->index = efx->next_buffer_table;
259 efx->next_buffer_table += buffer->entries;
261 netif_dbg(efx, probe, efx->net_dev,
262 "allocating special buffers %d-%d at %llx+%x "
263 "(virt %p phys %llx)\n", buffer->index,
264 buffer->index + buffer->entries - 1,
265 (u64)buffer->dma_addr, len,
266 buffer->addr, (u64)virt_to_phys(buffer->addr));
268 return 0;
271 static void
272 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
274 if (!buffer->addr)
275 return;
277 netif_dbg(efx, hw, efx->net_dev,
278 "deallocating special buffers %d-%d at %llx+%x "
279 "(virt %p phys %llx)\n", buffer->index,
280 buffer->index + buffer->entries - 1,
281 (u64)buffer->dma_addr, buffer->len,
282 buffer->addr, (u64)virt_to_phys(buffer->addr));
284 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
285 buffer->dma_addr);
286 buffer->addr = NULL;
287 buffer->entries = 0;
290 /**************************************************************************
292 * Generic buffer handling
293 * These buffers are used for interrupt status and MAC stats
295 **************************************************************************/
297 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
298 unsigned int len)
300 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
301 &buffer->dma_addr);
302 if (!buffer->addr)
303 return -ENOMEM;
304 buffer->len = len;
305 memset(buffer->addr, 0, len);
306 return 0;
309 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
311 if (buffer->addr) {
312 pci_free_consistent(efx->pci_dev, buffer->len,
313 buffer->addr, buffer->dma_addr);
314 buffer->addr = NULL;
318 /**************************************************************************
320 * TX path
322 **************************************************************************/
324 /* Returns a pointer to the specified transmit descriptor in the TX
325 * descriptor queue belonging to the specified channel.
327 static inline efx_qword_t *
328 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
330 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
333 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
334 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
336 unsigned write_ptr;
337 efx_dword_t reg;
339 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
340 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
341 efx_writed_page(tx_queue->efx, &reg,
342 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
345 /* Write pointer and first descriptor for TX descriptor ring */
346 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
347 const efx_qword_t *txd)
349 unsigned write_ptr;
350 efx_oword_t reg;
352 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
353 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
355 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
356 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
357 FRF_AZ_TX_DESC_WPTR, write_ptr);
358 reg.qword[0] = *txd;
359 efx_writeo_page(tx_queue->efx, &reg,
360 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
363 static inline bool
364 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
366 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
368 if (empty_read_count == 0)
369 return false;
371 tx_queue->empty_read_count = 0;
372 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
375 /* For each entry inserted into the software descriptor ring, create a
376 * descriptor in the hardware TX descriptor ring (in host memory), and
377 * write a doorbell.
379 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
382 struct efx_tx_buffer *buffer;
383 efx_qword_t *txd;
384 unsigned write_ptr;
385 unsigned old_write_count = tx_queue->write_count;
387 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
389 do {
390 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
391 buffer = &tx_queue->buffer[write_ptr];
392 txd = efx_tx_desc(tx_queue, write_ptr);
393 ++tx_queue->write_count;
395 /* Create TX descriptor ring entry */
396 EFX_POPULATE_QWORD_4(*txd,
397 FSF_AZ_TX_KER_CONT, buffer->continuation,
398 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
399 FSF_AZ_TX_KER_BUF_REGION, 0,
400 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
401 } while (tx_queue->write_count != tx_queue->insert_count);
403 wmb(); /* Ensure descriptors are written before they are fetched */
405 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
406 txd = efx_tx_desc(tx_queue,
407 old_write_count & tx_queue->ptr_mask);
408 efx_push_tx_desc(tx_queue, txd);
409 ++tx_queue->pushes;
410 } else {
411 efx_notify_tx_desc(tx_queue);
415 /* Allocate hardware resources for a TX queue */
416 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
418 struct efx_nic *efx = tx_queue->efx;
419 unsigned entries;
421 entries = tx_queue->ptr_mask + 1;
422 return efx_alloc_special_buffer(efx, &tx_queue->txd,
423 entries * sizeof(efx_qword_t));
426 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
428 struct efx_nic *efx = tx_queue->efx;
429 efx_oword_t reg;
431 tx_queue->flushed = FLUSH_NONE;
433 /* Pin TX descriptor ring */
434 efx_init_special_buffer(efx, &tx_queue->txd);
436 /* Push TX descriptor ring to card */
437 EFX_POPULATE_OWORD_10(reg,
438 FRF_AZ_TX_DESCQ_EN, 1,
439 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
440 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
441 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
442 FRF_AZ_TX_DESCQ_EVQ_ID,
443 tx_queue->channel->channel,
444 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
445 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
446 FRF_AZ_TX_DESCQ_SIZE,
447 __ffs(tx_queue->txd.entries),
448 FRF_AZ_TX_DESCQ_TYPE, 0,
449 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
451 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
452 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
453 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
454 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
455 !csum);
458 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
459 tx_queue->queue);
461 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
462 /* Only 128 bits in this register */
463 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
465 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
466 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
467 clear_bit_le(tx_queue->queue, (void *)&reg);
468 else
469 set_bit_le(tx_queue->queue, (void *)&reg);
470 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
473 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
474 EFX_POPULATE_OWORD_1(reg,
475 FRF_BZ_TX_PACE,
476 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
477 FFE_BZ_TX_PACE_OFF :
478 FFE_BZ_TX_PACE_RESERVED);
479 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
480 tx_queue->queue);
484 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
486 struct efx_nic *efx = tx_queue->efx;
487 efx_oword_t tx_flush_descq;
489 tx_queue->flushed = FLUSH_PENDING;
491 /* Post a flush command */
492 EFX_POPULATE_OWORD_2(tx_flush_descq,
493 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
494 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
495 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
498 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
500 struct efx_nic *efx = tx_queue->efx;
501 efx_oword_t tx_desc_ptr;
503 /* The queue should have been flushed */
504 WARN_ON(tx_queue->flushed != FLUSH_DONE);
506 /* Remove TX descriptor ring from card */
507 EFX_ZERO_OWORD(tx_desc_ptr);
508 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
509 tx_queue->queue);
511 /* Unpin TX descriptor ring */
512 efx_fini_special_buffer(efx, &tx_queue->txd);
515 /* Free buffers backing TX queue */
516 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 /**************************************************************************
523 * RX path
525 **************************************************************************/
527 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
528 static inline efx_qword_t *
529 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 /* This creates an entry in the RX descriptor queue */
535 static inline void
536 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538 struct efx_rx_buffer *rx_buf;
539 efx_qword_t *rxd;
541 rxd = efx_rx_desc(rx_queue, index);
542 rx_buf = efx_rx_buffer(rx_queue, index);
543 EFX_POPULATE_QWORD_3(*rxd,
544 FSF_AZ_RX_KER_BUF_SIZE,
545 rx_buf->len -
546 rx_queue->efx->type->rx_buffer_padding,
547 FSF_AZ_RX_KER_BUF_REGION, 0,
548 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 /* This writes to the RX_DESC_WPTR register for the specified receive
552 * descriptor ring.
554 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556 struct efx_nic *efx = rx_queue->efx;
557 efx_dword_t reg;
558 unsigned write_ptr;
560 while (rx_queue->notified_count != rx_queue->added_count) {
561 efx_build_rx_desc(
562 rx_queue,
563 rx_queue->notified_count & rx_queue->ptr_mask);
564 ++rx_queue->notified_count;
567 wmb();
568 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
569 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
570 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
571 efx_rx_queue_index(rx_queue));
574 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576 struct efx_nic *efx = rx_queue->efx;
577 unsigned entries;
579 entries = rx_queue->ptr_mask + 1;
580 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
581 entries * sizeof(efx_qword_t));
584 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586 efx_oword_t rx_desc_ptr;
587 struct efx_nic *efx = rx_queue->efx;
588 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
589 bool iscsi_digest_en = is_b0;
591 netif_dbg(efx, hw, efx->net_dev,
592 "RX queue %d ring in special buffers %d-%d\n",
593 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
594 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
596 rx_queue->flushed = FLUSH_NONE;
598 /* Pin RX descriptor ring */
599 efx_init_special_buffer(efx, &rx_queue->rxd);
601 /* Push RX descriptor ring to card */
602 EFX_POPULATE_OWORD_10(rx_desc_ptr,
603 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606 FRF_AZ_RX_DESCQ_EVQ_ID,
607 efx_rx_queue_channel(rx_queue)->channel,
608 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609 FRF_AZ_RX_DESCQ_LABEL,
610 efx_rx_queue_index(rx_queue),
611 FRF_AZ_RX_DESCQ_SIZE,
612 __ffs(rx_queue->rxd.entries),
613 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614 /* For >=B0 this is scatter so disable */
615 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616 FRF_AZ_RX_DESCQ_EN, 1);
617 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618 efx_rx_queue_index(rx_queue));
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
623 struct efx_nic *efx = rx_queue->efx;
624 efx_oword_t rx_flush_descq;
626 rx_queue->flushed = FLUSH_PENDING;
628 /* Post a flush command */
629 EFX_POPULATE_OWORD_2(rx_flush_descq,
630 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
631 FRF_AZ_RX_FLUSH_DESCQ,
632 efx_rx_queue_index(rx_queue));
633 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
636 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
638 efx_oword_t rx_desc_ptr;
639 struct efx_nic *efx = rx_queue->efx;
641 /* The queue should already have been flushed */
642 WARN_ON(rx_queue->flushed != FLUSH_DONE);
644 /* Remove RX descriptor ring from card */
645 EFX_ZERO_OWORD(rx_desc_ptr);
646 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
647 efx_rx_queue_index(rx_queue));
649 /* Unpin RX descriptor ring */
650 efx_fini_special_buffer(efx, &rx_queue->rxd);
653 /* Free buffers backing RX queue */
654 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
656 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
659 /**************************************************************************
661 * Event queue processing
662 * Event queues are processed by per-channel tasklets.
664 **************************************************************************/
666 /* Update a channel's event queue's read pointer (RPTR) register
668 * This writes the EVQ_RPTR_REG register for the specified channel's
669 * event queue.
671 void efx_nic_eventq_read_ack(struct efx_channel *channel)
673 efx_dword_t reg;
674 struct efx_nic *efx = channel->efx;
676 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
677 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
678 channel->channel);
681 /* Use HW to insert a SW defined event */
682 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
684 efx_oword_t drv_ev_reg;
686 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
687 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
688 drv_ev_reg.u32[0] = event->u32[0];
689 drv_ev_reg.u32[1] = event->u32[1];
690 drv_ev_reg.u32[2] = 0;
691 drv_ev_reg.u32[3] = 0;
692 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
693 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
696 /* Handle a transmit completion event
698 * The NIC batches TX completion events; the message we receive is of
699 * the form "complete all TX events up to this index".
701 static int
702 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
704 unsigned int tx_ev_desc_ptr;
705 unsigned int tx_ev_q_label;
706 struct efx_tx_queue *tx_queue;
707 struct efx_nic *efx = channel->efx;
708 int tx_packets = 0;
710 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
711 /* Transmit completion */
712 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
713 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
714 tx_queue = efx_channel_get_tx_queue(
715 channel, tx_ev_q_label % EFX_TXQ_TYPES);
716 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
717 tx_queue->ptr_mask);
718 channel->irq_mod_score += tx_packets;
719 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
720 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
721 /* Rewrite the FIFO write pointer */
722 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
723 tx_queue = efx_channel_get_tx_queue(
724 channel, tx_ev_q_label % EFX_TXQ_TYPES);
726 if (efx_dev_registered(efx))
727 netif_tx_lock(efx->net_dev);
728 efx_notify_tx_desc(tx_queue);
729 if (efx_dev_registered(efx))
730 netif_tx_unlock(efx->net_dev);
731 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
732 EFX_WORKAROUND_10727(efx)) {
733 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
734 } else {
735 netif_err(efx, tx_err, efx->net_dev,
736 "channel %d unexpected TX event "
737 EFX_QWORD_FMT"\n", channel->channel,
738 EFX_QWORD_VAL(*event));
741 return tx_packets;
744 /* Detect errors included in the rx_evt_pkt_ok bit. */
745 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
746 const efx_qword_t *event,
747 bool *rx_ev_pkt_ok,
748 bool *discard)
750 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
751 struct efx_nic *efx = rx_queue->efx;
752 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
753 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
754 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
755 bool rx_ev_other_err, rx_ev_pause_frm;
756 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
757 unsigned rx_ev_pkt_type;
759 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
760 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
761 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
762 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
763 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
764 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
765 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
766 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
767 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
768 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
769 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
770 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
771 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
772 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
773 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
775 /* Every error apart from tobe_disc and pause_frm */
776 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
777 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
778 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
780 /* Count errors that are not in MAC stats. Ignore expected
781 * checksum errors during self-test. */
782 if (rx_ev_frm_trunc)
783 ++channel->n_rx_frm_trunc;
784 else if (rx_ev_tobe_disc)
785 ++channel->n_rx_tobe_disc;
786 else if (!efx->loopback_selftest) {
787 if (rx_ev_ip_hdr_chksum_err)
788 ++channel->n_rx_ip_hdr_chksum_err;
789 else if (rx_ev_tcp_udp_chksum_err)
790 ++channel->n_rx_tcp_udp_chksum_err;
793 /* The frame must be discarded if any of these are true. */
794 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
795 rx_ev_tobe_disc | rx_ev_pause_frm);
797 /* TOBE_DISC is expected on unicast mismatches; don't print out an
798 * error message. FRM_TRUNC indicates RXDP dropped the packet due
799 * to a FIFO overflow.
801 #ifdef EFX_ENABLE_DEBUG
802 if (rx_ev_other_err && net_ratelimit()) {
803 netif_dbg(efx, rx_err, efx->net_dev,
804 " RX queue %d unexpected RX event "
805 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
806 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
807 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
808 rx_ev_ip_hdr_chksum_err ?
809 " [IP_HDR_CHKSUM_ERR]" : "",
810 rx_ev_tcp_udp_chksum_err ?
811 " [TCP_UDP_CHKSUM_ERR]" : "",
812 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
813 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
814 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
815 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
816 rx_ev_pause_frm ? " [PAUSE]" : "");
818 #endif
821 /* Handle receive events that are not in-order. */
822 static void
823 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
825 struct efx_nic *efx = rx_queue->efx;
826 unsigned expected, dropped;
828 expected = rx_queue->removed_count & rx_queue->ptr_mask;
829 dropped = (index - expected) & rx_queue->ptr_mask;
830 netif_info(efx, rx_err, efx->net_dev,
831 "dropped %d events (index=%d expected=%d)\n",
832 dropped, index, expected);
834 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
835 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
838 /* Handle a packet received event
840 * The NIC gives a "discard" flag if it's a unicast packet with the
841 * wrong destination address
842 * Also "is multicast" and "matches multicast filter" flags can be used to
843 * discard non-matching multicast packets.
845 static void
846 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
848 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
849 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
850 unsigned expected_ptr;
851 bool rx_ev_pkt_ok, discard = false, checksummed;
852 struct efx_rx_queue *rx_queue;
854 /* Basic packet information */
855 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
856 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
857 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
858 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
859 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
860 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
861 channel->channel);
863 rx_queue = efx_channel_get_rx_queue(channel);
865 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
866 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
867 if (unlikely(rx_ev_desc_ptr != expected_ptr))
868 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
870 if (likely(rx_ev_pkt_ok)) {
871 /* If packet is marked as OK and packet type is TCP/IP or
872 * UDP/IP, then we can rely on the hardware checksum.
874 checksummed =
875 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
876 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP;
877 } else {
878 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
879 checksummed = false;
882 /* Detect multicast packets that didn't match the filter */
883 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
884 if (rx_ev_mcast_pkt) {
885 unsigned int rx_ev_mcast_hash_match =
886 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
888 if (unlikely(!rx_ev_mcast_hash_match)) {
889 ++channel->n_rx_mcast_mismatch;
890 discard = true;
894 channel->irq_mod_score += 2;
896 /* Handle received packet */
897 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
898 checksummed, discard);
901 static void
902 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
904 struct efx_nic *efx = channel->efx;
905 unsigned code;
907 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
908 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
909 ++channel->magic_count;
910 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
911 /* The queue must be empty, so we won't receive any rx
912 * events, so efx_process_channel() won't refill the
913 * queue. Refill it here */
914 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
915 else
916 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
917 "generated event "EFX_QWORD_FMT"\n",
918 channel->channel, EFX_QWORD_VAL(*event));
921 static void
922 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
924 struct efx_nic *efx = channel->efx;
925 unsigned int ev_sub_code;
926 unsigned int ev_sub_data;
928 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
929 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
931 switch (ev_sub_code) {
932 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
933 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
934 channel->channel, ev_sub_data);
935 break;
936 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
937 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
938 channel->channel, ev_sub_data);
939 break;
940 case FSE_AZ_EVQ_INIT_DONE_EV:
941 netif_dbg(efx, hw, efx->net_dev,
942 "channel %d EVQ %d initialised\n",
943 channel->channel, ev_sub_data);
944 break;
945 case FSE_AZ_SRM_UPD_DONE_EV:
946 netif_vdbg(efx, hw, efx->net_dev,
947 "channel %d SRAM update done\n", channel->channel);
948 break;
949 case FSE_AZ_WAKE_UP_EV:
950 netif_vdbg(efx, hw, efx->net_dev,
951 "channel %d RXQ %d wakeup event\n",
952 channel->channel, ev_sub_data);
953 break;
954 case FSE_AZ_TIMER_EV:
955 netif_vdbg(efx, hw, efx->net_dev,
956 "channel %d RX queue %d timer expired\n",
957 channel->channel, ev_sub_data);
958 break;
959 case FSE_AA_RX_RECOVER_EV:
960 netif_err(efx, rx_err, efx->net_dev,
961 "channel %d seen DRIVER RX_RESET event. "
962 "Resetting.\n", channel->channel);
963 atomic_inc(&efx->rx_reset);
964 efx_schedule_reset(efx,
965 EFX_WORKAROUND_6555(efx) ?
966 RESET_TYPE_RX_RECOVERY :
967 RESET_TYPE_DISABLE);
968 break;
969 case FSE_BZ_RX_DSC_ERROR_EV:
970 netif_err(efx, rx_err, efx->net_dev,
971 "RX DMA Q %d reports descriptor fetch error."
972 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
973 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
974 break;
975 case FSE_BZ_TX_DSC_ERROR_EV:
976 netif_err(efx, tx_err, efx->net_dev,
977 "TX DMA Q %d reports descriptor fetch error."
978 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
979 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
980 break;
981 default:
982 netif_vdbg(efx, hw, efx->net_dev,
983 "channel %d unknown driver event code %d "
984 "data %04x\n", channel->channel, ev_sub_code,
985 ev_sub_data);
986 break;
990 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
992 struct efx_nic *efx = channel->efx;
993 unsigned int read_ptr;
994 efx_qword_t event, *p_event;
995 int ev_code;
996 int tx_packets = 0;
997 int spent = 0;
999 read_ptr = channel->eventq_read_ptr;
1001 for (;;) {
1002 p_event = efx_event(channel, read_ptr);
1003 event = *p_event;
1005 if (!efx_event_present(&event))
1006 /* End of events */
1007 break;
1009 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1010 "channel %d event is "EFX_QWORD_FMT"\n",
1011 channel->channel, EFX_QWORD_VAL(event));
1013 /* Clear this event by marking it all ones */
1014 EFX_SET_QWORD(*p_event);
1016 /* Increment read pointer */
1017 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1019 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1021 switch (ev_code) {
1022 case FSE_AZ_EV_CODE_RX_EV:
1023 efx_handle_rx_event(channel, &event);
1024 if (++spent == budget)
1025 goto out;
1026 break;
1027 case FSE_AZ_EV_CODE_TX_EV:
1028 tx_packets += efx_handle_tx_event(channel, &event);
1029 if (tx_packets > efx->txq_entries) {
1030 spent = budget;
1031 goto out;
1033 break;
1034 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1035 efx_handle_generated_event(channel, &event);
1036 break;
1037 case FSE_AZ_EV_CODE_DRIVER_EV:
1038 efx_handle_driver_event(channel, &event);
1039 break;
1040 case FSE_CZ_EV_CODE_MCDI_EV:
1041 efx_mcdi_process_event(channel, &event);
1042 break;
1043 case FSE_AZ_EV_CODE_GLOBAL_EV:
1044 if (efx->type->handle_global_event &&
1045 efx->type->handle_global_event(channel, &event))
1046 break;
1047 /* else fall through */
1048 default:
1049 netif_err(channel->efx, hw, channel->efx->net_dev,
1050 "channel %d unknown event type %d (data "
1051 EFX_QWORD_FMT ")\n", channel->channel,
1052 ev_code, EFX_QWORD_VAL(event));
1056 out:
1057 channel->eventq_read_ptr = read_ptr;
1058 return spent;
1062 /* Allocate buffer table entries for event queue */
1063 int efx_nic_probe_eventq(struct efx_channel *channel)
1065 struct efx_nic *efx = channel->efx;
1066 unsigned entries;
1068 entries = channel->eventq_mask + 1;
1069 return efx_alloc_special_buffer(efx, &channel->eventq,
1070 entries * sizeof(efx_qword_t));
1073 void efx_nic_init_eventq(struct efx_channel *channel)
1075 efx_oword_t reg;
1076 struct efx_nic *efx = channel->efx;
1078 netif_dbg(efx, hw, efx->net_dev,
1079 "channel %d event queue in special buffers %d-%d\n",
1080 channel->channel, channel->eventq.index,
1081 channel->eventq.index + channel->eventq.entries - 1);
1083 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1084 EFX_POPULATE_OWORD_3(reg,
1085 FRF_CZ_TIMER_Q_EN, 1,
1086 FRF_CZ_HOST_NOTIFY_MODE, 0,
1087 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1088 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1091 /* Pin event queue buffer */
1092 efx_init_special_buffer(efx, &channel->eventq);
1094 /* Fill event queue with all ones (i.e. empty events) */
1095 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1097 /* Push event queue to card */
1098 EFX_POPULATE_OWORD_3(reg,
1099 FRF_AZ_EVQ_EN, 1,
1100 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1101 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1102 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1103 channel->channel);
1105 efx->type->push_irq_moderation(channel);
1108 void efx_nic_fini_eventq(struct efx_channel *channel)
1110 efx_oword_t reg;
1111 struct efx_nic *efx = channel->efx;
1113 /* Remove event queue from card */
1114 EFX_ZERO_OWORD(reg);
1115 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1116 channel->channel);
1117 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1118 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1120 /* Unpin event queue */
1121 efx_fini_special_buffer(efx, &channel->eventq);
1124 /* Free buffers backing event queue */
1125 void efx_nic_remove_eventq(struct efx_channel *channel)
1127 efx_free_special_buffer(channel->efx, &channel->eventq);
1131 void efx_nic_generate_test_event(struct efx_channel *channel)
1133 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1134 efx_qword_t test_event;
1136 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1137 FSE_AZ_EV_CODE_DRV_GEN_EV,
1138 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1139 efx_generate_event(channel, &test_event);
1142 void efx_nic_generate_fill_event(struct efx_channel *channel)
1144 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1145 efx_qword_t test_event;
1147 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1148 FSE_AZ_EV_CODE_DRV_GEN_EV,
1149 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1150 efx_generate_event(channel, &test_event);
1153 /**************************************************************************
1155 * Flush handling
1157 **************************************************************************/
1160 static void efx_poll_flush_events(struct efx_nic *efx)
1162 struct efx_channel *channel = efx_get_channel(efx, 0);
1163 struct efx_tx_queue *tx_queue;
1164 struct efx_rx_queue *rx_queue;
1165 unsigned int read_ptr = channel->eventq_read_ptr;
1166 unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
1168 do {
1169 efx_qword_t *event = efx_event(channel, read_ptr);
1170 int ev_code, ev_sub_code, ev_queue;
1171 bool ev_failed;
1173 if (!efx_event_present(event))
1174 break;
1176 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1177 ev_sub_code = EFX_QWORD_FIELD(*event,
1178 FSF_AZ_DRIVER_EV_SUBCODE);
1179 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1180 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1181 ev_queue = EFX_QWORD_FIELD(*event,
1182 FSF_AZ_DRIVER_EV_SUBDATA);
1183 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1184 tx_queue = efx_get_tx_queue(
1185 efx, ev_queue / EFX_TXQ_TYPES,
1186 ev_queue % EFX_TXQ_TYPES);
1187 tx_queue->flushed = FLUSH_DONE;
1189 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1190 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1191 ev_queue = EFX_QWORD_FIELD(
1192 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1193 ev_failed = EFX_QWORD_FIELD(
1194 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1195 if (ev_queue < efx->n_rx_channels) {
1196 rx_queue = efx_get_rx_queue(efx, ev_queue);
1197 rx_queue->flushed =
1198 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1202 /* We're about to destroy the queue anyway, so
1203 * it's ok to throw away every non-flush event */
1204 EFX_SET_QWORD(*event);
1206 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1207 } while (read_ptr != end_ptr);
1209 channel->eventq_read_ptr = read_ptr;
1212 /* Handle tx and rx flushes at the same time, since they run in
1213 * parallel in the hardware and there's no reason for us to
1214 * serialise them */
1215 int efx_nic_flush_queues(struct efx_nic *efx)
1217 struct efx_channel *channel;
1218 struct efx_rx_queue *rx_queue;
1219 struct efx_tx_queue *tx_queue;
1220 int i, tx_pending, rx_pending;
1222 /* If necessary prepare the hardware for flushing */
1223 efx->type->prepare_flush(efx);
1225 /* Flush all tx queues in parallel */
1226 efx_for_each_channel(channel, efx) {
1227 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1228 if (tx_queue->initialised)
1229 efx_flush_tx_queue(tx_queue);
1233 /* The hardware supports four concurrent rx flushes, each of which may
1234 * need to be retried if there is an outstanding descriptor fetch */
1235 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1236 rx_pending = tx_pending = 0;
1237 efx_for_each_channel(channel, efx) {
1238 efx_for_each_channel_rx_queue(rx_queue, channel) {
1239 if (rx_queue->flushed == FLUSH_PENDING)
1240 ++rx_pending;
1243 efx_for_each_channel(channel, efx) {
1244 efx_for_each_channel_rx_queue(rx_queue, channel) {
1245 if (rx_pending == EFX_RX_FLUSH_COUNT)
1246 break;
1247 if (rx_queue->flushed == FLUSH_FAILED ||
1248 rx_queue->flushed == FLUSH_NONE) {
1249 efx_flush_rx_queue(rx_queue);
1250 ++rx_pending;
1253 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1254 if (tx_queue->initialised &&
1255 tx_queue->flushed != FLUSH_DONE)
1256 ++tx_pending;
1260 if (rx_pending == 0 && tx_pending == 0)
1261 return 0;
1263 msleep(EFX_FLUSH_INTERVAL);
1264 efx_poll_flush_events(efx);
1267 /* Mark the queues as all flushed. We're going to return failure
1268 * leading to a reset, or fake up success anyway */
1269 efx_for_each_channel(channel, efx) {
1270 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1271 if (tx_queue->initialised &&
1272 tx_queue->flushed != FLUSH_DONE)
1273 netif_err(efx, hw, efx->net_dev,
1274 "tx queue %d flush command timed out\n",
1275 tx_queue->queue);
1276 tx_queue->flushed = FLUSH_DONE;
1278 efx_for_each_channel_rx_queue(rx_queue, channel) {
1279 if (rx_queue->flushed != FLUSH_DONE)
1280 netif_err(efx, hw, efx->net_dev,
1281 "rx queue %d flush command timed out\n",
1282 efx_rx_queue_index(rx_queue));
1283 rx_queue->flushed = FLUSH_DONE;
1287 return -ETIMEDOUT;
1290 /**************************************************************************
1292 * Hardware interrupts
1293 * The hardware interrupt handler does very little work; all the event
1294 * queue processing is carried out by per-channel tasklets.
1296 **************************************************************************/
1298 /* Enable/disable/generate interrupts */
1299 static inline void efx_nic_interrupts(struct efx_nic *efx,
1300 bool enabled, bool force)
1302 efx_oword_t int_en_reg_ker;
1304 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1305 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1306 FRF_AZ_KER_INT_KER, force,
1307 FRF_AZ_DRV_INT_EN_KER, enabled);
1308 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1311 void efx_nic_enable_interrupts(struct efx_nic *efx)
1313 struct efx_channel *channel;
1315 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1316 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1318 /* Enable interrupts */
1319 efx_nic_interrupts(efx, true, false);
1321 /* Force processing of all the channels to get the EVQ RPTRs up to
1322 date */
1323 efx_for_each_channel(channel, efx)
1324 efx_schedule_channel(channel);
1327 void efx_nic_disable_interrupts(struct efx_nic *efx)
1329 /* Disable interrupts */
1330 efx_nic_interrupts(efx, false, false);
1333 /* Generate a test interrupt
1334 * Interrupt must already have been enabled, otherwise nasty things
1335 * may happen.
1337 void efx_nic_generate_interrupt(struct efx_nic *efx)
1339 efx_nic_interrupts(efx, true, true);
1342 /* Process a fatal interrupt
1343 * Disable bus mastering ASAP and schedule a reset
1345 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1347 struct falcon_nic_data *nic_data = efx->nic_data;
1348 efx_oword_t *int_ker = efx->irq_status.addr;
1349 efx_oword_t fatal_intr;
1350 int error, mem_perr;
1352 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1353 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1355 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1356 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1357 EFX_OWORD_VAL(fatal_intr),
1358 error ? "disabling bus mastering" : "no recognised error");
1360 /* If this is a memory parity error dump which blocks are offending */
1361 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1362 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1363 if (mem_perr) {
1364 efx_oword_t reg;
1365 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1366 netif_err(efx, hw, efx->net_dev,
1367 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1368 EFX_OWORD_VAL(reg));
1371 /* Disable both devices */
1372 pci_clear_master(efx->pci_dev);
1373 if (efx_nic_is_dual_func(efx))
1374 pci_clear_master(nic_data->pci_dev2);
1375 efx_nic_disable_interrupts(efx);
1377 /* Count errors and reset or disable the NIC accordingly */
1378 if (efx->int_error_count == 0 ||
1379 time_after(jiffies, efx->int_error_expire)) {
1380 efx->int_error_count = 0;
1381 efx->int_error_expire =
1382 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1384 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1385 netif_err(efx, hw, efx->net_dev,
1386 "SYSTEM ERROR - reset scheduled\n");
1387 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1388 } else {
1389 netif_err(efx, hw, efx->net_dev,
1390 "SYSTEM ERROR - max number of errors seen."
1391 "NIC will be disabled\n");
1392 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1395 return IRQ_HANDLED;
1398 /* Handle a legacy interrupt
1399 * Acknowledges the interrupt and schedule event queue processing.
1401 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1403 struct efx_nic *efx = dev_id;
1404 efx_oword_t *int_ker = efx->irq_status.addr;
1405 irqreturn_t result = IRQ_NONE;
1406 struct efx_channel *channel;
1407 efx_dword_t reg;
1408 u32 queues;
1409 int syserr;
1411 /* Could this be ours? If interrupts are disabled then the
1412 * channel state may not be valid.
1414 if (!efx->legacy_irq_enabled)
1415 return result;
1417 /* Read the ISR which also ACKs the interrupts */
1418 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1419 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1421 /* Check to see if we have a serious error condition */
1422 if (queues & (1U << efx->fatal_irq_level)) {
1423 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1424 if (unlikely(syserr))
1425 return efx_nic_fatal_interrupt(efx);
1428 if (queues != 0) {
1429 if (EFX_WORKAROUND_15783(efx))
1430 efx->irq_zero_count = 0;
1432 /* Schedule processing of any interrupting queues */
1433 efx_for_each_channel(channel, efx) {
1434 if (queues & 1)
1435 efx_schedule_channel(channel);
1436 queues >>= 1;
1438 result = IRQ_HANDLED;
1440 } else if (EFX_WORKAROUND_15783(efx)) {
1441 efx_qword_t *event;
1443 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1444 * because this might be a shared interrupt. */
1445 if (efx->irq_zero_count++ == 0)
1446 result = IRQ_HANDLED;
1448 /* Ensure we schedule or rearm all event queues */
1449 efx_for_each_channel(channel, efx) {
1450 event = efx_event(channel, channel->eventq_read_ptr);
1451 if (efx_event_present(event))
1452 efx_schedule_channel(channel);
1453 else
1454 efx_nic_eventq_read_ack(channel);
1458 if (result == IRQ_HANDLED) {
1459 efx->last_irq_cpu = raw_smp_processor_id();
1460 netif_vdbg(efx, intr, efx->net_dev,
1461 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1462 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1465 return result;
1468 /* Handle an MSI interrupt
1470 * Handle an MSI hardware interrupt. This routine schedules event
1471 * queue processing. No interrupt acknowledgement cycle is necessary.
1472 * Also, we never need to check that the interrupt is for us, since
1473 * MSI interrupts cannot be shared.
1475 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1477 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1478 struct efx_nic *efx = channel->efx;
1479 efx_oword_t *int_ker = efx->irq_status.addr;
1480 int syserr;
1482 efx->last_irq_cpu = raw_smp_processor_id();
1483 netif_vdbg(efx, intr, efx->net_dev,
1484 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1485 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1487 /* Check to see if we have a serious error condition */
1488 if (channel->channel == efx->fatal_irq_level) {
1489 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1490 if (unlikely(syserr))
1491 return efx_nic_fatal_interrupt(efx);
1494 /* Schedule processing of the channel */
1495 efx_schedule_channel(channel);
1497 return IRQ_HANDLED;
1501 /* Setup RSS indirection table.
1502 * This maps from the hash value of the packet to RXQ
1504 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1506 size_t i = 0;
1507 efx_dword_t dword;
1509 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1510 return;
1512 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1513 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1515 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1516 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1517 efx->rx_indir_table[i]);
1518 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1522 /* Hook interrupt handler(s)
1523 * Try MSI and then legacy interrupts.
1525 int efx_nic_init_interrupt(struct efx_nic *efx)
1527 struct efx_channel *channel;
1528 int rc;
1530 if (!EFX_INT_MODE_USE_MSI(efx)) {
1531 irq_handler_t handler;
1532 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1533 handler = efx_legacy_interrupt;
1534 else
1535 handler = falcon_legacy_interrupt_a1;
1537 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1538 efx->name, efx);
1539 if (rc) {
1540 netif_err(efx, drv, efx->net_dev,
1541 "failed to hook legacy IRQ %d\n",
1542 efx->pci_dev->irq);
1543 goto fail1;
1545 return 0;
1548 /* Hook MSI or MSI-X interrupt */
1549 efx_for_each_channel(channel, efx) {
1550 rc = request_irq(channel->irq, efx_msi_interrupt,
1551 IRQF_PROBE_SHARED, /* Not shared */
1552 efx->channel_name[channel->channel],
1553 &efx->channel[channel->channel]);
1554 if (rc) {
1555 netif_err(efx, drv, efx->net_dev,
1556 "failed to hook IRQ %d\n", channel->irq);
1557 goto fail2;
1561 return 0;
1563 fail2:
1564 efx_for_each_channel(channel, efx)
1565 free_irq(channel->irq, &efx->channel[channel->channel]);
1566 fail1:
1567 return rc;
1570 void efx_nic_fini_interrupt(struct efx_nic *efx)
1572 struct efx_channel *channel;
1573 efx_oword_t reg;
1575 /* Disable MSI/MSI-X interrupts */
1576 efx_for_each_channel(channel, efx) {
1577 if (channel->irq)
1578 free_irq(channel->irq, &efx->channel[channel->channel]);
1581 /* ACK legacy interrupt */
1582 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1583 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1584 else
1585 falcon_irq_ack_a1(efx);
1587 /* Disable legacy interrupt */
1588 if (efx->legacy_irq)
1589 free_irq(efx->legacy_irq, efx);
1592 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1594 efx_oword_t altera_build;
1595 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1596 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1599 void efx_nic_init_common(struct efx_nic *efx)
1601 efx_oword_t temp;
1603 /* Set positions of descriptor caches in SRAM. */
1604 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1605 efx->type->tx_dc_base / 8);
1606 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1607 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1608 efx->type->rx_dc_base / 8);
1609 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1611 /* Set TX descriptor cache size. */
1612 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1613 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1614 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1616 /* Set RX descriptor cache size. Set low watermark to size-8, as
1617 * this allows most efficient prefetching.
1619 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1620 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1621 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1622 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1623 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1625 /* Program INT_KER address */
1626 EFX_POPULATE_OWORD_2(temp,
1627 FRF_AZ_NORM_INT_VEC_DIS_KER,
1628 EFX_INT_MODE_USE_MSI(efx),
1629 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1630 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1632 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1633 /* Use an interrupt level unused by event queues */
1634 efx->fatal_irq_level = 0x1f;
1635 else
1636 /* Use a valid MSI-X vector */
1637 efx->fatal_irq_level = 0;
1639 /* Enable all the genuinely fatal interrupts. (They are still
1640 * masked by the overall interrupt mask, controlled by
1641 * falcon_interrupts()).
1643 * Note: All other fatal interrupts are enabled
1645 EFX_POPULATE_OWORD_3(temp,
1646 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1647 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1648 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1649 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1650 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1651 EFX_INVERT_OWORD(temp);
1652 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1654 efx_nic_push_rx_indir_table(efx);
1656 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1657 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1659 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1660 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1661 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1662 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1663 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1664 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1665 /* Enable SW_EV to inherit in char driver - assume harmless here */
1666 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1667 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1668 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1669 /* Disable hardware watchdog which can misfire */
1670 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1671 /* Squash TX of packets of 16 bytes or less */
1672 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1673 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1674 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1676 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1677 EFX_POPULATE_OWORD_4(temp,
1678 /* Default values */
1679 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1680 FRF_BZ_TX_PACE_SB_AF, 0xb,
1681 FRF_BZ_TX_PACE_FB_BASE, 0,
1682 /* Allow large pace values in the
1683 * fast bin. */
1684 FRF_BZ_TX_PACE_BIN_TH,
1685 FFE_BZ_TX_PACE_RESERVED);
1686 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1690 /* Register dump */
1692 #define REGISTER_REVISION_A 1
1693 #define REGISTER_REVISION_B 2
1694 #define REGISTER_REVISION_C 3
1695 #define REGISTER_REVISION_Z 3 /* latest revision */
1697 struct efx_nic_reg {
1698 u32 offset:24;
1699 u32 min_revision:2, max_revision:2;
1702 #define REGISTER(name, min_rev, max_rev) { \
1703 FR_ ## min_rev ## max_rev ## _ ## name, \
1704 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1706 #define REGISTER_AA(name) REGISTER(name, A, A)
1707 #define REGISTER_AB(name) REGISTER(name, A, B)
1708 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1709 #define REGISTER_BB(name) REGISTER(name, B, B)
1710 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1711 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1713 static const struct efx_nic_reg efx_nic_regs[] = {
1714 REGISTER_AZ(ADR_REGION),
1715 REGISTER_AZ(INT_EN_KER),
1716 REGISTER_BZ(INT_EN_CHAR),
1717 REGISTER_AZ(INT_ADR_KER),
1718 REGISTER_BZ(INT_ADR_CHAR),
1719 /* INT_ACK_KER is WO */
1720 /* INT_ISR0 is RC */
1721 REGISTER_AZ(HW_INIT),
1722 REGISTER_CZ(USR_EV_CFG),
1723 REGISTER_AB(EE_SPI_HCMD),
1724 REGISTER_AB(EE_SPI_HADR),
1725 REGISTER_AB(EE_SPI_HDATA),
1726 REGISTER_AB(EE_BASE_PAGE),
1727 REGISTER_AB(EE_VPD_CFG0),
1728 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1729 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1730 /* PCIE_CORE_INDIRECT is indirect */
1731 REGISTER_AB(NIC_STAT),
1732 REGISTER_AB(GPIO_CTL),
1733 REGISTER_AB(GLB_CTL),
1734 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1735 REGISTER_BZ(DP_CTRL),
1736 REGISTER_AZ(MEM_STAT),
1737 REGISTER_AZ(CS_DEBUG),
1738 REGISTER_AZ(ALTERA_BUILD),
1739 REGISTER_AZ(CSR_SPARE),
1740 REGISTER_AB(PCIE_SD_CTL0123),
1741 REGISTER_AB(PCIE_SD_CTL45),
1742 REGISTER_AB(PCIE_PCS_CTL_STAT),
1743 /* DEBUG_DATA_OUT is not used */
1744 /* DRV_EV is WO */
1745 REGISTER_AZ(EVQ_CTL),
1746 REGISTER_AZ(EVQ_CNT1),
1747 REGISTER_AZ(EVQ_CNT2),
1748 REGISTER_AZ(BUF_TBL_CFG),
1749 REGISTER_AZ(SRM_RX_DC_CFG),
1750 REGISTER_AZ(SRM_TX_DC_CFG),
1751 REGISTER_AZ(SRM_CFG),
1752 /* BUF_TBL_UPD is WO */
1753 REGISTER_AZ(SRM_UPD_EVQ),
1754 REGISTER_AZ(SRAM_PARITY),
1755 REGISTER_AZ(RX_CFG),
1756 REGISTER_BZ(RX_FILTER_CTL),
1757 /* RX_FLUSH_DESCQ is WO */
1758 REGISTER_AZ(RX_DC_CFG),
1759 REGISTER_AZ(RX_DC_PF_WM),
1760 REGISTER_BZ(RX_RSS_TKEY),
1761 /* RX_NODESC_DROP is RC */
1762 REGISTER_AA(RX_SELF_RST),
1763 /* RX_DEBUG, RX_PUSH_DROP are not used */
1764 REGISTER_CZ(RX_RSS_IPV6_REG1),
1765 REGISTER_CZ(RX_RSS_IPV6_REG2),
1766 REGISTER_CZ(RX_RSS_IPV6_REG3),
1767 /* TX_FLUSH_DESCQ is WO */
1768 REGISTER_AZ(TX_DC_CFG),
1769 REGISTER_AA(TX_CHKSM_CFG),
1770 REGISTER_AZ(TX_CFG),
1771 /* TX_PUSH_DROP is not used */
1772 REGISTER_AZ(TX_RESERVED),
1773 REGISTER_BZ(TX_PACE),
1774 /* TX_PACE_DROP_QID is RC */
1775 REGISTER_BB(TX_VLAN),
1776 REGISTER_BZ(TX_IPFIL_PORTEN),
1777 REGISTER_AB(MD_TXD),
1778 REGISTER_AB(MD_RXD),
1779 REGISTER_AB(MD_CS),
1780 REGISTER_AB(MD_PHY_ADR),
1781 REGISTER_AB(MD_ID),
1782 /* MD_STAT is RC */
1783 REGISTER_AB(MAC_STAT_DMA),
1784 REGISTER_AB(MAC_CTRL),
1785 REGISTER_BB(GEN_MODE),
1786 REGISTER_AB(MAC_MC_HASH_REG0),
1787 REGISTER_AB(MAC_MC_HASH_REG1),
1788 REGISTER_AB(GM_CFG1),
1789 REGISTER_AB(GM_CFG2),
1790 /* GM_IPG and GM_HD are not used */
1791 REGISTER_AB(GM_MAX_FLEN),
1792 /* GM_TEST is not used */
1793 REGISTER_AB(GM_ADR1),
1794 REGISTER_AB(GM_ADR2),
1795 REGISTER_AB(GMF_CFG0),
1796 REGISTER_AB(GMF_CFG1),
1797 REGISTER_AB(GMF_CFG2),
1798 REGISTER_AB(GMF_CFG3),
1799 REGISTER_AB(GMF_CFG4),
1800 REGISTER_AB(GMF_CFG5),
1801 REGISTER_BB(TX_SRC_MAC_CTL),
1802 REGISTER_AB(XM_ADR_LO),
1803 REGISTER_AB(XM_ADR_HI),
1804 REGISTER_AB(XM_GLB_CFG),
1805 REGISTER_AB(XM_TX_CFG),
1806 REGISTER_AB(XM_RX_CFG),
1807 REGISTER_AB(XM_MGT_INT_MASK),
1808 REGISTER_AB(XM_FC),
1809 REGISTER_AB(XM_PAUSE_TIME),
1810 REGISTER_AB(XM_TX_PARAM),
1811 REGISTER_AB(XM_RX_PARAM),
1812 /* XM_MGT_INT_MSK (note no 'A') is RC */
1813 REGISTER_AB(XX_PWR_RST),
1814 REGISTER_AB(XX_SD_CTL),
1815 REGISTER_AB(XX_TXDRV_CTL),
1816 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1817 /* XX_CORE_STAT is partly RC */
1820 struct efx_nic_reg_table {
1821 u32 offset:24;
1822 u32 min_revision:2, max_revision:2;
1823 u32 step:6, rows:21;
1826 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1827 offset, \
1828 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1829 step, rows \
1831 #define REGISTER_TABLE(name, min_rev, max_rev) \
1832 REGISTER_TABLE_DIMENSIONS( \
1833 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1834 min_rev, max_rev, \
1835 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1836 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1837 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1838 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1839 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1840 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1841 #define REGISTER_TABLE_BB_CZ(name) \
1842 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1843 FR_BZ_ ## name ## _STEP, \
1844 FR_BB_ ## name ## _ROWS), \
1845 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1846 FR_BZ_ ## name ## _STEP, \
1847 FR_CZ_ ## name ## _ROWS)
1848 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1850 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1851 /* DRIVER is not used */
1852 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1853 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1854 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1855 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1856 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1857 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1858 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1859 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1860 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1861 /* We can't reasonably read all of the buffer table (up to 8MB!).
1862 * However this driver will only use a few entries. Reading
1863 * 1K entries allows for some expansion of queue count and
1864 * size before we need to change the version. */
1865 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1866 A, A, 8, 1024),
1867 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1868 B, Z, 8, 1024),
1869 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1870 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1871 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1872 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1873 /* TX_FILTER_TBL0 is huge and not used by this driver */
1874 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1875 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1876 /* MSIX_PBA_TABLE is not mapped */
1877 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1878 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1881 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1883 const struct efx_nic_reg *reg;
1884 const struct efx_nic_reg_table *table;
1885 size_t len = 0;
1887 for (reg = efx_nic_regs;
1888 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1889 reg++)
1890 if (efx->type->revision >= reg->min_revision &&
1891 efx->type->revision <= reg->max_revision)
1892 len += sizeof(efx_oword_t);
1894 for (table = efx_nic_reg_tables;
1895 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1896 table++)
1897 if (efx->type->revision >= table->min_revision &&
1898 efx->type->revision <= table->max_revision)
1899 len += table->rows * min_t(size_t, table->step, 16);
1901 return len;
1904 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1906 const struct efx_nic_reg *reg;
1907 const struct efx_nic_reg_table *table;
1909 for (reg = efx_nic_regs;
1910 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1911 reg++) {
1912 if (efx->type->revision >= reg->min_revision &&
1913 efx->type->revision <= reg->max_revision) {
1914 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1915 buf += sizeof(efx_oword_t);
1919 for (table = efx_nic_reg_tables;
1920 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1921 table++) {
1922 size_t size, i;
1924 if (!(efx->type->revision >= table->min_revision &&
1925 efx->type->revision <= table->max_revision))
1926 continue;
1928 size = min_t(size_t, table->step, 16);
1930 for (i = 0; i < table->rows; i++) {
1931 switch (table->step) {
1932 case 4: /* 32-bit register or SRAM */
1933 efx_readd_table(efx, buf, table->offset, i);
1934 break;
1935 case 8: /* 64-bit SRAM */
1936 efx_sram_readq(efx,
1937 efx->membase + table->offset,
1938 buf, i);
1939 break;
1940 case 16: /* 128-bit register */
1941 efx_reado_table(efx, buf, table->offset, i);
1942 break;
1943 case 32: /* 128-bit register, interleaved */
1944 efx_reado_table(efx, buf, table->offset, 2 * i);
1945 break;
1946 default:
1947 WARN_ON(1);
1948 return;
1950 buf += size;