powerpc: fix build with make 3.82
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-core.c
blobad7f9528d751a95e93eca755d225d92ba9cea701
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/core.h>
34 #include <sound/pcm.h>
35 #include <sound/pcm_params.h>
36 #include <sound/soc.h>
37 #include <sound/soc-dapm.h>
38 #include <sound/initval.h>
40 static DEFINE_MUTEX(pcm_mutex);
41 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
43 #ifdef CONFIG_DEBUG_FS
44 static struct dentry *debugfs_root;
45 #endif
47 static DEFINE_MUTEX(client_mutex);
48 static LIST_HEAD(card_list);
49 static LIST_HEAD(dai_list);
50 static LIST_HEAD(platform_list);
51 static LIST_HEAD(codec_list);
53 static int snd_soc_register_card(struct snd_soc_card *card);
54 static int snd_soc_unregister_card(struct snd_soc_card *card);
57 * This is a timeout to do a DAPM powerdown after a stream is closed().
58 * It can be used to eliminate pops between different playback streams, e.g.
59 * between two audio tracks.
61 static int pmdown_time = 5000;
62 module_param(pmdown_time, int, 0);
63 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
66 * This function forces any delayed work to be queued and run.
68 static int run_delayed_work(struct delayed_work *dwork)
70 int ret;
72 /* cancel any work waiting to be queued. */
73 ret = cancel_delayed_work(dwork);
75 /* if there was any work waiting then we run it now and
76 * wait for it's completion */
77 if (ret) {
78 schedule_delayed_work(dwork, 0);
79 flush_scheduled_work();
81 return ret;
84 /* codec register dump */
85 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
87 int i, step = 1, count = 0;
89 if (!codec->reg_cache_size)
90 return 0;
92 if (codec->reg_cache_step)
93 step = codec->reg_cache_step;
95 count += sprintf(buf, "%s registers\n", codec->name);
96 for (i = 0; i < codec->reg_cache_size; i += step) {
97 if (codec->readable_register && !codec->readable_register(i))
98 continue;
100 count += sprintf(buf + count, "%2x: ", i);
101 if (count >= PAGE_SIZE - 1)
102 break;
104 if (codec->display_register)
105 count += codec->display_register(codec, buf + count,
106 PAGE_SIZE - count, i);
107 else
108 count += snprintf(buf + count, PAGE_SIZE - count,
109 "%4x", codec->read(codec, i));
111 if (count >= PAGE_SIZE - 1)
112 break;
114 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
115 if (count >= PAGE_SIZE - 1)
116 break;
119 /* Truncate count; min() would cause a warning */
120 if (count >= PAGE_SIZE)
121 count = PAGE_SIZE - 1;
123 return count;
125 static ssize_t codec_reg_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
128 struct snd_soc_device *devdata = dev_get_drvdata(dev);
129 return soc_codec_reg_show(devdata->card->codec, buf);
132 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
134 static ssize_t pmdown_time_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
137 struct snd_soc_device *socdev = dev_get_drvdata(dev);
138 struct snd_soc_card *card = socdev->card;
140 return sprintf(buf, "%ld\n", card->pmdown_time);
143 static ssize_t pmdown_time_set(struct device *dev,
144 struct device_attribute *attr,
145 const char *buf, size_t count)
147 struct snd_soc_device *socdev = dev_get_drvdata(dev);
148 struct snd_soc_card *card = socdev->card;
150 strict_strtol(buf, 10, &card->pmdown_time);
152 return count;
155 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
157 #ifdef CONFIG_DEBUG_FS
158 static int codec_reg_open_file(struct inode *inode, struct file *file)
160 file->private_data = inode->i_private;
161 return 0;
164 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
165 size_t count, loff_t *ppos)
167 ssize_t ret;
168 struct snd_soc_codec *codec = file->private_data;
169 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
170 if (!buf)
171 return -ENOMEM;
172 ret = soc_codec_reg_show(codec, buf);
173 if (ret >= 0)
174 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
175 kfree(buf);
176 return ret;
179 static ssize_t codec_reg_write_file(struct file *file,
180 const char __user *user_buf, size_t count, loff_t *ppos)
182 char buf[32];
183 int buf_size;
184 char *start = buf;
185 unsigned long reg, value;
186 int step = 1;
187 struct snd_soc_codec *codec = file->private_data;
189 buf_size = min(count, (sizeof(buf)-1));
190 if (copy_from_user(buf, user_buf, buf_size))
191 return -EFAULT;
192 buf[buf_size] = 0;
194 if (codec->reg_cache_step)
195 step = codec->reg_cache_step;
197 while (*start == ' ')
198 start++;
199 reg = simple_strtoul(start, &start, 16);
200 if ((reg >= codec->reg_cache_size) || (reg % step))
201 return -EINVAL;
202 while (*start == ' ')
203 start++;
204 if (strict_strtoul(start, 16, &value))
205 return -EINVAL;
206 codec->write(codec, reg, value);
207 return buf_size;
210 static const struct file_operations codec_reg_fops = {
211 .open = codec_reg_open_file,
212 .read = codec_reg_read_file,
213 .write = codec_reg_write_file,
216 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
218 char codec_root[128];
220 if (codec->dev)
221 snprintf(codec_root, sizeof(codec_root),
222 "%s.%s", codec->name, dev_name(codec->dev));
223 else
224 snprintf(codec_root, sizeof(codec_root),
225 "%s", codec->name);
227 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
228 debugfs_root);
229 if (!codec->debugfs_codec_root) {
230 printk(KERN_WARNING
231 "ASoC: Failed to create codec debugfs directory\n");
232 return;
235 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
236 codec->debugfs_codec_root,
237 codec, &codec_reg_fops);
238 if (!codec->debugfs_reg)
239 printk(KERN_WARNING
240 "ASoC: Failed to create codec register debugfs file\n");
242 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
243 codec->debugfs_codec_root,
244 &codec->pop_time);
245 if (!codec->debugfs_pop_time)
246 printk(KERN_WARNING
247 "Failed to create pop time debugfs file\n");
249 codec->debugfs_dapm = debugfs_create_dir("dapm",
250 codec->debugfs_codec_root);
251 if (!codec->debugfs_dapm)
252 printk(KERN_WARNING
253 "Failed to create DAPM debugfs directory\n");
255 snd_soc_dapm_debugfs_init(codec);
258 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
260 debugfs_remove_recursive(codec->debugfs_codec_root);
263 #else
265 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
269 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
272 #endif
274 #ifdef CONFIG_SND_SOC_AC97_BUS
275 /* unregister ac97 codec */
276 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
278 if (codec->ac97->dev.bus)
279 device_unregister(&codec->ac97->dev);
280 return 0;
283 /* stop no dev release warning */
284 static void soc_ac97_device_release(struct device *dev){}
286 /* register ac97 codec to bus */
287 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
289 int err;
291 codec->ac97->dev.bus = &ac97_bus_type;
292 codec->ac97->dev.parent = codec->card->dev;
293 codec->ac97->dev.release = soc_ac97_device_release;
295 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
296 codec->card->number, 0, codec->name);
297 err = device_register(&codec->ac97->dev);
298 if (err < 0) {
299 snd_printk(KERN_ERR "Can't register ac97 bus\n");
300 codec->ac97->dev.bus = NULL;
301 return err;
303 return 0;
305 #endif
307 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
309 struct snd_soc_pcm_runtime *rtd = substream->private_data;
310 struct snd_soc_device *socdev = rtd->socdev;
311 struct snd_soc_card *card = socdev->card;
312 struct snd_soc_dai_link *machine = rtd->dai;
313 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
314 struct snd_soc_dai *codec_dai = machine->codec_dai;
315 int ret;
317 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
318 machine->symmetric_rates) {
319 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
320 machine->rate);
322 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
323 SNDRV_PCM_HW_PARAM_RATE,
324 machine->rate,
325 machine->rate);
326 if (ret < 0) {
327 dev_err(card->dev,
328 "Unable to apply rate symmetry constraint: %d\n", ret);
329 return ret;
333 return 0;
337 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
338 * then initialized and any private data can be allocated. This also calls
339 * startup for the cpu DAI, platform, machine and codec DAI.
341 static int soc_pcm_open(struct snd_pcm_substream *substream)
343 struct snd_soc_pcm_runtime *rtd = substream->private_data;
344 struct snd_soc_device *socdev = rtd->socdev;
345 struct snd_soc_card *card = socdev->card;
346 struct snd_pcm_runtime *runtime = substream->runtime;
347 struct snd_soc_dai_link *machine = rtd->dai;
348 struct snd_soc_platform *platform = card->platform;
349 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
350 struct snd_soc_dai *codec_dai = machine->codec_dai;
351 int ret = 0;
353 mutex_lock(&pcm_mutex);
355 /* startup the audio subsystem */
356 if (cpu_dai->ops->startup) {
357 ret = cpu_dai->ops->startup(substream, cpu_dai);
358 if (ret < 0) {
359 printk(KERN_ERR "asoc: can't open interface %s\n",
360 cpu_dai->name);
361 goto out;
365 if (platform->pcm_ops->open) {
366 ret = platform->pcm_ops->open(substream);
367 if (ret < 0) {
368 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
369 goto platform_err;
373 if (codec_dai->ops->startup) {
374 ret = codec_dai->ops->startup(substream, codec_dai);
375 if (ret < 0) {
376 printk(KERN_ERR "asoc: can't open codec %s\n",
377 codec_dai->name);
378 goto codec_dai_err;
382 if (machine->ops && machine->ops->startup) {
383 ret = machine->ops->startup(substream);
384 if (ret < 0) {
385 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
386 goto machine_err;
390 /* Check that the codec and cpu DAI's are compatible */
391 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
392 runtime->hw.rate_min =
393 max(codec_dai->playback.rate_min,
394 cpu_dai->playback.rate_min);
395 runtime->hw.rate_max =
396 min(codec_dai->playback.rate_max,
397 cpu_dai->playback.rate_max);
398 runtime->hw.channels_min =
399 max(codec_dai->playback.channels_min,
400 cpu_dai->playback.channels_min);
401 runtime->hw.channels_max =
402 min(codec_dai->playback.channels_max,
403 cpu_dai->playback.channels_max);
404 runtime->hw.formats =
405 codec_dai->playback.formats & cpu_dai->playback.formats;
406 runtime->hw.rates =
407 codec_dai->playback.rates & cpu_dai->playback.rates;
408 } else {
409 runtime->hw.rate_min =
410 max(codec_dai->capture.rate_min,
411 cpu_dai->capture.rate_min);
412 runtime->hw.rate_max =
413 min(codec_dai->capture.rate_max,
414 cpu_dai->capture.rate_max);
415 runtime->hw.channels_min =
416 max(codec_dai->capture.channels_min,
417 cpu_dai->capture.channels_min);
418 runtime->hw.channels_max =
419 min(codec_dai->capture.channels_max,
420 cpu_dai->capture.channels_max);
421 runtime->hw.formats =
422 codec_dai->capture.formats & cpu_dai->capture.formats;
423 runtime->hw.rates =
424 codec_dai->capture.rates & cpu_dai->capture.rates;
427 snd_pcm_limit_hw_rates(runtime);
428 if (!runtime->hw.rates) {
429 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
430 codec_dai->name, cpu_dai->name);
431 goto config_err;
433 if (!runtime->hw.formats) {
434 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
435 codec_dai->name, cpu_dai->name);
436 goto config_err;
438 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
439 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
440 codec_dai->name, cpu_dai->name);
441 goto config_err;
444 /* Symmetry only applies if we've already got an active stream. */
445 if (cpu_dai->active || codec_dai->active) {
446 ret = soc_pcm_apply_symmetry(substream);
447 if (ret != 0)
448 goto config_err;
451 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
452 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
453 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
454 runtime->hw.channels_max);
455 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
456 runtime->hw.rate_max);
458 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
459 cpu_dai->playback.active = codec_dai->playback.active = 1;
460 else
461 cpu_dai->capture.active = codec_dai->capture.active = 1;
462 cpu_dai->active = codec_dai->active = 1;
463 cpu_dai->runtime = runtime;
464 card->codec->active++;
465 mutex_unlock(&pcm_mutex);
466 return 0;
468 config_err:
469 if (machine->ops && machine->ops->shutdown)
470 machine->ops->shutdown(substream);
472 machine_err:
473 if (codec_dai->ops->shutdown)
474 codec_dai->ops->shutdown(substream, codec_dai);
476 codec_dai_err:
477 if (platform->pcm_ops->close)
478 platform->pcm_ops->close(substream);
480 platform_err:
481 if (cpu_dai->ops->shutdown)
482 cpu_dai->ops->shutdown(substream, cpu_dai);
483 out:
484 mutex_unlock(&pcm_mutex);
485 return ret;
489 * Power down the audio subsystem pmdown_time msecs after close is called.
490 * This is to ensure there are no pops or clicks in between any music tracks
491 * due to DAPM power cycling.
493 static void close_delayed_work(struct work_struct *work)
495 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
496 delayed_work.work);
497 struct snd_soc_codec *codec = card->codec;
498 struct snd_soc_dai *codec_dai;
499 int i;
501 mutex_lock(&pcm_mutex);
502 for (i = 0; i < codec->num_dai; i++) {
503 codec_dai = &codec->dai[i];
505 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
506 codec_dai->playback.stream_name,
507 codec_dai->playback.active ? "active" : "inactive",
508 codec_dai->pop_wait ? "yes" : "no");
510 /* are we waiting on this codec DAI stream */
511 if (codec_dai->pop_wait == 1) {
512 codec_dai->pop_wait = 0;
513 snd_soc_dapm_stream_event(codec,
514 codec_dai->playback.stream_name,
515 SND_SOC_DAPM_STREAM_STOP);
518 mutex_unlock(&pcm_mutex);
522 * Called by ALSA when a PCM substream is closed. Private data can be
523 * freed here. The cpu DAI, codec DAI, machine and platform are also
524 * shutdown.
526 static int soc_codec_close(struct snd_pcm_substream *substream)
528 struct snd_soc_pcm_runtime *rtd = substream->private_data;
529 struct snd_soc_device *socdev = rtd->socdev;
530 struct snd_soc_card *card = socdev->card;
531 struct snd_soc_dai_link *machine = rtd->dai;
532 struct snd_soc_platform *platform = card->platform;
533 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
534 struct snd_soc_dai *codec_dai = machine->codec_dai;
535 struct snd_soc_codec *codec = card->codec;
537 mutex_lock(&pcm_mutex);
539 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
540 cpu_dai->playback.active = codec_dai->playback.active = 0;
541 else
542 cpu_dai->capture.active = codec_dai->capture.active = 0;
544 if (codec_dai->playback.active == 0 &&
545 codec_dai->capture.active == 0) {
546 cpu_dai->active = codec_dai->active = 0;
548 codec->active--;
550 /* Muting the DAC suppresses artifacts caused during digital
551 * shutdown, for example from stopping clocks.
553 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
554 snd_soc_dai_digital_mute(codec_dai, 1);
556 if (cpu_dai->ops->shutdown)
557 cpu_dai->ops->shutdown(substream, cpu_dai);
559 if (codec_dai->ops->shutdown)
560 codec_dai->ops->shutdown(substream, codec_dai);
562 if (machine->ops && machine->ops->shutdown)
563 machine->ops->shutdown(substream);
565 if (platform->pcm_ops->close)
566 platform->pcm_ops->close(substream);
567 cpu_dai->runtime = NULL;
569 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
570 /* start delayed pop wq here for playback streams */
571 codec_dai->pop_wait = 1;
572 schedule_delayed_work(&card->delayed_work,
573 msecs_to_jiffies(card->pmdown_time));
574 } else {
575 /* capture streams can be powered down now */
576 snd_soc_dapm_stream_event(codec,
577 codec_dai->capture.stream_name,
578 SND_SOC_DAPM_STREAM_STOP);
581 mutex_unlock(&pcm_mutex);
582 return 0;
586 * Called by ALSA when the PCM substream is prepared, can set format, sample
587 * rate, etc. This function is non atomic and can be called multiple times,
588 * it can refer to the runtime info.
590 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
592 struct snd_soc_pcm_runtime *rtd = substream->private_data;
593 struct snd_soc_device *socdev = rtd->socdev;
594 struct snd_soc_card *card = socdev->card;
595 struct snd_soc_dai_link *machine = rtd->dai;
596 struct snd_soc_platform *platform = card->platform;
597 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
598 struct snd_soc_dai *codec_dai = machine->codec_dai;
599 struct snd_soc_codec *codec = card->codec;
600 int ret = 0;
602 mutex_lock(&pcm_mutex);
604 if (machine->ops && machine->ops->prepare) {
605 ret = machine->ops->prepare(substream);
606 if (ret < 0) {
607 printk(KERN_ERR "asoc: machine prepare error\n");
608 goto out;
612 if (platform->pcm_ops->prepare) {
613 ret = platform->pcm_ops->prepare(substream);
614 if (ret < 0) {
615 printk(KERN_ERR "asoc: platform prepare error\n");
616 goto out;
620 if (codec_dai->ops->prepare) {
621 ret = codec_dai->ops->prepare(substream, codec_dai);
622 if (ret < 0) {
623 printk(KERN_ERR "asoc: codec DAI prepare error\n");
624 goto out;
628 if (cpu_dai->ops->prepare) {
629 ret = cpu_dai->ops->prepare(substream, cpu_dai);
630 if (ret < 0) {
631 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
632 goto out;
636 /* cancel any delayed stream shutdown that is pending */
637 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
638 codec_dai->pop_wait) {
639 codec_dai->pop_wait = 0;
640 cancel_delayed_work(&card->delayed_work);
643 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
644 snd_soc_dapm_stream_event(codec,
645 codec_dai->playback.stream_name,
646 SND_SOC_DAPM_STREAM_START);
647 else
648 snd_soc_dapm_stream_event(codec,
649 codec_dai->capture.stream_name,
650 SND_SOC_DAPM_STREAM_START);
652 snd_soc_dai_digital_mute(codec_dai, 0);
654 out:
655 mutex_unlock(&pcm_mutex);
656 return ret;
660 * Called by ALSA when the hardware params are set by application. This
661 * function can also be called multiple times and can allocate buffers
662 * (using snd_pcm_lib_* ). It's non-atomic.
664 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
665 struct snd_pcm_hw_params *params)
667 struct snd_soc_pcm_runtime *rtd = substream->private_data;
668 struct snd_soc_device *socdev = rtd->socdev;
669 struct snd_soc_dai_link *machine = rtd->dai;
670 struct snd_soc_card *card = socdev->card;
671 struct snd_soc_platform *platform = card->platform;
672 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
673 struct snd_soc_dai *codec_dai = machine->codec_dai;
674 int ret = 0;
676 mutex_lock(&pcm_mutex);
678 if (machine->ops && machine->ops->hw_params) {
679 ret = machine->ops->hw_params(substream, params);
680 if (ret < 0) {
681 printk(KERN_ERR "asoc: machine hw_params failed\n");
682 goto out;
686 if (codec_dai->ops->hw_params) {
687 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
688 if (ret < 0) {
689 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
690 codec_dai->name);
691 goto codec_err;
695 if (cpu_dai->ops->hw_params) {
696 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
697 if (ret < 0) {
698 printk(KERN_ERR "asoc: interface %s hw params failed\n",
699 cpu_dai->name);
700 goto interface_err;
704 if (platform->pcm_ops->hw_params) {
705 ret = platform->pcm_ops->hw_params(substream, params);
706 if (ret < 0) {
707 printk(KERN_ERR "asoc: platform %s hw params failed\n",
708 platform->name);
709 goto platform_err;
713 machine->rate = params_rate(params);
715 out:
716 mutex_unlock(&pcm_mutex);
717 return ret;
719 platform_err:
720 if (cpu_dai->ops->hw_free)
721 cpu_dai->ops->hw_free(substream, cpu_dai);
723 interface_err:
724 if (codec_dai->ops->hw_free)
725 codec_dai->ops->hw_free(substream, codec_dai);
727 codec_err:
728 if (machine->ops && machine->ops->hw_free)
729 machine->ops->hw_free(substream);
731 mutex_unlock(&pcm_mutex);
732 return ret;
736 * Free's resources allocated by hw_params, can be called multiple times
738 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
740 struct snd_soc_pcm_runtime *rtd = substream->private_data;
741 struct snd_soc_device *socdev = rtd->socdev;
742 struct snd_soc_dai_link *machine = rtd->dai;
743 struct snd_soc_card *card = socdev->card;
744 struct snd_soc_platform *platform = card->platform;
745 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
746 struct snd_soc_dai *codec_dai = machine->codec_dai;
747 struct snd_soc_codec *codec = card->codec;
749 mutex_lock(&pcm_mutex);
751 /* apply codec digital mute */
752 if (!codec->active)
753 snd_soc_dai_digital_mute(codec_dai, 1);
755 /* free any machine hw params */
756 if (machine->ops && machine->ops->hw_free)
757 machine->ops->hw_free(substream);
759 /* free any DMA resources */
760 if (platform->pcm_ops->hw_free)
761 platform->pcm_ops->hw_free(substream);
763 /* now free hw params for the DAI's */
764 if (codec_dai->ops->hw_free)
765 codec_dai->ops->hw_free(substream, codec_dai);
767 if (cpu_dai->ops->hw_free)
768 cpu_dai->ops->hw_free(substream, cpu_dai);
770 mutex_unlock(&pcm_mutex);
771 return 0;
774 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
776 struct snd_soc_pcm_runtime *rtd = substream->private_data;
777 struct snd_soc_device *socdev = rtd->socdev;
778 struct snd_soc_card *card= socdev->card;
779 struct snd_soc_dai_link *machine = rtd->dai;
780 struct snd_soc_platform *platform = card->platform;
781 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
782 struct snd_soc_dai *codec_dai = machine->codec_dai;
783 int ret;
785 if (codec_dai->ops->trigger) {
786 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
787 if (ret < 0)
788 return ret;
791 if (platform->pcm_ops->trigger) {
792 ret = platform->pcm_ops->trigger(substream, cmd);
793 if (ret < 0)
794 return ret;
797 if (cpu_dai->ops->trigger) {
798 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
799 if (ret < 0)
800 return ret;
802 return 0;
805 /* ASoC PCM operations */
806 static struct snd_pcm_ops soc_pcm_ops = {
807 .open = soc_pcm_open,
808 .close = soc_codec_close,
809 .hw_params = soc_pcm_hw_params,
810 .hw_free = soc_pcm_hw_free,
811 .prepare = soc_pcm_prepare,
812 .trigger = soc_pcm_trigger,
815 #ifdef CONFIG_PM
816 /* powers down audio subsystem for suspend */
817 static int soc_suspend(struct device *dev)
819 struct platform_device *pdev = to_platform_device(dev);
820 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
821 struct snd_soc_card *card = socdev->card;
822 struct snd_soc_platform *platform = card->platform;
823 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
824 struct snd_soc_codec *codec = card->codec;
825 int i;
827 /* If the initialization of this soc device failed, there is no codec
828 * associated with it. Just bail out in this case.
830 if (!codec)
831 return 0;
833 /* Due to the resume being scheduled into a workqueue we could
834 * suspend before that's finished - wait for it to complete.
836 snd_power_lock(codec->card);
837 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
838 snd_power_unlock(codec->card);
840 /* we're going to block userspace touching us until resume completes */
841 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
843 /* mute any active DAC's */
844 for (i = 0; i < card->num_links; i++) {
845 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
846 if (dai->ops->digital_mute && dai->playback.active)
847 dai->ops->digital_mute(dai, 1);
850 /* suspend all pcms */
851 for (i = 0; i < card->num_links; i++)
852 snd_pcm_suspend_all(card->dai_link[i].pcm);
854 if (card->suspend_pre)
855 card->suspend_pre(pdev, PMSG_SUSPEND);
857 for (i = 0; i < card->num_links; i++) {
858 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
859 if (cpu_dai->suspend && !cpu_dai->ac97_control)
860 cpu_dai->suspend(cpu_dai);
861 if (platform->suspend)
862 platform->suspend(cpu_dai);
865 /* close any waiting streams and save state */
866 run_delayed_work(&card->delayed_work);
867 codec->suspend_bias_level = codec->bias_level;
869 for (i = 0; i < codec->num_dai; i++) {
870 char *stream = codec->dai[i].playback.stream_name;
871 if (stream != NULL)
872 snd_soc_dapm_stream_event(codec, stream,
873 SND_SOC_DAPM_STREAM_SUSPEND);
874 stream = codec->dai[i].capture.stream_name;
875 if (stream != NULL)
876 snd_soc_dapm_stream_event(codec, stream,
877 SND_SOC_DAPM_STREAM_SUSPEND);
880 if (codec_dev->suspend)
881 codec_dev->suspend(pdev, PMSG_SUSPEND);
883 for (i = 0; i < card->num_links; i++) {
884 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
885 if (cpu_dai->suspend && cpu_dai->ac97_control)
886 cpu_dai->suspend(cpu_dai);
889 if (card->suspend_post)
890 card->suspend_post(pdev, PMSG_SUSPEND);
892 return 0;
895 /* deferred resume work, so resume can complete before we finished
896 * setting our codec back up, which can be very slow on I2C
898 static void soc_resume_deferred(struct work_struct *work)
900 struct snd_soc_card *card = container_of(work,
901 struct snd_soc_card,
902 deferred_resume_work);
903 struct snd_soc_device *socdev = card->socdev;
904 struct snd_soc_platform *platform = card->platform;
905 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
906 struct snd_soc_codec *codec = card->codec;
907 struct platform_device *pdev = to_platform_device(socdev->dev);
908 int i;
910 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
911 * so userspace apps are blocked from touching us
914 dev_dbg(socdev->dev, "starting resume work\n");
916 if (card->resume_pre)
917 card->resume_pre(pdev);
919 for (i = 0; i < card->num_links; i++) {
920 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
921 if (cpu_dai->resume && cpu_dai->ac97_control)
922 cpu_dai->resume(cpu_dai);
925 if (codec_dev->resume)
926 codec_dev->resume(pdev);
928 for (i = 0; i < codec->num_dai; i++) {
929 char *stream = codec->dai[i].playback.stream_name;
930 if (stream != NULL)
931 snd_soc_dapm_stream_event(codec, stream,
932 SND_SOC_DAPM_STREAM_RESUME);
933 stream = codec->dai[i].capture.stream_name;
934 if (stream != NULL)
935 snd_soc_dapm_stream_event(codec, stream,
936 SND_SOC_DAPM_STREAM_RESUME);
939 /* unmute any active DACs */
940 for (i = 0; i < card->num_links; i++) {
941 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
942 if (dai->ops->digital_mute && dai->playback.active)
943 dai->ops->digital_mute(dai, 0);
946 for (i = 0; i < card->num_links; i++) {
947 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
948 if (cpu_dai->resume && !cpu_dai->ac97_control)
949 cpu_dai->resume(cpu_dai);
950 if (platform->resume)
951 platform->resume(cpu_dai);
954 if (card->resume_post)
955 card->resume_post(pdev);
957 dev_dbg(socdev->dev, "resume work completed\n");
959 /* userspace can access us now we are back as we were before */
960 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
963 /* powers up audio subsystem after a suspend */
964 static int soc_resume(struct device *dev)
966 struct platform_device *pdev = to_platform_device(dev);
967 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
968 struct snd_soc_card *card = socdev->card;
969 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
971 /* If the initialization of this soc device failed, there is no codec
972 * associated with it. Just bail out in this case.
974 if (!card->codec)
975 return 0;
977 /* AC97 devices might have other drivers hanging off them so
978 * need to resume immediately. Other drivers don't have that
979 * problem and may take a substantial amount of time to resume
980 * due to I/O costs and anti-pop so handle them out of line.
982 if (cpu_dai->ac97_control) {
983 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
984 soc_resume_deferred(&card->deferred_resume_work);
985 } else {
986 dev_dbg(socdev->dev, "Scheduling resume work\n");
987 if (!schedule_work(&card->deferred_resume_work))
988 dev_err(socdev->dev, "resume work item may be lost\n");
991 return 0;
993 #else
994 #define soc_suspend NULL
995 #define soc_resume NULL
996 #endif
998 static struct snd_soc_dai_ops null_dai_ops = {
1001 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1003 struct platform_device *pdev = container_of(card->dev,
1004 struct platform_device,
1005 dev);
1006 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
1007 struct snd_soc_codec *codec;
1008 struct snd_soc_platform *platform;
1009 struct snd_soc_dai *dai;
1010 int i, found, ret, ac97;
1012 if (card->instantiated)
1013 return;
1015 found = 0;
1016 list_for_each_entry(platform, &platform_list, list)
1017 if (card->platform == platform) {
1018 found = 1;
1019 break;
1021 if (!found) {
1022 dev_dbg(card->dev, "Platform %s not registered\n",
1023 card->platform->name);
1024 return;
1027 ac97 = 0;
1028 for (i = 0; i < card->num_links; i++) {
1029 found = 0;
1030 list_for_each_entry(dai, &dai_list, list)
1031 if (card->dai_link[i].cpu_dai == dai) {
1032 found = 1;
1033 break;
1035 if (!found) {
1036 dev_dbg(card->dev, "DAI %s not registered\n",
1037 card->dai_link[i].cpu_dai->name);
1038 return;
1041 if (card->dai_link[i].cpu_dai->ac97_control)
1042 ac97 = 1;
1045 for (i = 0; i < card->num_links; i++) {
1046 if (!card->dai_link[i].codec_dai->ops)
1047 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1050 /* If we have AC97 in the system then don't wait for the
1051 * codec. This will need revisiting if we have to handle
1052 * systems with mixed AC97 and non-AC97 parts. Only check for
1053 * DAIs currently; we can't do this per link since some AC97
1054 * codecs have non-AC97 DAIs.
1056 if (!ac97)
1057 for (i = 0; i < card->num_links; i++) {
1058 found = 0;
1059 list_for_each_entry(dai, &dai_list, list)
1060 if (card->dai_link[i].codec_dai == dai) {
1061 found = 1;
1062 break;
1064 if (!found) {
1065 dev_dbg(card->dev, "DAI %s not registered\n",
1066 card->dai_link[i].codec_dai->name);
1067 return;
1071 /* Note that we do not current check for codec components */
1073 dev_dbg(card->dev, "All components present, instantiating\n");
1075 /* Found everything, bring it up */
1076 card->pmdown_time = pmdown_time;
1078 if (card->probe) {
1079 ret = card->probe(pdev);
1080 if (ret < 0)
1081 return;
1084 for (i = 0; i < card->num_links; i++) {
1085 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1086 if (cpu_dai->probe) {
1087 ret = cpu_dai->probe(pdev, cpu_dai);
1088 if (ret < 0)
1089 goto cpu_dai_err;
1093 if (codec_dev->probe) {
1094 ret = codec_dev->probe(pdev);
1095 if (ret < 0)
1096 goto cpu_dai_err;
1098 codec = card->codec;
1100 if (platform->probe) {
1101 ret = platform->probe(pdev);
1102 if (ret < 0)
1103 goto platform_err;
1106 /* DAPM stream work */
1107 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1108 #ifdef CONFIG_PM
1109 /* deferred resume work */
1110 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1111 #endif
1113 for (i = 0; i < card->num_links; i++) {
1114 if (card->dai_link[i].init) {
1115 ret = card->dai_link[i].init(codec);
1116 if (ret < 0) {
1117 printk(KERN_ERR "asoc: failed to init %s\n",
1118 card->dai_link[i].stream_name);
1119 continue;
1122 if (card->dai_link[i].codec_dai->ac97_control)
1123 ac97 = 1;
1126 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1127 "%s", card->name);
1128 snprintf(codec->card->longname, sizeof(codec->card->longname),
1129 "%s (%s)", card->name, codec->name);
1131 /* Make sure all DAPM widgets are instantiated */
1132 snd_soc_dapm_new_widgets(codec);
1134 ret = snd_card_register(codec->card);
1135 if (ret < 0) {
1136 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1137 codec->name);
1138 goto card_err;
1141 mutex_lock(&codec->mutex);
1142 #ifdef CONFIG_SND_SOC_AC97_BUS
1143 /* Only instantiate AC97 if not already done by the adaptor
1144 * for the generic AC97 subsystem.
1146 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1147 ret = soc_ac97_dev_register(codec);
1148 if (ret < 0) {
1149 printk(KERN_ERR "asoc: AC97 device register failed\n");
1150 snd_card_free(codec->card);
1151 mutex_unlock(&codec->mutex);
1152 goto card_err;
1155 #endif
1157 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1158 if (ret < 0)
1159 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1161 ret = device_create_file(card->socdev->dev, &dev_attr_pmdown_time);
1162 if (ret < 0)
1163 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1165 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1166 if (ret < 0)
1167 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1169 soc_init_codec_debugfs(codec);
1170 mutex_unlock(&codec->mutex);
1172 card->instantiated = 1;
1174 return;
1176 card_err:
1177 if (platform->remove)
1178 platform->remove(pdev);
1180 platform_err:
1181 if (codec_dev->remove)
1182 codec_dev->remove(pdev);
1184 cpu_dai_err:
1185 for (i--; i >= 0; i--) {
1186 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1187 if (cpu_dai->remove)
1188 cpu_dai->remove(pdev, cpu_dai);
1191 if (card->remove)
1192 card->remove(pdev);
1196 * Attempt to initialise any uninitalised cards. Must be called with
1197 * client_mutex.
1199 static void snd_soc_instantiate_cards(void)
1201 struct snd_soc_card *card;
1202 list_for_each_entry(card, &card_list, list)
1203 snd_soc_instantiate_card(card);
1206 /* probes a new socdev */
1207 static int soc_probe(struct platform_device *pdev)
1209 int ret = 0;
1210 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1211 struct snd_soc_card *card = socdev->card;
1213 /* Bodge while we push things out of socdev */
1214 card->socdev = socdev;
1216 /* Bodge while we unpick instantiation */
1217 card->dev = &pdev->dev;
1218 ret = snd_soc_register_card(card);
1219 if (ret != 0) {
1220 dev_err(&pdev->dev, "Failed to register card\n");
1221 return ret;
1224 return 0;
1227 /* removes a socdev */
1228 static int soc_remove(struct platform_device *pdev)
1230 int i;
1231 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1232 struct snd_soc_card *card = socdev->card;
1233 struct snd_soc_platform *platform = card->platform;
1234 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1236 if (!card->instantiated)
1237 return 0;
1239 run_delayed_work(&card->delayed_work);
1241 if (platform->remove)
1242 platform->remove(pdev);
1244 if (codec_dev->remove)
1245 codec_dev->remove(pdev);
1247 for (i = 0; i < card->num_links; i++) {
1248 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1249 if (cpu_dai->remove)
1250 cpu_dai->remove(pdev, cpu_dai);
1253 if (card->remove)
1254 card->remove(pdev);
1256 snd_soc_unregister_card(card);
1258 return 0;
1261 static int soc_poweroff(struct device *dev)
1263 struct platform_device *pdev = to_platform_device(dev);
1264 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1265 struct snd_soc_card *card = socdev->card;
1267 if (!card->instantiated)
1268 return 0;
1270 /* Flush out pmdown_time work - we actually do want to run it
1271 * now, we're shutting down so no imminent restart. */
1272 run_delayed_work(&card->delayed_work);
1274 snd_soc_dapm_shutdown(socdev);
1276 return 0;
1279 static const struct dev_pm_ops soc_pm_ops = {
1280 .suspend = soc_suspend,
1281 .resume = soc_resume,
1282 .poweroff = soc_poweroff,
1285 /* ASoC platform driver */
1286 static struct platform_driver soc_driver = {
1287 .driver = {
1288 .name = "soc-audio",
1289 .owner = THIS_MODULE,
1290 .pm = &soc_pm_ops,
1292 .probe = soc_probe,
1293 .remove = soc_remove,
1296 /* create a new pcm */
1297 static int soc_new_pcm(struct snd_soc_device *socdev,
1298 struct snd_soc_dai_link *dai_link, int num)
1300 struct snd_soc_card *card = socdev->card;
1301 struct snd_soc_codec *codec = card->codec;
1302 struct snd_soc_platform *platform = card->platform;
1303 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1304 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1305 struct snd_soc_pcm_runtime *rtd;
1306 struct snd_pcm *pcm;
1307 char new_name[64];
1308 int ret = 0, playback = 0, capture = 0;
1310 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1311 if (rtd == NULL)
1312 return -ENOMEM;
1314 rtd->dai = dai_link;
1315 rtd->socdev = socdev;
1316 codec_dai->codec = card->codec;
1318 /* check client and interface hw capabilities */
1319 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1320 dai_link->stream_name, codec_dai->name, num);
1322 if (codec_dai->playback.channels_min)
1323 playback = 1;
1324 if (codec_dai->capture.channels_min)
1325 capture = 1;
1327 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1328 capture, &pcm);
1329 if (ret < 0) {
1330 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1331 codec->name);
1332 kfree(rtd);
1333 return ret;
1336 dai_link->pcm = pcm;
1337 pcm->private_data = rtd;
1338 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1339 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1340 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1341 soc_pcm_ops.copy = platform->pcm_ops->copy;
1342 soc_pcm_ops.silence = platform->pcm_ops->silence;
1343 soc_pcm_ops.ack = platform->pcm_ops->ack;
1344 soc_pcm_ops.page = platform->pcm_ops->page;
1346 if (playback)
1347 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1349 if (capture)
1350 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1352 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1353 if (ret < 0) {
1354 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1355 kfree(rtd);
1356 return ret;
1359 pcm->private_free = platform->pcm_free;
1360 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1361 cpu_dai->name);
1362 return ret;
1366 * snd_soc_codec_volatile_register: Report if a register is volatile.
1368 * @codec: CODEC to query.
1369 * @reg: Register to query.
1371 * Boolean function indiciating if a CODEC register is volatile.
1373 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1375 if (codec->volatile_register)
1376 return codec->volatile_register(reg);
1377 else
1378 return 0;
1380 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1383 * snd_soc_new_ac97_codec - initailise AC97 device
1384 * @codec: audio codec
1385 * @ops: AC97 bus operations
1386 * @num: AC97 codec number
1388 * Initialises AC97 codec resources for use by ad-hoc devices only.
1390 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1391 struct snd_ac97_bus_ops *ops, int num)
1393 mutex_lock(&codec->mutex);
1395 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1396 if (codec->ac97 == NULL) {
1397 mutex_unlock(&codec->mutex);
1398 return -ENOMEM;
1401 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1402 if (codec->ac97->bus == NULL) {
1403 kfree(codec->ac97);
1404 codec->ac97 = NULL;
1405 mutex_unlock(&codec->mutex);
1406 return -ENOMEM;
1409 codec->ac97->bus->ops = ops;
1410 codec->ac97->num = num;
1411 codec->dev = &codec->ac97->dev;
1412 mutex_unlock(&codec->mutex);
1413 return 0;
1415 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1418 * snd_soc_free_ac97_codec - free AC97 codec device
1419 * @codec: audio codec
1421 * Frees AC97 codec device resources.
1423 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1425 mutex_lock(&codec->mutex);
1426 kfree(codec->ac97->bus);
1427 kfree(codec->ac97);
1428 codec->ac97 = NULL;
1429 mutex_unlock(&codec->mutex);
1431 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1434 * snd_soc_update_bits - update codec register bits
1435 * @codec: audio codec
1436 * @reg: codec register
1437 * @mask: register mask
1438 * @value: new value
1440 * Writes new register value.
1442 * Returns 1 for change else 0.
1444 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1445 unsigned int mask, unsigned int value)
1447 int change;
1448 unsigned int old, new;
1450 old = snd_soc_read(codec, reg);
1451 new = (old & ~mask) | value;
1452 change = old != new;
1453 if (change)
1454 snd_soc_write(codec, reg, new);
1456 return change;
1458 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1461 * snd_soc_update_bits_locked - update codec register bits
1462 * @codec: audio codec
1463 * @reg: codec register
1464 * @mask: register mask
1465 * @value: new value
1467 * Writes new register value, and takes the codec mutex.
1469 * Returns 1 for change else 0.
1471 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1472 unsigned short reg, unsigned int mask,
1473 unsigned int value)
1475 int change;
1477 mutex_lock(&codec->mutex);
1478 change = snd_soc_update_bits(codec, reg, mask, value);
1479 mutex_unlock(&codec->mutex);
1481 return change;
1483 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1486 * snd_soc_test_bits - test register for change
1487 * @codec: audio codec
1488 * @reg: codec register
1489 * @mask: register mask
1490 * @value: new value
1492 * Tests a register with a new value and checks if the new value is
1493 * different from the old value.
1495 * Returns 1 for change else 0.
1497 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1498 unsigned int mask, unsigned int value)
1500 int change;
1501 unsigned int old, new;
1503 old = snd_soc_read(codec, reg);
1504 new = (old & ~mask) | value;
1505 change = old != new;
1507 return change;
1509 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1512 * snd_soc_new_pcms - create new sound card and pcms
1513 * @socdev: the SoC audio device
1514 * @idx: ALSA card index
1515 * @xid: card identification
1517 * Create a new sound card based upon the codec and interface pcms.
1519 * Returns 0 for success, else error.
1521 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1523 struct snd_soc_card *card = socdev->card;
1524 struct snd_soc_codec *codec = card->codec;
1525 int ret, i;
1527 mutex_lock(&codec->mutex);
1529 /* register a sound card */
1530 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1531 if (ret < 0) {
1532 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1533 codec->name);
1534 mutex_unlock(&codec->mutex);
1535 return ret;
1538 codec->socdev = socdev;
1539 codec->card->dev = socdev->dev;
1540 codec->card->private_data = codec;
1541 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1543 /* create the pcms */
1544 for (i = 0; i < card->num_links; i++) {
1545 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1546 if (ret < 0) {
1547 printk(KERN_ERR "asoc: can't create pcm %s\n",
1548 card->dai_link[i].stream_name);
1549 mutex_unlock(&codec->mutex);
1550 return ret;
1552 /* Check for codec->ac97 to handle the ac97.c fun */
1553 if (card->dai_link[i].codec_dai->ac97_control && codec->ac97) {
1554 snd_ac97_dev_add_pdata(codec->ac97,
1555 card->dai_link[i].cpu_dai->ac97_pdata);
1559 mutex_unlock(&codec->mutex);
1560 return ret;
1562 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1565 * snd_soc_free_pcms - free sound card and pcms
1566 * @socdev: the SoC audio device
1568 * Frees sound card and pcms associated with the socdev.
1569 * Also unregister the codec if it is an AC97 device.
1571 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1573 struct snd_soc_codec *codec = socdev->card->codec;
1574 #ifdef CONFIG_SND_SOC_AC97_BUS
1575 struct snd_soc_dai *codec_dai;
1576 int i;
1577 #endif
1579 mutex_lock(&codec->mutex);
1580 soc_cleanup_codec_debugfs(codec);
1581 #ifdef CONFIG_SND_SOC_AC97_BUS
1582 for (i = 0; i < codec->num_dai; i++) {
1583 codec_dai = &codec->dai[i];
1584 if (codec_dai->ac97_control && codec->ac97 &&
1585 strcmp(codec->name, "AC97") != 0) {
1586 soc_ac97_dev_unregister(codec);
1587 goto free_card;
1590 free_card:
1591 #endif
1593 if (codec->card)
1594 snd_card_free(codec->card);
1595 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1596 mutex_unlock(&codec->mutex);
1598 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1601 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1602 * @substream: the pcm substream
1603 * @hw: the hardware parameters
1605 * Sets the substream runtime hardware parameters.
1607 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1608 const struct snd_pcm_hardware *hw)
1610 struct snd_pcm_runtime *runtime = substream->runtime;
1611 runtime->hw.info = hw->info;
1612 runtime->hw.formats = hw->formats;
1613 runtime->hw.period_bytes_min = hw->period_bytes_min;
1614 runtime->hw.period_bytes_max = hw->period_bytes_max;
1615 runtime->hw.periods_min = hw->periods_min;
1616 runtime->hw.periods_max = hw->periods_max;
1617 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1618 runtime->hw.fifo_size = hw->fifo_size;
1619 return 0;
1621 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1624 * snd_soc_cnew - create new control
1625 * @_template: control template
1626 * @data: control private data
1627 * @long_name: control long name
1629 * Create a new mixer control from a template control.
1631 * Returns 0 for success, else error.
1633 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1634 void *data, char *long_name)
1636 struct snd_kcontrol_new template;
1638 memcpy(&template, _template, sizeof(template));
1639 if (long_name)
1640 template.name = long_name;
1641 template.index = 0;
1643 return snd_ctl_new1(&template, data);
1645 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1648 * snd_soc_add_controls - add an array of controls to a codec.
1649 * Convienience function to add a list of controls. Many codecs were
1650 * duplicating this code.
1652 * @codec: codec to add controls to
1653 * @controls: array of controls to add
1654 * @num_controls: number of elements in the array
1656 * Return 0 for success, else error.
1658 int snd_soc_add_controls(struct snd_soc_codec *codec,
1659 const struct snd_kcontrol_new *controls, int num_controls)
1661 struct snd_card *card = codec->card;
1662 int err, i;
1664 for (i = 0; i < num_controls; i++) {
1665 const struct snd_kcontrol_new *control = &controls[i];
1666 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1667 if (err < 0) {
1668 dev_err(codec->dev, "%s: Failed to add %s\n",
1669 codec->name, control->name);
1670 return err;
1674 return 0;
1676 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1679 * snd_soc_info_enum_double - enumerated double mixer info callback
1680 * @kcontrol: mixer control
1681 * @uinfo: control element information
1683 * Callback to provide information about a double enumerated
1684 * mixer control.
1686 * Returns 0 for success.
1688 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1689 struct snd_ctl_elem_info *uinfo)
1691 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1693 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1694 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1695 uinfo->value.enumerated.items = e->max;
1697 if (uinfo->value.enumerated.item > e->max - 1)
1698 uinfo->value.enumerated.item = e->max - 1;
1699 strcpy(uinfo->value.enumerated.name,
1700 e->texts[uinfo->value.enumerated.item]);
1701 return 0;
1703 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1706 * snd_soc_get_enum_double - enumerated double mixer get callback
1707 * @kcontrol: mixer control
1708 * @ucontrol: control element information
1710 * Callback to get the value of a double enumerated mixer.
1712 * Returns 0 for success.
1714 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1715 struct snd_ctl_elem_value *ucontrol)
1717 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1718 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1719 unsigned int val, bitmask;
1721 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1723 val = snd_soc_read(codec, e->reg);
1724 ucontrol->value.enumerated.item[0]
1725 = (val >> e->shift_l) & (bitmask - 1);
1726 if (e->shift_l != e->shift_r)
1727 ucontrol->value.enumerated.item[1] =
1728 (val >> e->shift_r) & (bitmask - 1);
1730 return 0;
1732 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1735 * snd_soc_put_enum_double - enumerated double mixer put callback
1736 * @kcontrol: mixer control
1737 * @ucontrol: control element information
1739 * Callback to set the value of a double enumerated mixer.
1741 * Returns 0 for success.
1743 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1744 struct snd_ctl_elem_value *ucontrol)
1746 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1747 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1748 unsigned int val;
1749 unsigned int mask, bitmask;
1751 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1753 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1754 return -EINVAL;
1755 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1756 mask = (bitmask - 1) << e->shift_l;
1757 if (e->shift_l != e->shift_r) {
1758 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1759 return -EINVAL;
1760 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1761 mask |= (bitmask - 1) << e->shift_r;
1764 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1766 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1769 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1770 * @kcontrol: mixer control
1771 * @ucontrol: control element information
1773 * Callback to get the value of a double semi enumerated mixer.
1775 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1776 * used for handling bitfield coded enumeration for example.
1778 * Returns 0 for success.
1780 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1781 struct snd_ctl_elem_value *ucontrol)
1783 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1784 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1785 unsigned int reg_val, val, mux;
1787 reg_val = snd_soc_read(codec, e->reg);
1788 val = (reg_val >> e->shift_l) & e->mask;
1789 for (mux = 0; mux < e->max; mux++) {
1790 if (val == e->values[mux])
1791 break;
1793 ucontrol->value.enumerated.item[0] = mux;
1794 if (e->shift_l != e->shift_r) {
1795 val = (reg_val >> e->shift_r) & e->mask;
1796 for (mux = 0; mux < e->max; mux++) {
1797 if (val == e->values[mux])
1798 break;
1800 ucontrol->value.enumerated.item[1] = mux;
1803 return 0;
1805 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1808 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1809 * @kcontrol: mixer control
1810 * @ucontrol: control element information
1812 * Callback to set the value of a double semi enumerated mixer.
1814 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1815 * used for handling bitfield coded enumeration for example.
1817 * Returns 0 for success.
1819 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1820 struct snd_ctl_elem_value *ucontrol)
1822 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1823 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1824 unsigned int val;
1825 unsigned int mask;
1827 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1828 return -EINVAL;
1829 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1830 mask = e->mask << e->shift_l;
1831 if (e->shift_l != e->shift_r) {
1832 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1833 return -EINVAL;
1834 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1835 mask |= e->mask << e->shift_r;
1838 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1840 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1843 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1844 * @kcontrol: mixer control
1845 * @uinfo: control element information
1847 * Callback to provide information about an external enumerated
1848 * single mixer.
1850 * Returns 0 for success.
1852 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1853 struct snd_ctl_elem_info *uinfo)
1855 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1857 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1858 uinfo->count = 1;
1859 uinfo->value.enumerated.items = e->max;
1861 if (uinfo->value.enumerated.item > e->max - 1)
1862 uinfo->value.enumerated.item = e->max - 1;
1863 strcpy(uinfo->value.enumerated.name,
1864 e->texts[uinfo->value.enumerated.item]);
1865 return 0;
1867 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1870 * snd_soc_info_volsw_ext - external single mixer info callback
1871 * @kcontrol: mixer control
1872 * @uinfo: control element information
1874 * Callback to provide information about a single external mixer control.
1876 * Returns 0 for success.
1878 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1879 struct snd_ctl_elem_info *uinfo)
1881 int max = kcontrol->private_value;
1883 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1884 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1885 else
1886 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1888 uinfo->count = 1;
1889 uinfo->value.integer.min = 0;
1890 uinfo->value.integer.max = max;
1891 return 0;
1893 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1896 * snd_soc_info_volsw - single mixer info callback
1897 * @kcontrol: mixer control
1898 * @uinfo: control element information
1900 * Callback to provide information about a single mixer control.
1902 * Returns 0 for success.
1904 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1905 struct snd_ctl_elem_info *uinfo)
1907 struct soc_mixer_control *mc =
1908 (struct soc_mixer_control *)kcontrol->private_value;
1909 int max = mc->max;
1910 unsigned int shift = mc->shift;
1911 unsigned int rshift = mc->rshift;
1913 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1914 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1915 else
1916 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1918 uinfo->count = shift == rshift ? 1 : 2;
1919 uinfo->value.integer.min = 0;
1920 uinfo->value.integer.max = max;
1921 return 0;
1923 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1926 * snd_soc_get_volsw - single mixer get callback
1927 * @kcontrol: mixer control
1928 * @ucontrol: control element information
1930 * Callback to get the value of a single mixer control.
1932 * Returns 0 for success.
1934 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1935 struct snd_ctl_elem_value *ucontrol)
1937 struct soc_mixer_control *mc =
1938 (struct soc_mixer_control *)kcontrol->private_value;
1939 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1940 unsigned int reg = mc->reg;
1941 unsigned int shift = mc->shift;
1942 unsigned int rshift = mc->rshift;
1943 int max = mc->max;
1944 unsigned int mask = (1 << fls(max)) - 1;
1945 unsigned int invert = mc->invert;
1947 ucontrol->value.integer.value[0] =
1948 (snd_soc_read(codec, reg) >> shift) & mask;
1949 if (shift != rshift)
1950 ucontrol->value.integer.value[1] =
1951 (snd_soc_read(codec, reg) >> rshift) & mask;
1952 if (invert) {
1953 ucontrol->value.integer.value[0] =
1954 max - ucontrol->value.integer.value[0];
1955 if (shift != rshift)
1956 ucontrol->value.integer.value[1] =
1957 max - ucontrol->value.integer.value[1];
1960 return 0;
1962 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1965 * snd_soc_put_volsw - single mixer put callback
1966 * @kcontrol: mixer control
1967 * @ucontrol: control element information
1969 * Callback to set the value of a single mixer control.
1971 * Returns 0 for success.
1973 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1974 struct snd_ctl_elem_value *ucontrol)
1976 struct soc_mixer_control *mc =
1977 (struct soc_mixer_control *)kcontrol->private_value;
1978 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1979 unsigned int reg = mc->reg;
1980 unsigned int shift = mc->shift;
1981 unsigned int rshift = mc->rshift;
1982 int max = mc->max;
1983 unsigned int mask = (1 << fls(max)) - 1;
1984 unsigned int invert = mc->invert;
1985 unsigned int val, val2, val_mask;
1987 val = (ucontrol->value.integer.value[0] & mask);
1988 if (invert)
1989 val = max - val;
1990 val_mask = mask << shift;
1991 val = val << shift;
1992 if (shift != rshift) {
1993 val2 = (ucontrol->value.integer.value[1] & mask);
1994 if (invert)
1995 val2 = max - val2;
1996 val_mask |= mask << rshift;
1997 val |= val2 << rshift;
1999 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2001 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2004 * snd_soc_info_volsw_2r - double mixer info callback
2005 * @kcontrol: mixer control
2006 * @uinfo: control element information
2008 * Callback to provide information about a double mixer control that
2009 * spans 2 codec registers.
2011 * Returns 0 for success.
2013 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2014 struct snd_ctl_elem_info *uinfo)
2016 struct soc_mixer_control *mc =
2017 (struct soc_mixer_control *)kcontrol->private_value;
2018 int max = mc->max;
2020 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2021 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2022 else
2023 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2025 uinfo->count = 2;
2026 uinfo->value.integer.min = 0;
2027 uinfo->value.integer.max = max;
2028 return 0;
2030 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2033 * snd_soc_get_volsw_2r - double mixer get callback
2034 * @kcontrol: mixer control
2035 * @ucontrol: control element information
2037 * Callback to get the value of a double mixer control that spans 2 registers.
2039 * Returns 0 for success.
2041 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2042 struct snd_ctl_elem_value *ucontrol)
2044 struct soc_mixer_control *mc =
2045 (struct soc_mixer_control *)kcontrol->private_value;
2046 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2047 unsigned int reg = mc->reg;
2048 unsigned int reg2 = mc->rreg;
2049 unsigned int shift = mc->shift;
2050 int max = mc->max;
2051 unsigned int mask = (1 << fls(max)) - 1;
2052 unsigned int invert = mc->invert;
2054 ucontrol->value.integer.value[0] =
2055 (snd_soc_read(codec, reg) >> shift) & mask;
2056 ucontrol->value.integer.value[1] =
2057 (snd_soc_read(codec, reg2) >> shift) & mask;
2058 if (invert) {
2059 ucontrol->value.integer.value[0] =
2060 max - ucontrol->value.integer.value[0];
2061 ucontrol->value.integer.value[1] =
2062 max - ucontrol->value.integer.value[1];
2065 return 0;
2067 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2070 * snd_soc_put_volsw_2r - double mixer set callback
2071 * @kcontrol: mixer control
2072 * @ucontrol: control element information
2074 * Callback to set the value of a double mixer control that spans 2 registers.
2076 * Returns 0 for success.
2078 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2079 struct snd_ctl_elem_value *ucontrol)
2081 struct soc_mixer_control *mc =
2082 (struct soc_mixer_control *)kcontrol->private_value;
2083 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2084 unsigned int reg = mc->reg;
2085 unsigned int reg2 = mc->rreg;
2086 unsigned int shift = mc->shift;
2087 int max = mc->max;
2088 unsigned int mask = (1 << fls(max)) - 1;
2089 unsigned int invert = mc->invert;
2090 int err;
2091 unsigned int val, val2, val_mask;
2093 val_mask = mask << shift;
2094 val = (ucontrol->value.integer.value[0] & mask);
2095 val2 = (ucontrol->value.integer.value[1] & mask);
2097 if (invert) {
2098 val = max - val;
2099 val2 = max - val2;
2102 val = val << shift;
2103 val2 = val2 << shift;
2105 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2106 if (err < 0)
2107 return err;
2109 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2110 return err;
2112 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2115 * snd_soc_info_volsw_s8 - signed mixer info callback
2116 * @kcontrol: mixer control
2117 * @uinfo: control element information
2119 * Callback to provide information about a signed mixer control.
2121 * Returns 0 for success.
2123 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2124 struct snd_ctl_elem_info *uinfo)
2126 struct soc_mixer_control *mc =
2127 (struct soc_mixer_control *)kcontrol->private_value;
2128 int max = mc->max;
2129 int min = mc->min;
2131 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2132 uinfo->count = 2;
2133 uinfo->value.integer.min = 0;
2134 uinfo->value.integer.max = max-min;
2135 return 0;
2137 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2140 * snd_soc_get_volsw_s8 - signed mixer get callback
2141 * @kcontrol: mixer control
2142 * @ucontrol: control element information
2144 * Callback to get the value of a signed mixer control.
2146 * Returns 0 for success.
2148 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2149 struct snd_ctl_elem_value *ucontrol)
2151 struct soc_mixer_control *mc =
2152 (struct soc_mixer_control *)kcontrol->private_value;
2153 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2154 unsigned int reg = mc->reg;
2155 int min = mc->min;
2156 int val = snd_soc_read(codec, reg);
2158 ucontrol->value.integer.value[0] =
2159 ((signed char)(val & 0xff))-min;
2160 ucontrol->value.integer.value[1] =
2161 ((signed char)((val >> 8) & 0xff))-min;
2162 return 0;
2164 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2167 * snd_soc_put_volsw_sgn - signed mixer put callback
2168 * @kcontrol: mixer control
2169 * @ucontrol: control element information
2171 * Callback to set the value of a signed mixer control.
2173 * Returns 0 for success.
2175 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2176 struct snd_ctl_elem_value *ucontrol)
2178 struct soc_mixer_control *mc =
2179 (struct soc_mixer_control *)kcontrol->private_value;
2180 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2181 unsigned int reg = mc->reg;
2182 int min = mc->min;
2183 unsigned int val;
2185 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2186 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2188 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2190 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2193 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2194 * @dai: DAI
2195 * @clk_id: DAI specific clock ID
2196 * @freq: new clock frequency in Hz
2197 * @dir: new clock direction - input/output.
2199 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2201 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2202 unsigned int freq, int dir)
2204 if (dai->ops && dai->ops->set_sysclk)
2205 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2206 else
2207 return -EINVAL;
2209 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2212 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2213 * @dai: DAI
2214 * @div_id: DAI specific clock divider ID
2215 * @div: new clock divisor.
2217 * Configures the clock dividers. This is used to derive the best DAI bit and
2218 * frame clocks from the system or master clock. It's best to set the DAI bit
2219 * and frame clocks as low as possible to save system power.
2221 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2222 int div_id, int div)
2224 if (dai->ops && dai->ops->set_clkdiv)
2225 return dai->ops->set_clkdiv(dai, div_id, div);
2226 else
2227 return -EINVAL;
2229 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2232 * snd_soc_dai_set_pll - configure DAI PLL.
2233 * @dai: DAI
2234 * @pll_id: DAI specific PLL ID
2235 * @source: DAI specific source for the PLL
2236 * @freq_in: PLL input clock frequency in Hz
2237 * @freq_out: requested PLL output clock frequency in Hz
2239 * Configures and enables PLL to generate output clock based on input clock.
2241 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2242 unsigned int freq_in, unsigned int freq_out)
2244 if (dai->ops && dai->ops->set_pll)
2245 return dai->ops->set_pll(dai, pll_id, source,
2246 freq_in, freq_out);
2247 else
2248 return -EINVAL;
2250 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2253 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2254 * @dai: DAI
2255 * @fmt: SND_SOC_DAIFMT_ format value.
2257 * Configures the DAI hardware format and clocking.
2259 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2261 if (dai->ops && dai->ops->set_fmt)
2262 return dai->ops->set_fmt(dai, fmt);
2263 else
2264 return -EINVAL;
2266 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2269 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2270 * @dai: DAI
2271 * @tx_mask: bitmask representing active TX slots.
2272 * @rx_mask: bitmask representing active RX slots.
2273 * @slots: Number of slots in use.
2274 * @slot_width: Width in bits for each slot.
2276 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2277 * specific.
2279 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2280 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2282 if (dai->ops && dai->ops->set_tdm_slot)
2283 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2284 slots, slot_width);
2285 else
2286 return -EINVAL;
2288 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2291 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2292 * @dai: DAI
2293 * @tx_num: how many TX channels
2294 * @tx_slot: pointer to an array which imply the TX slot number channel
2295 * 0~num-1 uses
2296 * @rx_num: how many RX channels
2297 * @rx_slot: pointer to an array which imply the RX slot number channel
2298 * 0~num-1 uses
2300 * configure the relationship between channel number and TDM slot number.
2302 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2303 unsigned int tx_num, unsigned int *tx_slot,
2304 unsigned int rx_num, unsigned int *rx_slot)
2306 if (dai->ops && dai->ops->set_channel_map)
2307 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2308 rx_num, rx_slot);
2309 else
2310 return -EINVAL;
2312 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2315 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2316 * @dai: DAI
2317 * @tristate: tristate enable
2319 * Tristates the DAI so that others can use it.
2321 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2323 if (dai->ops && dai->ops->set_tristate)
2324 return dai->ops->set_tristate(dai, tristate);
2325 else
2326 return -EINVAL;
2328 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2331 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2332 * @dai: DAI
2333 * @mute: mute enable
2335 * Mutes the DAI DAC.
2337 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2339 if (dai->ops && dai->ops->digital_mute)
2340 return dai->ops->digital_mute(dai, mute);
2341 else
2342 return -EINVAL;
2344 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2347 * snd_soc_register_card - Register a card with the ASoC core
2349 * @card: Card to register
2351 * Note that currently this is an internal only function: it will be
2352 * exposed to machine drivers after further backporting of ASoC v2
2353 * registration APIs.
2355 static int snd_soc_register_card(struct snd_soc_card *card)
2357 if (!card->name || !card->dev)
2358 return -EINVAL;
2360 INIT_LIST_HEAD(&card->list);
2361 card->instantiated = 0;
2363 mutex_lock(&client_mutex);
2364 list_add(&card->list, &card_list);
2365 snd_soc_instantiate_cards();
2366 mutex_unlock(&client_mutex);
2368 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2370 return 0;
2374 * snd_soc_unregister_card - Unregister a card with the ASoC core
2376 * @card: Card to unregister
2378 * Note that currently this is an internal only function: it will be
2379 * exposed to machine drivers after further backporting of ASoC v2
2380 * registration APIs.
2382 static int snd_soc_unregister_card(struct snd_soc_card *card)
2384 mutex_lock(&client_mutex);
2385 list_del(&card->list);
2386 mutex_unlock(&client_mutex);
2388 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2390 return 0;
2394 * snd_soc_register_dai - Register a DAI with the ASoC core
2396 * @dai: DAI to register
2398 int snd_soc_register_dai(struct snd_soc_dai *dai)
2400 if (!dai->name)
2401 return -EINVAL;
2403 /* The device should become mandatory over time */
2404 if (!dai->dev)
2405 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2407 if (!dai->ops)
2408 dai->ops = &null_dai_ops;
2410 INIT_LIST_HEAD(&dai->list);
2412 mutex_lock(&client_mutex);
2413 list_add(&dai->list, &dai_list);
2414 snd_soc_instantiate_cards();
2415 mutex_unlock(&client_mutex);
2417 pr_debug("Registered DAI '%s'\n", dai->name);
2419 return 0;
2421 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2424 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2426 * @dai: DAI to unregister
2428 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2430 mutex_lock(&client_mutex);
2431 list_del(&dai->list);
2432 mutex_unlock(&client_mutex);
2434 pr_debug("Unregistered DAI '%s'\n", dai->name);
2436 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2439 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2441 * @dai: Array of DAIs to register
2442 * @count: Number of DAIs
2444 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2446 int i, ret;
2448 for (i = 0; i < count; i++) {
2449 ret = snd_soc_register_dai(&dai[i]);
2450 if (ret != 0)
2451 goto err;
2454 return 0;
2456 err:
2457 for (i--; i >= 0; i--)
2458 snd_soc_unregister_dai(&dai[i]);
2460 return ret;
2462 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2465 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2467 * @dai: Array of DAIs to unregister
2468 * @count: Number of DAIs
2470 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2472 int i;
2474 for (i = 0; i < count; i++)
2475 snd_soc_unregister_dai(&dai[i]);
2477 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2480 * snd_soc_register_platform - Register a platform with the ASoC core
2482 * @platform: platform to register
2484 int snd_soc_register_platform(struct snd_soc_platform *platform)
2486 if (!platform->name)
2487 return -EINVAL;
2489 INIT_LIST_HEAD(&platform->list);
2491 mutex_lock(&client_mutex);
2492 list_add(&platform->list, &platform_list);
2493 snd_soc_instantiate_cards();
2494 mutex_unlock(&client_mutex);
2496 pr_debug("Registered platform '%s'\n", platform->name);
2498 return 0;
2500 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2503 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2505 * @platform: platform to unregister
2507 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2509 mutex_lock(&client_mutex);
2510 list_del(&platform->list);
2511 mutex_unlock(&client_mutex);
2513 pr_debug("Unregistered platform '%s'\n", platform->name);
2515 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2517 static u64 codec_format_map[] = {
2518 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2519 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2520 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2521 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2522 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2523 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2524 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2525 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2526 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2527 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2528 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2529 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2530 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2531 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2532 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2533 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2536 /* Fix up the DAI formats for endianness: codecs don't actually see
2537 * the endianness of the data but we're using the CPU format
2538 * definitions which do need to include endianness so we ensure that
2539 * codec DAIs always have both big and little endian variants set.
2541 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2543 int i;
2545 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2546 if (stream->formats & codec_format_map[i])
2547 stream->formats |= codec_format_map[i];
2551 * snd_soc_register_codec - Register a codec with the ASoC core
2553 * @codec: codec to register
2555 int snd_soc_register_codec(struct snd_soc_codec *codec)
2557 int i;
2559 if (!codec->name)
2560 return -EINVAL;
2562 /* The device should become mandatory over time */
2563 if (!codec->dev)
2564 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2566 INIT_LIST_HEAD(&codec->list);
2568 for (i = 0; i < codec->num_dai; i++) {
2569 fixup_codec_formats(&codec->dai[i].playback);
2570 fixup_codec_formats(&codec->dai[i].capture);
2573 mutex_lock(&client_mutex);
2574 list_add(&codec->list, &codec_list);
2575 snd_soc_instantiate_cards();
2576 mutex_unlock(&client_mutex);
2578 pr_debug("Registered codec '%s'\n", codec->name);
2580 return 0;
2582 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2585 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2587 * @codec: codec to unregister
2589 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2591 mutex_lock(&client_mutex);
2592 list_del(&codec->list);
2593 mutex_unlock(&client_mutex);
2595 pr_debug("Unregistered codec '%s'\n", codec->name);
2597 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2599 static int __init snd_soc_init(void)
2601 #ifdef CONFIG_DEBUG_FS
2602 debugfs_root = debugfs_create_dir("asoc", NULL);
2603 if (IS_ERR(debugfs_root) || !debugfs_root) {
2604 printk(KERN_WARNING
2605 "ASoC: Failed to create debugfs directory\n");
2606 debugfs_root = NULL;
2608 #endif
2610 return platform_driver_register(&soc_driver);
2613 static void __exit snd_soc_exit(void)
2615 #ifdef CONFIG_DEBUG_FS
2616 debugfs_remove_recursive(debugfs_root);
2617 #endif
2618 platform_driver_unregister(&soc_driver);
2621 module_init(snd_soc_init);
2622 module_exit(snd_soc_exit);
2624 /* Module information */
2625 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2626 MODULE_DESCRIPTION("ALSA SoC Core");
2627 MODULE_LICENSE("GPL");
2628 MODULE_ALIAS("platform:soc-audio");