2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
97 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
98 unsigned long nr_segs
, loff_t pos
);
99 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
100 unsigned long nr_segs
, loff_t pos
);
101 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
103 static int sock_close(struct inode
*inode
, struct file
*file
);
104 static unsigned int sock_poll(struct file
*file
,
105 struct poll_table_struct
*wait
);
106 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
108 static long compat_sock_ioctl(struct file
*file
,
109 unsigned int cmd
, unsigned long arg
);
111 static int sock_fasync(int fd
, struct file
*filp
, int on
);
112 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
113 int offset
, size_t size
, loff_t
*ppos
, int more
);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops
= {
121 .owner
= THIS_MODULE
,
123 .aio_read
= sock_aio_read
,
124 .aio_write
= sock_aio_write
,
126 .unlocked_ioctl
= sock_ioctl
,
128 .compat_ioctl
= compat_sock_ioctl
,
131 .open
= sock_no_open
, /* special open code to disallow open via /proc */
132 .release
= sock_close
,
133 .fasync
= sock_fasync
,
134 .sendpage
= sock_sendpage
,
135 .splice_write
= generic_splice_sendpage
,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock
);
143 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
179 if (ulen
< 0 || ulen
> MAX_SOCK_ADDR
)
183 if (copy_from_user(kaddr
, uaddr
, ulen
))
185 return audit_sockaddr(ulen
, kaddr
);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
,
211 err
= get_user(len
, ulen
);
216 if (len
< 0 || len
> MAX_SOCK_ADDR
)
219 if (audit_sockaddr(klen
, kaddr
))
221 if (copy_to_user(uaddr
, kaddr
, len
))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen
, ulen
);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
235 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
237 struct socket_alloc
*ei
;
239 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
242 init_waitqueue_head(&ei
->socket
.wait
);
244 ei
->socket
.fasync_list
= NULL
;
245 ei
->socket
.state
= SS_UNCONNECTED
;
246 ei
->socket
.flags
= 0;
247 ei
->socket
.ops
= NULL
;
248 ei
->socket
.sk
= NULL
;
249 ei
->socket
.file
= NULL
;
251 return &ei
->vfs_inode
;
254 static void sock_destroy_inode(struct inode
*inode
)
256 kmem_cache_free(sock_inode_cachep
,
257 container_of(inode
, struct socket_alloc
, vfs_inode
));
260 static void init_once(void *foo
, struct kmem_cache
*cachep
, unsigned long flags
)
262 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
264 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
))
265 == SLAB_CTOR_CONSTRUCTOR
)
266 inode_init_once(&ei
->vfs_inode
);
269 static int init_inodecache(void)
271 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc
),
274 (SLAB_HWCACHE_ALIGN
|
275 SLAB_RECLAIM_ACCOUNT
|
279 if (sock_inode_cachep
== NULL
)
284 static struct super_operations sockfs_ops
= {
285 .alloc_inode
= sock_alloc_inode
,
286 .destroy_inode
=sock_destroy_inode
,
287 .statfs
= simple_statfs
,
290 static int sockfs_get_sb(struct file_system_type
*fs_type
,
291 int flags
, const char *dev_name
, void *data
,
292 struct vfsmount
*mnt
)
294 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
298 static struct vfsmount
*sock_mnt __read_mostly
;
300 static struct file_system_type sock_fs_type
= {
302 .get_sb
= sockfs_get_sb
,
303 .kill_sb
= kill_anon_super
,
306 static int sockfs_delete_dentry(struct dentry
*dentry
)
309 * At creation time, we pretended this dentry was hashed
310 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 * At delete time, we restore the truth : not hashed.
312 * (so that dput() can proceed correctly)
314 dentry
->d_flags
|= DCACHE_UNHASHED
;
317 static struct dentry_operations sockfs_dentry_operations
= {
318 .d_delete
= sockfs_delete_dentry
,
322 * Obtains the first available file descriptor and sets it up for use.
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
338 static int sock_alloc_fd(struct file
**filep
)
342 fd
= get_unused_fd();
343 if (likely(fd
>= 0)) {
344 struct file
*file
= get_empty_filp();
347 if (unlikely(!file
)) {
356 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
361 this.len
= sprintf(name
, "[%lu]", SOCK_INODE(sock
)->i_ino
);
365 file
->f_path
.dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &this);
366 if (unlikely(!file
->f_path
.dentry
))
369 file
->f_path
.dentry
->d_op
= &sockfs_dentry_operations
;
371 * We dont want to push this dentry into global dentry hash table.
372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 * This permits a working /proc/$pid/fd/XXX on sockets
375 file
->f_path
.dentry
->d_flags
&= ~DCACHE_UNHASHED
;
376 d_instantiate(file
->f_path
.dentry
, SOCK_INODE(sock
));
377 file
->f_path
.mnt
= mntget(sock_mnt
);
378 file
->f_mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
381 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
382 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
383 file
->f_flags
= O_RDWR
;
385 file
->private_data
= sock
;
390 int sock_map_fd(struct socket
*sock
)
392 struct file
*newfile
;
393 int fd
= sock_alloc_fd(&newfile
);
395 if (likely(fd
>= 0)) {
396 int err
= sock_attach_fd(sock
, newfile
);
398 if (unlikely(err
< 0)) {
403 fd_install(fd
, newfile
);
408 static struct socket
*sock_from_file(struct file
*file
, int *err
)
410 if (file
->f_op
== &socket_file_ops
)
411 return file
->private_data
; /* set in sock_map_fd */
418 * sockfd_lookup - Go from a file number to its socket slot
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket
*sockfd_lookup(int fd
, int *err
)
441 sock
= sock_from_file(file
, err
);
447 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
453 file
= fget_light(fd
, fput_needed
);
455 sock
= sock_from_file(file
, err
);
458 fput_light(file
, *fput_needed
);
464 * sock_alloc - allocate a socket
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
471 static struct socket
*sock_alloc(void)
476 inode
= new_inode(sock_mnt
->mnt_sb
);
480 sock
= SOCKET_I(inode
);
482 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
483 inode
->i_uid
= current
->fsuid
;
484 inode
->i_gid
= current
->fsgid
;
486 get_cpu_var(sockets_in_use
)++;
487 put_cpu_var(sockets_in_use
);
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
502 const struct file_operations bad_sock_fops
= {
503 .owner
= THIS_MODULE
,
504 .open
= sock_no_open
,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket
*sock
)
519 struct module
*owner
= sock
->ops
->owner
;
521 sock
->ops
->release(sock
);
526 if (sock
->fasync_list
)
527 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
529 get_cpu_var(sockets_in_use
)--;
530 put_cpu_var(sockets_in_use
);
532 iput(SOCK_INODE(sock
));
538 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
539 struct msghdr
*msg
, size_t size
)
541 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
549 err
= security_socket_sendmsg(sock
, msg
, size
);
553 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
556 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
559 struct sock_iocb siocb
;
562 init_sync_kiocb(&iocb
, NULL
);
563 iocb
.private = &siocb
;
564 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
565 if (-EIOCBQUEUED
== ret
)
566 ret
= wait_on_sync_kiocb(&iocb
);
570 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
571 struct kvec
*vec
, size_t num
, size_t size
)
573 mm_segment_t oldfs
= get_fs();
578 * the following is safe, since for compiler definitions of kvec and
579 * iovec are identical, yielding the same in-core layout and alignment
581 msg
->msg_iov
= (struct iovec
*)vec
;
582 msg
->msg_iovlen
= num
;
583 result
= sock_sendmsg(sock
, msg
, size
);
588 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
589 struct msghdr
*msg
, size_t size
, int flags
)
592 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
600 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
604 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
607 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
608 size_t size
, int flags
)
611 struct sock_iocb siocb
;
614 init_sync_kiocb(&iocb
, NULL
);
615 iocb
.private = &siocb
;
616 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
617 if (-EIOCBQUEUED
== ret
)
618 ret
= wait_on_sync_kiocb(&iocb
);
622 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
623 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
625 mm_segment_t oldfs
= get_fs();
630 * the following is safe, since for compiler definitions of kvec and
631 * iovec are identical, yielding the same in-core layout and alignment
633 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
634 result
= sock_recvmsg(sock
, msg
, size
, flags
);
639 static void sock_aio_dtor(struct kiocb
*iocb
)
641 kfree(iocb
->private);
644 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
645 int offset
, size_t size
, loff_t
*ppos
, int more
)
650 sock
= file
->private_data
;
652 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
656 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
659 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
660 struct sock_iocb
*siocb
)
662 if (!is_sync_kiocb(iocb
)) {
663 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
666 iocb
->ki_dtor
= sock_aio_dtor
;
670 iocb
->private = siocb
;
674 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
675 struct file
*file
, const struct iovec
*iov
,
676 unsigned long nr_segs
)
678 struct socket
*sock
= file
->private_data
;
682 for (i
= 0; i
< nr_segs
; i
++)
683 size
+= iov
[i
].iov_len
;
685 msg
->msg_name
= NULL
;
686 msg
->msg_namelen
= 0;
687 msg
->msg_control
= NULL
;
688 msg
->msg_controllen
= 0;
689 msg
->msg_iov
= (struct iovec
*)iov
;
690 msg
->msg_iovlen
= nr_segs
;
691 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
693 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
696 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
697 unsigned long nr_segs
, loff_t pos
)
699 struct sock_iocb siocb
, *x
;
704 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
708 x
= alloc_sock_iocb(iocb
, &siocb
);
711 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
714 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
715 struct file
*file
, const struct iovec
*iov
,
716 unsigned long nr_segs
)
718 struct socket
*sock
= file
->private_data
;
722 for (i
= 0; i
< nr_segs
; i
++)
723 size
+= iov
[i
].iov_len
;
725 msg
->msg_name
= NULL
;
726 msg
->msg_namelen
= 0;
727 msg
->msg_control
= NULL
;
728 msg
->msg_controllen
= 0;
729 msg
->msg_iov
= (struct iovec
*)iov
;
730 msg
->msg_iovlen
= nr_segs
;
731 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
732 if (sock
->type
== SOCK_SEQPACKET
)
733 msg
->msg_flags
|= MSG_EOR
;
735 return __sock_sendmsg(iocb
, sock
, msg
, size
);
738 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
739 unsigned long nr_segs
, loff_t pos
)
741 struct sock_iocb siocb
, *x
;
746 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
749 x
= alloc_sock_iocb(iocb
, &siocb
);
753 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
757 * Atomic setting of ioctl hooks to avoid race
758 * with module unload.
761 static DEFINE_MUTEX(br_ioctl_mutex
);
762 static int (*br_ioctl_hook
) (unsigned int cmd
, void __user
*arg
) = NULL
;
764 void brioctl_set(int (*hook
) (unsigned int, void __user
*))
766 mutex_lock(&br_ioctl_mutex
);
767 br_ioctl_hook
= hook
;
768 mutex_unlock(&br_ioctl_mutex
);
771 EXPORT_SYMBOL(brioctl_set
);
773 static DEFINE_MUTEX(vlan_ioctl_mutex
);
774 static int (*vlan_ioctl_hook
) (void __user
*arg
);
776 void vlan_ioctl_set(int (*hook
) (void __user
*))
778 mutex_lock(&vlan_ioctl_mutex
);
779 vlan_ioctl_hook
= hook
;
780 mutex_unlock(&vlan_ioctl_mutex
);
783 EXPORT_SYMBOL(vlan_ioctl_set
);
785 static DEFINE_MUTEX(dlci_ioctl_mutex
);
786 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
788 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
790 mutex_lock(&dlci_ioctl_mutex
);
791 dlci_ioctl_hook
= hook
;
792 mutex_unlock(&dlci_ioctl_mutex
);
795 EXPORT_SYMBOL(dlci_ioctl_set
);
798 * With an ioctl, arg may well be a user mode pointer, but we don't know
799 * what to do with it - that's up to the protocol still.
802 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
805 void __user
*argp
= (void __user
*)arg
;
808 sock
= file
->private_data
;
809 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
810 err
= dev_ioctl(cmd
, argp
);
812 #ifdef CONFIG_WIRELESS_EXT
813 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
814 err
= dev_ioctl(cmd
, argp
);
816 #endif /* CONFIG_WIRELESS_EXT */
821 if (get_user(pid
, (int __user
*)argp
))
823 err
= f_setown(sock
->file
, pid
, 1);
827 err
= put_user(f_getown(sock
->file
),
836 request_module("bridge");
838 mutex_lock(&br_ioctl_mutex
);
840 err
= br_ioctl_hook(cmd
, argp
);
841 mutex_unlock(&br_ioctl_mutex
);
846 if (!vlan_ioctl_hook
)
847 request_module("8021q");
849 mutex_lock(&vlan_ioctl_mutex
);
851 err
= vlan_ioctl_hook(argp
);
852 mutex_unlock(&vlan_ioctl_mutex
);
857 if (!dlci_ioctl_hook
)
858 request_module("dlci");
860 if (dlci_ioctl_hook
) {
861 mutex_lock(&dlci_ioctl_mutex
);
862 err
= dlci_ioctl_hook(cmd
, argp
);
863 mutex_unlock(&dlci_ioctl_mutex
);
867 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
870 * If this ioctl is unknown try to hand it down
873 if (err
== -ENOIOCTLCMD
)
874 err
= dev_ioctl(cmd
, argp
);
880 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
883 struct socket
*sock
= NULL
;
885 err
= security_socket_create(family
, type
, protocol
, 1);
896 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
909 /* No kernel lock held - perfect */
910 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
915 * We can't return errors to poll, so it's either yes or no.
917 sock
= file
->private_data
;
918 return sock
->ops
->poll(file
, sock
, wait
);
921 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
923 struct socket
*sock
= file
->private_data
;
925 return sock
->ops
->mmap(file
, sock
, vma
);
928 static int sock_close(struct inode
*inode
, struct file
*filp
)
931 * It was possible the inode is NULL we were
932 * closing an unfinished socket.
936 printk(KERN_DEBUG
"sock_close: NULL inode\n");
939 sock_fasync(-1, filp
, 0);
940 sock_release(SOCKET_I(inode
));
945 * Update the socket async list
947 * Fasync_list locking strategy.
949 * 1. fasync_list is modified only under process context socket lock
950 * i.e. under semaphore.
951 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
952 * or under socket lock.
953 * 3. fasync_list can be used from softirq context, so that
954 * modification under socket lock have to be enhanced with
955 * write_lock_bh(&sk->sk_callback_lock).
959 static int sock_fasync(int fd
, struct file
*filp
, int on
)
961 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
966 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
971 sock
= filp
->private_data
;
981 prev
= &(sock
->fasync_list
);
983 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
984 if (fa
->fa_file
== filp
)
989 write_lock_bh(&sk
->sk_callback_lock
);
991 write_unlock_bh(&sk
->sk_callback_lock
);
998 fna
->magic
= FASYNC_MAGIC
;
999 fna
->fa_next
= sock
->fasync_list
;
1000 write_lock_bh(&sk
->sk_callback_lock
);
1001 sock
->fasync_list
= fna
;
1002 write_unlock_bh(&sk
->sk_callback_lock
);
1005 write_lock_bh(&sk
->sk_callback_lock
);
1006 *prev
= fa
->fa_next
;
1007 write_unlock_bh(&sk
->sk_callback_lock
);
1013 release_sock(sock
->sk
);
1017 /* This function may be called only under socket lock or callback_lock */
1019 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1021 if (!sock
|| !sock
->fasync_list
)
1026 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1030 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1035 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1038 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1043 static int __sock_create(int family
, int type
, int protocol
,
1044 struct socket
**res
, int kern
)
1047 struct socket
*sock
;
1048 const struct net_proto_family
*pf
;
1051 * Check protocol is in range
1053 if (family
< 0 || family
>= NPROTO
)
1054 return -EAFNOSUPPORT
;
1055 if (type
< 0 || type
>= SOCK_MAX
)
1060 This uglymoron is moved from INET layer to here to avoid
1061 deadlock in module load.
1063 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1067 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1073 err
= security_socket_create(family
, type
, protocol
, kern
);
1078 * Allocate the socket and allow the family to set things up. if
1079 * the protocol is 0, the family is instructed to select an appropriate
1082 sock
= sock_alloc();
1084 if (net_ratelimit())
1085 printk(KERN_WARNING
"socket: no more sockets\n");
1086 return -ENFILE
; /* Not exactly a match, but its the
1087 closest posix thing */
1092 #if defined(CONFIG_KMOD)
1093 /* Attempt to load a protocol module if the find failed.
1095 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1096 * requested real, full-featured networking support upon configuration.
1097 * Otherwise module support will break!
1099 if (net_families
[family
] == NULL
)
1100 request_module("net-pf-%d", family
);
1104 pf
= rcu_dereference(net_families
[family
]);
1105 err
= -EAFNOSUPPORT
;
1110 * We will call the ->create function, that possibly is in a loadable
1111 * module, so we have to bump that loadable module refcnt first.
1113 if (!try_module_get(pf
->owner
))
1116 /* Now protected by module ref count */
1119 err
= pf
->create(sock
, protocol
);
1121 goto out_module_put
;
1124 * Now to bump the refcnt of the [loadable] module that owns this
1125 * socket at sock_release time we decrement its refcnt.
1127 if (!try_module_get(sock
->ops
->owner
))
1128 goto out_module_busy
;
1131 * Now that we're done with the ->create function, the [loadable]
1132 * module can have its refcnt decremented
1134 module_put(pf
->owner
);
1135 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1143 err
= -EAFNOSUPPORT
;
1146 module_put(pf
->owner
);
1153 goto out_sock_release
;
1156 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1158 return __sock_create(family
, type
, protocol
, res
, 0);
1161 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1163 return __sock_create(family
, type
, protocol
, res
, 1);
1166 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1169 struct socket
*sock
;
1171 retval
= sock_create(family
, type
, protocol
, &sock
);
1175 retval
= sock_map_fd(sock
);
1180 /* It may be already another descriptor 8) Not kernel problem. */
1189 * Create a pair of connected sockets.
1192 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1193 int __user
*usockvec
)
1195 struct socket
*sock1
, *sock2
;
1197 struct file
*newfile1
, *newfile2
;
1200 * Obtain the first socket and check if the underlying protocol
1201 * supports the socketpair call.
1204 err
= sock_create(family
, type
, protocol
, &sock1
);
1208 err
= sock_create(family
, type
, protocol
, &sock2
);
1212 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1214 goto out_release_both
;
1216 fd1
= sock_alloc_fd(&newfile1
);
1217 if (unlikely(fd1
< 0))
1218 goto out_release_both
;
1220 fd2
= sock_alloc_fd(&newfile2
);
1221 if (unlikely(fd2
< 0)) {
1224 goto out_release_both
;
1227 err
= sock_attach_fd(sock1
, newfile1
);
1228 if (unlikely(err
< 0)) {
1232 err
= sock_attach_fd(sock2
, newfile2
);
1233 if (unlikely(err
< 0)) {
1238 err
= audit_fd_pair(fd1
, fd2
);
1245 fd_install(fd1
, newfile1
);
1246 fd_install(fd2
, newfile2
);
1247 /* fd1 and fd2 may be already another descriptors.
1248 * Not kernel problem.
1251 err
= put_user(fd1
, &usockvec
[0]);
1253 err
= put_user(fd2
, &usockvec
[1]);
1262 sock_release(sock2
);
1264 sock_release(sock1
);
1270 sock_release(sock1
);
1273 sock_release(sock2
);
1281 * Bind a name to a socket. Nothing much to do here since it's
1282 * the protocol's responsibility to handle the local address.
1284 * We move the socket address to kernel space before we call
1285 * the protocol layer (having also checked the address is ok).
1288 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1290 struct socket
*sock
;
1291 char address
[MAX_SOCK_ADDR
];
1292 int err
, fput_needed
;
1294 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1296 err
= move_addr_to_kernel(umyaddr
, addrlen
, address
);
1298 err
= security_socket_bind(sock
,
1299 (struct sockaddr
*)address
,
1302 err
= sock
->ops
->bind(sock
,
1306 fput_light(sock
->file
, fput_needed
);
1312 * Perform a listen. Basically, we allow the protocol to do anything
1313 * necessary for a listen, and if that works, we mark the socket as
1314 * ready for listening.
1317 int sysctl_somaxconn __read_mostly
= SOMAXCONN
;
1319 asmlinkage
long sys_listen(int fd
, int backlog
)
1321 struct socket
*sock
;
1322 int err
, fput_needed
;
1324 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1326 if ((unsigned)backlog
> sysctl_somaxconn
)
1327 backlog
= sysctl_somaxconn
;
1329 err
= security_socket_listen(sock
, backlog
);
1331 err
= sock
->ops
->listen(sock
, backlog
);
1333 fput_light(sock
->file
, fput_needed
);
1339 * For accept, we attempt to create a new socket, set up the link
1340 * with the client, wake up the client, then return the new
1341 * connected fd. We collect the address of the connector in kernel
1342 * space and move it to user at the very end. This is unclean because
1343 * we open the socket then return an error.
1345 * 1003.1g adds the ability to recvmsg() to query connection pending
1346 * status to recvmsg. We need to add that support in a way thats
1347 * clean when we restucture accept also.
1350 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1351 int __user
*upeer_addrlen
)
1353 struct socket
*sock
, *newsock
;
1354 struct file
*newfile
;
1355 int err
, len
, newfd
, fput_needed
;
1356 char address
[MAX_SOCK_ADDR
];
1358 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1363 if (!(newsock
= sock_alloc()))
1366 newsock
->type
= sock
->type
;
1367 newsock
->ops
= sock
->ops
;
1370 * We don't need try_module_get here, as the listening socket (sock)
1371 * has the protocol module (sock->ops->owner) held.
1373 __module_get(newsock
->ops
->owner
);
1375 newfd
= sock_alloc_fd(&newfile
);
1376 if (unlikely(newfd
< 0)) {
1378 sock_release(newsock
);
1382 err
= sock_attach_fd(newsock
, newfile
);
1386 err
= security_socket_accept(sock
, newsock
);
1390 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1394 if (upeer_sockaddr
) {
1395 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
,
1397 err
= -ECONNABORTED
;
1400 err
= move_addr_to_user(address
, len
, upeer_sockaddr
,
1406 /* File flags are not inherited via accept() unlike another OSes. */
1408 fd_install(newfd
, newfile
);
1411 security_socket_post_accept(sock
, newsock
);
1414 fput_light(sock
->file
, fput_needed
);
1418 sock_release(newsock
);
1420 put_unused_fd(newfd
);
1424 put_unused_fd(newfd
);
1429 * Attempt to connect to a socket with the server address. The address
1430 * is in user space so we verify it is OK and move it to kernel space.
1432 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1435 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1436 * other SEQPACKET protocols that take time to connect() as it doesn't
1437 * include the -EINPROGRESS status for such sockets.
1440 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1443 struct socket
*sock
;
1444 char address
[MAX_SOCK_ADDR
];
1445 int err
, fput_needed
;
1447 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1450 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1455 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1459 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1460 sock
->file
->f_flags
);
1462 fput_light(sock
->file
, fput_needed
);
1468 * Get the local address ('name') of a socket object. Move the obtained
1469 * name to user space.
1472 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1473 int __user
*usockaddr_len
)
1475 struct socket
*sock
;
1476 char address
[MAX_SOCK_ADDR
];
1477 int len
, err
, fput_needed
;
1479 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1483 err
= security_socket_getsockname(sock
);
1487 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1490 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1493 fput_light(sock
->file
, fput_needed
);
1499 * Get the remote address ('name') of a socket object. Move the obtained
1500 * name to user space.
1503 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1504 int __user
*usockaddr_len
)
1506 struct socket
*sock
;
1507 char address
[MAX_SOCK_ADDR
];
1508 int len
, err
, fput_needed
;
1510 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1512 err
= security_socket_getpeername(sock
);
1514 fput_light(sock
->file
, fput_needed
);
1519 sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
,
1522 err
= move_addr_to_user(address
, len
, usockaddr
,
1524 fput_light(sock
->file
, fput_needed
);
1530 * Send a datagram to a given address. We move the address into kernel
1531 * space and check the user space data area is readable before invoking
1535 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1536 unsigned flags
, struct sockaddr __user
*addr
,
1539 struct socket
*sock
;
1540 char address
[MAX_SOCK_ADDR
];
1545 struct file
*sock_file
;
1547 sock_file
= fget_light(fd
, &fput_needed
);
1552 sock
= sock_from_file(sock_file
, &err
);
1555 iov
.iov_base
= buff
;
1557 msg
.msg_name
= NULL
;
1560 msg
.msg_control
= NULL
;
1561 msg
.msg_controllen
= 0;
1562 msg
.msg_namelen
= 0;
1564 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1567 msg
.msg_name
= address
;
1568 msg
.msg_namelen
= addr_len
;
1570 if (sock
->file
->f_flags
& O_NONBLOCK
)
1571 flags
|= MSG_DONTWAIT
;
1572 msg
.msg_flags
= flags
;
1573 err
= sock_sendmsg(sock
, &msg
, len
);
1576 fput_light(sock_file
, fput_needed
);
1582 * Send a datagram down a socket.
1585 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1587 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1591 * Receive a frame from the socket and optionally record the address of the
1592 * sender. We verify the buffers are writable and if needed move the
1593 * sender address from kernel to user space.
1596 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1597 unsigned flags
, struct sockaddr __user
*addr
,
1598 int __user
*addr_len
)
1600 struct socket
*sock
;
1603 char address
[MAX_SOCK_ADDR
];
1605 struct file
*sock_file
;
1608 sock_file
= fget_light(fd
, &fput_needed
);
1613 sock
= sock_from_file(sock_file
, &err
);
1617 msg
.msg_control
= NULL
;
1618 msg
.msg_controllen
= 0;
1622 iov
.iov_base
= ubuf
;
1623 msg
.msg_name
= address
;
1624 msg
.msg_namelen
= MAX_SOCK_ADDR
;
1625 if (sock
->file
->f_flags
& O_NONBLOCK
)
1626 flags
|= MSG_DONTWAIT
;
1627 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1629 if (err
>= 0 && addr
!= NULL
) {
1630 err2
= move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1635 fput_light(sock_file
, fput_needed
);
1641 * Receive a datagram from a socket.
1644 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1647 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1651 * Set a socket option. Because we don't know the option lengths we have
1652 * to pass the user mode parameter for the protocols to sort out.
1655 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1656 char __user
*optval
, int optlen
)
1658 int err
, fput_needed
;
1659 struct socket
*sock
;
1664 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1666 err
= security_socket_setsockopt(sock
, level
, optname
);
1670 if (level
== SOL_SOCKET
)
1672 sock_setsockopt(sock
, level
, optname
, optval
,
1676 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1679 fput_light(sock
->file
, fput_needed
);
1685 * Get a socket option. Because we don't know the option lengths we have
1686 * to pass a user mode parameter for the protocols to sort out.
1689 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1690 char __user
*optval
, int __user
*optlen
)
1692 int err
, fput_needed
;
1693 struct socket
*sock
;
1695 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1697 err
= security_socket_getsockopt(sock
, level
, optname
);
1701 if (level
== SOL_SOCKET
)
1703 sock_getsockopt(sock
, level
, optname
, optval
,
1707 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1710 fput_light(sock
->file
, fput_needed
);
1716 * Shutdown a socket.
1719 asmlinkage
long sys_shutdown(int fd
, int how
)
1721 int err
, fput_needed
;
1722 struct socket
*sock
;
1724 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1726 err
= security_socket_shutdown(sock
, how
);
1728 err
= sock
->ops
->shutdown(sock
, how
);
1729 fput_light(sock
->file
, fput_needed
);
1734 /* A couple of helpful macros for getting the address of the 32/64 bit
1735 * fields which are the same type (int / unsigned) on our platforms.
1737 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1738 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1739 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1742 * BSD sendmsg interface
1745 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1747 struct compat_msghdr __user
*msg_compat
=
1748 (struct compat_msghdr __user
*)msg
;
1749 struct socket
*sock
;
1750 char address
[MAX_SOCK_ADDR
];
1751 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1752 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1753 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1754 /* 20 is size of ipv6_pktinfo */
1755 unsigned char *ctl_buf
= ctl
;
1756 struct msghdr msg_sys
;
1757 int err
, ctl_len
, iov_size
, total_len
;
1761 if (MSG_CMSG_COMPAT
& flags
) {
1762 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1765 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1768 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1772 /* do not move before msg_sys is valid */
1774 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1777 /* Check whether to allocate the iovec area */
1779 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1780 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1781 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1786 /* This will also move the address data into kernel space */
1787 if (MSG_CMSG_COMPAT
& flags
) {
1788 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1790 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1797 if (msg_sys
.msg_controllen
> INT_MAX
)
1799 ctl_len
= msg_sys
.msg_controllen
;
1800 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1802 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1806 ctl_buf
= msg_sys
.msg_control
;
1807 ctl_len
= msg_sys
.msg_controllen
;
1808 } else if (ctl_len
) {
1809 if (ctl_len
> sizeof(ctl
)) {
1810 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1811 if (ctl_buf
== NULL
)
1816 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1817 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1818 * checking falls down on this.
1820 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1823 msg_sys
.msg_control
= ctl_buf
;
1825 msg_sys
.msg_flags
= flags
;
1827 if (sock
->file
->f_flags
& O_NONBLOCK
)
1828 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1829 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1833 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1835 if (iov
!= iovstack
)
1836 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1838 fput_light(sock
->file
, fput_needed
);
1844 * BSD recvmsg interface
1847 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1850 struct compat_msghdr __user
*msg_compat
=
1851 (struct compat_msghdr __user
*)msg
;
1852 struct socket
*sock
;
1853 struct iovec iovstack
[UIO_FASTIOV
];
1854 struct iovec
*iov
= iovstack
;
1855 struct msghdr msg_sys
;
1856 unsigned long cmsg_ptr
;
1857 int err
, iov_size
, total_len
, len
;
1860 /* kernel mode address */
1861 char addr
[MAX_SOCK_ADDR
];
1863 /* user mode address pointers */
1864 struct sockaddr __user
*uaddr
;
1865 int __user
*uaddr_len
;
1867 if (MSG_CMSG_COMPAT
& flags
) {
1868 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1871 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1874 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1879 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1882 /* Check whether to allocate the iovec area */
1884 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1885 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1886 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1892 * Save the user-mode address (verify_iovec will change the
1893 * kernel msghdr to use the kernel address space)
1896 uaddr
= (void __user
*)msg_sys
.msg_name
;
1897 uaddr_len
= COMPAT_NAMELEN(msg
);
1898 if (MSG_CMSG_COMPAT
& flags
) {
1899 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1901 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1906 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1907 msg_sys
.msg_flags
= 0;
1908 if (MSG_CMSG_COMPAT
& flags
)
1909 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1911 if (sock
->file
->f_flags
& O_NONBLOCK
)
1912 flags
|= MSG_DONTWAIT
;
1913 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1918 if (uaddr
!= NULL
) {
1919 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
,
1924 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1928 if (MSG_CMSG_COMPAT
& flags
)
1929 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1930 &msg_compat
->msg_controllen
);
1932 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1933 &msg
->msg_controllen
);
1939 if (iov
!= iovstack
)
1940 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1942 fput_light(sock
->file
, fput_needed
);
1947 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1949 /* Argument list sizes for sys_socketcall */
1950 #define AL(x) ((x) * sizeof(unsigned long))
1951 static const unsigned char nargs
[18]={
1952 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1953 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1954 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1960 * System call vectors.
1962 * Argument checking cleaned up. Saved 20% in size.
1963 * This function doesn't need to set the kernel lock because
1964 * it is set by the callees.
1967 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
1970 unsigned long a0
, a1
;
1973 if (call
< 1 || call
> SYS_RECVMSG
)
1976 /* copy_from_user should be SMP safe. */
1977 if (copy_from_user(a
, args
, nargs
[call
]))
1980 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
1989 err
= sys_socket(a0
, a1
, a
[2]);
1992 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
1995 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
1998 err
= sys_listen(a0
, a1
);
2002 sys_accept(a0
, (struct sockaddr __user
*)a1
,
2003 (int __user
*)a
[2]);
2005 case SYS_GETSOCKNAME
:
2007 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2008 (int __user
*)a
[2]);
2010 case SYS_GETPEERNAME
:
2012 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2013 (int __user
*)a
[2]);
2015 case SYS_SOCKETPAIR
:
2016 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2019 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2022 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2023 (struct sockaddr __user
*)a
[4], a
[5]);
2026 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2029 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2030 (struct sockaddr __user
*)a
[4],
2031 (int __user
*)a
[5]);
2034 err
= sys_shutdown(a0
, a1
);
2036 case SYS_SETSOCKOPT
:
2037 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2039 case SYS_GETSOCKOPT
:
2041 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2042 (int __user
*)a
[4]);
2045 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2048 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2057 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2060 * sock_register - add a socket protocol handler
2061 * @ops: description of protocol
2063 * This function is called by a protocol handler that wants to
2064 * advertise its address family, and have it linked into the
2065 * socket interface. The value ops->family coresponds to the
2066 * socket system call protocol family.
2068 int sock_register(const struct net_proto_family
*ops
)
2072 if (ops
->family
>= NPROTO
) {
2073 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2078 spin_lock(&net_family_lock
);
2079 if (net_families
[ops
->family
])
2082 net_families
[ops
->family
] = ops
;
2085 spin_unlock(&net_family_lock
);
2087 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2092 * sock_unregister - remove a protocol handler
2093 * @family: protocol family to remove
2095 * This function is called by a protocol handler that wants to
2096 * remove its address family, and have it unlinked from the
2097 * new socket creation.
2099 * If protocol handler is a module, then it can use module reference
2100 * counts to protect against new references. If protocol handler is not
2101 * a module then it needs to provide its own protection in
2102 * the ops->create routine.
2104 void sock_unregister(int family
)
2106 BUG_ON(family
< 0 || family
>= NPROTO
);
2108 spin_lock(&net_family_lock
);
2109 net_families
[family
] = NULL
;
2110 spin_unlock(&net_family_lock
);
2114 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2117 static int __init
sock_init(void)
2120 * Initialize sock SLAB cache.
2126 * Initialize skbuff SLAB cache
2131 * Initialize the protocols module.
2135 register_filesystem(&sock_fs_type
);
2136 sock_mnt
= kern_mount(&sock_fs_type
);
2138 /* The real protocol initialization is performed in later initcalls.
2141 #ifdef CONFIG_NETFILTER
2148 core_initcall(sock_init
); /* early initcall */
2150 #ifdef CONFIG_PROC_FS
2151 void socket_seq_show(struct seq_file
*seq
)
2156 for_each_possible_cpu(cpu
)
2157 counter
+= per_cpu(sockets_in_use
, cpu
);
2159 /* It can be negative, by the way. 8) */
2163 seq_printf(seq
, "sockets: used %d\n", counter
);
2165 #endif /* CONFIG_PROC_FS */
2167 #ifdef CONFIG_COMPAT
2168 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2171 struct socket
*sock
= file
->private_data
;
2172 int ret
= -ENOIOCTLCMD
;
2174 if (sock
->ops
->compat_ioctl
)
2175 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2181 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2183 return sock
->ops
->bind(sock
, addr
, addrlen
);
2186 int kernel_listen(struct socket
*sock
, int backlog
)
2188 return sock
->ops
->listen(sock
, backlog
);
2191 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2193 struct sock
*sk
= sock
->sk
;
2196 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2201 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2203 sock_release(*newsock
);
2207 (*newsock
)->ops
= sock
->ops
;
2213 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2216 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2219 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2222 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2225 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2228 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2231 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2232 char *optval
, int *optlen
)
2234 mm_segment_t oldfs
= get_fs();
2238 if (level
== SOL_SOCKET
)
2239 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2241 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2247 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2248 char *optval
, int optlen
)
2250 mm_segment_t oldfs
= get_fs();
2254 if (level
== SOL_SOCKET
)
2255 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2257 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2263 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2264 size_t size
, int flags
)
2266 if (sock
->ops
->sendpage
)
2267 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2269 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2272 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2274 mm_segment_t oldfs
= get_fs();
2278 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2284 /* ABI emulation layers need these two */
2285 EXPORT_SYMBOL(move_addr_to_kernel
);
2286 EXPORT_SYMBOL(move_addr_to_user
);
2287 EXPORT_SYMBOL(sock_create
);
2288 EXPORT_SYMBOL(sock_create_kern
);
2289 EXPORT_SYMBOL(sock_create_lite
);
2290 EXPORT_SYMBOL(sock_map_fd
);
2291 EXPORT_SYMBOL(sock_recvmsg
);
2292 EXPORT_SYMBOL(sock_register
);
2293 EXPORT_SYMBOL(sock_release
);
2294 EXPORT_SYMBOL(sock_sendmsg
);
2295 EXPORT_SYMBOL(sock_unregister
);
2296 EXPORT_SYMBOL(sock_wake_async
);
2297 EXPORT_SYMBOL(sockfd_lookup
);
2298 EXPORT_SYMBOL(kernel_sendmsg
);
2299 EXPORT_SYMBOL(kernel_recvmsg
);
2300 EXPORT_SYMBOL(kernel_bind
);
2301 EXPORT_SYMBOL(kernel_listen
);
2302 EXPORT_SYMBOL(kernel_accept
);
2303 EXPORT_SYMBOL(kernel_connect
);
2304 EXPORT_SYMBOL(kernel_getsockname
);
2305 EXPORT_SYMBOL(kernel_getpeername
);
2306 EXPORT_SYMBOL(kernel_getsockopt
);
2307 EXPORT_SYMBOL(kernel_setsockopt
);
2308 EXPORT_SYMBOL(kernel_sendpage
);
2309 EXPORT_SYMBOL(kernel_sock_ioctl
);