hugetlb: support larger than MAX_ORDER
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / migrate.c
blobe7d13a708da0b5ea4571993f85e44c9f5c0c6876
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
35 #include "internal.h"
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * Isolate one page from the LRU lists. If successful put it onto
41 * the indicated list with elevated page count.
43 * Result:
44 * -EBUSY: page not on LRU list
45 * 0: page removed from LRU list and added to the specified list.
47 int isolate_lru_page(struct page *page, struct list_head *pagelist)
49 int ret = -EBUSY;
51 if (PageLRU(page)) {
52 struct zone *zone = page_zone(page);
54 spin_lock_irq(&zone->lru_lock);
55 if (PageLRU(page) && get_page_unless_zero(page)) {
56 ret = 0;
57 ClearPageLRU(page);
58 if (PageActive(page))
59 del_page_from_active_list(zone, page);
60 else
61 del_page_from_inactive_list(zone, page);
62 list_add_tail(&page->lru, pagelist);
64 spin_unlock_irq(&zone->lru_lock);
66 return ret;
70 * migrate_prep() needs to be called before we start compiling a list of pages
71 * to be migrated using isolate_lru_page().
73 int migrate_prep(void)
76 * Clear the LRU lists so pages can be isolated.
77 * Note that pages may be moved off the LRU after we have
78 * drained them. Those pages will fail to migrate like other
79 * pages that may be busy.
81 lru_add_drain_all();
83 return 0;
86 static inline void move_to_lru(struct page *page)
88 if (PageActive(page)) {
90 * lru_cache_add_active checks that
91 * the PG_active bit is off.
93 ClearPageActive(page);
94 lru_cache_add_active(page);
95 } else {
96 lru_cache_add(page);
98 put_page(page);
102 * Add isolated pages on the list back to the LRU.
104 * returns the number of pages put back.
106 int putback_lru_pages(struct list_head *l)
108 struct page *page;
109 struct page *page2;
110 int count = 0;
112 list_for_each_entry_safe(page, page2, l, lru) {
113 list_del(&page->lru);
114 move_to_lru(page);
115 count++;
117 return count;
121 * Restore a potential migration pte to a working pte entry
123 static void remove_migration_pte(struct vm_area_struct *vma,
124 struct page *old, struct page *new)
126 struct mm_struct *mm = vma->vm_mm;
127 swp_entry_t entry;
128 pgd_t *pgd;
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *ptep, pte;
132 spinlock_t *ptl;
133 unsigned long addr = page_address_in_vma(new, vma);
135 if (addr == -EFAULT)
136 return;
138 pgd = pgd_offset(mm, addr);
139 if (!pgd_present(*pgd))
140 return;
142 pud = pud_offset(pgd, addr);
143 if (!pud_present(*pud))
144 return;
146 pmd = pmd_offset(pud, addr);
147 if (!pmd_present(*pmd))
148 return;
150 ptep = pte_offset_map(pmd, addr);
152 if (!is_swap_pte(*ptep)) {
153 pte_unmap(ptep);
154 return;
157 ptl = pte_lockptr(mm, pmd);
158 spin_lock(ptl);
159 pte = *ptep;
160 if (!is_swap_pte(pte))
161 goto out;
163 entry = pte_to_swp_entry(pte);
165 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
166 goto out;
169 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
170 * Failure is not an option here: we're now expected to remove every
171 * migration pte, and will cause crashes otherwise. Normally this
172 * is not an issue: mem_cgroup_prepare_migration bumped up the old
173 * page_cgroup count for safety, that's now attached to the new page,
174 * so this charge should just be another incrementation of the count,
175 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
176 * there's been a force_empty, those reference counts may no longer
177 * be reliable, and this charge can actually fail: oh well, we don't
178 * make the situation any worse by proceeding as if it had succeeded.
180 mem_cgroup_charge(new, mm, GFP_ATOMIC);
182 get_page(new);
183 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
184 if (is_write_migration_entry(entry))
185 pte = pte_mkwrite(pte);
186 flush_cache_page(vma, addr, pte_pfn(pte));
187 set_pte_at(mm, addr, ptep, pte);
189 if (PageAnon(new))
190 page_add_anon_rmap(new, vma, addr);
191 else
192 page_add_file_rmap(new);
194 /* No need to invalidate - it was non-present before */
195 update_mmu_cache(vma, addr, pte);
197 out:
198 pte_unmap_unlock(ptep, ptl);
202 * Note that remove_file_migration_ptes will only work on regular mappings,
203 * Nonlinear mappings do not use migration entries.
205 static void remove_file_migration_ptes(struct page *old, struct page *new)
207 struct vm_area_struct *vma;
208 struct address_space *mapping = page_mapping(new);
209 struct prio_tree_iter iter;
210 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
212 if (!mapping)
213 return;
215 spin_lock(&mapping->i_mmap_lock);
217 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
218 remove_migration_pte(vma, old, new);
220 spin_unlock(&mapping->i_mmap_lock);
224 * Must hold mmap_sem lock on at least one of the vmas containing
225 * the page so that the anon_vma cannot vanish.
227 static void remove_anon_migration_ptes(struct page *old, struct page *new)
229 struct anon_vma *anon_vma;
230 struct vm_area_struct *vma;
231 unsigned long mapping;
233 mapping = (unsigned long)new->mapping;
235 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
236 return;
239 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
241 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
242 spin_lock(&anon_vma->lock);
244 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
245 remove_migration_pte(vma, old, new);
247 spin_unlock(&anon_vma->lock);
251 * Get rid of all migration entries and replace them by
252 * references to the indicated page.
254 static void remove_migration_ptes(struct page *old, struct page *new)
256 if (PageAnon(new))
257 remove_anon_migration_ptes(old, new);
258 else
259 remove_file_migration_ptes(old, new);
263 * Something used the pte of a page under migration. We need to
264 * get to the page and wait until migration is finished.
265 * When we return from this function the fault will be retried.
267 * This function is called from do_swap_page().
269 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
270 unsigned long address)
272 pte_t *ptep, pte;
273 spinlock_t *ptl;
274 swp_entry_t entry;
275 struct page *page;
277 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
278 pte = *ptep;
279 if (!is_swap_pte(pte))
280 goto out;
282 entry = pte_to_swp_entry(pte);
283 if (!is_migration_entry(entry))
284 goto out;
286 page = migration_entry_to_page(entry);
288 get_page(page);
289 pte_unmap_unlock(ptep, ptl);
290 wait_on_page_locked(page);
291 put_page(page);
292 return;
293 out:
294 pte_unmap_unlock(ptep, ptl);
298 * Replace the page in the mapping.
300 * The number of remaining references must be:
301 * 1 for anonymous pages without a mapping
302 * 2 for pages with a mapping
303 * 3 for pages with a mapping and PagePrivate set.
305 static int migrate_page_move_mapping(struct address_space *mapping,
306 struct page *newpage, struct page *page)
308 void **pslot;
310 if (!mapping) {
311 /* Anonymous page without mapping */
312 if (page_count(page) != 1)
313 return -EAGAIN;
314 return 0;
317 write_lock_irq(&mapping->tree_lock);
319 pslot = radix_tree_lookup_slot(&mapping->page_tree,
320 page_index(page));
322 if (page_count(page) != 2 + !!PagePrivate(page) ||
323 (struct page *)radix_tree_deref_slot(pslot) != page) {
324 write_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN;
329 * Now we know that no one else is looking at the page.
331 get_page(newpage); /* add cache reference */
332 #ifdef CONFIG_SWAP
333 if (PageSwapCache(page)) {
334 SetPageSwapCache(newpage);
335 set_page_private(newpage, page_private(page));
337 #endif
339 radix_tree_replace_slot(pslot, newpage);
342 * Drop cache reference from old page.
343 * We know this isn't the last reference.
345 __put_page(page);
348 * If moved to a different zone then also account
349 * the page for that zone. Other VM counters will be
350 * taken care of when we establish references to the
351 * new page and drop references to the old page.
353 * Note that anonymous pages are accounted for
354 * via NR_FILE_PAGES and NR_ANON_PAGES if they
355 * are mapped to swap space.
357 __dec_zone_page_state(page, NR_FILE_PAGES);
358 __inc_zone_page_state(newpage, NR_FILE_PAGES);
360 write_unlock_irq(&mapping->tree_lock);
362 return 0;
366 * Copy the page to its new location
368 static void migrate_page_copy(struct page *newpage, struct page *page)
370 copy_highpage(newpage, page);
372 if (PageError(page))
373 SetPageError(newpage);
374 if (PageReferenced(page))
375 SetPageReferenced(newpage);
376 if (PageUptodate(page))
377 SetPageUptodate(newpage);
378 if (PageActive(page))
379 SetPageActive(newpage);
380 if (PageChecked(page))
381 SetPageChecked(newpage);
382 if (PageMappedToDisk(page))
383 SetPageMappedToDisk(newpage);
385 if (PageDirty(page)) {
386 clear_page_dirty_for_io(page);
388 * Want to mark the page and the radix tree as dirty, and
389 * redo the accounting that clear_page_dirty_for_io undid,
390 * but we can't use set_page_dirty because that function
391 * is actually a signal that all of the page has become dirty.
392 * Wheras only part of our page may be dirty.
394 __set_page_dirty_nobuffers(newpage);
397 #ifdef CONFIG_SWAP
398 ClearPageSwapCache(page);
399 #endif
400 ClearPageActive(page);
401 ClearPagePrivate(page);
402 set_page_private(page, 0);
403 page->mapping = NULL;
406 * If any waiters have accumulated on the new page then
407 * wake them up.
409 if (PageWriteback(newpage))
410 end_page_writeback(newpage);
413 /************************************************************
414 * Migration functions
415 ***********************************************************/
417 /* Always fail migration. Used for mappings that are not movable */
418 int fail_migrate_page(struct address_space *mapping,
419 struct page *newpage, struct page *page)
421 return -EIO;
423 EXPORT_SYMBOL(fail_migrate_page);
426 * Common logic to directly migrate a single page suitable for
427 * pages that do not use PagePrivate.
429 * Pages are locked upon entry and exit.
431 int migrate_page(struct address_space *mapping,
432 struct page *newpage, struct page *page)
434 int rc;
436 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
438 rc = migrate_page_move_mapping(mapping, newpage, page);
440 if (rc)
441 return rc;
443 migrate_page_copy(newpage, page);
444 return 0;
446 EXPORT_SYMBOL(migrate_page);
448 #ifdef CONFIG_BLOCK
450 * Migration function for pages with buffers. This function can only be used
451 * if the underlying filesystem guarantees that no other references to "page"
452 * exist.
454 int buffer_migrate_page(struct address_space *mapping,
455 struct page *newpage, struct page *page)
457 struct buffer_head *bh, *head;
458 int rc;
460 if (!page_has_buffers(page))
461 return migrate_page(mapping, newpage, page);
463 head = page_buffers(page);
465 rc = migrate_page_move_mapping(mapping, newpage, page);
467 if (rc)
468 return rc;
470 bh = head;
471 do {
472 get_bh(bh);
473 lock_buffer(bh);
474 bh = bh->b_this_page;
476 } while (bh != head);
478 ClearPagePrivate(page);
479 set_page_private(newpage, page_private(page));
480 set_page_private(page, 0);
481 put_page(page);
482 get_page(newpage);
484 bh = head;
485 do {
486 set_bh_page(bh, newpage, bh_offset(bh));
487 bh = bh->b_this_page;
489 } while (bh != head);
491 SetPagePrivate(newpage);
493 migrate_page_copy(newpage, page);
495 bh = head;
496 do {
497 unlock_buffer(bh);
498 put_bh(bh);
499 bh = bh->b_this_page;
501 } while (bh != head);
503 return 0;
505 EXPORT_SYMBOL(buffer_migrate_page);
506 #endif
509 * Writeback a page to clean the dirty state
511 static int writeout(struct address_space *mapping, struct page *page)
513 struct writeback_control wbc = {
514 .sync_mode = WB_SYNC_NONE,
515 .nr_to_write = 1,
516 .range_start = 0,
517 .range_end = LLONG_MAX,
518 .nonblocking = 1,
519 .for_reclaim = 1
521 int rc;
523 if (!mapping->a_ops->writepage)
524 /* No write method for the address space */
525 return -EINVAL;
527 if (!clear_page_dirty_for_io(page))
528 /* Someone else already triggered a write */
529 return -EAGAIN;
532 * A dirty page may imply that the underlying filesystem has
533 * the page on some queue. So the page must be clean for
534 * migration. Writeout may mean we loose the lock and the
535 * page state is no longer what we checked for earlier.
536 * At this point we know that the migration attempt cannot
537 * be successful.
539 remove_migration_ptes(page, page);
541 rc = mapping->a_ops->writepage(page, &wbc);
542 if (rc < 0)
543 /* I/O Error writing */
544 return -EIO;
546 if (rc != AOP_WRITEPAGE_ACTIVATE)
547 /* unlocked. Relock */
548 lock_page(page);
550 return -EAGAIN;
554 * Default handling if a filesystem does not provide a migration function.
556 static int fallback_migrate_page(struct address_space *mapping,
557 struct page *newpage, struct page *page)
559 if (PageDirty(page))
560 return writeout(mapping, page);
563 * Buffers may be managed in a filesystem specific way.
564 * We must have no buffers or drop them.
566 if (PagePrivate(page) &&
567 !try_to_release_page(page, GFP_KERNEL))
568 return -EAGAIN;
570 return migrate_page(mapping, newpage, page);
574 * Move a page to a newly allocated page
575 * The page is locked and all ptes have been successfully removed.
577 * The new page will have replaced the old page if this function
578 * is successful.
580 static int move_to_new_page(struct page *newpage, struct page *page)
582 struct address_space *mapping;
583 int rc;
586 * Block others from accessing the page when we get around to
587 * establishing additional references. We are the only one
588 * holding a reference to the new page at this point.
590 if (TestSetPageLocked(newpage))
591 BUG();
593 /* Prepare mapping for the new page.*/
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
597 mapping = page_mapping(page);
598 if (!mapping)
599 rc = migrate_page(mapping, newpage, page);
600 else if (mapping->a_ops->migratepage)
602 * Most pages have a mapping and most filesystems
603 * should provide a migration function. Anonymous
604 * pages are part of swap space which also has its
605 * own migration function. This is the most common
606 * path for page migration.
608 rc = mapping->a_ops->migratepage(mapping,
609 newpage, page);
610 else
611 rc = fallback_migrate_page(mapping, newpage, page);
613 if (!rc) {
614 mem_cgroup_page_migration(page, newpage);
615 remove_migration_ptes(page, newpage);
616 } else
617 newpage->mapping = NULL;
619 unlock_page(newpage);
621 return rc;
625 * Obtain the lock on page, remove all ptes and migrate the page
626 * to the newly allocated page in newpage.
628 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
629 struct page *page, int force)
631 int rc = 0;
632 int *result = NULL;
633 struct page *newpage = get_new_page(page, private, &result);
634 int rcu_locked = 0;
635 int charge = 0;
637 if (!newpage)
638 return -ENOMEM;
640 if (page_count(page) == 1)
641 /* page was freed from under us. So we are done. */
642 goto move_newpage;
644 rc = -EAGAIN;
645 if (TestSetPageLocked(page)) {
646 if (!force)
647 goto move_newpage;
648 lock_page(page);
651 if (PageWriteback(page)) {
652 if (!force)
653 goto unlock;
654 wait_on_page_writeback(page);
657 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
658 * we cannot notice that anon_vma is freed while we migrates a page.
659 * This rcu_read_lock() delays freeing anon_vma pointer until the end
660 * of migration. File cache pages are no problem because of page_lock()
661 * File Caches may use write_page() or lock_page() in migration, then,
662 * just care Anon page here.
664 if (PageAnon(page)) {
665 rcu_read_lock();
666 rcu_locked = 1;
670 * Corner case handling:
671 * 1. When a new swap-cache page is read into, it is added to the LRU
672 * and treated as swapcache but it has no rmap yet.
673 * Calling try_to_unmap() against a page->mapping==NULL page will
674 * trigger a BUG. So handle it here.
675 * 2. An orphaned page (see truncate_complete_page) might have
676 * fs-private metadata. The page can be picked up due to memory
677 * offlining. Everywhere else except page reclaim, the page is
678 * invisible to the vm, so the page can not be migrated. So try to
679 * free the metadata, so the page can be freed.
681 if (!page->mapping) {
682 if (!PageAnon(page) && PagePrivate(page)) {
684 * Go direct to try_to_free_buffers() here because
685 * a) that's what try_to_release_page() would do anyway
686 * b) we may be under rcu_read_lock() here, so we can't
687 * use GFP_KERNEL which is what try_to_release_page()
688 * needs to be effective.
690 try_to_free_buffers(page);
692 goto rcu_unlock;
695 charge = mem_cgroup_prepare_migration(page);
696 /* Establish migration ptes or remove ptes */
697 try_to_unmap(page, 1);
699 if (!page_mapped(page))
700 rc = move_to_new_page(newpage, page);
702 if (rc) {
703 remove_migration_ptes(page, page);
704 if (charge)
705 mem_cgroup_end_migration(page);
706 } else if (charge)
707 mem_cgroup_end_migration(newpage);
708 rcu_unlock:
709 if (rcu_locked)
710 rcu_read_unlock();
712 unlock:
714 unlock_page(page);
716 if (rc != -EAGAIN) {
718 * A page that has been migrated has all references
719 * removed and will be freed. A page that has not been
720 * migrated will have kepts its references and be
721 * restored.
723 list_del(&page->lru);
724 move_to_lru(page);
727 move_newpage:
729 * Move the new page to the LRU. If migration was not successful
730 * then this will free the page.
732 move_to_lru(newpage);
733 if (result) {
734 if (rc)
735 *result = rc;
736 else
737 *result = page_to_nid(newpage);
739 return rc;
743 * migrate_pages
745 * The function takes one list of pages to migrate and a function
746 * that determines from the page to be migrated and the private data
747 * the target of the move and allocates the page.
749 * The function returns after 10 attempts or if no pages
750 * are movable anymore because to has become empty
751 * or no retryable pages exist anymore. All pages will be
752 * returned to the LRU or freed.
754 * Return: Number of pages not migrated or error code.
756 int migrate_pages(struct list_head *from,
757 new_page_t get_new_page, unsigned long private)
759 int retry = 1;
760 int nr_failed = 0;
761 int pass = 0;
762 struct page *page;
763 struct page *page2;
764 int swapwrite = current->flags & PF_SWAPWRITE;
765 int rc;
767 if (!swapwrite)
768 current->flags |= PF_SWAPWRITE;
770 for(pass = 0; pass < 10 && retry; pass++) {
771 retry = 0;
773 list_for_each_entry_safe(page, page2, from, lru) {
774 cond_resched();
776 rc = unmap_and_move(get_new_page, private,
777 page, pass > 2);
779 switch(rc) {
780 case -ENOMEM:
781 goto out;
782 case -EAGAIN:
783 retry++;
784 break;
785 case 0:
786 break;
787 default:
788 /* Permanent failure */
789 nr_failed++;
790 break;
794 rc = 0;
795 out:
796 if (!swapwrite)
797 current->flags &= ~PF_SWAPWRITE;
799 putback_lru_pages(from);
801 if (rc)
802 return rc;
804 return nr_failed + retry;
807 #ifdef CONFIG_NUMA
809 * Move a list of individual pages
811 struct page_to_node {
812 unsigned long addr;
813 struct page *page;
814 int node;
815 int status;
818 static struct page *new_page_node(struct page *p, unsigned long private,
819 int **result)
821 struct page_to_node *pm = (struct page_to_node *)private;
823 while (pm->node != MAX_NUMNODES && pm->page != p)
824 pm++;
826 if (pm->node == MAX_NUMNODES)
827 return NULL;
829 *result = &pm->status;
831 return alloc_pages_node(pm->node,
832 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
836 * Move a set of pages as indicated in the pm array. The addr
837 * field must be set to the virtual address of the page to be moved
838 * and the node number must contain a valid target node.
840 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
841 int migrate_all)
843 int err;
844 struct page_to_node *pp;
845 LIST_HEAD(pagelist);
847 down_read(&mm->mmap_sem);
850 * Build a list of pages to migrate
852 migrate_prep();
853 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
854 struct vm_area_struct *vma;
855 struct page *page;
858 * A valid page pointer that will not match any of the
859 * pages that will be moved.
861 pp->page = ZERO_PAGE(0);
863 err = -EFAULT;
864 vma = find_vma(mm, pp->addr);
865 if (!vma || !vma_migratable(vma))
866 goto set_status;
868 page = follow_page(vma, pp->addr, FOLL_GET);
870 err = PTR_ERR(page);
871 if (IS_ERR(page))
872 goto set_status;
874 err = -ENOENT;
875 if (!page)
876 goto set_status;
878 if (PageReserved(page)) /* Check for zero page */
879 goto put_and_set;
881 pp->page = page;
882 err = page_to_nid(page);
884 if (err == pp->node)
886 * Node already in the right place
888 goto put_and_set;
890 err = -EACCES;
891 if (page_mapcount(page) > 1 &&
892 !migrate_all)
893 goto put_and_set;
895 err = isolate_lru_page(page, &pagelist);
896 put_and_set:
898 * Either remove the duplicate refcount from
899 * isolate_lru_page() or drop the page ref if it was
900 * not isolated.
902 put_page(page);
903 set_status:
904 pp->status = err;
907 if (!list_empty(&pagelist))
908 err = migrate_pages(&pagelist, new_page_node,
909 (unsigned long)pm);
910 else
911 err = -ENOENT;
913 up_read(&mm->mmap_sem);
914 return err;
918 * Determine the nodes of a list of pages. The addr in the pm array
919 * must have been set to the virtual address of which we want to determine
920 * the node number.
922 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
924 down_read(&mm->mmap_sem);
926 for ( ; pm->node != MAX_NUMNODES; pm++) {
927 struct vm_area_struct *vma;
928 struct page *page;
929 int err;
931 err = -EFAULT;
932 vma = find_vma(mm, pm->addr);
933 if (!vma)
934 goto set_status;
936 page = follow_page(vma, pm->addr, 0);
938 err = PTR_ERR(page);
939 if (IS_ERR(page))
940 goto set_status;
942 err = -ENOENT;
943 /* Use PageReserved to check for zero page */
944 if (!page || PageReserved(page))
945 goto set_status;
947 err = page_to_nid(page);
948 set_status:
949 pm->status = err;
952 up_read(&mm->mmap_sem);
953 return 0;
957 * Move a list of pages in the address space of the currently executing
958 * process.
960 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
961 const void __user * __user *pages,
962 const int __user *nodes,
963 int __user *status, int flags)
965 int err = 0;
966 int i;
967 struct task_struct *task;
968 nodemask_t task_nodes;
969 struct mm_struct *mm;
970 struct page_to_node *pm = NULL;
972 /* Check flags */
973 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
974 return -EINVAL;
976 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
977 return -EPERM;
979 /* Find the mm_struct */
980 read_lock(&tasklist_lock);
981 task = pid ? find_task_by_vpid(pid) : current;
982 if (!task) {
983 read_unlock(&tasklist_lock);
984 return -ESRCH;
986 mm = get_task_mm(task);
987 read_unlock(&tasklist_lock);
989 if (!mm)
990 return -EINVAL;
993 * Check if this process has the right to modify the specified
994 * process. The right exists if the process has administrative
995 * capabilities, superuser privileges or the same
996 * userid as the target process.
998 if ((current->euid != task->suid) && (current->euid != task->uid) &&
999 (current->uid != task->suid) && (current->uid != task->uid) &&
1000 !capable(CAP_SYS_NICE)) {
1001 err = -EPERM;
1002 goto out2;
1005 err = security_task_movememory(task);
1006 if (err)
1007 goto out2;
1010 task_nodes = cpuset_mems_allowed(task);
1012 /* Limit nr_pages so that the multiplication may not overflow */
1013 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1014 err = -E2BIG;
1015 goto out2;
1018 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1019 if (!pm) {
1020 err = -ENOMEM;
1021 goto out2;
1025 * Get parameters from user space and initialize the pm
1026 * array. Return various errors if the user did something wrong.
1028 for (i = 0; i < nr_pages; i++) {
1029 const void __user *p;
1031 err = -EFAULT;
1032 if (get_user(p, pages + i))
1033 goto out;
1035 pm[i].addr = (unsigned long)p;
1036 if (nodes) {
1037 int node;
1039 if (get_user(node, nodes + i))
1040 goto out;
1042 err = -ENODEV;
1043 if (!node_state(node, N_HIGH_MEMORY))
1044 goto out;
1046 err = -EACCES;
1047 if (!node_isset(node, task_nodes))
1048 goto out;
1050 pm[i].node = node;
1051 } else
1052 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
1054 /* End marker */
1055 pm[nr_pages].node = MAX_NUMNODES;
1057 if (nodes)
1058 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1059 else
1060 err = do_pages_stat(mm, pm);
1062 if (err >= 0)
1063 /* Return status information */
1064 for (i = 0; i < nr_pages; i++)
1065 if (put_user(pm[i].status, status + i))
1066 err = -EFAULT;
1068 out:
1069 vfree(pm);
1070 out2:
1071 mmput(mm);
1072 return err;
1074 #endif
1077 * Call migration functions in the vma_ops that may prepare
1078 * memory in a vm for migration. migration functions may perform
1079 * the migration for vmas that do not have an underlying page struct.
1081 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1082 const nodemask_t *from, unsigned long flags)
1084 struct vm_area_struct *vma;
1085 int err = 0;
1087 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1088 if (vma->vm_ops && vma->vm_ops->migrate) {
1089 err = vma->vm_ops->migrate(vma, to, from, flags);
1090 if (err)
1091 break;
1094 return err;