4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* This context's GFP mask */
63 /* Can pages be swapped as part of reclaim? */
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
74 int all_unreclaimable
;
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup
*mem_cgroup
;
81 /* Pluggable isolate pages callback */
82 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
83 unsigned long *scanned
, int order
, int mode
,
84 struct zone
*z
, struct mem_cgroup
*mem_cont
,
85 int active
, int file
);
88 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90 #ifdef ARCH_HAS_PREFETCH
91 #define prefetch_prev_lru_page(_page, _base, _field) \
93 if ((_page)->lru.prev != _base) { \
96 prev = lru_to_page(&(_page->lru)); \
97 prefetch(&prev->_field); \
101 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
104 #ifdef ARCH_HAS_PREFETCHW
105 #define prefetchw_prev_lru_page(_page, _base, _field) \
107 if ((_page)->lru.prev != _base) { \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetchw(&prev->_field); \
115 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
119 * From 0 .. 100. Higher means more swappy.
121 int vm_swappiness
= 60;
122 long vm_total_pages
; /* The total number of pages which the VM controls */
124 static LIST_HEAD(shrinker_list
);
125 static DECLARE_RWSEM(shrinker_rwsem
);
127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
128 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
130 #define scan_global_lru(sc) (1)
134 * Add a shrinker callback to be called from the vm
136 void register_shrinker(struct shrinker
*shrinker
)
139 down_write(&shrinker_rwsem
);
140 list_add_tail(&shrinker
->list
, &shrinker_list
);
141 up_write(&shrinker_rwsem
);
143 EXPORT_SYMBOL(register_shrinker
);
148 void unregister_shrinker(struct shrinker
*shrinker
)
150 down_write(&shrinker_rwsem
);
151 list_del(&shrinker
->list
);
152 up_write(&shrinker_rwsem
);
154 EXPORT_SYMBOL(unregister_shrinker
);
156 #define SHRINK_BATCH 128
158 * Call the shrink functions to age shrinkable caches
160 * Here we assume it costs one seek to replace a lru page and that it also
161 * takes a seek to recreate a cache object. With this in mind we age equal
162 * percentages of the lru and ageable caches. This should balance the seeks
163 * generated by these structures.
165 * If the vm encountered mapped pages on the LRU it increase the pressure on
166 * slab to avoid swapping.
168 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
170 * `lru_pages' represents the number of on-LRU pages in all the zones which
171 * are eligible for the caller's allocation attempt. It is used for balancing
172 * slab reclaim versus page reclaim.
174 * Returns the number of slab objects which we shrunk.
176 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
177 unsigned long lru_pages
)
179 struct shrinker
*shrinker
;
180 unsigned long ret
= 0;
183 scanned
= SWAP_CLUSTER_MAX
;
185 if (!down_read_trylock(&shrinker_rwsem
))
186 return 1; /* Assume we'll be able to shrink next time */
188 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
189 unsigned long long delta
;
190 unsigned long total_scan
;
191 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
193 delta
= (4 * scanned
) / shrinker
->seeks
;
195 do_div(delta
, lru_pages
+ 1);
196 shrinker
->nr
+= delta
;
197 if (shrinker
->nr
< 0) {
198 printk(KERN_ERR
"%s: nr=%ld\n",
199 __func__
, shrinker
->nr
);
200 shrinker
->nr
= max_pass
;
204 * Avoid risking looping forever due to too large nr value:
205 * never try to free more than twice the estimate number of
208 if (shrinker
->nr
> max_pass
* 2)
209 shrinker
->nr
= max_pass
* 2;
211 total_scan
= shrinker
->nr
;
214 while (total_scan
>= SHRINK_BATCH
) {
215 long this_scan
= SHRINK_BATCH
;
219 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
220 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
221 if (shrink_ret
== -1)
223 if (shrink_ret
< nr_before
)
224 ret
+= nr_before
- shrink_ret
;
225 count_vm_events(SLABS_SCANNED
, this_scan
);
226 total_scan
-= this_scan
;
231 shrinker
->nr
+= total_scan
;
233 up_read(&shrinker_rwsem
);
237 /* Called without lock on whether page is mapped, so answer is unstable */
238 static inline int page_mapping_inuse(struct page
*page
)
240 struct address_space
*mapping
;
242 /* Page is in somebody's page tables. */
243 if (page_mapped(page
))
246 /* Be more reluctant to reclaim swapcache than pagecache */
247 if (PageSwapCache(page
))
250 mapping
= page_mapping(page
);
254 /* File is mmap'd by somebody? */
255 return mapping_mapped(mapping
);
258 static inline int is_page_cache_freeable(struct page
*page
)
260 return page_count(page
) - !!PagePrivate(page
) == 2;
263 static int may_write_to_queue(struct backing_dev_info
*bdi
)
265 if (current
->flags
& PF_SWAPWRITE
)
267 if (!bdi_write_congested(bdi
))
269 if (bdi
== current
->backing_dev_info
)
275 * We detected a synchronous write error writing a page out. Probably
276 * -ENOSPC. We need to propagate that into the address_space for a subsequent
277 * fsync(), msync() or close().
279 * The tricky part is that after writepage we cannot touch the mapping: nothing
280 * prevents it from being freed up. But we have a ref on the page and once
281 * that page is locked, the mapping is pinned.
283 * We're allowed to run sleeping lock_page() here because we know the caller has
286 static void handle_write_error(struct address_space
*mapping
,
287 struct page
*page
, int error
)
290 if (page_mapping(page
) == mapping
)
291 mapping_set_error(mapping
, error
);
295 /* Request for sync pageout. */
301 /* possible outcome of pageout() */
303 /* failed to write page out, page is locked */
305 /* move page to the active list, page is locked */
307 /* page has been sent to the disk successfully, page is unlocked */
309 /* page is clean and locked */
314 * pageout is called by shrink_page_list() for each dirty page.
315 * Calls ->writepage().
317 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
318 enum pageout_io sync_writeback
)
321 * If the page is dirty, only perform writeback if that write
322 * will be non-blocking. To prevent this allocation from being
323 * stalled by pagecache activity. But note that there may be
324 * stalls if we need to run get_block(). We could test
325 * PagePrivate for that.
327 * If this process is currently in generic_file_write() against
328 * this page's queue, we can perform writeback even if that
331 * If the page is swapcache, write it back even if that would
332 * block, for some throttling. This happens by accident, because
333 * swap_backing_dev_info is bust: it doesn't reflect the
334 * congestion state of the swapdevs. Easy to fix, if needed.
335 * See swapfile.c:page_queue_congested().
337 if (!is_page_cache_freeable(page
))
341 * Some data journaling orphaned pages can have
342 * page->mapping == NULL while being dirty with clean buffers.
344 if (PagePrivate(page
)) {
345 if (try_to_free_buffers(page
)) {
346 ClearPageDirty(page
);
347 printk("%s: orphaned page\n", __func__
);
353 if (mapping
->a_ops
->writepage
== NULL
)
354 return PAGE_ACTIVATE
;
355 if (!may_write_to_queue(mapping
->backing_dev_info
))
358 if (clear_page_dirty_for_io(page
)) {
360 struct writeback_control wbc
= {
361 .sync_mode
= WB_SYNC_NONE
,
362 .nr_to_write
= SWAP_CLUSTER_MAX
,
364 .range_end
= LLONG_MAX
,
369 SetPageReclaim(page
);
370 res
= mapping
->a_ops
->writepage(page
, &wbc
);
372 handle_write_error(mapping
, page
, res
);
373 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
374 ClearPageReclaim(page
);
375 return PAGE_ACTIVATE
;
379 * Wait on writeback if requested to. This happens when
380 * direct reclaiming a large contiguous area and the
381 * first attempt to free a range of pages fails.
383 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
384 wait_on_page_writeback(page
);
386 if (!PageWriteback(page
)) {
387 /* synchronous write or broken a_ops? */
388 ClearPageReclaim(page
);
390 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
398 * Same as remove_mapping, but if the page is removed from the mapping, it
399 * gets returned with a refcount of 0.
401 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
403 BUG_ON(!PageLocked(page
));
404 BUG_ON(mapping
!= page_mapping(page
));
406 spin_lock_irq(&mapping
->tree_lock
);
408 * The non racy check for a busy page.
410 * Must be careful with the order of the tests. When someone has
411 * a ref to the page, it may be possible that they dirty it then
412 * drop the reference. So if PageDirty is tested before page_count
413 * here, then the following race may occur:
415 * get_user_pages(&page);
416 * [user mapping goes away]
418 * !PageDirty(page) [good]
419 * SetPageDirty(page);
421 * !page_count(page) [good, discard it]
423 * [oops, our write_to data is lost]
425 * Reversing the order of the tests ensures such a situation cannot
426 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
427 * load is not satisfied before that of page->_count.
429 * Note that if SetPageDirty is always performed via set_page_dirty,
430 * and thus under tree_lock, then this ordering is not required.
432 if (!page_freeze_refs(page
, 2))
434 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
435 if (unlikely(PageDirty(page
))) {
436 page_unfreeze_refs(page
, 2);
440 if (PageSwapCache(page
)) {
441 swp_entry_t swap
= { .val
= page_private(page
) };
442 __delete_from_swap_cache(page
);
443 spin_unlock_irq(&mapping
->tree_lock
);
446 __remove_from_page_cache(page
);
447 spin_unlock_irq(&mapping
->tree_lock
);
453 spin_unlock_irq(&mapping
->tree_lock
);
458 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
459 * someone else has a ref on the page, abort and return 0. If it was
460 * successfully detached, return 1. Assumes the caller has a single ref on
463 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
465 if (__remove_mapping(mapping
, page
)) {
467 * Unfreezing the refcount with 1 rather than 2 effectively
468 * drops the pagecache ref for us without requiring another
471 page_unfreeze_refs(page
, 1);
478 * putback_lru_page - put previously isolated page onto appropriate LRU list
479 * @page: page to be put back to appropriate lru list
481 * Add previously isolated @page to appropriate LRU list.
482 * Page may still be unevictable for other reasons.
484 * lru_lock must not be held, interrupts must be enabled.
486 #ifdef CONFIG_UNEVICTABLE_LRU
487 void putback_lru_page(struct page
*page
)
490 int active
= !!TestClearPageActive(page
);
491 int was_unevictable
= PageUnevictable(page
);
493 VM_BUG_ON(PageLRU(page
));
496 ClearPageUnevictable(page
);
498 if (page_evictable(page
, NULL
)) {
500 * For evictable pages, we can use the cache.
501 * In event of a race, worst case is we end up with an
502 * unevictable page on [in]active list.
503 * We know how to handle that.
505 lru
= active
+ page_is_file_cache(page
);
506 lru_cache_add_lru(page
, lru
);
509 * Put unevictable pages directly on zone's unevictable
512 lru
= LRU_UNEVICTABLE
;
513 add_page_to_unevictable_list(page
);
515 mem_cgroup_move_lists(page
, lru
);
518 * page's status can change while we move it among lru. If an evictable
519 * page is on unevictable list, it never be freed. To avoid that,
520 * check after we added it to the list, again.
522 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
523 if (!isolate_lru_page(page
)) {
527 /* This means someone else dropped this page from LRU
528 * So, it will be freed or putback to LRU again. There is
529 * nothing to do here.
533 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
534 count_vm_event(UNEVICTABLE_PGRESCUED
);
535 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
536 count_vm_event(UNEVICTABLE_PGCULLED
);
538 put_page(page
); /* drop ref from isolate */
541 #else /* CONFIG_UNEVICTABLE_LRU */
543 void putback_lru_page(struct page
*page
)
546 VM_BUG_ON(PageLRU(page
));
548 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
549 lru_cache_add_lru(page
, lru
);
550 mem_cgroup_move_lists(page
, lru
);
553 #endif /* CONFIG_UNEVICTABLE_LRU */
557 * shrink_page_list() returns the number of reclaimed pages
559 static unsigned long shrink_page_list(struct list_head
*page_list
,
560 struct scan_control
*sc
,
561 enum pageout_io sync_writeback
)
563 LIST_HEAD(ret_pages
);
564 struct pagevec freed_pvec
;
566 unsigned long nr_reclaimed
= 0;
570 pagevec_init(&freed_pvec
, 1);
571 while (!list_empty(page_list
)) {
572 struct address_space
*mapping
;
579 page
= lru_to_page(page_list
);
580 list_del(&page
->lru
);
582 if (!trylock_page(page
))
585 VM_BUG_ON(PageActive(page
));
589 if (unlikely(!page_evictable(page
, NULL
)))
592 if (!sc
->may_swap
&& page_mapped(page
))
595 /* Double the slab pressure for mapped and swapcache pages */
596 if (page_mapped(page
) || PageSwapCache(page
))
599 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
600 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
602 if (PageWriteback(page
)) {
604 * Synchronous reclaim is performed in two passes,
605 * first an asynchronous pass over the list to
606 * start parallel writeback, and a second synchronous
607 * pass to wait for the IO to complete. Wait here
608 * for any page for which writeback has already
611 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
612 wait_on_page_writeback(page
);
617 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
618 /* In active use or really unfreeable? Activate it. */
619 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
620 referenced
&& page_mapping_inuse(page
))
621 goto activate_locked
;
624 * Anonymous process memory has backing store?
625 * Try to allocate it some swap space here.
627 if (PageAnon(page
) && !PageSwapCache(page
)) {
628 if (!(sc
->gfp_mask
& __GFP_IO
))
630 if (!add_to_swap(page
))
631 goto activate_locked
;
635 mapping
= page_mapping(page
);
638 * The page is mapped into the page tables of one or more
639 * processes. Try to unmap it here.
641 if (page_mapped(page
) && mapping
) {
642 switch (try_to_unmap(page
, 0)) {
644 goto activate_locked
;
650 ; /* try to free the page below */
654 if (PageDirty(page
)) {
655 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
659 if (!sc
->may_writepage
)
662 /* Page is dirty, try to write it out here */
663 switch (pageout(page
, mapping
, sync_writeback
)) {
667 goto activate_locked
;
669 if (PageWriteback(page
) || PageDirty(page
))
672 * A synchronous write - probably a ramdisk. Go
673 * ahead and try to reclaim the page.
675 if (!trylock_page(page
))
677 if (PageDirty(page
) || PageWriteback(page
))
679 mapping
= page_mapping(page
);
681 ; /* try to free the page below */
686 * If the page has buffers, try to free the buffer mappings
687 * associated with this page. If we succeed we try to free
690 * We do this even if the page is PageDirty().
691 * try_to_release_page() does not perform I/O, but it is
692 * possible for a page to have PageDirty set, but it is actually
693 * clean (all its buffers are clean). This happens if the
694 * buffers were written out directly, with submit_bh(). ext3
695 * will do this, as well as the blockdev mapping.
696 * try_to_release_page() will discover that cleanness and will
697 * drop the buffers and mark the page clean - it can be freed.
699 * Rarely, pages can have buffers and no ->mapping. These are
700 * the pages which were not successfully invalidated in
701 * truncate_complete_page(). We try to drop those buffers here
702 * and if that worked, and the page is no longer mapped into
703 * process address space (page_count == 1) it can be freed.
704 * Otherwise, leave the page on the LRU so it is swappable.
706 if (PagePrivate(page
)) {
707 if (!try_to_release_page(page
, sc
->gfp_mask
))
708 goto activate_locked
;
709 if (!mapping
&& page_count(page
) == 1) {
711 if (put_page_testzero(page
))
715 * rare race with speculative reference.
716 * the speculative reference will free
717 * this page shortly, so we may
718 * increment nr_reclaimed here (and
719 * leave it off the LRU).
727 if (!mapping
|| !__remove_mapping(mapping
, page
))
731 * At this point, we have no other references and there is
732 * no way to pick any more up (removed from LRU, removed
733 * from pagecache). Can use non-atomic bitops now (and
734 * we obviously don't have to worry about waking up a process
735 * waiting on the page lock, because there are no references.
737 __clear_page_locked(page
);
740 if (!pagevec_add(&freed_pvec
, page
)) {
741 __pagevec_free(&freed_pvec
);
742 pagevec_reinit(&freed_pvec
);
747 if (PageSwapCache(page
))
748 try_to_free_swap(page
);
750 putback_lru_page(page
);
754 /* Not a candidate for swapping, so reclaim swap space. */
755 if (PageSwapCache(page
) && vm_swap_full())
756 try_to_free_swap(page
);
757 VM_BUG_ON(PageActive(page
));
763 list_add(&page
->lru
, &ret_pages
);
764 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
766 list_splice(&ret_pages
, page_list
);
767 if (pagevec_count(&freed_pvec
))
768 __pagevec_free(&freed_pvec
);
769 count_vm_events(PGACTIVATE
, pgactivate
);
773 /* LRU Isolation modes. */
774 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
775 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
776 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
779 * Attempt to remove the specified page from its LRU. Only take this page
780 * if it is of the appropriate PageActive status. Pages which are being
781 * freed elsewhere are also ignored.
783 * page: page to consider
784 * mode: one of the LRU isolation modes defined above
786 * returns 0 on success, -ve errno on failure.
788 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
792 /* Only take pages on the LRU. */
797 * When checking the active state, we need to be sure we are
798 * dealing with comparible boolean values. Take the logical not
801 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
804 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
808 * When this function is being called for lumpy reclaim, we
809 * initially look into all LRU pages, active, inactive and
810 * unevictable; only give shrink_page_list evictable pages.
812 if (PageUnevictable(page
))
816 if (likely(get_page_unless_zero(page
))) {
818 * Be careful not to clear PageLRU until after we're
819 * sure the page is not being freed elsewhere -- the
820 * page release code relies on it.
830 * zone->lru_lock is heavily contended. Some of the functions that
831 * shrink the lists perform better by taking out a batch of pages
832 * and working on them outside the LRU lock.
834 * For pagecache intensive workloads, this function is the hottest
835 * spot in the kernel (apart from copy_*_user functions).
837 * Appropriate locks must be held before calling this function.
839 * @nr_to_scan: The number of pages to look through on the list.
840 * @src: The LRU list to pull pages off.
841 * @dst: The temp list to put pages on to.
842 * @scanned: The number of pages that were scanned.
843 * @order: The caller's attempted allocation order
844 * @mode: One of the LRU isolation modes
845 * @file: True [1] if isolating file [!anon] pages
847 * returns how many pages were moved onto *@dst.
849 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
850 struct list_head
*src
, struct list_head
*dst
,
851 unsigned long *scanned
, int order
, int mode
, int file
)
853 unsigned long nr_taken
= 0;
856 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
859 unsigned long end_pfn
;
860 unsigned long page_pfn
;
863 page
= lru_to_page(src
);
864 prefetchw_prev_lru_page(page
, src
, flags
);
866 VM_BUG_ON(!PageLRU(page
));
868 switch (__isolate_lru_page(page
, mode
, file
)) {
870 list_move(&page
->lru
, dst
);
875 /* else it is being freed elsewhere */
876 list_move(&page
->lru
, src
);
887 * Attempt to take all pages in the order aligned region
888 * surrounding the tag page. Only take those pages of
889 * the same active state as that tag page. We may safely
890 * round the target page pfn down to the requested order
891 * as the mem_map is guarenteed valid out to MAX_ORDER,
892 * where that page is in a different zone we will detect
893 * it from its zone id and abort this block scan.
895 zone_id
= page_zone_id(page
);
896 page_pfn
= page_to_pfn(page
);
897 pfn
= page_pfn
& ~((1 << order
) - 1);
898 end_pfn
= pfn
+ (1 << order
);
899 for (; pfn
< end_pfn
; pfn
++) {
900 struct page
*cursor_page
;
902 /* The target page is in the block, ignore it. */
903 if (unlikely(pfn
== page_pfn
))
906 /* Avoid holes within the zone. */
907 if (unlikely(!pfn_valid_within(pfn
)))
910 cursor_page
= pfn_to_page(pfn
);
912 /* Check that we have not crossed a zone boundary. */
913 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
915 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
917 list_move(&cursor_page
->lru
, dst
);
923 /* else it is being freed elsewhere */
924 list_move(&cursor_page
->lru
, src
);
926 break; /* ! on LRU or wrong list */
935 static unsigned long isolate_pages_global(unsigned long nr
,
936 struct list_head
*dst
,
937 unsigned long *scanned
, int order
,
938 int mode
, struct zone
*z
,
939 struct mem_cgroup
*mem_cont
,
940 int active
, int file
)
947 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
952 * clear_active_flags() is a helper for shrink_active_list(), clearing
953 * any active bits from the pages in the list.
955 static unsigned long clear_active_flags(struct list_head
*page_list
,
962 list_for_each_entry(page
, page_list
, lru
) {
963 lru
= page_is_file_cache(page
);
964 if (PageActive(page
)) {
966 ClearPageActive(page
);
976 * isolate_lru_page - tries to isolate a page from its LRU list
977 * @page: page to isolate from its LRU list
979 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
980 * vmstat statistic corresponding to whatever LRU list the page was on.
982 * Returns 0 if the page was removed from an LRU list.
983 * Returns -EBUSY if the page was not on an LRU list.
985 * The returned page will have PageLRU() cleared. If it was found on
986 * the active list, it will have PageActive set. If it was found on
987 * the unevictable list, it will have the PageUnevictable bit set. That flag
988 * may need to be cleared by the caller before letting the page go.
990 * The vmstat statistic corresponding to the list on which the page was
991 * found will be decremented.
994 * (1) Must be called with an elevated refcount on the page. This is a
995 * fundamentnal difference from isolate_lru_pages (which is called
996 * without a stable reference).
997 * (2) the lru_lock must not be held.
998 * (3) interrupts must be enabled.
1000 int isolate_lru_page(struct page
*page
)
1004 if (PageLRU(page
)) {
1005 struct zone
*zone
= page_zone(page
);
1007 spin_lock_irq(&zone
->lru_lock
);
1008 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1009 int lru
= page_lru(page
);
1013 del_page_from_lru_list(zone
, page
, lru
);
1015 spin_unlock_irq(&zone
->lru_lock
);
1021 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1022 * of reclaimed pages
1024 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1025 struct zone
*zone
, struct scan_control
*sc
,
1026 int priority
, int file
)
1028 LIST_HEAD(page_list
);
1029 struct pagevec pvec
;
1030 unsigned long nr_scanned
= 0;
1031 unsigned long nr_reclaimed
= 0;
1033 pagevec_init(&pvec
, 1);
1036 spin_lock_irq(&zone
->lru_lock
);
1039 unsigned long nr_taken
;
1040 unsigned long nr_scan
;
1041 unsigned long nr_freed
;
1042 unsigned long nr_active
;
1043 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1044 int mode
= ISOLATE_INACTIVE
;
1047 * If we need a large contiguous chunk of memory, or have
1048 * trouble getting a small set of contiguous pages, we
1049 * will reclaim both active and inactive pages.
1051 * We use the same threshold as pageout congestion_wait below.
1053 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1054 mode
= ISOLATE_BOTH
;
1055 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1056 mode
= ISOLATE_BOTH
;
1058 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1059 &page_list
, &nr_scan
, sc
->order
, mode
,
1060 zone
, sc
->mem_cgroup
, 0, file
);
1061 nr_active
= clear_active_flags(&page_list
, count
);
1062 __count_vm_events(PGDEACTIVATE
, nr_active
);
1064 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1065 -count
[LRU_ACTIVE_FILE
]);
1066 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1067 -count
[LRU_INACTIVE_FILE
]);
1068 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1069 -count
[LRU_ACTIVE_ANON
]);
1070 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1071 -count
[LRU_INACTIVE_ANON
]);
1073 if (scan_global_lru(sc
)) {
1074 zone
->pages_scanned
+= nr_scan
;
1075 zone
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1076 zone
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1077 zone
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1078 zone
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1080 spin_unlock_irq(&zone
->lru_lock
);
1082 nr_scanned
+= nr_scan
;
1083 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1086 * If we are direct reclaiming for contiguous pages and we do
1087 * not reclaim everything in the list, try again and wait
1088 * for IO to complete. This will stall high-order allocations
1089 * but that should be acceptable to the caller
1091 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1092 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1093 congestion_wait(WRITE
, HZ
/10);
1096 * The attempt at page out may have made some
1097 * of the pages active, mark them inactive again.
1099 nr_active
= clear_active_flags(&page_list
, count
);
1100 count_vm_events(PGDEACTIVATE
, nr_active
);
1102 nr_freed
+= shrink_page_list(&page_list
, sc
,
1106 nr_reclaimed
+= nr_freed
;
1107 local_irq_disable();
1108 if (current_is_kswapd()) {
1109 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1110 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1111 } else if (scan_global_lru(sc
))
1112 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1114 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1119 spin_lock(&zone
->lru_lock
);
1121 * Put back any unfreeable pages.
1123 while (!list_empty(&page_list
)) {
1125 page
= lru_to_page(&page_list
);
1126 VM_BUG_ON(PageLRU(page
));
1127 list_del(&page
->lru
);
1128 if (unlikely(!page_evictable(page
, NULL
))) {
1129 spin_unlock_irq(&zone
->lru_lock
);
1130 putback_lru_page(page
);
1131 spin_lock_irq(&zone
->lru_lock
);
1135 lru
= page_lru(page
);
1136 add_page_to_lru_list(zone
, page
, lru
);
1137 mem_cgroup_move_lists(page
, lru
);
1138 if (PageActive(page
) && scan_global_lru(sc
)) {
1139 int file
= !!page_is_file_cache(page
);
1140 zone
->recent_rotated
[file
]++;
1142 if (!pagevec_add(&pvec
, page
)) {
1143 spin_unlock_irq(&zone
->lru_lock
);
1144 __pagevec_release(&pvec
);
1145 spin_lock_irq(&zone
->lru_lock
);
1148 } while (nr_scanned
< max_scan
);
1149 spin_unlock(&zone
->lru_lock
);
1152 pagevec_release(&pvec
);
1153 return nr_reclaimed
;
1157 * We are about to scan this zone at a certain priority level. If that priority
1158 * level is smaller (ie: more urgent) than the previous priority, then note
1159 * that priority level within the zone. This is done so that when the next
1160 * process comes in to scan this zone, it will immediately start out at this
1161 * priority level rather than having to build up its own scanning priority.
1162 * Here, this priority affects only the reclaim-mapped threshold.
1164 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1166 if (priority
< zone
->prev_priority
)
1167 zone
->prev_priority
= priority
;
1171 * This moves pages from the active list to the inactive list.
1173 * We move them the other way if the page is referenced by one or more
1174 * processes, from rmap.
1176 * If the pages are mostly unmapped, the processing is fast and it is
1177 * appropriate to hold zone->lru_lock across the whole operation. But if
1178 * the pages are mapped, the processing is slow (page_referenced()) so we
1179 * should drop zone->lru_lock around each page. It's impossible to balance
1180 * this, so instead we remove the pages from the LRU while processing them.
1181 * It is safe to rely on PG_active against the non-LRU pages in here because
1182 * nobody will play with that bit on a non-LRU page.
1184 * The downside is that we have to touch page->_count against each page.
1185 * But we had to alter page->flags anyway.
1189 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1190 struct scan_control
*sc
, int priority
, int file
)
1192 unsigned long pgmoved
;
1193 int pgdeactivate
= 0;
1194 unsigned long pgscanned
;
1195 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1196 LIST_HEAD(l_inactive
);
1198 struct pagevec pvec
;
1202 spin_lock_irq(&zone
->lru_lock
);
1203 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1204 ISOLATE_ACTIVE
, zone
,
1205 sc
->mem_cgroup
, 1, file
);
1207 * zone->pages_scanned is used for detect zone's oom
1208 * mem_cgroup remembers nr_scan by itself.
1210 if (scan_global_lru(sc
)) {
1211 zone
->pages_scanned
+= pgscanned
;
1212 zone
->recent_scanned
[!!file
] += pgmoved
;
1216 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1218 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1219 spin_unlock_irq(&zone
->lru_lock
);
1222 while (!list_empty(&l_hold
)) {
1224 page
= lru_to_page(&l_hold
);
1225 list_del(&page
->lru
);
1227 if (unlikely(!page_evictable(page
, NULL
))) {
1228 putback_lru_page(page
);
1232 /* page_referenced clears PageReferenced */
1233 if (page_mapping_inuse(page
) &&
1234 page_referenced(page
, 0, sc
->mem_cgroup
))
1237 list_add(&page
->lru
, &l_inactive
);
1241 * Move the pages to the [file or anon] inactive list.
1243 pagevec_init(&pvec
, 1);
1245 lru
= LRU_BASE
+ file
* LRU_FILE
;
1247 spin_lock_irq(&zone
->lru_lock
);
1249 * Count referenced pages from currently used mappings as
1250 * rotated, even though they are moved to the inactive list.
1251 * This helps balance scan pressure between file and anonymous
1252 * pages in get_scan_ratio.
1254 if (scan_global_lru(sc
))
1255 zone
->recent_rotated
[!!file
] += pgmoved
;
1257 while (!list_empty(&l_inactive
)) {
1258 page
= lru_to_page(&l_inactive
);
1259 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1260 VM_BUG_ON(PageLRU(page
));
1262 VM_BUG_ON(!PageActive(page
));
1263 ClearPageActive(page
);
1265 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1266 mem_cgroup_move_lists(page
, lru
);
1268 if (!pagevec_add(&pvec
, page
)) {
1269 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1270 spin_unlock_irq(&zone
->lru_lock
);
1271 pgdeactivate
+= pgmoved
;
1273 if (buffer_heads_over_limit
)
1274 pagevec_strip(&pvec
);
1275 __pagevec_release(&pvec
);
1276 spin_lock_irq(&zone
->lru_lock
);
1279 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1280 pgdeactivate
+= pgmoved
;
1281 if (buffer_heads_over_limit
) {
1282 spin_unlock_irq(&zone
->lru_lock
);
1283 pagevec_strip(&pvec
);
1284 spin_lock_irq(&zone
->lru_lock
);
1286 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1287 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1288 spin_unlock_irq(&zone
->lru_lock
);
1290 pagevec_swap_free(&pvec
);
1292 pagevec_release(&pvec
);
1295 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1296 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1298 int file
= is_file_lru(lru
);
1300 if (lru
== LRU_ACTIVE_FILE
) {
1301 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1305 if (lru
== LRU_ACTIVE_ANON
&&
1306 (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))) {
1307 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1310 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1314 * Determine how aggressively the anon and file LRU lists should be
1315 * scanned. The relative value of each set of LRU lists is determined
1316 * by looking at the fraction of the pages scanned we did rotate back
1317 * onto the active list instead of evict.
1319 * percent[0] specifies how much pressure to put on ram/swap backed
1320 * memory, while percent[1] determines pressure on the file LRUs.
1322 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1323 unsigned long *percent
)
1325 unsigned long anon
, file
, free
;
1326 unsigned long anon_prio
, file_prio
;
1327 unsigned long ap
, fp
;
1329 /* If we have no swap space, do not bother scanning anon pages. */
1330 if (nr_swap_pages
<= 0) {
1336 anon
= zone_page_state(zone
, NR_ACTIVE_ANON
) +
1337 zone_page_state(zone
, NR_INACTIVE_ANON
);
1338 file
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
1339 zone_page_state(zone
, NR_INACTIVE_FILE
);
1340 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1342 /* If we have very few page cache pages, force-scan anon pages. */
1343 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1350 * OK, so we have swap space and a fair amount of page cache
1351 * pages. We use the recently rotated / recently scanned
1352 * ratios to determine how valuable each cache is.
1354 * Because workloads change over time (and to avoid overflow)
1355 * we keep these statistics as a floating average, which ends
1356 * up weighing recent references more than old ones.
1358 * anon in [0], file in [1]
1360 if (unlikely(zone
->recent_scanned
[0] > anon
/ 4)) {
1361 spin_lock_irq(&zone
->lru_lock
);
1362 zone
->recent_scanned
[0] /= 2;
1363 zone
->recent_rotated
[0] /= 2;
1364 spin_unlock_irq(&zone
->lru_lock
);
1367 if (unlikely(zone
->recent_scanned
[1] > file
/ 4)) {
1368 spin_lock_irq(&zone
->lru_lock
);
1369 zone
->recent_scanned
[1] /= 2;
1370 zone
->recent_rotated
[1] /= 2;
1371 spin_unlock_irq(&zone
->lru_lock
);
1375 * With swappiness at 100, anonymous and file have the same priority.
1376 * This scanning priority is essentially the inverse of IO cost.
1378 anon_prio
= sc
->swappiness
;
1379 file_prio
= 200 - sc
->swappiness
;
1382 * The amount of pressure on anon vs file pages is inversely
1383 * proportional to the fraction of recently scanned pages on
1384 * each list that were recently referenced and in active use.
1386 ap
= (anon_prio
+ 1) * (zone
->recent_scanned
[0] + 1);
1387 ap
/= zone
->recent_rotated
[0] + 1;
1389 fp
= (file_prio
+ 1) * (zone
->recent_scanned
[1] + 1);
1390 fp
/= zone
->recent_rotated
[1] + 1;
1392 /* Normalize to percentages */
1393 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1394 percent
[1] = 100 - percent
[0];
1399 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1401 static void shrink_zone(int priority
, struct zone
*zone
,
1402 struct scan_control
*sc
)
1404 unsigned long nr
[NR_LRU_LISTS
];
1405 unsigned long nr_to_scan
;
1406 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1408 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1409 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1411 get_scan_ratio(zone
, sc
, percent
);
1413 for_each_evictable_lru(l
) {
1414 if (scan_global_lru(sc
)) {
1415 int file
= is_file_lru(l
);
1418 scan
= zone_page_state(zone
, NR_LRU_BASE
+ l
);
1421 scan
= (scan
* percent
[file
]) / 100;
1423 zone
->lru
[l
].nr_scan
+= scan
;
1424 nr
[l
] = zone
->lru
[l
].nr_scan
;
1425 if (nr
[l
] >= swap_cluster_max
)
1426 zone
->lru
[l
].nr_scan
= 0;
1431 * This reclaim occurs not because zone memory shortage
1432 * but because memory controller hits its limit.
1433 * Don't modify zone reclaim related data.
1435 nr
[l
] = mem_cgroup_calc_reclaim(sc
->mem_cgroup
, zone
,
1440 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1441 nr
[LRU_INACTIVE_FILE
]) {
1442 for_each_evictable_lru(l
) {
1444 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1445 nr
[l
] -= nr_to_scan
;
1447 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1448 zone
, sc
, priority
);
1452 * On large memory systems, scan >> priority can become
1453 * really large. This is fine for the starting priority;
1454 * we want to put equal scanning pressure on each zone.
1455 * However, if the VM has a harder time of freeing pages,
1456 * with multiple processes reclaiming pages, the total
1457 * freeing target can get unreasonably large.
1459 if (nr_reclaimed
> swap_cluster_max
&&
1460 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1464 sc
->nr_reclaimed
= nr_reclaimed
;
1467 * Even if we did not try to evict anon pages at all, we want to
1468 * rebalance the anon lru active/inactive ratio.
1470 if (!scan_global_lru(sc
) || inactive_anon_is_low(zone
))
1471 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1472 else if (!scan_global_lru(sc
))
1473 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1475 throttle_vm_writeout(sc
->gfp_mask
);
1479 * This is the direct reclaim path, for page-allocating processes. We only
1480 * try to reclaim pages from zones which will satisfy the caller's allocation
1483 * We reclaim from a zone even if that zone is over pages_high. Because:
1484 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1486 * b) The zones may be over pages_high but they must go *over* pages_high to
1487 * satisfy the `incremental min' zone defense algorithm.
1489 * If a zone is deemed to be full of pinned pages then just give it a light
1490 * scan then give up on it.
1492 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1493 struct scan_control
*sc
)
1495 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1499 sc
->all_unreclaimable
= 1;
1500 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1501 if (!populated_zone(zone
))
1504 * Take care memory controller reclaiming has small influence
1507 if (scan_global_lru(sc
)) {
1508 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1510 note_zone_scanning_priority(zone
, priority
);
1512 if (zone_is_all_unreclaimable(zone
) &&
1513 priority
!= DEF_PRIORITY
)
1514 continue; /* Let kswapd poll it */
1515 sc
->all_unreclaimable
= 0;
1518 * Ignore cpuset limitation here. We just want to reduce
1519 * # of used pages by us regardless of memory shortage.
1521 sc
->all_unreclaimable
= 0;
1522 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1526 shrink_zone(priority
, zone
, sc
);
1531 * This is the main entry point to direct page reclaim.
1533 * If a full scan of the inactive list fails to free enough memory then we
1534 * are "out of memory" and something needs to be killed.
1536 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1537 * high - the zone may be full of dirty or under-writeback pages, which this
1538 * caller can't do much about. We kick pdflush and take explicit naps in the
1539 * hope that some of these pages can be written. But if the allocating task
1540 * holds filesystem locks which prevent writeout this might not work, and the
1541 * allocation attempt will fail.
1543 * returns: 0, if no pages reclaimed
1544 * else, the number of pages reclaimed
1546 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1547 struct scan_control
*sc
)
1550 unsigned long ret
= 0;
1551 unsigned long total_scanned
= 0;
1552 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1553 unsigned long lru_pages
= 0;
1556 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1558 delayacct_freepages_start();
1560 if (scan_global_lru(sc
))
1561 count_vm_event(ALLOCSTALL
);
1563 * mem_cgroup will not do shrink_slab.
1565 if (scan_global_lru(sc
)) {
1566 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1568 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1571 lru_pages
+= zone_lru_pages(zone
);
1575 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1578 disable_swap_token();
1579 shrink_zones(priority
, zonelist
, sc
);
1581 * Don't shrink slabs when reclaiming memory from
1582 * over limit cgroups
1584 if (scan_global_lru(sc
)) {
1585 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1586 if (reclaim_state
) {
1587 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1588 reclaim_state
->reclaimed_slab
= 0;
1591 total_scanned
+= sc
->nr_scanned
;
1592 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1593 ret
= sc
->nr_reclaimed
;
1598 * Try to write back as many pages as we just scanned. This
1599 * tends to cause slow streaming writers to write data to the
1600 * disk smoothly, at the dirtying rate, which is nice. But
1601 * that's undesirable in laptop mode, where we *want* lumpy
1602 * writeout. So in laptop mode, write out the whole world.
1604 if (total_scanned
> sc
->swap_cluster_max
+
1605 sc
->swap_cluster_max
/ 2) {
1606 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1607 sc
->may_writepage
= 1;
1610 /* Take a nap, wait for some writeback to complete */
1611 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1612 congestion_wait(WRITE
, HZ
/10);
1614 /* top priority shrink_zones still had more to do? don't OOM, then */
1615 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1616 ret
= sc
->nr_reclaimed
;
1619 * Now that we've scanned all the zones at this priority level, note
1620 * that level within the zone so that the next thread which performs
1621 * scanning of this zone will immediately start out at this priority
1622 * level. This affects only the decision whether or not to bring
1623 * mapped pages onto the inactive list.
1628 if (scan_global_lru(sc
)) {
1629 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1631 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1634 zone
->prev_priority
= priority
;
1637 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1639 delayacct_freepages_end();
1644 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1647 struct scan_control sc
= {
1648 .gfp_mask
= gfp_mask
,
1649 .may_writepage
= !laptop_mode
,
1650 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1652 .swappiness
= vm_swappiness
,
1655 .isolate_pages
= isolate_pages_global
,
1658 return do_try_to_free_pages(zonelist
, &sc
);
1661 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1663 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1666 struct scan_control sc
= {
1667 .may_writepage
= !laptop_mode
,
1669 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1670 .swappiness
= vm_swappiness
,
1672 .mem_cgroup
= mem_cont
,
1673 .isolate_pages
= mem_cgroup_isolate_pages
,
1675 struct zonelist
*zonelist
;
1677 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1678 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1679 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1680 return do_try_to_free_pages(zonelist
, &sc
);
1685 * For kswapd, balance_pgdat() will work across all this node's zones until
1686 * they are all at pages_high.
1688 * Returns the number of pages which were actually freed.
1690 * There is special handling here for zones which are full of pinned pages.
1691 * This can happen if the pages are all mlocked, or if they are all used by
1692 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1693 * What we do is to detect the case where all pages in the zone have been
1694 * scanned twice and there has been zero successful reclaim. Mark the zone as
1695 * dead and from now on, only perform a short scan. Basically we're polling
1696 * the zone for when the problem goes away.
1698 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1699 * zones which have free_pages > pages_high, but once a zone is found to have
1700 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1701 * of the number of free pages in the lower zones. This interoperates with
1702 * the page allocator fallback scheme to ensure that aging of pages is balanced
1705 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1710 unsigned long total_scanned
;
1711 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1712 struct scan_control sc
= {
1713 .gfp_mask
= GFP_KERNEL
,
1715 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1716 .swappiness
= vm_swappiness
,
1719 .isolate_pages
= isolate_pages_global
,
1722 * temp_priority is used to remember the scanning priority at which
1723 * this zone was successfully refilled to free_pages == pages_high.
1725 int temp_priority
[MAX_NR_ZONES
];
1729 sc
.nr_reclaimed
= 0;
1730 sc
.may_writepage
= !laptop_mode
;
1731 count_vm_event(PAGEOUTRUN
);
1733 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1734 temp_priority
[i
] = DEF_PRIORITY
;
1736 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1737 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1738 unsigned long lru_pages
= 0;
1740 /* The swap token gets in the way of swapout... */
1742 disable_swap_token();
1747 * Scan in the highmem->dma direction for the highest
1748 * zone which needs scanning
1750 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1751 struct zone
*zone
= pgdat
->node_zones
+ i
;
1753 if (!populated_zone(zone
))
1756 if (zone_is_all_unreclaimable(zone
) &&
1757 priority
!= DEF_PRIORITY
)
1761 * Do some background aging of the anon list, to give
1762 * pages a chance to be referenced before reclaiming.
1764 if (inactive_anon_is_low(zone
))
1765 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1768 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1777 for (i
= 0; i
<= end_zone
; i
++) {
1778 struct zone
*zone
= pgdat
->node_zones
+ i
;
1780 lru_pages
+= zone_lru_pages(zone
);
1784 * Now scan the zone in the dma->highmem direction, stopping
1785 * at the last zone which needs scanning.
1787 * We do this because the page allocator works in the opposite
1788 * direction. This prevents the page allocator from allocating
1789 * pages behind kswapd's direction of progress, which would
1790 * cause too much scanning of the lower zones.
1792 for (i
= 0; i
<= end_zone
; i
++) {
1793 struct zone
*zone
= pgdat
->node_zones
+ i
;
1796 if (!populated_zone(zone
))
1799 if (zone_is_all_unreclaimable(zone
) &&
1800 priority
!= DEF_PRIORITY
)
1803 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1806 temp_priority
[i
] = priority
;
1808 note_zone_scanning_priority(zone
, priority
);
1810 * We put equal pressure on every zone, unless one
1811 * zone has way too many pages free already.
1813 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1815 shrink_zone(priority
, zone
, &sc
);
1816 reclaim_state
->reclaimed_slab
= 0;
1817 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1819 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1820 total_scanned
+= sc
.nr_scanned
;
1821 if (zone_is_all_unreclaimable(zone
))
1823 if (nr_slab
== 0 && zone
->pages_scanned
>=
1824 (zone_lru_pages(zone
) * 6))
1826 ZONE_ALL_UNRECLAIMABLE
);
1828 * If we've done a decent amount of scanning and
1829 * the reclaim ratio is low, start doing writepage
1830 * even in laptop mode
1832 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1833 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1834 sc
.may_writepage
= 1;
1837 break; /* kswapd: all done */
1839 * OK, kswapd is getting into trouble. Take a nap, then take
1840 * another pass across the zones.
1842 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1843 congestion_wait(WRITE
, HZ
/10);
1846 * We do this so kswapd doesn't build up large priorities for
1847 * example when it is freeing in parallel with allocators. It
1848 * matches the direct reclaim path behaviour in terms of impact
1849 * on zone->*_priority.
1851 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1856 * Note within each zone the priority level at which this zone was
1857 * brought into a happy state. So that the next thread which scans this
1858 * zone will start out at that priority level.
1860 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1861 struct zone
*zone
= pgdat
->node_zones
+ i
;
1863 zone
->prev_priority
= temp_priority
[i
];
1865 if (!all_zones_ok
) {
1871 * Fragmentation may mean that the system cannot be
1872 * rebalanced for high-order allocations in all zones.
1873 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1874 * it means the zones have been fully scanned and are still
1875 * not balanced. For high-order allocations, there is
1876 * little point trying all over again as kswapd may
1879 * Instead, recheck all watermarks at order-0 as they
1880 * are the most important. If watermarks are ok, kswapd will go
1881 * back to sleep. High-order users can still perform direct
1882 * reclaim if they wish.
1884 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
1885 order
= sc
.order
= 0;
1890 return sc
.nr_reclaimed
;
1894 * The background pageout daemon, started as a kernel thread
1895 * from the init process.
1897 * This basically trickles out pages so that we have _some_
1898 * free memory available even if there is no other activity
1899 * that frees anything up. This is needed for things like routing
1900 * etc, where we otherwise might have all activity going on in
1901 * asynchronous contexts that cannot page things out.
1903 * If there are applications that are active memory-allocators
1904 * (most normal use), this basically shouldn't matter.
1906 static int kswapd(void *p
)
1908 unsigned long order
;
1909 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1910 struct task_struct
*tsk
= current
;
1912 struct reclaim_state reclaim_state
= {
1913 .reclaimed_slab
= 0,
1915 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1917 if (!cpumask_empty(cpumask
))
1918 set_cpus_allowed_ptr(tsk
, cpumask
);
1919 current
->reclaim_state
= &reclaim_state
;
1922 * Tell the memory management that we're a "memory allocator",
1923 * and that if we need more memory we should get access to it
1924 * regardless (see "__alloc_pages()"). "kswapd" should
1925 * never get caught in the normal page freeing logic.
1927 * (Kswapd normally doesn't need memory anyway, but sometimes
1928 * you need a small amount of memory in order to be able to
1929 * page out something else, and this flag essentially protects
1930 * us from recursively trying to free more memory as we're
1931 * trying to free the first piece of memory in the first place).
1933 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1938 unsigned long new_order
;
1940 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1941 new_order
= pgdat
->kswapd_max_order
;
1942 pgdat
->kswapd_max_order
= 0;
1943 if (order
< new_order
) {
1945 * Don't sleep if someone wants a larger 'order'
1950 if (!freezing(current
))
1953 order
= pgdat
->kswapd_max_order
;
1955 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1957 if (!try_to_freeze()) {
1958 /* We can speed up thawing tasks if we don't call
1959 * balance_pgdat after returning from the refrigerator
1961 balance_pgdat(pgdat
, order
);
1968 * A zone is low on free memory, so wake its kswapd task to service it.
1970 void wakeup_kswapd(struct zone
*zone
, int order
)
1974 if (!populated_zone(zone
))
1977 pgdat
= zone
->zone_pgdat
;
1978 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1980 if (pgdat
->kswapd_max_order
< order
)
1981 pgdat
->kswapd_max_order
= order
;
1982 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1984 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1986 wake_up_interruptible(&pgdat
->kswapd_wait
);
1989 unsigned long global_lru_pages(void)
1991 return global_page_state(NR_ACTIVE_ANON
)
1992 + global_page_state(NR_ACTIVE_FILE
)
1993 + global_page_state(NR_INACTIVE_ANON
)
1994 + global_page_state(NR_INACTIVE_FILE
);
1999 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2000 * from LRU lists system-wide, for given pass and priority, and returns the
2001 * number of reclaimed pages
2003 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2005 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
2006 int pass
, struct scan_control
*sc
)
2009 unsigned long nr_to_scan
, ret
= 0;
2012 for_each_zone(zone
) {
2014 if (!populated_zone(zone
))
2017 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2020 for_each_evictable_lru(l
) {
2021 /* For pass = 0, we don't shrink the active list */
2023 (l
== LRU_ACTIVE
|| l
== LRU_ACTIVE_FILE
))
2026 zone
->lru
[l
].nr_scan
+=
2027 (zone_page_state(zone
, NR_LRU_BASE
+ l
)
2029 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2030 zone
->lru
[l
].nr_scan
= 0;
2031 nr_to_scan
= min(nr_pages
,
2032 zone_page_state(zone
,
2034 ret
+= shrink_list(l
, nr_to_scan
, zone
,
2036 if (ret
>= nr_pages
)
2046 * Try to free `nr_pages' of memory, system-wide, and return the number of
2049 * Rather than trying to age LRUs the aim is to preserve the overall
2050 * LRU order by reclaiming preferentially
2051 * inactive > active > active referenced > active mapped
2053 unsigned long shrink_all_memory(unsigned long nr_pages
)
2055 unsigned long lru_pages
, nr_slab
;
2056 unsigned long ret
= 0;
2058 struct reclaim_state reclaim_state
;
2059 struct scan_control sc
= {
2060 .gfp_mask
= GFP_KERNEL
,
2062 .swap_cluster_max
= nr_pages
,
2064 .swappiness
= vm_swappiness
,
2065 .isolate_pages
= isolate_pages_global
,
2068 current
->reclaim_state
= &reclaim_state
;
2070 lru_pages
= global_lru_pages();
2071 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2072 /* If slab caches are huge, it's better to hit them first */
2073 while (nr_slab
>= lru_pages
) {
2074 reclaim_state
.reclaimed_slab
= 0;
2075 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2076 if (!reclaim_state
.reclaimed_slab
)
2079 ret
+= reclaim_state
.reclaimed_slab
;
2080 if (ret
>= nr_pages
)
2083 nr_slab
-= reclaim_state
.reclaimed_slab
;
2087 * We try to shrink LRUs in 5 passes:
2088 * 0 = Reclaim from inactive_list only
2089 * 1 = Reclaim from active list but don't reclaim mapped
2090 * 2 = 2nd pass of type 1
2091 * 3 = Reclaim mapped (normal reclaim)
2092 * 4 = 2nd pass of type 3
2094 for (pass
= 0; pass
< 5; pass
++) {
2097 /* Force reclaiming mapped pages in the passes #3 and #4 */
2100 sc
.swappiness
= 100;
2103 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2104 unsigned long nr_to_scan
= nr_pages
- ret
;
2107 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2108 if (ret
>= nr_pages
)
2111 reclaim_state
.reclaimed_slab
= 0;
2112 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2113 global_lru_pages());
2114 ret
+= reclaim_state
.reclaimed_slab
;
2115 if (ret
>= nr_pages
)
2118 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2119 congestion_wait(WRITE
, HZ
/ 10);
2124 * If ret = 0, we could not shrink LRUs, but there may be something
2129 reclaim_state
.reclaimed_slab
= 0;
2130 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2131 ret
+= reclaim_state
.reclaimed_slab
;
2132 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
2136 current
->reclaim_state
= NULL
;
2142 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2143 not required for correctness. So if the last cpu in a node goes
2144 away, we get changed to run anywhere: as the first one comes back,
2145 restore their cpu bindings. */
2146 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2147 unsigned long action
, void *hcpu
)
2151 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2152 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2153 pg_data_t
*pgdat
= NODE_DATA(nid
);
2154 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
2156 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2157 /* One of our CPUs online: restore mask */
2158 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2165 * This kswapd start function will be called by init and node-hot-add.
2166 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2168 int kswapd_run(int nid
)
2170 pg_data_t
*pgdat
= NODE_DATA(nid
);
2176 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2177 if (IS_ERR(pgdat
->kswapd
)) {
2178 /* failure at boot is fatal */
2179 BUG_ON(system_state
== SYSTEM_BOOTING
);
2180 printk("Failed to start kswapd on node %d\n",nid
);
2186 static int __init
kswapd_init(void)
2191 for_each_node_state(nid
, N_HIGH_MEMORY
)
2193 hotcpu_notifier(cpu_callback
, 0);
2197 module_init(kswapd_init
)
2203 * If non-zero call zone_reclaim when the number of free pages falls below
2206 int zone_reclaim_mode __read_mostly
;
2208 #define RECLAIM_OFF 0
2209 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2210 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2211 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2214 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2215 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2218 #define ZONE_RECLAIM_PRIORITY 4
2221 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2224 int sysctl_min_unmapped_ratio
= 1;
2227 * If the number of slab pages in a zone grows beyond this percentage then
2228 * slab reclaim needs to occur.
2230 int sysctl_min_slab_ratio
= 5;
2233 * Try to free up some pages from this zone through reclaim.
2235 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2237 /* Minimum pages needed in order to stay on node */
2238 const unsigned long nr_pages
= 1 << order
;
2239 struct task_struct
*p
= current
;
2240 struct reclaim_state reclaim_state
;
2242 struct scan_control sc
= {
2243 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2244 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2245 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2247 .gfp_mask
= gfp_mask
,
2248 .swappiness
= vm_swappiness
,
2249 .isolate_pages
= isolate_pages_global
,
2251 unsigned long slab_reclaimable
;
2253 disable_swap_token();
2256 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2257 * and we also need to be able to write out pages for RECLAIM_WRITE
2260 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2261 reclaim_state
.reclaimed_slab
= 0;
2262 p
->reclaim_state
= &reclaim_state
;
2264 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2265 zone_page_state(zone
, NR_FILE_MAPPED
) >
2266 zone
->min_unmapped_pages
) {
2268 * Free memory by calling shrink zone with increasing
2269 * priorities until we have enough memory freed.
2271 priority
= ZONE_RECLAIM_PRIORITY
;
2273 note_zone_scanning_priority(zone
, priority
);
2274 shrink_zone(priority
, zone
, &sc
);
2276 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2279 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2280 if (slab_reclaimable
> zone
->min_slab_pages
) {
2282 * shrink_slab() does not currently allow us to determine how
2283 * many pages were freed in this zone. So we take the current
2284 * number of slab pages and shake the slab until it is reduced
2285 * by the same nr_pages that we used for reclaiming unmapped
2288 * Note that shrink_slab will free memory on all zones and may
2291 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2292 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2293 slab_reclaimable
- nr_pages
)
2297 * Update nr_reclaimed by the number of slab pages we
2298 * reclaimed from this zone.
2300 sc
.nr_reclaimed
+= slab_reclaimable
-
2301 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2304 p
->reclaim_state
= NULL
;
2305 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2306 return sc
.nr_reclaimed
>= nr_pages
;
2309 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2315 * Zone reclaim reclaims unmapped file backed pages and
2316 * slab pages if we are over the defined limits.
2318 * A small portion of unmapped file backed pages is needed for
2319 * file I/O otherwise pages read by file I/O will be immediately
2320 * thrown out if the zone is overallocated. So we do not reclaim
2321 * if less than a specified percentage of the zone is used by
2322 * unmapped file backed pages.
2324 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2325 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2326 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2327 <= zone
->min_slab_pages
)
2330 if (zone_is_all_unreclaimable(zone
))
2334 * Do not scan if the allocation should not be delayed.
2336 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2340 * Only run zone reclaim on the local zone or on zones that do not
2341 * have associated processors. This will favor the local processor
2342 * over remote processors and spread off node memory allocations
2343 * as wide as possible.
2345 node_id
= zone_to_nid(zone
);
2346 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2349 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2351 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2352 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2358 #ifdef CONFIG_UNEVICTABLE_LRU
2360 * page_evictable - test whether a page is evictable
2361 * @page: the page to test
2362 * @vma: the VMA in which the page is or will be mapped, may be NULL
2364 * Test whether page is evictable--i.e., should be placed on active/inactive
2365 * lists vs unevictable list. The vma argument is !NULL when called from the
2366 * fault path to determine how to instantate a new page.
2368 * Reasons page might not be evictable:
2369 * (1) page's mapping marked unevictable
2370 * (2) page is part of an mlocked VMA
2373 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2376 if (mapping_unevictable(page_mapping(page
)))
2379 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2386 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2387 * @page: page to check evictability and move to appropriate lru list
2388 * @zone: zone page is in
2390 * Checks a page for evictability and moves the page to the appropriate
2393 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2394 * have PageUnevictable set.
2396 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2398 VM_BUG_ON(PageActive(page
));
2401 ClearPageUnevictable(page
);
2402 if (page_evictable(page
, NULL
)) {
2403 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2405 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2406 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2407 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2408 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2411 * rotate unevictable list
2413 SetPageUnevictable(page
);
2414 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2415 if (page_evictable(page
, NULL
))
2421 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2422 * @mapping: struct address_space to scan for evictable pages
2424 * Scan all pages in mapping. Check unevictable pages for
2425 * evictability and move them to the appropriate zone lru list.
2427 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2430 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2433 struct pagevec pvec
;
2435 if (mapping
->nrpages
== 0)
2438 pagevec_init(&pvec
, 0);
2439 while (next
< end
&&
2440 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2446 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2447 struct page
*page
= pvec
.pages
[i
];
2448 pgoff_t page_index
= page
->index
;
2449 struct zone
*pagezone
= page_zone(page
);
2452 if (page_index
> next
)
2456 if (pagezone
!= zone
) {
2458 spin_unlock_irq(&zone
->lru_lock
);
2460 spin_lock_irq(&zone
->lru_lock
);
2463 if (PageLRU(page
) && PageUnevictable(page
))
2464 check_move_unevictable_page(page
, zone
);
2467 spin_unlock_irq(&zone
->lru_lock
);
2468 pagevec_release(&pvec
);
2470 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2476 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2477 * @zone - zone of which to scan the unevictable list
2479 * Scan @zone's unevictable LRU lists to check for pages that have become
2480 * evictable. Move those that have to @zone's inactive list where they
2481 * become candidates for reclaim, unless shrink_inactive_zone() decides
2482 * to reactivate them. Pages that are still unevictable are rotated
2483 * back onto @zone's unevictable list.
2485 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2486 static void scan_zone_unevictable_pages(struct zone
*zone
)
2488 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2490 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2492 while (nr_to_scan
> 0) {
2493 unsigned long batch_size
= min(nr_to_scan
,
2494 SCAN_UNEVICTABLE_BATCH_SIZE
);
2496 spin_lock_irq(&zone
->lru_lock
);
2497 for (scan
= 0; scan
< batch_size
; scan
++) {
2498 struct page
*page
= lru_to_page(l_unevictable
);
2500 if (!trylock_page(page
))
2503 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2505 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2506 check_move_unevictable_page(page
, zone
);
2510 spin_unlock_irq(&zone
->lru_lock
);
2512 nr_to_scan
-= batch_size
;
2518 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2520 * A really big hammer: scan all zones' unevictable LRU lists to check for
2521 * pages that have become evictable. Move those back to the zones'
2522 * inactive list where they become candidates for reclaim.
2523 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2524 * and we add swap to the system. As such, it runs in the context of a task
2525 * that has possibly/probably made some previously unevictable pages
2528 static void scan_all_zones_unevictable_pages(void)
2532 for_each_zone(zone
) {
2533 scan_zone_unevictable_pages(zone
);
2538 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2539 * all nodes' unevictable lists for evictable pages
2541 unsigned long scan_unevictable_pages
;
2543 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2544 struct file
*file
, void __user
*buffer
,
2545 size_t *length
, loff_t
*ppos
)
2547 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2549 if (write
&& *(unsigned long *)table
->data
)
2550 scan_all_zones_unevictable_pages();
2552 scan_unevictable_pages
= 0;
2557 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2558 * a specified node's per zone unevictable lists for evictable pages.
2561 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2562 struct sysdev_attribute
*attr
,
2565 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2568 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2569 struct sysdev_attribute
*attr
,
2570 const char *buf
, size_t count
)
2572 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2575 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2578 return 1; /* zero is no-op */
2580 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2581 if (!populated_zone(zone
))
2583 scan_zone_unevictable_pages(zone
);
2589 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2590 read_scan_unevictable_node
,
2591 write_scan_unevictable_node
);
2593 int scan_unevictable_register_node(struct node
*node
)
2595 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2598 void scan_unevictable_unregister_node(struct node
*node
)
2600 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);