Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / ctree.c
blob9ac17159925819a399dc10413d5261dd67bb5584
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root, struct btrfs_path *path,
43 struct btrfs_key *cpu_key, u32 *data_size,
44 u32 total_data, u32 total_size, int nr);
47 struct btrfs_path *btrfs_alloc_path(void)
49 struct btrfs_path *path;
50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 if (path)
52 path->reada = 1;
53 return path;
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
62 int i;
63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 if (p->nodes[i] && p->locks[i])
65 btrfs_set_lock_blocking(p->nodes[i]);
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
75 * for held
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 struct extent_buffer *held)
80 int i;
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
87 * the path blocking.
89 if (held)
90 btrfs_set_lock_blocking(held);
91 btrfs_set_path_blocking(p);
92 #endif
94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 if (p->nodes[i] && p->locks[i])
96 btrfs_clear_lock_blocking(p->nodes[i]);
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 if (held)
101 btrfs_clear_lock_blocking(held);
102 #endif
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
108 btrfs_release_path(NULL, p);
109 kmem_cache_free(btrfs_path_cachep, p);
113 * path release drops references on the extent buffers in the path
114 * and it drops any locks held by this path
116 * It is safe to call this on paths that no locks or extent buffers held.
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
120 int i;
122 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123 p->slots[i] = 0;
124 if (!p->nodes[i])
125 continue;
126 if (p->locks[i]) {
127 btrfs_tree_unlock(p->nodes[i]);
128 p->locks[i] = 0;
130 free_extent_buffer(p->nodes[i]);
131 p->nodes[i] = NULL;
136 * safely gets a reference on the root node of a tree. A lock
137 * is not taken, so a concurrent writer may put a different node
138 * at the root of the tree. See btrfs_lock_root_node for the
139 * looping required.
141 * The extent buffer returned by this has a reference taken, so
142 * it won't disappear. It may stop being the root of the tree
143 * at any time because there are no locks held.
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
147 struct extent_buffer *eb;
148 spin_lock(&root->node_lock);
149 eb = root->node;
150 extent_buffer_get(eb);
151 spin_unlock(&root->node_lock);
152 return eb;
155 /* loop around taking references on and locking the root node of the
156 * tree until you end up with a lock on the root. A locked buffer
157 * is returned, with a reference held.
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
161 struct extent_buffer *eb;
163 while (1) {
164 eb = btrfs_root_node(root);
165 btrfs_tree_lock(eb);
167 spin_lock(&root->node_lock);
168 if (eb == root->node) {
169 spin_unlock(&root->node_lock);
170 break;
172 spin_unlock(&root->node_lock);
174 btrfs_tree_unlock(eb);
175 free_extent_buffer(eb);
177 return eb;
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181 * put onto a simple dirty list. transaction.c walks this to make sure they
182 * get properly updated on disk.
184 static void add_root_to_dirty_list(struct btrfs_root *root)
186 if (root->track_dirty && list_empty(&root->dirty_list)) {
187 list_add(&root->dirty_list,
188 &root->fs_info->dirty_cowonly_roots);
193 * used by snapshot creation to make a copy of a root for a tree with
194 * a given objectid. The buffer with the new root node is returned in
195 * cow_ret, and this func returns zero on success or a negative error code.
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198 struct btrfs_root *root,
199 struct extent_buffer *buf,
200 struct extent_buffer **cow_ret, u64 new_root_objectid)
202 struct extent_buffer *cow;
203 int ret = 0;
204 int level;
205 struct btrfs_disk_key disk_key;
207 WARN_ON(root->ref_cows && trans->transid !=
208 root->fs_info->running_transaction->transid);
209 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
211 level = btrfs_header_level(buf);
212 if (level == 0)
213 btrfs_item_key(buf, &disk_key, 0);
214 else
215 btrfs_node_key(buf, &disk_key, 0);
217 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
218 new_root_objectid, &disk_key, level,
219 buf->start, 0);
220 if (IS_ERR(cow))
221 return PTR_ERR(cow);
223 copy_extent_buffer(cow, buf, 0, 0, cow->len);
224 btrfs_set_header_bytenr(cow, cow->start);
225 btrfs_set_header_generation(cow, trans->transid);
226 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228 BTRFS_HEADER_FLAG_RELOC);
229 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231 else
232 btrfs_set_header_owner(cow, new_root_objectid);
234 write_extent_buffer(cow, root->fs_info->fsid,
235 (unsigned long)btrfs_header_fsid(cow),
236 BTRFS_FSID_SIZE);
238 WARN_ON(btrfs_header_generation(buf) > trans->transid);
239 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240 ret = btrfs_inc_ref(trans, root, cow, 1);
241 else
242 ret = btrfs_inc_ref(trans, root, cow, 0);
244 if (ret)
245 return ret;
247 btrfs_mark_buffer_dirty(cow);
248 *cow_ret = cow;
249 return 0;
253 * check if the tree block can be shared by multiple trees
255 int btrfs_block_can_be_shared(struct btrfs_root *root,
256 struct extent_buffer *buf)
259 * Tree blocks not in refernece counted trees and tree roots
260 * are never shared. If a block was allocated after the last
261 * snapshot and the block was not allocated by tree relocation,
262 * we know the block is not shared.
264 if (root->ref_cows &&
265 buf != root->node && buf != root->commit_root &&
266 (btrfs_header_generation(buf) <=
267 btrfs_root_last_snapshot(&root->root_item) ||
268 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
269 return 1;
270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
271 if (root->ref_cows &&
272 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
273 return 1;
274 #endif
275 return 0;
278 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
279 struct btrfs_root *root,
280 struct extent_buffer *buf,
281 struct extent_buffer *cow,
282 int *last_ref)
284 u64 refs;
285 u64 owner;
286 u64 flags;
287 u64 new_flags = 0;
288 int ret;
291 * Backrefs update rules:
293 * Always use full backrefs for extent pointers in tree block
294 * allocated by tree relocation.
296 * If a shared tree block is no longer referenced by its owner
297 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
298 * use full backrefs for extent pointers in tree block.
300 * If a tree block is been relocating
301 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
302 * use full backrefs for extent pointers in tree block.
303 * The reason for this is some operations (such as drop tree)
304 * are only allowed for blocks use full backrefs.
307 if (btrfs_block_can_be_shared(root, buf)) {
308 ret = btrfs_lookup_extent_info(trans, root, buf->start,
309 buf->len, &refs, &flags);
310 BUG_ON(ret);
311 BUG_ON(refs == 0);
312 } else {
313 refs = 1;
314 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
315 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
316 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
317 else
318 flags = 0;
321 owner = btrfs_header_owner(buf);
322 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
323 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
325 if (refs > 1) {
326 if ((owner == root->root_key.objectid ||
327 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
328 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
329 ret = btrfs_inc_ref(trans, root, buf, 1);
330 BUG_ON(ret);
332 if (root->root_key.objectid ==
333 BTRFS_TREE_RELOC_OBJECTID) {
334 ret = btrfs_dec_ref(trans, root, buf, 0);
335 BUG_ON(ret);
336 ret = btrfs_inc_ref(trans, root, cow, 1);
337 BUG_ON(ret);
339 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
340 } else {
342 if (root->root_key.objectid ==
343 BTRFS_TREE_RELOC_OBJECTID)
344 ret = btrfs_inc_ref(trans, root, cow, 1);
345 else
346 ret = btrfs_inc_ref(trans, root, cow, 0);
347 BUG_ON(ret);
349 if (new_flags != 0) {
350 ret = btrfs_set_disk_extent_flags(trans, root,
351 buf->start,
352 buf->len,
353 new_flags, 0);
354 BUG_ON(ret);
356 } else {
357 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
358 if (root->root_key.objectid ==
359 BTRFS_TREE_RELOC_OBJECTID)
360 ret = btrfs_inc_ref(trans, root, cow, 1);
361 else
362 ret = btrfs_inc_ref(trans, root, cow, 0);
363 BUG_ON(ret);
364 ret = btrfs_dec_ref(trans, root, buf, 1);
365 BUG_ON(ret);
367 clean_tree_block(trans, root, buf);
368 *last_ref = 1;
370 return 0;
374 * does the dirty work in cow of a single block. The parent block (if
375 * supplied) is updated to point to the new cow copy. The new buffer is marked
376 * dirty and returned locked. If you modify the block it needs to be marked
377 * dirty again.
379 * search_start -- an allocation hint for the new block
381 * empty_size -- a hint that you plan on doing more cow. This is the size in
382 * bytes the allocator should try to find free next to the block it returns.
383 * This is just a hint and may be ignored by the allocator.
385 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
386 struct btrfs_root *root,
387 struct extent_buffer *buf,
388 struct extent_buffer *parent, int parent_slot,
389 struct extent_buffer **cow_ret,
390 u64 search_start, u64 empty_size)
392 struct btrfs_disk_key disk_key;
393 struct extent_buffer *cow;
394 int level;
395 int last_ref = 0;
396 int unlock_orig = 0;
397 u64 parent_start;
399 if (*cow_ret == buf)
400 unlock_orig = 1;
402 btrfs_assert_tree_locked(buf);
404 WARN_ON(root->ref_cows && trans->transid !=
405 root->fs_info->running_transaction->transid);
406 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
408 level = btrfs_header_level(buf);
410 if (level == 0)
411 btrfs_item_key(buf, &disk_key, 0);
412 else
413 btrfs_node_key(buf, &disk_key, 0);
415 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
416 if (parent)
417 parent_start = parent->start;
418 else
419 parent_start = 0;
420 } else
421 parent_start = 0;
423 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
424 root->root_key.objectid, &disk_key,
425 level, search_start, empty_size);
426 if (IS_ERR(cow))
427 return PTR_ERR(cow);
429 /* cow is set to blocking by btrfs_init_new_buffer */
431 copy_extent_buffer(cow, buf, 0, 0, cow->len);
432 btrfs_set_header_bytenr(cow, cow->start);
433 btrfs_set_header_generation(cow, trans->transid);
434 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
435 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
436 BTRFS_HEADER_FLAG_RELOC);
437 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
438 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
439 else
440 btrfs_set_header_owner(cow, root->root_key.objectid);
442 write_extent_buffer(cow, root->fs_info->fsid,
443 (unsigned long)btrfs_header_fsid(cow),
444 BTRFS_FSID_SIZE);
446 update_ref_for_cow(trans, root, buf, cow, &last_ref);
448 if (root->ref_cows)
449 btrfs_reloc_cow_block(trans, root, buf, cow);
451 if (buf == root->node) {
452 WARN_ON(parent && parent != buf);
453 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
454 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
455 parent_start = buf->start;
456 else
457 parent_start = 0;
459 spin_lock(&root->node_lock);
460 root->node = cow;
461 extent_buffer_get(cow);
462 spin_unlock(&root->node_lock);
464 btrfs_free_tree_block(trans, root, buf, parent_start,
465 last_ref);
466 free_extent_buffer(buf);
467 add_root_to_dirty_list(root);
468 } else {
469 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
470 parent_start = parent->start;
471 else
472 parent_start = 0;
474 WARN_ON(trans->transid != btrfs_header_generation(parent));
475 btrfs_set_node_blockptr(parent, parent_slot,
476 cow->start);
477 btrfs_set_node_ptr_generation(parent, parent_slot,
478 trans->transid);
479 btrfs_mark_buffer_dirty(parent);
480 btrfs_free_tree_block(trans, root, buf, parent_start,
481 last_ref);
483 if (unlock_orig)
484 btrfs_tree_unlock(buf);
485 free_extent_buffer(buf);
486 btrfs_mark_buffer_dirty(cow);
487 *cow_ret = cow;
488 return 0;
491 static inline int should_cow_block(struct btrfs_trans_handle *trans,
492 struct btrfs_root *root,
493 struct extent_buffer *buf)
495 if (btrfs_header_generation(buf) == trans->transid &&
496 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
497 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
498 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
499 return 0;
500 return 1;
504 * cows a single block, see __btrfs_cow_block for the real work.
505 * This version of it has extra checks so that a block isn't cow'd more than
506 * once per transaction, as long as it hasn't been written yet
508 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
509 struct btrfs_root *root, struct extent_buffer *buf,
510 struct extent_buffer *parent, int parent_slot,
511 struct extent_buffer **cow_ret)
513 u64 search_start;
514 int ret;
516 if (trans->transaction != root->fs_info->running_transaction) {
517 printk(KERN_CRIT "trans %llu running %llu\n",
518 (unsigned long long)trans->transid,
519 (unsigned long long)
520 root->fs_info->running_transaction->transid);
521 WARN_ON(1);
523 if (trans->transid != root->fs_info->generation) {
524 printk(KERN_CRIT "trans %llu running %llu\n",
525 (unsigned long long)trans->transid,
526 (unsigned long long)root->fs_info->generation);
527 WARN_ON(1);
530 if (!should_cow_block(trans, root, buf)) {
531 *cow_ret = buf;
532 return 0;
535 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
537 if (parent)
538 btrfs_set_lock_blocking(parent);
539 btrfs_set_lock_blocking(buf);
541 ret = __btrfs_cow_block(trans, root, buf, parent,
542 parent_slot, cow_ret, search_start, 0);
543 return ret;
547 * helper function for defrag to decide if two blocks pointed to by a
548 * node are actually close by
550 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
552 if (blocknr < other && other - (blocknr + blocksize) < 32768)
553 return 1;
554 if (blocknr > other && blocknr - (other + blocksize) < 32768)
555 return 1;
556 return 0;
560 * compare two keys in a memcmp fashion
562 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
564 struct btrfs_key k1;
566 btrfs_disk_key_to_cpu(&k1, disk);
568 return btrfs_comp_cpu_keys(&k1, k2);
572 * same as comp_keys only with two btrfs_key's
574 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
576 if (k1->objectid > k2->objectid)
577 return 1;
578 if (k1->objectid < k2->objectid)
579 return -1;
580 if (k1->type > k2->type)
581 return 1;
582 if (k1->type < k2->type)
583 return -1;
584 if (k1->offset > k2->offset)
585 return 1;
586 if (k1->offset < k2->offset)
587 return -1;
588 return 0;
592 * this is used by the defrag code to go through all the
593 * leaves pointed to by a node and reallocate them so that
594 * disk order is close to key order
596 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
597 struct btrfs_root *root, struct extent_buffer *parent,
598 int start_slot, int cache_only, u64 *last_ret,
599 struct btrfs_key *progress)
601 struct extent_buffer *cur;
602 u64 blocknr;
603 u64 gen;
604 u64 search_start = *last_ret;
605 u64 last_block = 0;
606 u64 other;
607 u32 parent_nritems;
608 int end_slot;
609 int i;
610 int err = 0;
611 int parent_level;
612 int uptodate;
613 u32 blocksize;
614 int progress_passed = 0;
615 struct btrfs_disk_key disk_key;
617 parent_level = btrfs_header_level(parent);
618 if (cache_only && parent_level != 1)
619 return 0;
621 if (trans->transaction != root->fs_info->running_transaction)
622 WARN_ON(1);
623 if (trans->transid != root->fs_info->generation)
624 WARN_ON(1);
626 parent_nritems = btrfs_header_nritems(parent);
627 blocksize = btrfs_level_size(root, parent_level - 1);
628 end_slot = parent_nritems;
630 if (parent_nritems == 1)
631 return 0;
633 btrfs_set_lock_blocking(parent);
635 for (i = start_slot; i < end_slot; i++) {
636 int close = 1;
638 if (!parent->map_token) {
639 map_extent_buffer(parent,
640 btrfs_node_key_ptr_offset(i),
641 sizeof(struct btrfs_key_ptr),
642 &parent->map_token, &parent->kaddr,
643 &parent->map_start, &parent->map_len,
644 KM_USER1);
646 btrfs_node_key(parent, &disk_key, i);
647 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
648 continue;
650 progress_passed = 1;
651 blocknr = btrfs_node_blockptr(parent, i);
652 gen = btrfs_node_ptr_generation(parent, i);
653 if (last_block == 0)
654 last_block = blocknr;
656 if (i > 0) {
657 other = btrfs_node_blockptr(parent, i - 1);
658 close = close_blocks(blocknr, other, blocksize);
660 if (!close && i < end_slot - 2) {
661 other = btrfs_node_blockptr(parent, i + 1);
662 close = close_blocks(blocknr, other, blocksize);
664 if (close) {
665 last_block = blocknr;
666 continue;
668 if (parent->map_token) {
669 unmap_extent_buffer(parent, parent->map_token,
670 KM_USER1);
671 parent->map_token = NULL;
674 cur = btrfs_find_tree_block(root, blocknr, blocksize);
675 if (cur)
676 uptodate = btrfs_buffer_uptodate(cur, gen);
677 else
678 uptodate = 0;
679 if (!cur || !uptodate) {
680 if (cache_only) {
681 free_extent_buffer(cur);
682 continue;
684 if (!cur) {
685 cur = read_tree_block(root, blocknr,
686 blocksize, gen);
687 } else if (!uptodate) {
688 btrfs_read_buffer(cur, gen);
691 if (search_start == 0)
692 search_start = last_block;
694 btrfs_tree_lock(cur);
695 btrfs_set_lock_blocking(cur);
696 err = __btrfs_cow_block(trans, root, cur, parent, i,
697 &cur, search_start,
698 min(16 * blocksize,
699 (end_slot - i) * blocksize));
700 if (err) {
701 btrfs_tree_unlock(cur);
702 free_extent_buffer(cur);
703 break;
705 search_start = cur->start;
706 last_block = cur->start;
707 *last_ret = search_start;
708 btrfs_tree_unlock(cur);
709 free_extent_buffer(cur);
711 if (parent->map_token) {
712 unmap_extent_buffer(parent, parent->map_token,
713 KM_USER1);
714 parent->map_token = NULL;
716 return err;
720 * The leaf data grows from end-to-front in the node.
721 * this returns the address of the start of the last item,
722 * which is the stop of the leaf data stack
724 static inline unsigned int leaf_data_end(struct btrfs_root *root,
725 struct extent_buffer *leaf)
727 u32 nr = btrfs_header_nritems(leaf);
728 if (nr == 0)
729 return BTRFS_LEAF_DATA_SIZE(root);
730 return btrfs_item_offset_nr(leaf, nr - 1);
734 * extra debugging checks to make sure all the items in a key are
735 * well formed and in the proper order
737 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
738 int level)
740 struct extent_buffer *parent = NULL;
741 struct extent_buffer *node = path->nodes[level];
742 struct btrfs_disk_key parent_key;
743 struct btrfs_disk_key node_key;
744 int parent_slot;
745 int slot;
746 struct btrfs_key cpukey;
747 u32 nritems = btrfs_header_nritems(node);
749 if (path->nodes[level + 1])
750 parent = path->nodes[level + 1];
752 slot = path->slots[level];
753 BUG_ON(nritems == 0);
754 if (parent) {
755 parent_slot = path->slots[level + 1];
756 btrfs_node_key(parent, &parent_key, parent_slot);
757 btrfs_node_key(node, &node_key, 0);
758 BUG_ON(memcmp(&parent_key, &node_key,
759 sizeof(struct btrfs_disk_key)));
760 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
761 btrfs_header_bytenr(node));
763 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
764 if (slot != 0) {
765 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
766 btrfs_node_key(node, &node_key, slot);
767 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
769 if (slot < nritems - 1) {
770 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
771 btrfs_node_key(node, &node_key, slot);
772 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
774 return 0;
778 * extra checking to make sure all the items in a leaf are
779 * well formed and in the proper order
781 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
782 int level)
784 struct extent_buffer *leaf = path->nodes[level];
785 struct extent_buffer *parent = NULL;
786 int parent_slot;
787 struct btrfs_key cpukey;
788 struct btrfs_disk_key parent_key;
789 struct btrfs_disk_key leaf_key;
790 int slot = path->slots[0];
792 u32 nritems = btrfs_header_nritems(leaf);
794 if (path->nodes[level + 1])
795 parent = path->nodes[level + 1];
797 if (nritems == 0)
798 return 0;
800 if (parent) {
801 parent_slot = path->slots[level + 1];
802 btrfs_node_key(parent, &parent_key, parent_slot);
803 btrfs_item_key(leaf, &leaf_key, 0);
805 BUG_ON(memcmp(&parent_key, &leaf_key,
806 sizeof(struct btrfs_disk_key)));
807 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
808 btrfs_header_bytenr(leaf));
810 if (slot != 0 && slot < nritems - 1) {
811 btrfs_item_key(leaf, &leaf_key, slot);
812 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
813 if (comp_keys(&leaf_key, &cpukey) <= 0) {
814 btrfs_print_leaf(root, leaf);
815 printk(KERN_CRIT "slot %d offset bad key\n", slot);
816 BUG_ON(1);
818 if (btrfs_item_offset_nr(leaf, slot - 1) !=
819 btrfs_item_end_nr(leaf, slot)) {
820 btrfs_print_leaf(root, leaf);
821 printk(KERN_CRIT "slot %d offset bad\n", slot);
822 BUG_ON(1);
825 if (slot < nritems - 1) {
826 btrfs_item_key(leaf, &leaf_key, slot);
827 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
828 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
829 if (btrfs_item_offset_nr(leaf, slot) !=
830 btrfs_item_end_nr(leaf, slot + 1)) {
831 btrfs_print_leaf(root, leaf);
832 printk(KERN_CRIT "slot %d offset bad\n", slot);
833 BUG_ON(1);
836 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
837 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
838 return 0;
841 static noinline int check_block(struct btrfs_root *root,
842 struct btrfs_path *path, int level)
844 return 0;
845 if (level == 0)
846 return check_leaf(root, path, level);
847 return check_node(root, path, level);
851 * search for key in the extent_buffer. The items start at offset p,
852 * and they are item_size apart. There are 'max' items in p.
854 * the slot in the array is returned via slot, and it points to
855 * the place where you would insert key if it is not found in
856 * the array.
858 * slot may point to max if the key is bigger than all of the keys
860 static noinline int generic_bin_search(struct extent_buffer *eb,
861 unsigned long p,
862 int item_size, struct btrfs_key *key,
863 int max, int *slot)
865 int low = 0;
866 int high = max;
867 int mid;
868 int ret;
869 struct btrfs_disk_key *tmp = NULL;
870 struct btrfs_disk_key unaligned;
871 unsigned long offset;
872 char *map_token = NULL;
873 char *kaddr = NULL;
874 unsigned long map_start = 0;
875 unsigned long map_len = 0;
876 int err;
878 while (low < high) {
879 mid = (low + high) / 2;
880 offset = p + mid * item_size;
882 if (!map_token || offset < map_start ||
883 (offset + sizeof(struct btrfs_disk_key)) >
884 map_start + map_len) {
885 if (map_token) {
886 unmap_extent_buffer(eb, map_token, KM_USER0);
887 map_token = NULL;
890 err = map_private_extent_buffer(eb, offset,
891 sizeof(struct btrfs_disk_key),
892 &map_token, &kaddr,
893 &map_start, &map_len, KM_USER0);
895 if (!err) {
896 tmp = (struct btrfs_disk_key *)(kaddr + offset -
897 map_start);
898 } else {
899 read_extent_buffer(eb, &unaligned,
900 offset, sizeof(unaligned));
901 tmp = &unaligned;
904 } else {
905 tmp = (struct btrfs_disk_key *)(kaddr + offset -
906 map_start);
908 ret = comp_keys(tmp, key);
910 if (ret < 0)
911 low = mid + 1;
912 else if (ret > 0)
913 high = mid;
914 else {
915 *slot = mid;
916 if (map_token)
917 unmap_extent_buffer(eb, map_token, KM_USER0);
918 return 0;
921 *slot = low;
922 if (map_token)
923 unmap_extent_buffer(eb, map_token, KM_USER0);
924 return 1;
928 * simple bin_search frontend that does the right thing for
929 * leaves vs nodes
931 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
932 int level, int *slot)
934 if (level == 0) {
935 return generic_bin_search(eb,
936 offsetof(struct btrfs_leaf, items),
937 sizeof(struct btrfs_item),
938 key, btrfs_header_nritems(eb),
939 slot);
940 } else {
941 return generic_bin_search(eb,
942 offsetof(struct btrfs_node, ptrs),
943 sizeof(struct btrfs_key_ptr),
944 key, btrfs_header_nritems(eb),
945 slot);
947 return -1;
950 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
951 int level, int *slot)
953 return bin_search(eb, key, level, slot);
956 static void root_add_used(struct btrfs_root *root, u32 size)
958 spin_lock(&root->accounting_lock);
959 btrfs_set_root_used(&root->root_item,
960 btrfs_root_used(&root->root_item) + size);
961 spin_unlock(&root->accounting_lock);
964 static void root_sub_used(struct btrfs_root *root, u32 size)
966 spin_lock(&root->accounting_lock);
967 btrfs_set_root_used(&root->root_item,
968 btrfs_root_used(&root->root_item) - size);
969 spin_unlock(&root->accounting_lock);
972 /* given a node and slot number, this reads the blocks it points to. The
973 * extent buffer is returned with a reference taken (but unlocked).
974 * NULL is returned on error.
976 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
977 struct extent_buffer *parent, int slot)
979 int level = btrfs_header_level(parent);
980 if (slot < 0)
981 return NULL;
982 if (slot >= btrfs_header_nritems(parent))
983 return NULL;
985 BUG_ON(level == 0);
987 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
988 btrfs_level_size(root, level - 1),
989 btrfs_node_ptr_generation(parent, slot));
993 * node level balancing, used to make sure nodes are in proper order for
994 * item deletion. We balance from the top down, so we have to make sure
995 * that a deletion won't leave an node completely empty later on.
997 static noinline int balance_level(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path, int level)
1001 struct extent_buffer *right = NULL;
1002 struct extent_buffer *mid;
1003 struct extent_buffer *left = NULL;
1004 struct extent_buffer *parent = NULL;
1005 int ret = 0;
1006 int wret;
1007 int pslot;
1008 int orig_slot = path->slots[level];
1009 u64 orig_ptr;
1011 if (level == 0)
1012 return 0;
1014 mid = path->nodes[level];
1016 WARN_ON(!path->locks[level]);
1017 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1019 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1021 if (level < BTRFS_MAX_LEVEL - 1)
1022 parent = path->nodes[level + 1];
1023 pslot = path->slots[level + 1];
1026 * deal with the case where there is only one pointer in the root
1027 * by promoting the node below to a root
1029 if (!parent) {
1030 struct extent_buffer *child;
1032 if (btrfs_header_nritems(mid) != 1)
1033 return 0;
1035 /* promote the child to a root */
1036 child = read_node_slot(root, mid, 0);
1037 BUG_ON(!child);
1038 btrfs_tree_lock(child);
1039 btrfs_set_lock_blocking(child);
1040 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1041 if (ret) {
1042 btrfs_tree_unlock(child);
1043 free_extent_buffer(child);
1044 goto enospc;
1047 spin_lock(&root->node_lock);
1048 root->node = child;
1049 spin_unlock(&root->node_lock);
1051 add_root_to_dirty_list(root);
1052 btrfs_tree_unlock(child);
1054 path->locks[level] = 0;
1055 path->nodes[level] = NULL;
1056 clean_tree_block(trans, root, mid);
1057 btrfs_tree_unlock(mid);
1058 /* once for the path */
1059 free_extent_buffer(mid);
1061 root_sub_used(root, mid->len);
1062 btrfs_free_tree_block(trans, root, mid, 0, 1);
1063 /* once for the root ptr */
1064 free_extent_buffer(mid);
1065 return 0;
1067 if (btrfs_header_nritems(mid) >
1068 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1069 return 0;
1071 btrfs_header_nritems(mid);
1073 left = read_node_slot(root, parent, pslot - 1);
1074 if (left) {
1075 btrfs_tree_lock(left);
1076 btrfs_set_lock_blocking(left);
1077 wret = btrfs_cow_block(trans, root, left,
1078 parent, pslot - 1, &left);
1079 if (wret) {
1080 ret = wret;
1081 goto enospc;
1084 right = read_node_slot(root, parent, pslot + 1);
1085 if (right) {
1086 btrfs_tree_lock(right);
1087 btrfs_set_lock_blocking(right);
1088 wret = btrfs_cow_block(trans, root, right,
1089 parent, pslot + 1, &right);
1090 if (wret) {
1091 ret = wret;
1092 goto enospc;
1096 /* first, try to make some room in the middle buffer */
1097 if (left) {
1098 orig_slot += btrfs_header_nritems(left);
1099 wret = push_node_left(trans, root, left, mid, 1);
1100 if (wret < 0)
1101 ret = wret;
1102 btrfs_header_nritems(mid);
1106 * then try to empty the right most buffer into the middle
1108 if (right) {
1109 wret = push_node_left(trans, root, mid, right, 1);
1110 if (wret < 0 && wret != -ENOSPC)
1111 ret = wret;
1112 if (btrfs_header_nritems(right) == 0) {
1113 clean_tree_block(trans, root, right);
1114 btrfs_tree_unlock(right);
1115 wret = del_ptr(trans, root, path, level + 1, pslot +
1117 if (wret)
1118 ret = wret;
1119 root_sub_used(root, right->len);
1120 btrfs_free_tree_block(trans, root, right, 0, 1);
1121 free_extent_buffer(right);
1122 right = NULL;
1123 } else {
1124 struct btrfs_disk_key right_key;
1125 btrfs_node_key(right, &right_key, 0);
1126 btrfs_set_node_key(parent, &right_key, pslot + 1);
1127 btrfs_mark_buffer_dirty(parent);
1130 if (btrfs_header_nritems(mid) == 1) {
1132 * we're not allowed to leave a node with one item in the
1133 * tree during a delete. A deletion from lower in the tree
1134 * could try to delete the only pointer in this node.
1135 * So, pull some keys from the left.
1136 * There has to be a left pointer at this point because
1137 * otherwise we would have pulled some pointers from the
1138 * right
1140 BUG_ON(!left);
1141 wret = balance_node_right(trans, root, mid, left);
1142 if (wret < 0) {
1143 ret = wret;
1144 goto enospc;
1146 if (wret == 1) {
1147 wret = push_node_left(trans, root, left, mid, 1);
1148 if (wret < 0)
1149 ret = wret;
1151 BUG_ON(wret == 1);
1153 if (btrfs_header_nritems(mid) == 0) {
1154 clean_tree_block(trans, root, mid);
1155 btrfs_tree_unlock(mid);
1156 wret = del_ptr(trans, root, path, level + 1, pslot);
1157 if (wret)
1158 ret = wret;
1159 root_sub_used(root, mid->len);
1160 btrfs_free_tree_block(trans, root, mid, 0, 1);
1161 free_extent_buffer(mid);
1162 mid = NULL;
1163 } else {
1164 /* update the parent key to reflect our changes */
1165 struct btrfs_disk_key mid_key;
1166 btrfs_node_key(mid, &mid_key, 0);
1167 btrfs_set_node_key(parent, &mid_key, pslot);
1168 btrfs_mark_buffer_dirty(parent);
1171 /* update the path */
1172 if (left) {
1173 if (btrfs_header_nritems(left) > orig_slot) {
1174 extent_buffer_get(left);
1175 /* left was locked after cow */
1176 path->nodes[level] = left;
1177 path->slots[level + 1] -= 1;
1178 path->slots[level] = orig_slot;
1179 if (mid) {
1180 btrfs_tree_unlock(mid);
1181 free_extent_buffer(mid);
1183 } else {
1184 orig_slot -= btrfs_header_nritems(left);
1185 path->slots[level] = orig_slot;
1188 /* double check we haven't messed things up */
1189 check_block(root, path, level);
1190 if (orig_ptr !=
1191 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1192 BUG();
1193 enospc:
1194 if (right) {
1195 btrfs_tree_unlock(right);
1196 free_extent_buffer(right);
1198 if (left) {
1199 if (path->nodes[level] != left)
1200 btrfs_tree_unlock(left);
1201 free_extent_buffer(left);
1203 return ret;
1206 /* Node balancing for insertion. Here we only split or push nodes around
1207 * when they are completely full. This is also done top down, so we
1208 * have to be pessimistic.
1210 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root,
1212 struct btrfs_path *path, int level)
1214 struct extent_buffer *right = NULL;
1215 struct extent_buffer *mid;
1216 struct extent_buffer *left = NULL;
1217 struct extent_buffer *parent = NULL;
1218 int ret = 0;
1219 int wret;
1220 int pslot;
1221 int orig_slot = path->slots[level];
1223 if (level == 0)
1224 return 1;
1226 mid = path->nodes[level];
1227 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1229 if (level < BTRFS_MAX_LEVEL - 1)
1230 parent = path->nodes[level + 1];
1231 pslot = path->slots[level + 1];
1233 if (!parent)
1234 return 1;
1236 left = read_node_slot(root, parent, pslot - 1);
1238 /* first, try to make some room in the middle buffer */
1239 if (left) {
1240 u32 left_nr;
1242 btrfs_tree_lock(left);
1243 btrfs_set_lock_blocking(left);
1245 left_nr = btrfs_header_nritems(left);
1246 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1247 wret = 1;
1248 } else {
1249 ret = btrfs_cow_block(trans, root, left, parent,
1250 pslot - 1, &left);
1251 if (ret)
1252 wret = 1;
1253 else {
1254 wret = push_node_left(trans, root,
1255 left, mid, 0);
1258 if (wret < 0)
1259 ret = wret;
1260 if (wret == 0) {
1261 struct btrfs_disk_key disk_key;
1262 orig_slot += left_nr;
1263 btrfs_node_key(mid, &disk_key, 0);
1264 btrfs_set_node_key(parent, &disk_key, pslot);
1265 btrfs_mark_buffer_dirty(parent);
1266 if (btrfs_header_nritems(left) > orig_slot) {
1267 path->nodes[level] = left;
1268 path->slots[level + 1] -= 1;
1269 path->slots[level] = orig_slot;
1270 btrfs_tree_unlock(mid);
1271 free_extent_buffer(mid);
1272 } else {
1273 orig_slot -=
1274 btrfs_header_nritems(left);
1275 path->slots[level] = orig_slot;
1276 btrfs_tree_unlock(left);
1277 free_extent_buffer(left);
1279 return 0;
1281 btrfs_tree_unlock(left);
1282 free_extent_buffer(left);
1284 right = read_node_slot(root, parent, pslot + 1);
1287 * then try to empty the right most buffer into the middle
1289 if (right) {
1290 u32 right_nr;
1292 btrfs_tree_lock(right);
1293 btrfs_set_lock_blocking(right);
1295 right_nr = btrfs_header_nritems(right);
1296 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1297 wret = 1;
1298 } else {
1299 ret = btrfs_cow_block(trans, root, right,
1300 parent, pslot + 1,
1301 &right);
1302 if (ret)
1303 wret = 1;
1304 else {
1305 wret = balance_node_right(trans, root,
1306 right, mid);
1309 if (wret < 0)
1310 ret = wret;
1311 if (wret == 0) {
1312 struct btrfs_disk_key disk_key;
1314 btrfs_node_key(right, &disk_key, 0);
1315 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1316 btrfs_mark_buffer_dirty(parent);
1318 if (btrfs_header_nritems(mid) <= orig_slot) {
1319 path->nodes[level] = right;
1320 path->slots[level + 1] += 1;
1321 path->slots[level] = orig_slot -
1322 btrfs_header_nritems(mid);
1323 btrfs_tree_unlock(mid);
1324 free_extent_buffer(mid);
1325 } else {
1326 btrfs_tree_unlock(right);
1327 free_extent_buffer(right);
1329 return 0;
1331 btrfs_tree_unlock(right);
1332 free_extent_buffer(right);
1334 return 1;
1338 * readahead one full node of leaves, finding things that are close
1339 * to the block in 'slot', and triggering ra on them.
1341 static void reada_for_search(struct btrfs_root *root,
1342 struct btrfs_path *path,
1343 int level, int slot, u64 objectid)
1345 struct extent_buffer *node;
1346 struct btrfs_disk_key disk_key;
1347 u32 nritems;
1348 u64 search;
1349 u64 target;
1350 u64 nread = 0;
1351 int direction = path->reada;
1352 struct extent_buffer *eb;
1353 u32 nr;
1354 u32 blocksize;
1355 u32 nscan = 0;
1357 if (level != 1)
1358 return;
1360 if (!path->nodes[level])
1361 return;
1363 node = path->nodes[level];
1365 search = btrfs_node_blockptr(node, slot);
1366 blocksize = btrfs_level_size(root, level - 1);
1367 eb = btrfs_find_tree_block(root, search, blocksize);
1368 if (eb) {
1369 free_extent_buffer(eb);
1370 return;
1373 target = search;
1375 nritems = btrfs_header_nritems(node);
1376 nr = slot;
1377 while (1) {
1378 if (direction < 0) {
1379 if (nr == 0)
1380 break;
1381 nr--;
1382 } else if (direction > 0) {
1383 nr++;
1384 if (nr >= nritems)
1385 break;
1387 if (path->reada < 0 && objectid) {
1388 btrfs_node_key(node, &disk_key, nr);
1389 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1390 break;
1392 search = btrfs_node_blockptr(node, nr);
1393 if ((search <= target && target - search <= 65536) ||
1394 (search > target && search - target <= 65536)) {
1395 readahead_tree_block(root, search, blocksize,
1396 btrfs_node_ptr_generation(node, nr));
1397 nread += blocksize;
1399 nscan++;
1400 if ((nread > 65536 || nscan > 32))
1401 break;
1406 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1407 * cache
1409 static noinline int reada_for_balance(struct btrfs_root *root,
1410 struct btrfs_path *path, int level)
1412 int slot;
1413 int nritems;
1414 struct extent_buffer *parent;
1415 struct extent_buffer *eb;
1416 u64 gen;
1417 u64 block1 = 0;
1418 u64 block2 = 0;
1419 int ret = 0;
1420 int blocksize;
1422 parent = path->nodes[level + 1];
1423 if (!parent)
1424 return 0;
1426 nritems = btrfs_header_nritems(parent);
1427 slot = path->slots[level + 1];
1428 blocksize = btrfs_level_size(root, level);
1430 if (slot > 0) {
1431 block1 = btrfs_node_blockptr(parent, slot - 1);
1432 gen = btrfs_node_ptr_generation(parent, slot - 1);
1433 eb = btrfs_find_tree_block(root, block1, blocksize);
1434 if (eb && btrfs_buffer_uptodate(eb, gen))
1435 block1 = 0;
1436 free_extent_buffer(eb);
1438 if (slot + 1 < nritems) {
1439 block2 = btrfs_node_blockptr(parent, slot + 1);
1440 gen = btrfs_node_ptr_generation(parent, slot + 1);
1441 eb = btrfs_find_tree_block(root, block2, blocksize);
1442 if (eb && btrfs_buffer_uptodate(eb, gen))
1443 block2 = 0;
1444 free_extent_buffer(eb);
1446 if (block1 || block2) {
1447 ret = -EAGAIN;
1449 /* release the whole path */
1450 btrfs_release_path(root, path);
1452 /* read the blocks */
1453 if (block1)
1454 readahead_tree_block(root, block1, blocksize, 0);
1455 if (block2)
1456 readahead_tree_block(root, block2, blocksize, 0);
1458 if (block1) {
1459 eb = read_tree_block(root, block1, blocksize, 0);
1460 free_extent_buffer(eb);
1462 if (block2) {
1463 eb = read_tree_block(root, block2, blocksize, 0);
1464 free_extent_buffer(eb);
1467 return ret;
1472 * when we walk down the tree, it is usually safe to unlock the higher layers
1473 * in the tree. The exceptions are when our path goes through slot 0, because
1474 * operations on the tree might require changing key pointers higher up in the
1475 * tree.
1477 * callers might also have set path->keep_locks, which tells this code to keep
1478 * the lock if the path points to the last slot in the block. This is part of
1479 * walking through the tree, and selecting the next slot in the higher block.
1481 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1482 * if lowest_unlock is 1, level 0 won't be unlocked
1484 static noinline void unlock_up(struct btrfs_path *path, int level,
1485 int lowest_unlock)
1487 int i;
1488 int skip_level = level;
1489 int no_skips = 0;
1490 struct extent_buffer *t;
1492 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1493 if (!path->nodes[i])
1494 break;
1495 if (!path->locks[i])
1496 break;
1497 if (!no_skips && path->slots[i] == 0) {
1498 skip_level = i + 1;
1499 continue;
1501 if (!no_skips && path->keep_locks) {
1502 u32 nritems;
1503 t = path->nodes[i];
1504 nritems = btrfs_header_nritems(t);
1505 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1506 skip_level = i + 1;
1507 continue;
1510 if (skip_level < i && i >= lowest_unlock)
1511 no_skips = 1;
1513 t = path->nodes[i];
1514 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1515 btrfs_tree_unlock(t);
1516 path->locks[i] = 0;
1522 * This releases any locks held in the path starting at level and
1523 * going all the way up to the root.
1525 * btrfs_search_slot will keep the lock held on higher nodes in a few
1526 * corner cases, such as COW of the block at slot zero in the node. This
1527 * ignores those rules, and it should only be called when there are no
1528 * more updates to be done higher up in the tree.
1530 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1532 int i;
1534 if (path->keep_locks)
1535 return;
1537 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1538 if (!path->nodes[i])
1539 continue;
1540 if (!path->locks[i])
1541 continue;
1542 btrfs_tree_unlock(path->nodes[i]);
1543 path->locks[i] = 0;
1548 * helper function for btrfs_search_slot. The goal is to find a block
1549 * in cache without setting the path to blocking. If we find the block
1550 * we return zero and the path is unchanged.
1552 * If we can't find the block, we set the path blocking and do some
1553 * reada. -EAGAIN is returned and the search must be repeated.
1555 static int
1556 read_block_for_search(struct btrfs_trans_handle *trans,
1557 struct btrfs_root *root, struct btrfs_path *p,
1558 struct extent_buffer **eb_ret, int level, int slot,
1559 struct btrfs_key *key)
1561 u64 blocknr;
1562 u64 gen;
1563 u32 blocksize;
1564 struct extent_buffer *b = *eb_ret;
1565 struct extent_buffer *tmp;
1566 int ret;
1568 blocknr = btrfs_node_blockptr(b, slot);
1569 gen = btrfs_node_ptr_generation(b, slot);
1570 blocksize = btrfs_level_size(root, level - 1);
1572 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1573 if (tmp) {
1574 if (btrfs_buffer_uptodate(tmp, 0)) {
1575 if (btrfs_buffer_uptodate(tmp, gen)) {
1577 * we found an up to date block without
1578 * sleeping, return
1579 * right away
1581 *eb_ret = tmp;
1582 return 0;
1584 /* the pages were up to date, but we failed
1585 * the generation number check. Do a full
1586 * read for the generation number that is correct.
1587 * We must do this without dropping locks so
1588 * we can trust our generation number
1590 free_extent_buffer(tmp);
1591 tmp = read_tree_block(root, blocknr, blocksize, gen);
1592 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1593 *eb_ret = tmp;
1594 return 0;
1596 free_extent_buffer(tmp);
1597 btrfs_release_path(NULL, p);
1598 return -EIO;
1603 * reduce lock contention at high levels
1604 * of the btree by dropping locks before
1605 * we read. Don't release the lock on the current
1606 * level because we need to walk this node to figure
1607 * out which blocks to read.
1609 btrfs_unlock_up_safe(p, level + 1);
1610 btrfs_set_path_blocking(p);
1612 free_extent_buffer(tmp);
1613 if (p->reada)
1614 reada_for_search(root, p, level, slot, key->objectid);
1616 btrfs_release_path(NULL, p);
1618 ret = -EAGAIN;
1619 tmp = read_tree_block(root, blocknr, blocksize, 0);
1620 if (tmp) {
1622 * If the read above didn't mark this buffer up to date,
1623 * it will never end up being up to date. Set ret to EIO now
1624 * and give up so that our caller doesn't loop forever
1625 * on our EAGAINs.
1627 if (!btrfs_buffer_uptodate(tmp, 0))
1628 ret = -EIO;
1629 free_extent_buffer(tmp);
1631 return ret;
1635 * helper function for btrfs_search_slot. This does all of the checks
1636 * for node-level blocks and does any balancing required based on
1637 * the ins_len.
1639 * If no extra work was required, zero is returned. If we had to
1640 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1641 * start over
1643 static int
1644 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1645 struct btrfs_root *root, struct btrfs_path *p,
1646 struct extent_buffer *b, int level, int ins_len)
1648 int ret;
1649 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1650 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1651 int sret;
1653 sret = reada_for_balance(root, p, level);
1654 if (sret)
1655 goto again;
1657 btrfs_set_path_blocking(p);
1658 sret = split_node(trans, root, p, level);
1659 btrfs_clear_path_blocking(p, NULL);
1661 BUG_ON(sret > 0);
1662 if (sret) {
1663 ret = sret;
1664 goto done;
1666 b = p->nodes[level];
1667 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1668 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1669 int sret;
1671 sret = reada_for_balance(root, p, level);
1672 if (sret)
1673 goto again;
1675 btrfs_set_path_blocking(p);
1676 sret = balance_level(trans, root, p, level);
1677 btrfs_clear_path_blocking(p, NULL);
1679 if (sret) {
1680 ret = sret;
1681 goto done;
1683 b = p->nodes[level];
1684 if (!b) {
1685 btrfs_release_path(NULL, p);
1686 goto again;
1688 BUG_ON(btrfs_header_nritems(b) == 1);
1690 return 0;
1692 again:
1693 ret = -EAGAIN;
1694 done:
1695 return ret;
1699 * look for key in the tree. path is filled in with nodes along the way
1700 * if key is found, we return zero and you can find the item in the leaf
1701 * level of the path (level 0)
1703 * If the key isn't found, the path points to the slot where it should
1704 * be inserted, and 1 is returned. If there are other errors during the
1705 * search a negative error number is returned.
1707 * if ins_len > 0, nodes and leaves will be split as we walk down the
1708 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1709 * possible)
1711 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1712 *root, struct btrfs_key *key, struct btrfs_path *p, int
1713 ins_len, int cow)
1715 struct extent_buffer *b;
1716 int slot;
1717 int ret;
1718 int err;
1719 int level;
1720 int lowest_unlock = 1;
1721 u8 lowest_level = 0;
1723 lowest_level = p->lowest_level;
1724 WARN_ON(lowest_level && ins_len > 0);
1725 WARN_ON(p->nodes[0] != NULL);
1727 if (ins_len < 0)
1728 lowest_unlock = 2;
1730 again:
1731 if (p->search_commit_root) {
1732 b = root->commit_root;
1733 extent_buffer_get(b);
1734 if (!p->skip_locking)
1735 btrfs_tree_lock(b);
1736 } else {
1737 if (p->skip_locking)
1738 b = btrfs_root_node(root);
1739 else
1740 b = btrfs_lock_root_node(root);
1743 while (b) {
1744 level = btrfs_header_level(b);
1747 * setup the path here so we can release it under lock
1748 * contention with the cow code
1750 p->nodes[level] = b;
1751 if (!p->skip_locking)
1752 p->locks[level] = 1;
1754 if (cow) {
1756 * if we don't really need to cow this block
1757 * then we don't want to set the path blocking,
1758 * so we test it here
1760 if (!should_cow_block(trans, root, b))
1761 goto cow_done;
1763 btrfs_set_path_blocking(p);
1765 err = btrfs_cow_block(trans, root, b,
1766 p->nodes[level + 1],
1767 p->slots[level + 1], &b);
1768 if (err) {
1769 ret = err;
1770 goto done;
1773 cow_done:
1774 BUG_ON(!cow && ins_len);
1775 if (level != btrfs_header_level(b))
1776 WARN_ON(1);
1777 level = btrfs_header_level(b);
1779 p->nodes[level] = b;
1780 if (!p->skip_locking)
1781 p->locks[level] = 1;
1783 btrfs_clear_path_blocking(p, NULL);
1786 * we have a lock on b and as long as we aren't changing
1787 * the tree, there is no way to for the items in b to change.
1788 * It is safe to drop the lock on our parent before we
1789 * go through the expensive btree search on b.
1791 * If cow is true, then we might be changing slot zero,
1792 * which may require changing the parent. So, we can't
1793 * drop the lock until after we know which slot we're
1794 * operating on.
1796 if (!cow)
1797 btrfs_unlock_up_safe(p, level + 1);
1799 ret = check_block(root, p, level);
1800 if (ret) {
1801 ret = -1;
1802 goto done;
1805 ret = bin_search(b, key, level, &slot);
1807 if (level != 0) {
1808 int dec = 0;
1809 if (ret && slot > 0) {
1810 dec = 1;
1811 slot -= 1;
1813 p->slots[level] = slot;
1814 err = setup_nodes_for_search(trans, root, p, b, level,
1815 ins_len);
1816 if (err == -EAGAIN)
1817 goto again;
1818 if (err) {
1819 ret = err;
1820 goto done;
1822 b = p->nodes[level];
1823 slot = p->slots[level];
1825 unlock_up(p, level, lowest_unlock);
1827 if (level == lowest_level) {
1828 if (dec)
1829 p->slots[level]++;
1830 goto done;
1833 err = read_block_for_search(trans, root, p,
1834 &b, level, slot, key);
1835 if (err == -EAGAIN)
1836 goto again;
1837 if (err) {
1838 ret = err;
1839 goto done;
1842 if (!p->skip_locking) {
1843 btrfs_clear_path_blocking(p, NULL);
1844 err = btrfs_try_spin_lock(b);
1846 if (!err) {
1847 btrfs_set_path_blocking(p);
1848 btrfs_tree_lock(b);
1849 btrfs_clear_path_blocking(p, b);
1852 } else {
1853 p->slots[level] = slot;
1854 if (ins_len > 0 &&
1855 btrfs_leaf_free_space(root, b) < ins_len) {
1856 btrfs_set_path_blocking(p);
1857 err = split_leaf(trans, root, key,
1858 p, ins_len, ret == 0);
1859 btrfs_clear_path_blocking(p, NULL);
1861 BUG_ON(err > 0);
1862 if (err) {
1863 ret = err;
1864 goto done;
1867 if (!p->search_for_split)
1868 unlock_up(p, level, lowest_unlock);
1869 goto done;
1872 ret = 1;
1873 done:
1875 * we don't really know what they plan on doing with the path
1876 * from here on, so for now just mark it as blocking
1878 if (!p->leave_spinning)
1879 btrfs_set_path_blocking(p);
1880 if (ret < 0)
1881 btrfs_release_path(root, p);
1882 return ret;
1886 * adjust the pointers going up the tree, starting at level
1887 * making sure the right key of each node is points to 'key'.
1888 * This is used after shifting pointers to the left, so it stops
1889 * fixing up pointers when a given leaf/node is not in slot 0 of the
1890 * higher levels
1892 * If this fails to write a tree block, it returns -1, but continues
1893 * fixing up the blocks in ram so the tree is consistent.
1895 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root, struct btrfs_path *path,
1897 struct btrfs_disk_key *key, int level)
1899 int i;
1900 int ret = 0;
1901 struct extent_buffer *t;
1903 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1904 int tslot = path->slots[i];
1905 if (!path->nodes[i])
1906 break;
1907 t = path->nodes[i];
1908 btrfs_set_node_key(t, key, tslot);
1909 btrfs_mark_buffer_dirty(path->nodes[i]);
1910 if (tslot != 0)
1911 break;
1913 return ret;
1917 * update item key.
1919 * This function isn't completely safe. It's the caller's responsibility
1920 * that the new key won't break the order
1922 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1923 struct btrfs_root *root, struct btrfs_path *path,
1924 struct btrfs_key *new_key)
1926 struct btrfs_disk_key disk_key;
1927 struct extent_buffer *eb;
1928 int slot;
1930 eb = path->nodes[0];
1931 slot = path->slots[0];
1932 if (slot > 0) {
1933 btrfs_item_key(eb, &disk_key, slot - 1);
1934 if (comp_keys(&disk_key, new_key) >= 0)
1935 return -1;
1937 if (slot < btrfs_header_nritems(eb) - 1) {
1938 btrfs_item_key(eb, &disk_key, slot + 1);
1939 if (comp_keys(&disk_key, new_key) <= 0)
1940 return -1;
1943 btrfs_cpu_key_to_disk(&disk_key, new_key);
1944 btrfs_set_item_key(eb, &disk_key, slot);
1945 btrfs_mark_buffer_dirty(eb);
1946 if (slot == 0)
1947 fixup_low_keys(trans, root, path, &disk_key, 1);
1948 return 0;
1952 * try to push data from one node into the next node left in the
1953 * tree.
1955 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1956 * error, and > 0 if there was no room in the left hand block.
1958 static int push_node_left(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root, struct extent_buffer *dst,
1960 struct extent_buffer *src, int empty)
1962 int push_items = 0;
1963 int src_nritems;
1964 int dst_nritems;
1965 int ret = 0;
1967 src_nritems = btrfs_header_nritems(src);
1968 dst_nritems = btrfs_header_nritems(dst);
1969 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1970 WARN_ON(btrfs_header_generation(src) != trans->transid);
1971 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1973 if (!empty && src_nritems <= 8)
1974 return 1;
1976 if (push_items <= 0)
1977 return 1;
1979 if (empty) {
1980 push_items = min(src_nritems, push_items);
1981 if (push_items < src_nritems) {
1982 /* leave at least 8 pointers in the node if
1983 * we aren't going to empty it
1985 if (src_nritems - push_items < 8) {
1986 if (push_items <= 8)
1987 return 1;
1988 push_items -= 8;
1991 } else
1992 push_items = min(src_nritems - 8, push_items);
1994 copy_extent_buffer(dst, src,
1995 btrfs_node_key_ptr_offset(dst_nritems),
1996 btrfs_node_key_ptr_offset(0),
1997 push_items * sizeof(struct btrfs_key_ptr));
1999 if (push_items < src_nritems) {
2000 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2001 btrfs_node_key_ptr_offset(push_items),
2002 (src_nritems - push_items) *
2003 sizeof(struct btrfs_key_ptr));
2005 btrfs_set_header_nritems(src, src_nritems - push_items);
2006 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2007 btrfs_mark_buffer_dirty(src);
2008 btrfs_mark_buffer_dirty(dst);
2010 return ret;
2014 * try to push data from one node into the next node right in the
2015 * tree.
2017 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2018 * error, and > 0 if there was no room in the right hand block.
2020 * this will only push up to 1/2 the contents of the left node over
2022 static int balance_node_right(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root,
2024 struct extent_buffer *dst,
2025 struct extent_buffer *src)
2027 int push_items = 0;
2028 int max_push;
2029 int src_nritems;
2030 int dst_nritems;
2031 int ret = 0;
2033 WARN_ON(btrfs_header_generation(src) != trans->transid);
2034 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2036 src_nritems = btrfs_header_nritems(src);
2037 dst_nritems = btrfs_header_nritems(dst);
2038 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2039 if (push_items <= 0)
2040 return 1;
2042 if (src_nritems < 4)
2043 return 1;
2045 max_push = src_nritems / 2 + 1;
2046 /* don't try to empty the node */
2047 if (max_push >= src_nritems)
2048 return 1;
2050 if (max_push < push_items)
2051 push_items = max_push;
2053 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2054 btrfs_node_key_ptr_offset(0),
2055 (dst_nritems) *
2056 sizeof(struct btrfs_key_ptr));
2058 copy_extent_buffer(dst, src,
2059 btrfs_node_key_ptr_offset(0),
2060 btrfs_node_key_ptr_offset(src_nritems - push_items),
2061 push_items * sizeof(struct btrfs_key_ptr));
2063 btrfs_set_header_nritems(src, src_nritems - push_items);
2064 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2066 btrfs_mark_buffer_dirty(src);
2067 btrfs_mark_buffer_dirty(dst);
2069 return ret;
2073 * helper function to insert a new root level in the tree.
2074 * A new node is allocated, and a single item is inserted to
2075 * point to the existing root
2077 * returns zero on success or < 0 on failure.
2079 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2080 struct btrfs_root *root,
2081 struct btrfs_path *path, int level)
2083 u64 lower_gen;
2084 struct extent_buffer *lower;
2085 struct extent_buffer *c;
2086 struct extent_buffer *old;
2087 struct btrfs_disk_key lower_key;
2089 BUG_ON(path->nodes[level]);
2090 BUG_ON(path->nodes[level-1] != root->node);
2092 lower = path->nodes[level-1];
2093 if (level == 1)
2094 btrfs_item_key(lower, &lower_key, 0);
2095 else
2096 btrfs_node_key(lower, &lower_key, 0);
2098 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2099 root->root_key.objectid, &lower_key,
2100 level, root->node->start, 0);
2101 if (IS_ERR(c))
2102 return PTR_ERR(c);
2104 root_add_used(root, root->nodesize);
2106 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2107 btrfs_set_header_nritems(c, 1);
2108 btrfs_set_header_level(c, level);
2109 btrfs_set_header_bytenr(c, c->start);
2110 btrfs_set_header_generation(c, trans->transid);
2111 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2112 btrfs_set_header_owner(c, root->root_key.objectid);
2114 write_extent_buffer(c, root->fs_info->fsid,
2115 (unsigned long)btrfs_header_fsid(c),
2116 BTRFS_FSID_SIZE);
2118 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2119 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2120 BTRFS_UUID_SIZE);
2122 btrfs_set_node_key(c, &lower_key, 0);
2123 btrfs_set_node_blockptr(c, 0, lower->start);
2124 lower_gen = btrfs_header_generation(lower);
2125 WARN_ON(lower_gen != trans->transid);
2127 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2129 btrfs_mark_buffer_dirty(c);
2131 spin_lock(&root->node_lock);
2132 old = root->node;
2133 root->node = c;
2134 spin_unlock(&root->node_lock);
2136 /* the super has an extra ref to root->node */
2137 free_extent_buffer(old);
2139 add_root_to_dirty_list(root);
2140 extent_buffer_get(c);
2141 path->nodes[level] = c;
2142 path->locks[level] = 1;
2143 path->slots[level] = 0;
2144 return 0;
2148 * worker function to insert a single pointer in a node.
2149 * the node should have enough room for the pointer already
2151 * slot and level indicate where you want the key to go, and
2152 * blocknr is the block the key points to.
2154 * returns zero on success and < 0 on any error
2156 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2157 *root, struct btrfs_path *path, struct btrfs_disk_key
2158 *key, u64 bytenr, int slot, int level)
2160 struct extent_buffer *lower;
2161 int nritems;
2163 BUG_ON(!path->nodes[level]);
2164 btrfs_assert_tree_locked(path->nodes[level]);
2165 lower = path->nodes[level];
2166 nritems = btrfs_header_nritems(lower);
2167 BUG_ON(slot > nritems);
2168 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2169 BUG();
2170 if (slot != nritems) {
2171 memmove_extent_buffer(lower,
2172 btrfs_node_key_ptr_offset(slot + 1),
2173 btrfs_node_key_ptr_offset(slot),
2174 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2176 btrfs_set_node_key(lower, key, slot);
2177 btrfs_set_node_blockptr(lower, slot, bytenr);
2178 WARN_ON(trans->transid == 0);
2179 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2180 btrfs_set_header_nritems(lower, nritems + 1);
2181 btrfs_mark_buffer_dirty(lower);
2182 return 0;
2186 * split the node at the specified level in path in two.
2187 * The path is corrected to point to the appropriate node after the split
2189 * Before splitting this tries to make some room in the node by pushing
2190 * left and right, if either one works, it returns right away.
2192 * returns 0 on success and < 0 on failure
2194 static noinline int split_node(struct btrfs_trans_handle *trans,
2195 struct btrfs_root *root,
2196 struct btrfs_path *path, int level)
2198 struct extent_buffer *c;
2199 struct extent_buffer *split;
2200 struct btrfs_disk_key disk_key;
2201 int mid;
2202 int ret;
2203 int wret;
2204 u32 c_nritems;
2206 c = path->nodes[level];
2207 WARN_ON(btrfs_header_generation(c) != trans->transid);
2208 if (c == root->node) {
2209 /* trying to split the root, lets make a new one */
2210 ret = insert_new_root(trans, root, path, level + 1);
2211 if (ret)
2212 return ret;
2213 } else {
2214 ret = push_nodes_for_insert(trans, root, path, level);
2215 c = path->nodes[level];
2216 if (!ret && btrfs_header_nritems(c) <
2217 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2218 return 0;
2219 if (ret < 0)
2220 return ret;
2223 c_nritems = btrfs_header_nritems(c);
2224 mid = (c_nritems + 1) / 2;
2225 btrfs_node_key(c, &disk_key, mid);
2227 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2228 root->root_key.objectid,
2229 &disk_key, level, c->start, 0);
2230 if (IS_ERR(split))
2231 return PTR_ERR(split);
2233 root_add_used(root, root->nodesize);
2235 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2236 btrfs_set_header_level(split, btrfs_header_level(c));
2237 btrfs_set_header_bytenr(split, split->start);
2238 btrfs_set_header_generation(split, trans->transid);
2239 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2240 btrfs_set_header_owner(split, root->root_key.objectid);
2241 write_extent_buffer(split, root->fs_info->fsid,
2242 (unsigned long)btrfs_header_fsid(split),
2243 BTRFS_FSID_SIZE);
2244 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2245 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2246 BTRFS_UUID_SIZE);
2249 copy_extent_buffer(split, c,
2250 btrfs_node_key_ptr_offset(0),
2251 btrfs_node_key_ptr_offset(mid),
2252 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2253 btrfs_set_header_nritems(split, c_nritems - mid);
2254 btrfs_set_header_nritems(c, mid);
2255 ret = 0;
2257 btrfs_mark_buffer_dirty(c);
2258 btrfs_mark_buffer_dirty(split);
2260 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2261 path->slots[level + 1] + 1,
2262 level + 1);
2263 if (wret)
2264 ret = wret;
2266 if (path->slots[level] >= mid) {
2267 path->slots[level] -= mid;
2268 btrfs_tree_unlock(c);
2269 free_extent_buffer(c);
2270 path->nodes[level] = split;
2271 path->slots[level + 1] += 1;
2272 } else {
2273 btrfs_tree_unlock(split);
2274 free_extent_buffer(split);
2276 return ret;
2280 * how many bytes are required to store the items in a leaf. start
2281 * and nr indicate which items in the leaf to check. This totals up the
2282 * space used both by the item structs and the item data
2284 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2286 int data_len;
2287 int nritems = btrfs_header_nritems(l);
2288 int end = min(nritems, start + nr) - 1;
2290 if (!nr)
2291 return 0;
2292 data_len = btrfs_item_end_nr(l, start);
2293 data_len = data_len - btrfs_item_offset_nr(l, end);
2294 data_len += sizeof(struct btrfs_item) * nr;
2295 WARN_ON(data_len < 0);
2296 return data_len;
2300 * The space between the end of the leaf items and
2301 * the start of the leaf data. IOW, how much room
2302 * the leaf has left for both items and data
2304 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2305 struct extent_buffer *leaf)
2307 int nritems = btrfs_header_nritems(leaf);
2308 int ret;
2309 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2310 if (ret < 0) {
2311 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2312 "used %d nritems %d\n",
2313 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2314 leaf_space_used(leaf, 0, nritems), nritems);
2316 return ret;
2320 * min slot controls the lowest index we're willing to push to the
2321 * right. We'll push up to and including min_slot, but no lower
2323 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2324 struct btrfs_root *root,
2325 struct btrfs_path *path,
2326 int data_size, int empty,
2327 struct extent_buffer *right,
2328 int free_space, u32 left_nritems,
2329 u32 min_slot)
2331 struct extent_buffer *left = path->nodes[0];
2332 struct extent_buffer *upper = path->nodes[1];
2333 struct btrfs_disk_key disk_key;
2334 int slot;
2335 u32 i;
2336 int push_space = 0;
2337 int push_items = 0;
2338 struct btrfs_item *item;
2339 u32 nr;
2340 u32 right_nritems;
2341 u32 data_end;
2342 u32 this_item_size;
2344 if (empty)
2345 nr = 0;
2346 else
2347 nr = max_t(u32, 1, min_slot);
2349 if (path->slots[0] >= left_nritems)
2350 push_space += data_size;
2352 slot = path->slots[1];
2353 i = left_nritems - 1;
2354 while (i >= nr) {
2355 item = btrfs_item_nr(left, i);
2357 if (!empty && push_items > 0) {
2358 if (path->slots[0] > i)
2359 break;
2360 if (path->slots[0] == i) {
2361 int space = btrfs_leaf_free_space(root, left);
2362 if (space + push_space * 2 > free_space)
2363 break;
2367 if (path->slots[0] == i)
2368 push_space += data_size;
2370 if (!left->map_token) {
2371 map_extent_buffer(left, (unsigned long)item,
2372 sizeof(struct btrfs_item),
2373 &left->map_token, &left->kaddr,
2374 &left->map_start, &left->map_len,
2375 KM_USER1);
2378 this_item_size = btrfs_item_size(left, item);
2379 if (this_item_size + sizeof(*item) + push_space > free_space)
2380 break;
2382 push_items++;
2383 push_space += this_item_size + sizeof(*item);
2384 if (i == 0)
2385 break;
2386 i--;
2388 if (left->map_token) {
2389 unmap_extent_buffer(left, left->map_token, KM_USER1);
2390 left->map_token = NULL;
2393 if (push_items == 0)
2394 goto out_unlock;
2396 if (!empty && push_items == left_nritems)
2397 WARN_ON(1);
2399 /* push left to right */
2400 right_nritems = btrfs_header_nritems(right);
2402 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2403 push_space -= leaf_data_end(root, left);
2405 /* make room in the right data area */
2406 data_end = leaf_data_end(root, right);
2407 memmove_extent_buffer(right,
2408 btrfs_leaf_data(right) + data_end - push_space,
2409 btrfs_leaf_data(right) + data_end,
2410 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2412 /* copy from the left data area */
2413 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2414 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2415 btrfs_leaf_data(left) + leaf_data_end(root, left),
2416 push_space);
2418 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2419 btrfs_item_nr_offset(0),
2420 right_nritems * sizeof(struct btrfs_item));
2422 /* copy the items from left to right */
2423 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2424 btrfs_item_nr_offset(left_nritems - push_items),
2425 push_items * sizeof(struct btrfs_item));
2427 /* update the item pointers */
2428 right_nritems += push_items;
2429 btrfs_set_header_nritems(right, right_nritems);
2430 push_space = BTRFS_LEAF_DATA_SIZE(root);
2431 for (i = 0; i < right_nritems; i++) {
2432 item = btrfs_item_nr(right, i);
2433 if (!right->map_token) {
2434 map_extent_buffer(right, (unsigned long)item,
2435 sizeof(struct btrfs_item),
2436 &right->map_token, &right->kaddr,
2437 &right->map_start, &right->map_len,
2438 KM_USER1);
2440 push_space -= btrfs_item_size(right, item);
2441 btrfs_set_item_offset(right, item, push_space);
2444 if (right->map_token) {
2445 unmap_extent_buffer(right, right->map_token, KM_USER1);
2446 right->map_token = NULL;
2448 left_nritems -= push_items;
2449 btrfs_set_header_nritems(left, left_nritems);
2451 if (left_nritems)
2452 btrfs_mark_buffer_dirty(left);
2453 else
2454 clean_tree_block(trans, root, left);
2456 btrfs_mark_buffer_dirty(right);
2458 btrfs_item_key(right, &disk_key, 0);
2459 btrfs_set_node_key(upper, &disk_key, slot + 1);
2460 btrfs_mark_buffer_dirty(upper);
2462 /* then fixup the leaf pointer in the path */
2463 if (path->slots[0] >= left_nritems) {
2464 path->slots[0] -= left_nritems;
2465 if (btrfs_header_nritems(path->nodes[0]) == 0)
2466 clean_tree_block(trans, root, path->nodes[0]);
2467 btrfs_tree_unlock(path->nodes[0]);
2468 free_extent_buffer(path->nodes[0]);
2469 path->nodes[0] = right;
2470 path->slots[1] += 1;
2471 } else {
2472 btrfs_tree_unlock(right);
2473 free_extent_buffer(right);
2475 return 0;
2477 out_unlock:
2478 btrfs_tree_unlock(right);
2479 free_extent_buffer(right);
2480 return 1;
2484 * push some data in the path leaf to the right, trying to free up at
2485 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2487 * returns 1 if the push failed because the other node didn't have enough
2488 * room, 0 if everything worked out and < 0 if there were major errors.
2490 * this will push starting from min_slot to the end of the leaf. It won't
2491 * push any slot lower than min_slot
2493 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2494 *root, struct btrfs_path *path,
2495 int min_data_size, int data_size,
2496 int empty, u32 min_slot)
2498 struct extent_buffer *left = path->nodes[0];
2499 struct extent_buffer *right;
2500 struct extent_buffer *upper;
2501 int slot;
2502 int free_space;
2503 u32 left_nritems;
2504 int ret;
2506 if (!path->nodes[1])
2507 return 1;
2509 slot = path->slots[1];
2510 upper = path->nodes[1];
2511 if (slot >= btrfs_header_nritems(upper) - 1)
2512 return 1;
2514 btrfs_assert_tree_locked(path->nodes[1]);
2516 right = read_node_slot(root, upper, slot + 1);
2517 btrfs_tree_lock(right);
2518 btrfs_set_lock_blocking(right);
2520 free_space = btrfs_leaf_free_space(root, right);
2521 if (free_space < data_size)
2522 goto out_unlock;
2524 /* cow and double check */
2525 ret = btrfs_cow_block(trans, root, right, upper,
2526 slot + 1, &right);
2527 if (ret)
2528 goto out_unlock;
2530 free_space = btrfs_leaf_free_space(root, right);
2531 if (free_space < data_size)
2532 goto out_unlock;
2534 left_nritems = btrfs_header_nritems(left);
2535 if (left_nritems == 0)
2536 goto out_unlock;
2538 return __push_leaf_right(trans, root, path, min_data_size, empty,
2539 right, free_space, left_nritems, min_slot);
2540 out_unlock:
2541 btrfs_tree_unlock(right);
2542 free_extent_buffer(right);
2543 return 1;
2547 * push some data in the path leaf to the left, trying to free up at
2548 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2550 * max_slot can put a limit on how far into the leaf we'll push items. The
2551 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2552 * items
2554 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2555 struct btrfs_root *root,
2556 struct btrfs_path *path, int data_size,
2557 int empty, struct extent_buffer *left,
2558 int free_space, u32 right_nritems,
2559 u32 max_slot)
2561 struct btrfs_disk_key disk_key;
2562 struct extent_buffer *right = path->nodes[0];
2563 int i;
2564 int push_space = 0;
2565 int push_items = 0;
2566 struct btrfs_item *item;
2567 u32 old_left_nritems;
2568 u32 nr;
2569 int ret = 0;
2570 int wret;
2571 u32 this_item_size;
2572 u32 old_left_item_size;
2574 if (empty)
2575 nr = min(right_nritems, max_slot);
2576 else
2577 nr = min(right_nritems - 1, max_slot);
2579 for (i = 0; i < nr; i++) {
2580 item = btrfs_item_nr(right, i);
2581 if (!right->map_token) {
2582 map_extent_buffer(right, (unsigned long)item,
2583 sizeof(struct btrfs_item),
2584 &right->map_token, &right->kaddr,
2585 &right->map_start, &right->map_len,
2586 KM_USER1);
2589 if (!empty && push_items > 0) {
2590 if (path->slots[0] < i)
2591 break;
2592 if (path->slots[0] == i) {
2593 int space = btrfs_leaf_free_space(root, right);
2594 if (space + push_space * 2 > free_space)
2595 break;
2599 if (path->slots[0] == i)
2600 push_space += data_size;
2602 this_item_size = btrfs_item_size(right, item);
2603 if (this_item_size + sizeof(*item) + push_space > free_space)
2604 break;
2606 push_items++;
2607 push_space += this_item_size + sizeof(*item);
2610 if (right->map_token) {
2611 unmap_extent_buffer(right, right->map_token, KM_USER1);
2612 right->map_token = NULL;
2615 if (push_items == 0) {
2616 ret = 1;
2617 goto out;
2619 if (!empty && push_items == btrfs_header_nritems(right))
2620 WARN_ON(1);
2622 /* push data from right to left */
2623 copy_extent_buffer(left, right,
2624 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2625 btrfs_item_nr_offset(0),
2626 push_items * sizeof(struct btrfs_item));
2628 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2629 btrfs_item_offset_nr(right, push_items - 1);
2631 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2632 leaf_data_end(root, left) - push_space,
2633 btrfs_leaf_data(right) +
2634 btrfs_item_offset_nr(right, push_items - 1),
2635 push_space);
2636 old_left_nritems = btrfs_header_nritems(left);
2637 BUG_ON(old_left_nritems <= 0);
2639 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2640 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2641 u32 ioff;
2643 item = btrfs_item_nr(left, i);
2644 if (!left->map_token) {
2645 map_extent_buffer(left, (unsigned long)item,
2646 sizeof(struct btrfs_item),
2647 &left->map_token, &left->kaddr,
2648 &left->map_start, &left->map_len,
2649 KM_USER1);
2652 ioff = btrfs_item_offset(left, item);
2653 btrfs_set_item_offset(left, item,
2654 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2656 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2657 if (left->map_token) {
2658 unmap_extent_buffer(left, left->map_token, KM_USER1);
2659 left->map_token = NULL;
2662 /* fixup right node */
2663 if (push_items > right_nritems) {
2664 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2665 right_nritems);
2666 WARN_ON(1);
2669 if (push_items < right_nritems) {
2670 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2671 leaf_data_end(root, right);
2672 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2673 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2674 btrfs_leaf_data(right) +
2675 leaf_data_end(root, right), push_space);
2677 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2678 btrfs_item_nr_offset(push_items),
2679 (btrfs_header_nritems(right) - push_items) *
2680 sizeof(struct btrfs_item));
2682 right_nritems -= push_items;
2683 btrfs_set_header_nritems(right, right_nritems);
2684 push_space = BTRFS_LEAF_DATA_SIZE(root);
2685 for (i = 0; i < right_nritems; i++) {
2686 item = btrfs_item_nr(right, i);
2688 if (!right->map_token) {
2689 map_extent_buffer(right, (unsigned long)item,
2690 sizeof(struct btrfs_item),
2691 &right->map_token, &right->kaddr,
2692 &right->map_start, &right->map_len,
2693 KM_USER1);
2696 push_space = push_space - btrfs_item_size(right, item);
2697 btrfs_set_item_offset(right, item, push_space);
2699 if (right->map_token) {
2700 unmap_extent_buffer(right, right->map_token, KM_USER1);
2701 right->map_token = NULL;
2704 btrfs_mark_buffer_dirty(left);
2705 if (right_nritems)
2706 btrfs_mark_buffer_dirty(right);
2707 else
2708 clean_tree_block(trans, root, right);
2710 btrfs_item_key(right, &disk_key, 0);
2711 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2712 if (wret)
2713 ret = wret;
2715 /* then fixup the leaf pointer in the path */
2716 if (path->slots[0] < push_items) {
2717 path->slots[0] += old_left_nritems;
2718 btrfs_tree_unlock(path->nodes[0]);
2719 free_extent_buffer(path->nodes[0]);
2720 path->nodes[0] = left;
2721 path->slots[1] -= 1;
2722 } else {
2723 btrfs_tree_unlock(left);
2724 free_extent_buffer(left);
2725 path->slots[0] -= push_items;
2727 BUG_ON(path->slots[0] < 0);
2728 return ret;
2729 out:
2730 btrfs_tree_unlock(left);
2731 free_extent_buffer(left);
2732 return ret;
2736 * push some data in the path leaf to the left, trying to free up at
2737 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2739 * max_slot can put a limit on how far into the leaf we'll push items. The
2740 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2741 * items
2743 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2744 *root, struct btrfs_path *path, int min_data_size,
2745 int data_size, int empty, u32 max_slot)
2747 struct extent_buffer *right = path->nodes[0];
2748 struct extent_buffer *left;
2749 int slot;
2750 int free_space;
2751 u32 right_nritems;
2752 int ret = 0;
2754 slot = path->slots[1];
2755 if (slot == 0)
2756 return 1;
2757 if (!path->nodes[1])
2758 return 1;
2760 right_nritems = btrfs_header_nritems(right);
2761 if (right_nritems == 0)
2762 return 1;
2764 btrfs_assert_tree_locked(path->nodes[1]);
2766 left = read_node_slot(root, path->nodes[1], slot - 1);
2767 btrfs_tree_lock(left);
2768 btrfs_set_lock_blocking(left);
2770 free_space = btrfs_leaf_free_space(root, left);
2771 if (free_space < data_size) {
2772 ret = 1;
2773 goto out;
2776 /* cow and double check */
2777 ret = btrfs_cow_block(trans, root, left,
2778 path->nodes[1], slot - 1, &left);
2779 if (ret) {
2780 /* we hit -ENOSPC, but it isn't fatal here */
2781 ret = 1;
2782 goto out;
2785 free_space = btrfs_leaf_free_space(root, left);
2786 if (free_space < data_size) {
2787 ret = 1;
2788 goto out;
2791 return __push_leaf_left(trans, root, path, min_data_size,
2792 empty, left, free_space, right_nritems,
2793 max_slot);
2794 out:
2795 btrfs_tree_unlock(left);
2796 free_extent_buffer(left);
2797 return ret;
2801 * split the path's leaf in two, making sure there is at least data_size
2802 * available for the resulting leaf level of the path.
2804 * returns 0 if all went well and < 0 on failure.
2806 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *root,
2808 struct btrfs_path *path,
2809 struct extent_buffer *l,
2810 struct extent_buffer *right,
2811 int slot, int mid, int nritems)
2813 int data_copy_size;
2814 int rt_data_off;
2815 int i;
2816 int ret = 0;
2817 int wret;
2818 struct btrfs_disk_key disk_key;
2820 nritems = nritems - mid;
2821 btrfs_set_header_nritems(right, nritems);
2822 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2824 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2825 btrfs_item_nr_offset(mid),
2826 nritems * sizeof(struct btrfs_item));
2828 copy_extent_buffer(right, l,
2829 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2830 data_copy_size, btrfs_leaf_data(l) +
2831 leaf_data_end(root, l), data_copy_size);
2833 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2834 btrfs_item_end_nr(l, mid);
2836 for (i = 0; i < nritems; i++) {
2837 struct btrfs_item *item = btrfs_item_nr(right, i);
2838 u32 ioff;
2840 if (!right->map_token) {
2841 map_extent_buffer(right, (unsigned long)item,
2842 sizeof(struct btrfs_item),
2843 &right->map_token, &right->kaddr,
2844 &right->map_start, &right->map_len,
2845 KM_USER1);
2848 ioff = btrfs_item_offset(right, item);
2849 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2852 if (right->map_token) {
2853 unmap_extent_buffer(right, right->map_token, KM_USER1);
2854 right->map_token = NULL;
2857 btrfs_set_header_nritems(l, mid);
2858 ret = 0;
2859 btrfs_item_key(right, &disk_key, 0);
2860 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2861 path->slots[1] + 1, 1);
2862 if (wret)
2863 ret = wret;
2865 btrfs_mark_buffer_dirty(right);
2866 btrfs_mark_buffer_dirty(l);
2867 BUG_ON(path->slots[0] != slot);
2869 if (mid <= slot) {
2870 btrfs_tree_unlock(path->nodes[0]);
2871 free_extent_buffer(path->nodes[0]);
2872 path->nodes[0] = right;
2873 path->slots[0] -= mid;
2874 path->slots[1] += 1;
2875 } else {
2876 btrfs_tree_unlock(right);
2877 free_extent_buffer(right);
2880 BUG_ON(path->slots[0] < 0);
2882 return ret;
2886 * double splits happen when we need to insert a big item in the middle
2887 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2888 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2889 * A B C
2891 * We avoid this by trying to push the items on either side of our target
2892 * into the adjacent leaves. If all goes well we can avoid the double split
2893 * completely.
2895 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2896 struct btrfs_root *root,
2897 struct btrfs_path *path,
2898 int data_size)
2900 int ret;
2901 int progress = 0;
2902 int slot;
2903 u32 nritems;
2905 slot = path->slots[0];
2908 * try to push all the items after our slot into the
2909 * right leaf
2911 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2912 if (ret < 0)
2913 return ret;
2915 if (ret == 0)
2916 progress++;
2918 nritems = btrfs_header_nritems(path->nodes[0]);
2920 * our goal is to get our slot at the start or end of a leaf. If
2921 * we've done so we're done
2923 if (path->slots[0] == 0 || path->slots[0] == nritems)
2924 return 0;
2926 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2927 return 0;
2929 /* try to push all the items before our slot into the next leaf */
2930 slot = path->slots[0];
2931 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2932 if (ret < 0)
2933 return ret;
2935 if (ret == 0)
2936 progress++;
2938 if (progress)
2939 return 0;
2940 return 1;
2944 * split the path's leaf in two, making sure there is at least data_size
2945 * available for the resulting leaf level of the path.
2947 * returns 0 if all went well and < 0 on failure.
2949 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root,
2951 struct btrfs_key *ins_key,
2952 struct btrfs_path *path, int data_size,
2953 int extend)
2955 struct btrfs_disk_key disk_key;
2956 struct extent_buffer *l;
2957 u32 nritems;
2958 int mid;
2959 int slot;
2960 struct extent_buffer *right;
2961 int ret = 0;
2962 int wret;
2963 int split;
2964 int num_doubles = 0;
2965 int tried_avoid_double = 0;
2967 l = path->nodes[0];
2968 slot = path->slots[0];
2969 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2970 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2971 return -EOVERFLOW;
2973 /* first try to make some room by pushing left and right */
2974 if (data_size) {
2975 wret = push_leaf_right(trans, root, path, data_size,
2976 data_size, 0, 0);
2977 if (wret < 0)
2978 return wret;
2979 if (wret) {
2980 wret = push_leaf_left(trans, root, path, data_size,
2981 data_size, 0, (u32)-1);
2982 if (wret < 0)
2983 return wret;
2985 l = path->nodes[0];
2987 /* did the pushes work? */
2988 if (btrfs_leaf_free_space(root, l) >= data_size)
2989 return 0;
2992 if (!path->nodes[1]) {
2993 ret = insert_new_root(trans, root, path, 1);
2994 if (ret)
2995 return ret;
2997 again:
2998 split = 1;
2999 l = path->nodes[0];
3000 slot = path->slots[0];
3001 nritems = btrfs_header_nritems(l);
3002 mid = (nritems + 1) / 2;
3004 if (mid <= slot) {
3005 if (nritems == 1 ||
3006 leaf_space_used(l, mid, nritems - mid) + data_size >
3007 BTRFS_LEAF_DATA_SIZE(root)) {
3008 if (slot >= nritems) {
3009 split = 0;
3010 } else {
3011 mid = slot;
3012 if (mid != nritems &&
3013 leaf_space_used(l, mid, nritems - mid) +
3014 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3015 if (data_size && !tried_avoid_double)
3016 goto push_for_double;
3017 split = 2;
3021 } else {
3022 if (leaf_space_used(l, 0, mid) + data_size >
3023 BTRFS_LEAF_DATA_SIZE(root)) {
3024 if (!extend && data_size && slot == 0) {
3025 split = 0;
3026 } else if ((extend || !data_size) && slot == 0) {
3027 mid = 1;
3028 } else {
3029 mid = slot;
3030 if (mid != nritems &&
3031 leaf_space_used(l, mid, nritems - mid) +
3032 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3033 if (data_size && !tried_avoid_double)
3034 goto push_for_double;
3035 split = 2 ;
3041 if (split == 0)
3042 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3043 else
3044 btrfs_item_key(l, &disk_key, mid);
3046 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3047 root->root_key.objectid,
3048 &disk_key, 0, l->start, 0);
3049 if (IS_ERR(right))
3050 return PTR_ERR(right);
3052 root_add_used(root, root->leafsize);
3054 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3055 btrfs_set_header_bytenr(right, right->start);
3056 btrfs_set_header_generation(right, trans->transid);
3057 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3058 btrfs_set_header_owner(right, root->root_key.objectid);
3059 btrfs_set_header_level(right, 0);
3060 write_extent_buffer(right, root->fs_info->fsid,
3061 (unsigned long)btrfs_header_fsid(right),
3062 BTRFS_FSID_SIZE);
3064 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3065 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3066 BTRFS_UUID_SIZE);
3068 if (split == 0) {
3069 if (mid <= slot) {
3070 btrfs_set_header_nritems(right, 0);
3071 wret = insert_ptr(trans, root, path,
3072 &disk_key, right->start,
3073 path->slots[1] + 1, 1);
3074 if (wret)
3075 ret = wret;
3077 btrfs_tree_unlock(path->nodes[0]);
3078 free_extent_buffer(path->nodes[0]);
3079 path->nodes[0] = right;
3080 path->slots[0] = 0;
3081 path->slots[1] += 1;
3082 } else {
3083 btrfs_set_header_nritems(right, 0);
3084 wret = insert_ptr(trans, root, path,
3085 &disk_key,
3086 right->start,
3087 path->slots[1], 1);
3088 if (wret)
3089 ret = wret;
3090 btrfs_tree_unlock(path->nodes[0]);
3091 free_extent_buffer(path->nodes[0]);
3092 path->nodes[0] = right;
3093 path->slots[0] = 0;
3094 if (path->slots[1] == 0) {
3095 wret = fixup_low_keys(trans, root,
3096 path, &disk_key, 1);
3097 if (wret)
3098 ret = wret;
3101 btrfs_mark_buffer_dirty(right);
3102 return ret;
3105 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3106 BUG_ON(ret);
3108 if (split == 2) {
3109 BUG_ON(num_doubles != 0);
3110 num_doubles++;
3111 goto again;
3114 return ret;
3116 push_for_double:
3117 push_for_double_split(trans, root, path, data_size);
3118 tried_avoid_double = 1;
3119 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3120 return 0;
3121 goto again;
3124 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3125 struct btrfs_root *root,
3126 struct btrfs_path *path, int ins_len)
3128 struct btrfs_key key;
3129 struct extent_buffer *leaf;
3130 struct btrfs_file_extent_item *fi;
3131 u64 extent_len = 0;
3132 u32 item_size;
3133 int ret;
3135 leaf = path->nodes[0];
3136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3138 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3139 key.type != BTRFS_EXTENT_CSUM_KEY);
3141 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3142 return 0;
3144 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3145 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3146 fi = btrfs_item_ptr(leaf, path->slots[0],
3147 struct btrfs_file_extent_item);
3148 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3150 btrfs_release_path(root, path);
3152 path->keep_locks = 1;
3153 path->search_for_split = 1;
3154 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3155 path->search_for_split = 0;
3156 if (ret < 0)
3157 goto err;
3159 ret = -EAGAIN;
3160 leaf = path->nodes[0];
3161 /* if our item isn't there or got smaller, return now */
3162 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3163 goto err;
3165 /* the leaf has changed, it now has room. return now */
3166 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3167 goto err;
3169 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3170 fi = btrfs_item_ptr(leaf, path->slots[0],
3171 struct btrfs_file_extent_item);
3172 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3173 goto err;
3176 btrfs_set_path_blocking(path);
3177 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3178 if (ret)
3179 goto err;
3181 path->keep_locks = 0;
3182 btrfs_unlock_up_safe(path, 1);
3183 return 0;
3184 err:
3185 path->keep_locks = 0;
3186 return ret;
3189 static noinline int split_item(struct btrfs_trans_handle *trans,
3190 struct btrfs_root *root,
3191 struct btrfs_path *path,
3192 struct btrfs_key *new_key,
3193 unsigned long split_offset)
3195 struct extent_buffer *leaf;
3196 struct btrfs_item *item;
3197 struct btrfs_item *new_item;
3198 int slot;
3199 char *buf;
3200 u32 nritems;
3201 u32 item_size;
3202 u32 orig_offset;
3203 struct btrfs_disk_key disk_key;
3205 leaf = path->nodes[0];
3206 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3208 btrfs_set_path_blocking(path);
3210 item = btrfs_item_nr(leaf, path->slots[0]);
3211 orig_offset = btrfs_item_offset(leaf, item);
3212 item_size = btrfs_item_size(leaf, item);
3214 buf = kmalloc(item_size, GFP_NOFS);
3215 if (!buf)
3216 return -ENOMEM;
3218 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3219 path->slots[0]), item_size);
3221 slot = path->slots[0] + 1;
3222 nritems = btrfs_header_nritems(leaf);
3223 if (slot != nritems) {
3224 /* shift the items */
3225 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3226 btrfs_item_nr_offset(slot),
3227 (nritems - slot) * sizeof(struct btrfs_item));
3230 btrfs_cpu_key_to_disk(&disk_key, new_key);
3231 btrfs_set_item_key(leaf, &disk_key, slot);
3233 new_item = btrfs_item_nr(leaf, slot);
3235 btrfs_set_item_offset(leaf, new_item, orig_offset);
3236 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3238 btrfs_set_item_offset(leaf, item,
3239 orig_offset + item_size - split_offset);
3240 btrfs_set_item_size(leaf, item, split_offset);
3242 btrfs_set_header_nritems(leaf, nritems + 1);
3244 /* write the data for the start of the original item */
3245 write_extent_buffer(leaf, buf,
3246 btrfs_item_ptr_offset(leaf, path->slots[0]),
3247 split_offset);
3249 /* write the data for the new item */
3250 write_extent_buffer(leaf, buf + split_offset,
3251 btrfs_item_ptr_offset(leaf, slot),
3252 item_size - split_offset);
3253 btrfs_mark_buffer_dirty(leaf);
3255 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3256 kfree(buf);
3257 return 0;
3261 * This function splits a single item into two items,
3262 * giving 'new_key' to the new item and splitting the
3263 * old one at split_offset (from the start of the item).
3265 * The path may be released by this operation. After
3266 * the split, the path is pointing to the old item. The
3267 * new item is going to be in the same node as the old one.
3269 * Note, the item being split must be smaller enough to live alone on
3270 * a tree block with room for one extra struct btrfs_item
3272 * This allows us to split the item in place, keeping a lock on the
3273 * leaf the entire time.
3275 int btrfs_split_item(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root,
3277 struct btrfs_path *path,
3278 struct btrfs_key *new_key,
3279 unsigned long split_offset)
3281 int ret;
3282 ret = setup_leaf_for_split(trans, root, path,
3283 sizeof(struct btrfs_item));
3284 if (ret)
3285 return ret;
3287 ret = split_item(trans, root, path, new_key, split_offset);
3288 return ret;
3292 * This function duplicate a item, giving 'new_key' to the new item.
3293 * It guarantees both items live in the same tree leaf and the new item
3294 * is contiguous with the original item.
3296 * This allows us to split file extent in place, keeping a lock on the
3297 * leaf the entire time.
3299 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3300 struct btrfs_root *root,
3301 struct btrfs_path *path,
3302 struct btrfs_key *new_key)
3304 struct extent_buffer *leaf;
3305 int ret;
3306 u32 item_size;
3308 leaf = path->nodes[0];
3309 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3310 ret = setup_leaf_for_split(trans, root, path,
3311 item_size + sizeof(struct btrfs_item));
3312 if (ret)
3313 return ret;
3315 path->slots[0]++;
3316 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3317 item_size, item_size +
3318 sizeof(struct btrfs_item), 1);
3319 BUG_ON(ret);
3321 leaf = path->nodes[0];
3322 memcpy_extent_buffer(leaf,
3323 btrfs_item_ptr_offset(leaf, path->slots[0]),
3324 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3325 item_size);
3326 return 0;
3330 * make the item pointed to by the path smaller. new_size indicates
3331 * how small to make it, and from_end tells us if we just chop bytes
3332 * off the end of the item or if we shift the item to chop bytes off
3333 * the front.
3335 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3336 struct btrfs_root *root,
3337 struct btrfs_path *path,
3338 u32 new_size, int from_end)
3340 int ret = 0;
3341 int slot;
3342 struct extent_buffer *leaf;
3343 struct btrfs_item *item;
3344 u32 nritems;
3345 unsigned int data_end;
3346 unsigned int old_data_start;
3347 unsigned int old_size;
3348 unsigned int size_diff;
3349 int i;
3351 leaf = path->nodes[0];
3352 slot = path->slots[0];
3354 old_size = btrfs_item_size_nr(leaf, slot);
3355 if (old_size == new_size)
3356 return 0;
3358 nritems = btrfs_header_nritems(leaf);
3359 data_end = leaf_data_end(root, leaf);
3361 old_data_start = btrfs_item_offset_nr(leaf, slot);
3363 size_diff = old_size - new_size;
3365 BUG_ON(slot < 0);
3366 BUG_ON(slot >= nritems);
3369 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3371 /* first correct the data pointers */
3372 for (i = slot; i < nritems; i++) {
3373 u32 ioff;
3374 item = btrfs_item_nr(leaf, i);
3376 if (!leaf->map_token) {
3377 map_extent_buffer(leaf, (unsigned long)item,
3378 sizeof(struct btrfs_item),
3379 &leaf->map_token, &leaf->kaddr,
3380 &leaf->map_start, &leaf->map_len,
3381 KM_USER1);
3384 ioff = btrfs_item_offset(leaf, item);
3385 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3388 if (leaf->map_token) {
3389 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3390 leaf->map_token = NULL;
3393 /* shift the data */
3394 if (from_end) {
3395 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3396 data_end + size_diff, btrfs_leaf_data(leaf) +
3397 data_end, old_data_start + new_size - data_end);
3398 } else {
3399 struct btrfs_disk_key disk_key;
3400 u64 offset;
3402 btrfs_item_key(leaf, &disk_key, slot);
3404 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3405 unsigned long ptr;
3406 struct btrfs_file_extent_item *fi;
3408 fi = btrfs_item_ptr(leaf, slot,
3409 struct btrfs_file_extent_item);
3410 fi = (struct btrfs_file_extent_item *)(
3411 (unsigned long)fi - size_diff);
3413 if (btrfs_file_extent_type(leaf, fi) ==
3414 BTRFS_FILE_EXTENT_INLINE) {
3415 ptr = btrfs_item_ptr_offset(leaf, slot);
3416 memmove_extent_buffer(leaf, ptr,
3417 (unsigned long)fi,
3418 offsetof(struct btrfs_file_extent_item,
3419 disk_bytenr));
3423 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3424 data_end + size_diff, btrfs_leaf_data(leaf) +
3425 data_end, old_data_start - data_end);
3427 offset = btrfs_disk_key_offset(&disk_key);
3428 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3429 btrfs_set_item_key(leaf, &disk_key, slot);
3430 if (slot == 0)
3431 fixup_low_keys(trans, root, path, &disk_key, 1);
3434 item = btrfs_item_nr(leaf, slot);
3435 btrfs_set_item_size(leaf, item, new_size);
3436 btrfs_mark_buffer_dirty(leaf);
3438 ret = 0;
3439 if (btrfs_leaf_free_space(root, leaf) < 0) {
3440 btrfs_print_leaf(root, leaf);
3441 BUG();
3443 return ret;
3447 * make the item pointed to by the path bigger, data_size is the new size.
3449 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3450 struct btrfs_root *root, struct btrfs_path *path,
3451 u32 data_size)
3453 int ret = 0;
3454 int slot;
3455 struct extent_buffer *leaf;
3456 struct btrfs_item *item;
3457 u32 nritems;
3458 unsigned int data_end;
3459 unsigned int old_data;
3460 unsigned int old_size;
3461 int i;
3463 leaf = path->nodes[0];
3465 nritems = btrfs_header_nritems(leaf);
3466 data_end = leaf_data_end(root, leaf);
3468 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3469 btrfs_print_leaf(root, leaf);
3470 BUG();
3472 slot = path->slots[0];
3473 old_data = btrfs_item_end_nr(leaf, slot);
3475 BUG_ON(slot < 0);
3476 if (slot >= nritems) {
3477 btrfs_print_leaf(root, leaf);
3478 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3479 slot, nritems);
3480 BUG_ON(1);
3484 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486 /* first correct the data pointers */
3487 for (i = slot; i < nritems; i++) {
3488 u32 ioff;
3489 item = btrfs_item_nr(leaf, i);
3491 if (!leaf->map_token) {
3492 map_extent_buffer(leaf, (unsigned long)item,
3493 sizeof(struct btrfs_item),
3494 &leaf->map_token, &leaf->kaddr,
3495 &leaf->map_start, &leaf->map_len,
3496 KM_USER1);
3498 ioff = btrfs_item_offset(leaf, item);
3499 btrfs_set_item_offset(leaf, item, ioff - data_size);
3502 if (leaf->map_token) {
3503 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3504 leaf->map_token = NULL;
3507 /* shift the data */
3508 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3509 data_end - data_size, btrfs_leaf_data(leaf) +
3510 data_end, old_data - data_end);
3512 data_end = old_data;
3513 old_size = btrfs_item_size_nr(leaf, slot);
3514 item = btrfs_item_nr(leaf, slot);
3515 btrfs_set_item_size(leaf, item, old_size + data_size);
3516 btrfs_mark_buffer_dirty(leaf);
3518 ret = 0;
3519 if (btrfs_leaf_free_space(root, leaf) < 0) {
3520 btrfs_print_leaf(root, leaf);
3521 BUG();
3523 return ret;
3527 * Given a key and some data, insert items into the tree.
3528 * This does all the path init required, making room in the tree if needed.
3529 * Returns the number of keys that were inserted.
3531 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *root,
3533 struct btrfs_path *path,
3534 struct btrfs_key *cpu_key, u32 *data_size,
3535 int nr)
3537 struct extent_buffer *leaf;
3538 struct btrfs_item *item;
3539 int ret = 0;
3540 int slot;
3541 int i;
3542 u32 nritems;
3543 u32 total_data = 0;
3544 u32 total_size = 0;
3545 unsigned int data_end;
3546 struct btrfs_disk_key disk_key;
3547 struct btrfs_key found_key;
3549 for (i = 0; i < nr; i++) {
3550 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3551 BTRFS_LEAF_DATA_SIZE(root)) {
3552 break;
3553 nr = i;
3555 total_data += data_size[i];
3556 total_size += data_size[i] + sizeof(struct btrfs_item);
3558 BUG_ON(nr == 0);
3560 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3561 if (ret == 0)
3562 return -EEXIST;
3563 if (ret < 0)
3564 goto out;
3566 leaf = path->nodes[0];
3568 nritems = btrfs_header_nritems(leaf);
3569 data_end = leaf_data_end(root, leaf);
3571 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3572 for (i = nr; i >= 0; i--) {
3573 total_data -= data_size[i];
3574 total_size -= data_size[i] + sizeof(struct btrfs_item);
3575 if (total_size < btrfs_leaf_free_space(root, leaf))
3576 break;
3578 nr = i;
3581 slot = path->slots[0];
3582 BUG_ON(slot < 0);
3584 if (slot != nritems) {
3585 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3587 item = btrfs_item_nr(leaf, slot);
3588 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3590 /* figure out how many keys we can insert in here */
3591 total_data = data_size[0];
3592 for (i = 1; i < nr; i++) {
3593 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3594 break;
3595 total_data += data_size[i];
3597 nr = i;
3599 if (old_data < data_end) {
3600 btrfs_print_leaf(root, leaf);
3601 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3602 slot, old_data, data_end);
3603 BUG_ON(1);
3606 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3608 /* first correct the data pointers */
3609 WARN_ON(leaf->map_token);
3610 for (i = slot; i < nritems; i++) {
3611 u32 ioff;
3613 item = btrfs_item_nr(leaf, i);
3614 if (!leaf->map_token) {
3615 map_extent_buffer(leaf, (unsigned long)item,
3616 sizeof(struct btrfs_item),
3617 &leaf->map_token, &leaf->kaddr,
3618 &leaf->map_start, &leaf->map_len,
3619 KM_USER1);
3622 ioff = btrfs_item_offset(leaf, item);
3623 btrfs_set_item_offset(leaf, item, ioff - total_data);
3625 if (leaf->map_token) {
3626 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3627 leaf->map_token = NULL;
3630 /* shift the items */
3631 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3632 btrfs_item_nr_offset(slot),
3633 (nritems - slot) * sizeof(struct btrfs_item));
3635 /* shift the data */
3636 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3637 data_end - total_data, btrfs_leaf_data(leaf) +
3638 data_end, old_data - data_end);
3639 data_end = old_data;
3640 } else {
3642 * this sucks but it has to be done, if we are inserting at
3643 * the end of the leaf only insert 1 of the items, since we
3644 * have no way of knowing whats on the next leaf and we'd have
3645 * to drop our current locks to figure it out
3647 nr = 1;
3650 /* setup the item for the new data */
3651 for (i = 0; i < nr; i++) {
3652 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3653 btrfs_set_item_key(leaf, &disk_key, slot + i);
3654 item = btrfs_item_nr(leaf, slot + i);
3655 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3656 data_end -= data_size[i];
3657 btrfs_set_item_size(leaf, item, data_size[i]);
3659 btrfs_set_header_nritems(leaf, nritems + nr);
3660 btrfs_mark_buffer_dirty(leaf);
3662 ret = 0;
3663 if (slot == 0) {
3664 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3665 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3668 if (btrfs_leaf_free_space(root, leaf) < 0) {
3669 btrfs_print_leaf(root, leaf);
3670 BUG();
3672 out:
3673 if (!ret)
3674 ret = nr;
3675 return ret;
3679 * this is a helper for btrfs_insert_empty_items, the main goal here is
3680 * to save stack depth by doing the bulk of the work in a function
3681 * that doesn't call btrfs_search_slot
3683 static noinline_for_stack int
3684 setup_items_for_insert(struct btrfs_trans_handle *trans,
3685 struct btrfs_root *root, struct btrfs_path *path,
3686 struct btrfs_key *cpu_key, u32 *data_size,
3687 u32 total_data, u32 total_size, int nr)
3689 struct btrfs_item *item;
3690 int i;
3691 u32 nritems;
3692 unsigned int data_end;
3693 struct btrfs_disk_key disk_key;
3694 int ret;
3695 struct extent_buffer *leaf;
3696 int slot;
3698 leaf = path->nodes[0];
3699 slot = path->slots[0];
3701 nritems = btrfs_header_nritems(leaf);
3702 data_end = leaf_data_end(root, leaf);
3704 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3705 btrfs_print_leaf(root, leaf);
3706 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3707 total_size, btrfs_leaf_free_space(root, leaf));
3708 BUG();
3711 if (slot != nritems) {
3712 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3714 if (old_data < data_end) {
3715 btrfs_print_leaf(root, leaf);
3716 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3717 slot, old_data, data_end);
3718 BUG_ON(1);
3721 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3723 /* first correct the data pointers */
3724 WARN_ON(leaf->map_token);
3725 for (i = slot; i < nritems; i++) {
3726 u32 ioff;
3728 item = btrfs_item_nr(leaf, i);
3729 if (!leaf->map_token) {
3730 map_extent_buffer(leaf, (unsigned long)item,
3731 sizeof(struct btrfs_item),
3732 &leaf->map_token, &leaf->kaddr,
3733 &leaf->map_start, &leaf->map_len,
3734 KM_USER1);
3737 ioff = btrfs_item_offset(leaf, item);
3738 btrfs_set_item_offset(leaf, item, ioff - total_data);
3740 if (leaf->map_token) {
3741 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3742 leaf->map_token = NULL;
3745 /* shift the items */
3746 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3747 btrfs_item_nr_offset(slot),
3748 (nritems - slot) * sizeof(struct btrfs_item));
3750 /* shift the data */
3751 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3752 data_end - total_data, btrfs_leaf_data(leaf) +
3753 data_end, old_data - data_end);
3754 data_end = old_data;
3757 /* setup the item for the new data */
3758 for (i = 0; i < nr; i++) {
3759 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3760 btrfs_set_item_key(leaf, &disk_key, slot + i);
3761 item = btrfs_item_nr(leaf, slot + i);
3762 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3763 data_end -= data_size[i];
3764 btrfs_set_item_size(leaf, item, data_size[i]);
3767 btrfs_set_header_nritems(leaf, nritems + nr);
3769 ret = 0;
3770 if (slot == 0) {
3771 struct btrfs_disk_key disk_key;
3772 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3773 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3775 btrfs_unlock_up_safe(path, 1);
3776 btrfs_mark_buffer_dirty(leaf);
3778 if (btrfs_leaf_free_space(root, leaf) < 0) {
3779 btrfs_print_leaf(root, leaf);
3780 BUG();
3782 return ret;
3786 * Given a key and some data, insert items into the tree.
3787 * This does all the path init required, making room in the tree if needed.
3789 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3790 struct btrfs_root *root,
3791 struct btrfs_path *path,
3792 struct btrfs_key *cpu_key, u32 *data_size,
3793 int nr)
3795 int ret = 0;
3796 int slot;
3797 int i;
3798 u32 total_size = 0;
3799 u32 total_data = 0;
3801 for (i = 0; i < nr; i++)
3802 total_data += data_size[i];
3804 total_size = total_data + (nr * sizeof(struct btrfs_item));
3805 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3806 if (ret == 0)
3807 return -EEXIST;
3808 if (ret < 0)
3809 goto out;
3811 slot = path->slots[0];
3812 BUG_ON(slot < 0);
3814 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3815 total_data, total_size, nr);
3817 out:
3818 return ret;
3822 * Given a key and some data, insert an item into the tree.
3823 * This does all the path init required, making room in the tree if needed.
3825 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3826 *root, struct btrfs_key *cpu_key, void *data, u32
3827 data_size)
3829 int ret = 0;
3830 struct btrfs_path *path;
3831 struct extent_buffer *leaf;
3832 unsigned long ptr;
3834 path = btrfs_alloc_path();
3835 BUG_ON(!path);
3836 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3837 if (!ret) {
3838 leaf = path->nodes[0];
3839 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3840 write_extent_buffer(leaf, data, ptr, data_size);
3841 btrfs_mark_buffer_dirty(leaf);
3843 btrfs_free_path(path);
3844 return ret;
3848 * delete the pointer from a given node.
3850 * the tree should have been previously balanced so the deletion does not
3851 * empty a node.
3853 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3854 struct btrfs_path *path, int level, int slot)
3856 struct extent_buffer *parent = path->nodes[level];
3857 u32 nritems;
3858 int ret = 0;
3859 int wret;
3861 nritems = btrfs_header_nritems(parent);
3862 if (slot != nritems - 1) {
3863 memmove_extent_buffer(parent,
3864 btrfs_node_key_ptr_offset(slot),
3865 btrfs_node_key_ptr_offset(slot + 1),
3866 sizeof(struct btrfs_key_ptr) *
3867 (nritems - slot - 1));
3869 nritems--;
3870 btrfs_set_header_nritems(parent, nritems);
3871 if (nritems == 0 && parent == root->node) {
3872 BUG_ON(btrfs_header_level(root->node) != 1);
3873 /* just turn the root into a leaf and break */
3874 btrfs_set_header_level(root->node, 0);
3875 } else if (slot == 0) {
3876 struct btrfs_disk_key disk_key;
3878 btrfs_node_key(parent, &disk_key, 0);
3879 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3880 if (wret)
3881 ret = wret;
3883 btrfs_mark_buffer_dirty(parent);
3884 return ret;
3888 * a helper function to delete the leaf pointed to by path->slots[1] and
3889 * path->nodes[1].
3891 * This deletes the pointer in path->nodes[1] and frees the leaf
3892 * block extent. zero is returned if it all worked out, < 0 otherwise.
3894 * The path must have already been setup for deleting the leaf, including
3895 * all the proper balancing. path->nodes[1] must be locked.
3897 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3898 struct btrfs_root *root,
3899 struct btrfs_path *path,
3900 struct extent_buffer *leaf)
3902 int ret;
3904 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3905 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3906 if (ret)
3907 return ret;
3910 * btrfs_free_extent is expensive, we want to make sure we
3911 * aren't holding any locks when we call it
3913 btrfs_unlock_up_safe(path, 0);
3915 root_sub_used(root, leaf->len);
3917 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3918 return 0;
3921 * delete the item at the leaf level in path. If that empties
3922 * the leaf, remove it from the tree
3924 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3925 struct btrfs_path *path, int slot, int nr)
3927 struct extent_buffer *leaf;
3928 struct btrfs_item *item;
3929 int last_off;
3930 int dsize = 0;
3931 int ret = 0;
3932 int wret;
3933 int i;
3934 u32 nritems;
3936 leaf = path->nodes[0];
3937 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3939 for (i = 0; i < nr; i++)
3940 dsize += btrfs_item_size_nr(leaf, slot + i);
3942 nritems = btrfs_header_nritems(leaf);
3944 if (slot + nr != nritems) {
3945 int data_end = leaf_data_end(root, leaf);
3947 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3948 data_end + dsize,
3949 btrfs_leaf_data(leaf) + data_end,
3950 last_off - data_end);
3952 for (i = slot + nr; i < nritems; i++) {
3953 u32 ioff;
3955 item = btrfs_item_nr(leaf, i);
3956 if (!leaf->map_token) {
3957 map_extent_buffer(leaf, (unsigned long)item,
3958 sizeof(struct btrfs_item),
3959 &leaf->map_token, &leaf->kaddr,
3960 &leaf->map_start, &leaf->map_len,
3961 KM_USER1);
3963 ioff = btrfs_item_offset(leaf, item);
3964 btrfs_set_item_offset(leaf, item, ioff + dsize);
3967 if (leaf->map_token) {
3968 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3969 leaf->map_token = NULL;
3972 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3973 btrfs_item_nr_offset(slot + nr),
3974 sizeof(struct btrfs_item) *
3975 (nritems - slot - nr));
3977 btrfs_set_header_nritems(leaf, nritems - nr);
3978 nritems -= nr;
3980 /* delete the leaf if we've emptied it */
3981 if (nritems == 0) {
3982 if (leaf == root->node) {
3983 btrfs_set_header_level(leaf, 0);
3984 } else {
3985 btrfs_set_path_blocking(path);
3986 clean_tree_block(trans, root, leaf);
3987 ret = btrfs_del_leaf(trans, root, path, leaf);
3988 BUG_ON(ret);
3990 } else {
3991 int used = leaf_space_used(leaf, 0, nritems);
3992 if (slot == 0) {
3993 struct btrfs_disk_key disk_key;
3995 btrfs_item_key(leaf, &disk_key, 0);
3996 wret = fixup_low_keys(trans, root, path,
3997 &disk_key, 1);
3998 if (wret)
3999 ret = wret;
4002 /* delete the leaf if it is mostly empty */
4003 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4004 /* push_leaf_left fixes the path.
4005 * make sure the path still points to our leaf
4006 * for possible call to del_ptr below
4008 slot = path->slots[1];
4009 extent_buffer_get(leaf);
4011 btrfs_set_path_blocking(path);
4012 wret = push_leaf_left(trans, root, path, 1, 1,
4013 1, (u32)-1);
4014 if (wret < 0 && wret != -ENOSPC)
4015 ret = wret;
4017 if (path->nodes[0] == leaf &&
4018 btrfs_header_nritems(leaf)) {
4019 wret = push_leaf_right(trans, root, path, 1,
4020 1, 1, 0);
4021 if (wret < 0 && wret != -ENOSPC)
4022 ret = wret;
4025 if (btrfs_header_nritems(leaf) == 0) {
4026 path->slots[1] = slot;
4027 ret = btrfs_del_leaf(trans, root, path, leaf);
4028 BUG_ON(ret);
4029 free_extent_buffer(leaf);
4030 } else {
4031 /* if we're still in the path, make sure
4032 * we're dirty. Otherwise, one of the
4033 * push_leaf functions must have already
4034 * dirtied this buffer
4036 if (path->nodes[0] == leaf)
4037 btrfs_mark_buffer_dirty(leaf);
4038 free_extent_buffer(leaf);
4040 } else {
4041 btrfs_mark_buffer_dirty(leaf);
4044 return ret;
4048 * search the tree again to find a leaf with lesser keys
4049 * returns 0 if it found something or 1 if there are no lesser leaves.
4050 * returns < 0 on io errors.
4052 * This may release the path, and so you may lose any locks held at the
4053 * time you call it.
4055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4057 struct btrfs_key key;
4058 struct btrfs_disk_key found_key;
4059 int ret;
4061 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4063 if (key.offset > 0)
4064 key.offset--;
4065 else if (key.type > 0)
4066 key.type--;
4067 else if (key.objectid > 0)
4068 key.objectid--;
4069 else
4070 return 1;
4072 btrfs_release_path(root, path);
4073 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4074 if (ret < 0)
4075 return ret;
4076 btrfs_item_key(path->nodes[0], &found_key, 0);
4077 ret = comp_keys(&found_key, &key);
4078 if (ret < 0)
4079 return 0;
4080 return 1;
4084 * A helper function to walk down the tree starting at min_key, and looking
4085 * for nodes or leaves that are either in cache or have a minimum
4086 * transaction id. This is used by the btree defrag code, and tree logging
4088 * This does not cow, but it does stuff the starting key it finds back
4089 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4090 * key and get a writable path.
4092 * This does lock as it descends, and path->keep_locks should be set
4093 * to 1 by the caller.
4095 * This honors path->lowest_level to prevent descent past a given level
4096 * of the tree.
4098 * min_trans indicates the oldest transaction that you are interested
4099 * in walking through. Any nodes or leaves older than min_trans are
4100 * skipped over (without reading them).
4102 * returns zero if something useful was found, < 0 on error and 1 if there
4103 * was nothing in the tree that matched the search criteria.
4105 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4106 struct btrfs_key *max_key,
4107 struct btrfs_path *path, int cache_only,
4108 u64 min_trans)
4110 struct extent_buffer *cur;
4111 struct btrfs_key found_key;
4112 int slot;
4113 int sret;
4114 u32 nritems;
4115 int level;
4116 int ret = 1;
4118 WARN_ON(!path->keep_locks);
4119 again:
4120 cur = btrfs_lock_root_node(root);
4121 level = btrfs_header_level(cur);
4122 WARN_ON(path->nodes[level]);
4123 path->nodes[level] = cur;
4124 path->locks[level] = 1;
4126 if (btrfs_header_generation(cur) < min_trans) {
4127 ret = 1;
4128 goto out;
4130 while (1) {
4131 nritems = btrfs_header_nritems(cur);
4132 level = btrfs_header_level(cur);
4133 sret = bin_search(cur, min_key, level, &slot);
4135 /* at the lowest level, we're done, setup the path and exit */
4136 if (level == path->lowest_level) {
4137 if (slot >= nritems)
4138 goto find_next_key;
4139 ret = 0;
4140 path->slots[level] = slot;
4141 btrfs_item_key_to_cpu(cur, &found_key, slot);
4142 goto out;
4144 if (sret && slot > 0)
4145 slot--;
4147 * check this node pointer against the cache_only and
4148 * min_trans parameters. If it isn't in cache or is too
4149 * old, skip to the next one.
4151 while (slot < nritems) {
4152 u64 blockptr;
4153 u64 gen;
4154 struct extent_buffer *tmp;
4155 struct btrfs_disk_key disk_key;
4157 blockptr = btrfs_node_blockptr(cur, slot);
4158 gen = btrfs_node_ptr_generation(cur, slot);
4159 if (gen < min_trans) {
4160 slot++;
4161 continue;
4163 if (!cache_only)
4164 break;
4166 if (max_key) {
4167 btrfs_node_key(cur, &disk_key, slot);
4168 if (comp_keys(&disk_key, max_key) >= 0) {
4169 ret = 1;
4170 goto out;
4174 tmp = btrfs_find_tree_block(root, blockptr,
4175 btrfs_level_size(root, level - 1));
4177 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4178 free_extent_buffer(tmp);
4179 break;
4181 if (tmp)
4182 free_extent_buffer(tmp);
4183 slot++;
4185 find_next_key:
4187 * we didn't find a candidate key in this node, walk forward
4188 * and find another one
4190 if (slot >= nritems) {
4191 path->slots[level] = slot;
4192 btrfs_set_path_blocking(path);
4193 sret = btrfs_find_next_key(root, path, min_key, level,
4194 cache_only, min_trans);
4195 if (sret == 0) {
4196 btrfs_release_path(root, path);
4197 goto again;
4198 } else {
4199 goto out;
4202 /* save our key for returning back */
4203 btrfs_node_key_to_cpu(cur, &found_key, slot);
4204 path->slots[level] = slot;
4205 if (level == path->lowest_level) {
4206 ret = 0;
4207 unlock_up(path, level, 1);
4208 goto out;
4210 btrfs_set_path_blocking(path);
4211 cur = read_node_slot(root, cur, slot);
4213 btrfs_tree_lock(cur);
4215 path->locks[level - 1] = 1;
4216 path->nodes[level - 1] = cur;
4217 unlock_up(path, level, 1);
4218 btrfs_clear_path_blocking(path, NULL);
4220 out:
4221 if (ret == 0)
4222 memcpy(min_key, &found_key, sizeof(found_key));
4223 btrfs_set_path_blocking(path);
4224 return ret;
4228 * this is similar to btrfs_next_leaf, but does not try to preserve
4229 * and fixup the path. It looks for and returns the next key in the
4230 * tree based on the current path and the cache_only and min_trans
4231 * parameters.
4233 * 0 is returned if another key is found, < 0 if there are any errors
4234 * and 1 is returned if there are no higher keys in the tree
4236 * path->keep_locks should be set to 1 on the search made before
4237 * calling this function.
4239 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4240 struct btrfs_key *key, int level,
4241 int cache_only, u64 min_trans)
4243 int slot;
4244 struct extent_buffer *c;
4246 WARN_ON(!path->keep_locks);
4247 while (level < BTRFS_MAX_LEVEL) {
4248 if (!path->nodes[level])
4249 return 1;
4251 slot = path->slots[level] + 1;
4252 c = path->nodes[level];
4253 next:
4254 if (slot >= btrfs_header_nritems(c)) {
4255 int ret;
4256 int orig_lowest;
4257 struct btrfs_key cur_key;
4258 if (level + 1 >= BTRFS_MAX_LEVEL ||
4259 !path->nodes[level + 1])
4260 return 1;
4262 if (path->locks[level + 1]) {
4263 level++;
4264 continue;
4267 slot = btrfs_header_nritems(c) - 1;
4268 if (level == 0)
4269 btrfs_item_key_to_cpu(c, &cur_key, slot);
4270 else
4271 btrfs_node_key_to_cpu(c, &cur_key, slot);
4273 orig_lowest = path->lowest_level;
4274 btrfs_release_path(root, path);
4275 path->lowest_level = level;
4276 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4277 0, 0);
4278 path->lowest_level = orig_lowest;
4279 if (ret < 0)
4280 return ret;
4282 c = path->nodes[level];
4283 slot = path->slots[level];
4284 if (ret == 0)
4285 slot++;
4286 goto next;
4289 if (level == 0)
4290 btrfs_item_key_to_cpu(c, key, slot);
4291 else {
4292 u64 blockptr = btrfs_node_blockptr(c, slot);
4293 u64 gen = btrfs_node_ptr_generation(c, slot);
4295 if (cache_only) {
4296 struct extent_buffer *cur;
4297 cur = btrfs_find_tree_block(root, blockptr,
4298 btrfs_level_size(root, level - 1));
4299 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4300 slot++;
4301 if (cur)
4302 free_extent_buffer(cur);
4303 goto next;
4305 free_extent_buffer(cur);
4307 if (gen < min_trans) {
4308 slot++;
4309 goto next;
4311 btrfs_node_key_to_cpu(c, key, slot);
4313 return 0;
4315 return 1;
4319 * search the tree again to find a leaf with greater keys
4320 * returns 0 if it found something or 1 if there are no greater leaves.
4321 * returns < 0 on io errors.
4323 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4325 int slot;
4326 int level;
4327 struct extent_buffer *c;
4328 struct extent_buffer *next;
4329 struct btrfs_key key;
4330 u32 nritems;
4331 int ret;
4332 int old_spinning = path->leave_spinning;
4333 int force_blocking = 0;
4335 nritems = btrfs_header_nritems(path->nodes[0]);
4336 if (nritems == 0)
4337 return 1;
4340 * we take the blocks in an order that upsets lockdep. Using
4341 * blocking mode is the only way around it.
4343 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4344 force_blocking = 1;
4345 #endif
4347 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4348 again:
4349 level = 1;
4350 next = NULL;
4351 btrfs_release_path(root, path);
4353 path->keep_locks = 1;
4355 if (!force_blocking)
4356 path->leave_spinning = 1;
4358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4359 path->keep_locks = 0;
4361 if (ret < 0)
4362 return ret;
4364 nritems = btrfs_header_nritems(path->nodes[0]);
4366 * by releasing the path above we dropped all our locks. A balance
4367 * could have added more items next to the key that used to be
4368 * at the very end of the block. So, check again here and
4369 * advance the path if there are now more items available.
4371 if (nritems > 0 && path->slots[0] < nritems - 1) {
4372 if (ret == 0)
4373 path->slots[0]++;
4374 ret = 0;
4375 goto done;
4378 while (level < BTRFS_MAX_LEVEL) {
4379 if (!path->nodes[level]) {
4380 ret = 1;
4381 goto done;
4384 slot = path->slots[level] + 1;
4385 c = path->nodes[level];
4386 if (slot >= btrfs_header_nritems(c)) {
4387 level++;
4388 if (level == BTRFS_MAX_LEVEL) {
4389 ret = 1;
4390 goto done;
4392 continue;
4395 if (next) {
4396 btrfs_tree_unlock(next);
4397 free_extent_buffer(next);
4400 next = c;
4401 ret = read_block_for_search(NULL, root, path, &next, level,
4402 slot, &key);
4403 if (ret == -EAGAIN)
4404 goto again;
4406 if (ret < 0) {
4407 btrfs_release_path(root, path);
4408 goto done;
4411 if (!path->skip_locking) {
4412 ret = btrfs_try_spin_lock(next);
4413 if (!ret) {
4414 btrfs_set_path_blocking(path);
4415 btrfs_tree_lock(next);
4416 if (!force_blocking)
4417 btrfs_clear_path_blocking(path, next);
4419 if (force_blocking)
4420 btrfs_set_lock_blocking(next);
4422 break;
4424 path->slots[level] = slot;
4425 while (1) {
4426 level--;
4427 c = path->nodes[level];
4428 if (path->locks[level])
4429 btrfs_tree_unlock(c);
4431 free_extent_buffer(c);
4432 path->nodes[level] = next;
4433 path->slots[level] = 0;
4434 if (!path->skip_locking)
4435 path->locks[level] = 1;
4437 if (!level)
4438 break;
4440 ret = read_block_for_search(NULL, root, path, &next, level,
4441 0, &key);
4442 if (ret == -EAGAIN)
4443 goto again;
4445 if (ret < 0) {
4446 btrfs_release_path(root, path);
4447 goto done;
4450 if (!path->skip_locking) {
4451 btrfs_assert_tree_locked(path->nodes[level]);
4452 ret = btrfs_try_spin_lock(next);
4453 if (!ret) {
4454 btrfs_set_path_blocking(path);
4455 btrfs_tree_lock(next);
4456 if (!force_blocking)
4457 btrfs_clear_path_blocking(path, next);
4459 if (force_blocking)
4460 btrfs_set_lock_blocking(next);
4463 ret = 0;
4464 done:
4465 unlock_up(path, 0, 1);
4466 path->leave_spinning = old_spinning;
4467 if (!old_spinning)
4468 btrfs_set_path_blocking(path);
4470 return ret;
4474 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4475 * searching until it gets past min_objectid or finds an item of 'type'
4477 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4479 int btrfs_previous_item(struct btrfs_root *root,
4480 struct btrfs_path *path, u64 min_objectid,
4481 int type)
4483 struct btrfs_key found_key;
4484 struct extent_buffer *leaf;
4485 u32 nritems;
4486 int ret;
4488 while (1) {
4489 if (path->slots[0] == 0) {
4490 btrfs_set_path_blocking(path);
4491 ret = btrfs_prev_leaf(root, path);
4492 if (ret != 0)
4493 return ret;
4494 } else {
4495 path->slots[0]--;
4497 leaf = path->nodes[0];
4498 nritems = btrfs_header_nritems(leaf);
4499 if (nritems == 0)
4500 return 1;
4501 if (path->slots[0] == nritems)
4502 path->slots[0]--;
4504 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4505 if (found_key.objectid < min_objectid)
4506 break;
4507 if (found_key.type == type)
4508 return 0;
4509 if (found_key.objectid == min_objectid &&
4510 found_key.type < type)
4511 break;
4513 return 1;