tmpfs: convert mem_cgroup shmem to radix-swap
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / gpio.txt
blob792faa3c06cf7ccda5ab081dbf568276324538e5
1 GPIO Interfaces
3 This provides an overview of GPIO access conventions on Linux.
5 These calls use the gpio_* naming prefix.  No other calls should use that
6 prefix, or the related __gpio_* prefix.
9 What is a GPIO?
10 ===============
11 A "General Purpose Input/Output" (GPIO) is a flexible software-controlled
12 digital signal.  They are provided from many kinds of chip, and are familiar
13 to Linux developers working with embedded and custom hardware.  Each GPIO
14 represents a bit connected to a particular pin, or "ball" on Ball Grid Array
15 (BGA) packages.  Board schematics show which external hardware connects to
16 which GPIOs.  Drivers can be written generically, so that board setup code
17 passes such pin configuration data to drivers.
19 System-on-Chip (SOC) processors heavily rely on GPIOs.  In some cases, every
20 non-dedicated pin can be configured as a GPIO; and most chips have at least
21 several dozen of them.  Programmable logic devices (like FPGAs) can easily
22 provide GPIOs; multifunction chips like power managers, and audio codecs
23 often have a few such pins to help with pin scarcity on SOCs; and there are
24 also "GPIO Expander" chips that connect using the I2C or SPI serial busses.
25 Most PC southbridges have a few dozen GPIO-capable pins (with only the BIOS
26 firmware knowing how they're used).
28 The exact capabilities of GPIOs vary between systems.  Common options:
30   - Output values are writable (high=1, low=0).  Some chips also have
31     options about how that value is driven, so that for example only one
32     value might be driven ... supporting "wire-OR" and similar schemes
33     for the other value (notably, "open drain" signaling).
35   - Input values are likewise readable (1, 0).  Some chips support readback
36     of pins configured as "output", which is very useful in such "wire-OR"
37     cases (to support bidirectional signaling).  GPIO controllers may have
38     input de-glitch/debounce logic, sometimes with software controls.
40   - Inputs can often be used as IRQ signals, often edge triggered but
41     sometimes level triggered.  Such IRQs may be configurable as system
42     wakeup events, to wake the system from a low power state.
44   - Usually a GPIO will be configurable as either input or output, as needed
45     by different product boards; single direction ones exist too.
47   - Most GPIOs can be accessed while holding spinlocks, but those accessed
48     through a serial bus normally can't.  Some systems support both types.
50 On a given board each GPIO is used for one specific purpose like monitoring
51 MMC/SD card insertion/removal, detecting card writeprotect status, driving
52 a LED, configuring a transceiver, bitbanging a serial bus, poking a hardware
53 watchdog, sensing a switch, and so on.
56 GPIO conventions
57 ================
58 Note that this is called a "convention" because you don't need to do it this
59 way, and it's no crime if you don't.  There **are** cases where portability
60 is not the main issue; GPIOs are often used for the kind of board-specific
61 glue logic that may even change between board revisions, and can't ever be
62 used on a board that's wired differently.  Only least-common-denominator
63 functionality can be very portable.  Other features are platform-specific,
64 and that can be critical for glue logic.
66 Plus, this doesn't require any implementation framework, just an interface.
67 One platform might implement it as simple inline functions accessing chip
68 registers; another might implement it by delegating through abstractions
69 used for several very different kinds of GPIO controller.  (There is some
70 optional code supporting such an implementation strategy, described later
71 in this document, but drivers acting as clients to the GPIO interface must
72 not care how it's implemented.)
74 That said, if the convention is supported on their platform, drivers should
75 use it when possible.  Platforms must declare GENERIC_GPIO support in their
76 Kconfig (boolean true), and provide an <asm/gpio.h> file.  Drivers that can't
77 work without standard GPIO calls should have Kconfig entries which depend
78 on GENERIC_GPIO.  The GPIO calls are available, either as "real code" or as
79 optimized-away stubs, when drivers use the include file:
81         #include <linux/gpio.h>
83 If you stick to this convention then it'll be easier for other developers to
84 see what your code is doing, and help maintain it.
86 Note that these operations include I/O barriers on platforms which need to
87 use them; drivers don't need to add them explicitly.
90 Identifying GPIOs
91 -----------------
92 GPIOs are identified by unsigned integers in the range 0..MAX_INT.  That
93 reserves "negative" numbers for other purposes like marking signals as
94 "not available on this board", or indicating faults.  Code that doesn't
95 touch the underlying hardware treats these integers as opaque cookies.
97 Platforms define how they use those integers, and usually #define symbols
98 for the GPIO lines so that board-specific setup code directly corresponds
99 to the relevant schematics.  In contrast, drivers should only use GPIO
100 numbers passed to them from that setup code, using platform_data to hold
101 board-specific pin configuration data (along with other board specific
102 data they need).  That avoids portability problems.
104 So for example one platform uses numbers 32-159 for GPIOs; while another
105 uses numbers 0..63 with one set of GPIO controllers, 64-79 with another
106 type of GPIO controller, and on one particular board 80-95 with an FPGA.
107 The numbers need not be contiguous; either of those platforms could also
108 use numbers 2000-2063 to identify GPIOs in a bank of I2C GPIO expanders.
110 If you want to initialize a structure with an invalid GPIO number, use
111 some negative number (perhaps "-EINVAL"); that will never be valid.  To
112 test if such number from such a structure could reference a GPIO, you
113 may use this predicate:
115         int gpio_is_valid(int number);
117 A number that's not valid will be rejected by calls which may request
118 or free GPIOs (see below).  Other numbers may also be rejected; for
119 example, a number might be valid but temporarily unused on a given board.
121 Whether a platform supports multiple GPIO controllers is a platform-specific
122 implementation issue, as are whether that support can leave "holes" in the space
123 of GPIO numbers, and whether new controllers can be added at runtime.  Such issues
124 can affect things including whether adjacent GPIO numbers are both valid.
126 Using GPIOs
127 -----------
128 The first thing a system should do with a GPIO is allocate it, using
129 the gpio_request() call; see later.
131 One of the next things to do with a GPIO, often in board setup code when
132 setting up a platform_device using the GPIO, is mark its direction:
134         /* set as input or output, returning 0 or negative errno */
135         int gpio_direction_input(unsigned gpio);
136         int gpio_direction_output(unsigned gpio, int value);
138 The return value is zero for success, else a negative errno.  It should
139 be checked, since the get/set calls don't have error returns and since
140 misconfiguration is possible.  You should normally issue these calls from
141 a task context.  However, for spinlock-safe GPIOs it's OK to use them
142 before tasking is enabled, as part of early board setup.
144 For output GPIOs, the value provided becomes the initial output value.
145 This helps avoid signal glitching during system startup.
147 For compatibility with legacy interfaces to GPIOs, setting the direction
148 of a GPIO implicitly requests that GPIO (see below) if it has not been
149 requested already.  That compatibility is being removed from the optional
150 gpiolib framework.
152 Setting the direction can fail if the GPIO number is invalid, or when
153 that particular GPIO can't be used in that mode.  It's generally a bad
154 idea to rely on boot firmware to have set the direction correctly, since
155 it probably wasn't validated to do more than boot Linux.  (Similarly,
156 that board setup code probably needs to multiplex that pin as a GPIO,
157 and configure pullups/pulldowns appropriately.)
160 Spinlock-Safe GPIO access
161 -------------------------
162 Most GPIO controllers can be accessed with memory read/write instructions.
163 Those don't need to sleep, and can safely be done from inside hard
164 (nonthreaded) IRQ handlers and similar contexts.
166 Use the following calls to access such GPIOs,
167 for which gpio_cansleep() will always return false (see below):
169         /* GPIO INPUT:  return zero or nonzero */
170         int gpio_get_value(unsigned gpio);
172         /* GPIO OUTPUT */
173         void gpio_set_value(unsigned gpio, int value);
175 The values are boolean, zero for low, nonzero for high.  When reading the
176 value of an output pin, the value returned should be what's seen on the
177 pin ... that won't always match the specified output value, because of
178 issues including open-drain signaling and output latencies.
180 The get/set calls have no error returns because "invalid GPIO" should have
181 been reported earlier from gpio_direction_*().  However, note that not all
182 platforms can read the value of output pins; those that can't should always
183 return zero.  Also, using these calls for GPIOs that can't safely be accessed
184 without sleeping (see below) is an error.
186 Platform-specific implementations are encouraged to optimize the two
187 calls to access the GPIO value in cases where the GPIO number (and for
188 output, value) are constant.  It's normal for them to need only a couple
189 of instructions in such cases (reading or writing a hardware register),
190 and not to need spinlocks.  Such optimized calls can make bitbanging
191 applications a lot more efficient (in both space and time) than spending
192 dozens of instructions on subroutine calls.
195 GPIO access that may sleep
196 --------------------------
197 Some GPIO controllers must be accessed using message based busses like I2C
198 or SPI.  Commands to read or write those GPIO values require waiting to
199 get to the head of a queue to transmit a command and get its response.
200 This requires sleeping, which can't be done from inside IRQ handlers.
202 Platforms that support this type of GPIO distinguish them from other GPIOs
203 by returning nonzero from this call (which requires a valid GPIO number,
204 which should have been previously allocated with gpio_request):
206         int gpio_cansleep(unsigned gpio);
208 To access such GPIOs, a different set of accessors is defined:
210         /* GPIO INPUT:  return zero or nonzero, might sleep */
211         int gpio_get_value_cansleep(unsigned gpio);
213         /* GPIO OUTPUT, might sleep */
214         void gpio_set_value_cansleep(unsigned gpio, int value);
217 Accessing such GPIOs requires a context which may sleep,  for example
218 a threaded IRQ handler, and those accessors must be used instead of
219 spinlock-safe accessors without the cansleep() name suffix.
221 Other than the fact that these accessors might sleep, and will work
222 on GPIOs that can't be accessed from hardIRQ handlers, these calls act
223 the same as the spinlock-safe calls.
225   ** IN ADDITION ** calls to setup and configure such GPIOs must be made
226 from contexts which may sleep, since they may need to access the GPIO
227 controller chip too:  (These setup calls are usually made from board
228 setup or driver probe/teardown code, so this is an easy constraint.)
230         gpio_direction_input()
231         gpio_direction_output()
232         gpio_request()
234 ##      gpio_request_one()
235 ##      gpio_request_array()
236 ##      gpio_free_array()
238         gpio_free()
239         gpio_set_debounce()
243 Claiming and Releasing GPIOs
244 ----------------------------
245 To help catch system configuration errors, two calls are defined.
247         /* request GPIO, returning 0 or negative errno.
248          * non-null labels may be useful for diagnostics.
249          */
250         int gpio_request(unsigned gpio, const char *label);
252         /* release previously-claimed GPIO */
253         void gpio_free(unsigned gpio);
255 Passing invalid GPIO numbers to gpio_request() will fail, as will requesting
256 GPIOs that have already been claimed with that call.  The return value of
257 gpio_request() must be checked.  You should normally issue these calls from
258 a task context.  However, for spinlock-safe GPIOs it's OK to request GPIOs
259 before tasking is enabled, as part of early board setup.
261 These calls serve two basic purposes.  One is marking the signals which
262 are actually in use as GPIOs, for better diagnostics; systems may have
263 several hundred potential GPIOs, but often only a dozen are used on any
264 given board.  Another is to catch conflicts, identifying errors when
265 (a) two or more drivers wrongly think they have exclusive use of that
266 signal, or (b) something wrongly believes it's safe to remove drivers
267 needed to manage a signal that's in active use.  That is, requesting a
268 GPIO can serve as a kind of lock.
270 Some platforms may also use knowledge about what GPIOs are active for
271 power management, such as by powering down unused chip sectors and, more
272 easily, gating off unused clocks.
274 Note that requesting a GPIO does NOT cause it to be configured in any
275 way; it just marks that GPIO as in use.  Separate code must handle any
276 pin setup (e.g. controlling which pin the GPIO uses, pullup/pulldown).
278 Also note that it's your responsibility to have stopped using a GPIO
279 before you free it.
281 Considering in most cases GPIOs are actually configured right after they
282 are claimed, three additional calls are defined:
284         /* request a single GPIO, with initial configuration specified by
285          * 'flags', identical to gpio_request() wrt other arguments and
286          * return value
287          */
288         int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
290         /* request multiple GPIOs in a single call
291          */
292         int gpio_request_array(struct gpio *array, size_t num);
294         /* release multiple GPIOs in a single call
295          */
296         void gpio_free_array(struct gpio *array, size_t num);
298 where 'flags' is currently defined to specify the following properties:
300         * GPIOF_DIR_IN          - to configure direction as input
301         * GPIOF_DIR_OUT         - to configure direction as output
303         * GPIOF_INIT_LOW        - as output, set initial level to LOW
304         * GPIOF_INIT_HIGH       - as output, set initial level to HIGH
306 since GPIOF_INIT_* are only valid when configured as output, so group valid
307 combinations as:
309         * GPIOF_IN              - configure as input
310         * GPIOF_OUT_INIT_LOW    - configured as output, initial level LOW
311         * GPIOF_OUT_INIT_HIGH   - configured as output, initial level HIGH
313 In the future, these flags can be extended to support more properties such
314 as open-drain status.
316 Further more, to ease the claim/release of multiple GPIOs, 'struct gpio' is
317 introduced to encapsulate all three fields as:
319         struct gpio {
320                 unsigned        gpio;
321                 unsigned long   flags;
322                 const char      *label;
323         };
325 A typical example of usage:
327         static struct gpio leds_gpios[] = {
328                 { 32, GPIOF_OUT_INIT_HIGH, "Power LED" }, /* default to ON */
329                 { 33, GPIOF_OUT_INIT_LOW,  "Green LED" }, /* default to OFF */
330                 { 34, GPIOF_OUT_INIT_LOW,  "Red LED"   }, /* default to OFF */
331                 { 35, GPIOF_OUT_INIT_LOW,  "Blue LED"  }, /* default to OFF */
332                 { ... },
333         };
335         err = gpio_request_one(31, GPIOF_IN, "Reset Button");
336         if (err)
337                 ...
339         err = gpio_request_array(leds_gpios, ARRAY_SIZE(leds_gpios));
340         if (err)
341                 ...
343         gpio_free_array(leds_gpios, ARRAY_SIZE(leds_gpios));
346 GPIOs mapped to IRQs
347 --------------------
348 GPIO numbers are unsigned integers; so are IRQ numbers.  These make up
349 two logically distinct namespaces (GPIO 0 need not use IRQ 0).  You can
350 map between them using calls like:
352         /* map GPIO numbers to IRQ numbers */
353         int gpio_to_irq(unsigned gpio);
355         /* map IRQ numbers to GPIO numbers (avoid using this) */
356         int irq_to_gpio(unsigned irq);
358 Those return either the corresponding number in the other namespace, or
359 else a negative errno code if the mapping can't be done.  (For example,
360 some GPIOs can't be used as IRQs.)  It is an unchecked error to use a GPIO
361 number that wasn't set up as an input using gpio_direction_input(), or
362 to use an IRQ number that didn't originally come from gpio_to_irq().
364 These two mapping calls are expected to cost on the order of a single
365 addition or subtraction.  They're not allowed to sleep.
367 Non-error values returned from gpio_to_irq() can be passed to request_irq()
368 or free_irq().  They will often be stored into IRQ resources for platform
369 devices, by the board-specific initialization code.  Note that IRQ trigger
370 options are part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are
371 system wakeup capabilities.
373 Non-error values returned from irq_to_gpio() would most commonly be used
374 with gpio_get_value(), for example to initialize or update driver state
375 when the IRQ is edge-triggered.  Note that some platforms don't support
376 this reverse mapping, so you should avoid using it.
379 Emulating Open Drain Signals
380 ----------------------------
381 Sometimes shared signals need to use "open drain" signaling, where only the
382 low signal level is actually driven.  (That term applies to CMOS transistors;
383 "open collector" is used for TTL.)  A pullup resistor causes the high signal
384 level.  This is sometimes called a "wire-AND"; or more practically, from the
385 negative logic (low=true) perspective this is a "wire-OR".
387 One common example of an open drain signal is a shared active-low IRQ line.
388 Also, bidirectional data bus signals sometimes use open drain signals.
390 Some GPIO controllers directly support open drain outputs; many don't.  When
391 you need open drain signaling but your hardware doesn't directly support it,
392 there's a common idiom you can use to emulate it with any GPIO pin that can
393 be used as either an input or an output:
395  LOW:   gpio_direction_output(gpio, 0) ... this drives the signal
396         and overrides the pullup.
398  HIGH:  gpio_direction_input(gpio) ... this turns off the output,
399         so the pullup (or some other device) controls the signal.
401 If you are "driving" the signal high but gpio_get_value(gpio) reports a low
402 value (after the appropriate rise time passes), you know some other component
403 is driving the shared signal low.  That's not necessarily an error.  As one
404 common example, that's how I2C clocks are stretched:  a slave that needs a
405 slower clock delays the rising edge of SCK, and the I2C master adjusts its
406 signaling rate accordingly.
409 What do these conventions omit?
410 ===============================
411 One of the biggest things these conventions omit is pin multiplexing, since
412 this is highly chip-specific and nonportable.  One platform might not need
413 explicit multiplexing; another might have just two options for use of any
414 given pin; another might have eight options per pin; another might be able
415 to route a given GPIO to any one of several pins.  (Yes, those examples all
416 come from systems that run Linux today.)
418 Related to multiplexing is configuration and enabling of the pullups or
419 pulldowns integrated on some platforms.  Not all platforms support them,
420 or support them in the same way; and any given board might use external
421 pullups (or pulldowns) so that the on-chip ones should not be used.
422 (When a circuit needs 5 kOhm, on-chip 100 kOhm resistors won't do.)
423 Likewise drive strength (2 mA vs 20 mA) and voltage (1.8V vs 3.3V) is a
424 platform-specific issue, as are models like (not) having a one-to-one
425 correspondence between configurable pins and GPIOs.
427 There are other system-specific mechanisms that are not specified here,
428 like the aforementioned options for input de-glitching and wire-OR output.
429 Hardware may support reading or writing GPIOs in gangs, but that's usually
430 configuration dependent:  for GPIOs sharing the same bank.  (GPIOs are
431 commonly grouped in banks of 16 or 32, with a given SOC having several such
432 banks.)  Some systems can trigger IRQs from output GPIOs, or read values
433 from pins not managed as GPIOs.  Code relying on such mechanisms will
434 necessarily be nonportable.
436 Dynamic definition of GPIOs is not currently standard; for example, as
437 a side effect of configuring an add-on board with some GPIO expanders.
440 GPIO implementor's framework (OPTIONAL)
441 =======================================
442 As noted earlier, there is an optional implementation framework making it
443 easier for platforms to support different kinds of GPIO controller using
444 the same programming interface.  This framework is called "gpiolib".
446 As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
447 will be found there.  That will list all the controllers registered through
448 this framework, and the state of the GPIOs currently in use.
451 Controller Drivers: gpio_chip
452 -----------------------------
453 In this framework each GPIO controller is packaged as a "struct gpio_chip"
454 with information common to each controller of that type:
456  - methods to establish GPIO direction
457  - methods used to access GPIO values
458  - flag saying whether calls to its methods may sleep
459  - optional debugfs dump method (showing extra state like pullup config)
460  - label for diagnostics
462 There is also per-instance data, which may come from device.platform_data:
463 the number of its first GPIO, and how many GPIOs it exposes.
465 The code implementing a gpio_chip should support multiple instances of the
466 controller, possibly using the driver model.  That code will configure each
467 gpio_chip and issue gpiochip_add().  Removing a GPIO controller should be
468 rare; use gpiochip_remove() when it is unavoidable.
470 Most often a gpio_chip is part of an instance-specific structure with state
471 not exposed by the GPIO interfaces, such as addressing, power management,
472 and more.  Chips such as codecs will have complex non-GPIO state.
474 Any debugfs dump method should normally ignore signals which haven't been
475 requested as GPIOs.  They can use gpiochip_is_requested(), which returns
476 either NULL or the label associated with that GPIO when it was requested.
479 Platform Support
480 ----------------
481 To support this framework, a platform's Kconfig will "select" either
482 ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
483 and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
484 three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
486 It may also provide a custom value for ARCH_NR_GPIOS, so that it better
487 reflects the number of GPIOs in actual use on that platform, without
488 wasting static table space.  (It should count both built-in/SoC GPIOs and
489 also ones on GPIO expanders.
491 ARCH_REQUIRE_GPIOLIB means that the gpiolib code will always get compiled
492 into the kernel on that architecture.
494 ARCH_WANT_OPTIONAL_GPIOLIB means the gpiolib code defaults to off and the user
495 can enable it and build it into the kernel optionally.
497 If neither of these options are selected, the platform does not support
498 GPIOs through GPIO-lib and the code cannot be enabled by the user.
500 Trivial implementations of those functions can directly use framework
501 code, which always dispatches through the gpio_chip:
503   #define gpio_get_value        __gpio_get_value
504   #define gpio_set_value        __gpio_set_value
505   #define gpio_cansleep         __gpio_cansleep
507 Fancier implementations could instead define those as inline functions with
508 logic optimizing access to specific SOC-based GPIOs.  For example, if the
509 referenced GPIO is the constant "12", getting or setting its value could
510 cost as little as two or three instructions, never sleeping.  When such an
511 optimization is not possible those calls must delegate to the framework
512 code, costing at least a few dozen instructions.  For bitbanged I/O, such
513 instruction savings can be significant.
515 For SOCs, platform-specific code defines and registers gpio_chip instances
516 for each bank of on-chip GPIOs.  Those GPIOs should be numbered/labeled to
517 match chip vendor documentation, and directly match board schematics.  They
518 may well start at zero and go up to a platform-specific limit.  Such GPIOs
519 are normally integrated into platform initialization to make them always be
520 available, from arch_initcall() or earlier; they can often serve as IRQs.
523 Board Support
524 -------------
525 For external GPIO controllers -- such as I2C or SPI expanders, ASICs, multi
526 function devices, FPGAs or CPLDs -- most often board-specific code handles
527 registering controller devices and ensures that their drivers know what GPIO
528 numbers to use with gpiochip_add().  Their numbers often start right after
529 platform-specific GPIOs.
531 For example, board setup code could create structures identifying the range
532 of GPIOs that chip will expose, and passes them to each GPIO expander chip
533 using platform_data.  Then the chip driver's probe() routine could pass that
534 data to gpiochip_add().
536 Initialization order can be important.  For example, when a device relies on
537 an I2C-based GPIO, its probe() routine should only be called after that GPIO
538 becomes available.  That may mean the device should not be registered until
539 calls for that GPIO can work.  One way to address such dependencies is for
540 such gpio_chip controllers to provide setup() and teardown() callbacks to
541 board specific code; those board specific callbacks would register devices
542 once all the necessary resources are available, and remove them later when
543 the GPIO controller device becomes unavailable.
546 Sysfs Interface for Userspace (OPTIONAL)
547 ========================================
548 Platforms which use the "gpiolib" implementors framework may choose to
549 configure a sysfs user interface to GPIOs.  This is different from the
550 debugfs interface, since it provides control over GPIO direction and
551 value instead of just showing a gpio state summary.  Plus, it could be
552 present on production systems without debugging support.
554 Given appropriate hardware documentation for the system, userspace could
555 know for example that GPIO #23 controls the write protect line used to
556 protect boot loader segments in flash memory.  System upgrade procedures
557 may need to temporarily remove that protection, first importing a GPIO,
558 then changing its output state, then updating the code before re-enabling
559 the write protection.  In normal use, GPIO #23 would never be touched,
560 and the kernel would have no need to know about it.
562 Again depending on appropriate hardware documentation, on some systems
563 userspace GPIO can be used to determine system configuration data that
564 standard kernels won't know about.  And for some tasks, simple userspace
565 GPIO drivers could be all that the system really needs.
567 Note that standard kernel drivers exist for common "LEDs and Buttons"
568 GPIO tasks:  "leds-gpio" and "gpio_keys", respectively.  Use those
569 instead of talking directly to the GPIOs; they integrate with kernel
570 frameworks better than your userspace code could.
573 Paths in Sysfs
574 --------------
575 There are three kinds of entry in /sys/class/gpio:
577    -    Control interfaces used to get userspace control over GPIOs;
579    -    GPIOs themselves; and
581    -    GPIO controllers ("gpio_chip" instances).
583 That's in addition to standard files including the "device" symlink.
585 The control interfaces are write-only:
587     /sys/class/gpio/
589         "export" ... Userspace may ask the kernel to export control of
590                 a GPIO to userspace by writing its number to this file.
592                 Example:  "echo 19 > export" will create a "gpio19" node
593                 for GPIO #19, if that's not requested by kernel code.
595         "unexport" ... Reverses the effect of exporting to userspace.
597                 Example:  "echo 19 > unexport" will remove a "gpio19"
598                 node exported using the "export" file.
600 GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
601 and have the following read/write attributes:
603     /sys/class/gpio/gpioN/
605         "direction" ... reads as either "in" or "out".  This value may
606                 normally be written.  Writing as "out" defaults to
607                 initializing the value as low.  To ensure glitch free
608                 operation, values "low" and "high" may be written to
609                 configure the GPIO as an output with that initial value.
611                 Note that this attribute *will not exist* if the kernel
612                 doesn't support changing the direction of a GPIO, or
613                 it was exported by kernel code that didn't explicitly
614                 allow userspace to reconfigure this GPIO's direction.
616         "value" ... reads as either 0 (low) or 1 (high).  If the GPIO
617                 is configured as an output, this value may be written;
618                 any nonzero value is treated as high.
620                 If the pin can be configured as interrupt-generating interrupt
621                 and if it has been configured to generate interrupts (see the
622                 description of "edge"), you can poll(2) on that file and
623                 poll(2) will return whenever the interrupt was triggered. If
624                 you use poll(2), set the events POLLPRI and POLLERR. If you
625                 use select(2), set the file descriptor in exceptfds. After
626                 poll(2) returns, either lseek(2) to the beginning of the sysfs
627                 file and read the new value or close the file and re-open it
628                 to read the value.
630         "edge" ... reads as either "none", "rising", "falling", or
631                 "both". Write these strings to select the signal edge(s)
632                 that will make poll(2) on the "value" file return.
634                 This file exists only if the pin can be configured as an
635                 interrupt generating input pin.
637         "active_low" ... reads as either 0 (false) or 1 (true).  Write
638                 any nonzero value to invert the value attribute both
639                 for reading and writing.  Existing and subsequent
640                 poll(2) support configuration via the edge attribute
641                 for "rising" and "falling" edges will follow this
642                 setting.
644 GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the
645 controller implementing GPIOs starting at #42) and have the following
646 read-only attributes:
648     /sys/class/gpio/gpiochipN/
650         "base" ... same as N, the first GPIO managed by this chip
652         "label" ... provided for diagnostics (not always unique)
654         "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
656 Board documentation should in most cases cover what GPIOs are used for
657 what purposes.  However, those numbers are not always stable; GPIOs on
658 a daughtercard might be different depending on the base board being used,
659 or other cards in the stack.  In such cases, you may need to use the
660 gpiochip nodes (possibly in conjunction with schematics) to determine
661 the correct GPIO number to use for a given signal.
664 Exporting from Kernel code
665 --------------------------
666 Kernel code can explicitly manage exports of GPIOs which have already been
667 requested using gpio_request():
669         /* export the GPIO to userspace */
670         int gpio_export(unsigned gpio, bool direction_may_change);
672         /* reverse gpio_export() */
673         void gpio_unexport();
675         /* create a sysfs link to an exported GPIO node */
676         int gpio_export_link(struct device *dev, const char *name,
677                 unsigned gpio)
679         /* change the polarity of a GPIO node in sysfs */
680         int gpio_sysfs_set_active_low(unsigned gpio, int value);
682 After a kernel driver requests a GPIO, it may only be made available in
683 the sysfs interface by gpio_export().  The driver can control whether the
684 signal direction may change.  This helps drivers prevent userspace code
685 from accidentally clobbering important system state.
687 This explicit exporting can help with debugging (by making some kinds
688 of experiments easier), or can provide an always-there interface that's
689 suitable for documenting as part of a board support package.
691 After the GPIO has been exported, gpio_export_link() allows creating
692 symlinks from elsewhere in sysfs to the GPIO sysfs node.  Drivers can
693 use this to provide the interface under their own device in sysfs with
694 a descriptive name.
696 Drivers can use gpio_sysfs_set_active_low() to hide GPIO line polarity
697 differences between boards from user space.  This only affects the
698 sysfs interface.  Polarity change can be done both before and after
699 gpio_export(), and previously enabled poll(2) support for either
700 rising or falling edge will be reconfigured to follow this setting.