2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/version.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h>
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
34 #include "transaction.h"
35 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
40 #include "ref-cache.h"
43 static struct extent_io_ops btree_extent_io_ops
;
44 static void end_workqueue_fn(struct btrfs_work
*work
);
47 * end_io_wq structs are used to do processing in task context when an IO is
48 * complete. This is used during reads to verify checksums, and it is used
49 * by writes to insert metadata for new file extents after IO is complete.
55 struct btrfs_fs_info
*info
;
58 struct list_head list
;
59 struct btrfs_work work
;
63 * async submit bios are used to offload expensive checksumming
64 * onto the worker threads. They checksum file and metadata bios
65 * just before they are sent down the IO stack.
67 struct async_submit_bio
{
70 struct list_head list
;
71 extent_submit_bio_hook_t
*submit_bio_start
;
72 extent_submit_bio_hook_t
*submit_bio_done
;
75 unsigned long bio_flags
;
76 struct btrfs_work work
;
80 * extents on the btree inode are pretty simple, there's one extent
81 * that covers the entire device
83 static struct extent_map
*btree_get_extent(struct inode
*inode
,
84 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
87 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
88 struct extent_map
*em
;
91 spin_lock(&em_tree
->lock
);
92 em
= lookup_extent_mapping(em_tree
, start
, len
);
95 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
96 spin_unlock(&em_tree
->lock
);
99 spin_unlock(&em_tree
->lock
);
101 em
= alloc_extent_map(GFP_NOFS
);
103 em
= ERR_PTR(-ENOMEM
);
108 em
->block_len
= (u64
)-1;
110 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
112 spin_lock(&em_tree
->lock
);
113 ret
= add_extent_mapping(em_tree
, em
);
114 if (ret
== -EEXIST
) {
115 u64 failed_start
= em
->start
;
116 u64 failed_len
= em
->len
;
119 em
= lookup_extent_mapping(em_tree
, start
, len
);
123 em
= lookup_extent_mapping(em_tree
, failed_start
,
131 spin_unlock(&em_tree
->lock
);
139 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
141 return btrfs_crc32c(seed
, data
, len
);
144 void btrfs_csum_final(u32 crc
, char *result
)
146 *(__le32
*)result
= ~cpu_to_le32(crc
);
150 * compute the csum for a btree block, and either verify it or write it
151 * into the csum field of the block.
153 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
157 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
160 unsigned long cur_len
;
161 unsigned long offset
= BTRFS_CSUM_SIZE
;
162 char *map_token
= NULL
;
164 unsigned long map_start
;
165 unsigned long map_len
;
168 unsigned long inline_result
;
170 len
= buf
->len
- offset
;
172 err
= map_private_extent_buffer(buf
, offset
, 32,
174 &map_start
, &map_len
, KM_USER0
);
177 cur_len
= min(len
, map_len
- (offset
- map_start
));
178 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
182 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
184 if (csum_size
> sizeof(inline_result
)) {
185 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
189 result
= (char *)&inline_result
;
192 btrfs_csum_final(crc
, result
);
195 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
198 memcpy(&found
, result
, csum_size
);
200 read_extent_buffer(buf
, &val
, 0, csum_size
);
201 printk(KERN_INFO
"btrfs: %s checksum verify failed "
202 "on %llu wanted %X found %X level %d\n",
203 root
->fs_info
->sb
->s_id
,
204 buf
->start
, val
, found
, btrfs_header_level(buf
));
205 if (result
!= (char *)&inline_result
)
210 write_extent_buffer(buf
, result
, 0, csum_size
);
212 if (result
!= (char *)&inline_result
)
218 * we can't consider a given block up to date unless the transid of the
219 * block matches the transid in the parent node's pointer. This is how we
220 * detect blocks that either didn't get written at all or got written
221 * in the wrong place.
223 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
224 struct extent_buffer
*eb
, u64 parent_transid
)
228 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
231 lock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1, GFP_NOFS
);
232 if (extent_buffer_uptodate(io_tree
, eb
) &&
233 btrfs_header_generation(eb
) == parent_transid
) {
237 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
238 (unsigned long long)eb
->start
,
239 (unsigned long long)parent_transid
,
240 (unsigned long long)btrfs_header_generation(eb
));
242 clear_extent_buffer_uptodate(io_tree
, eb
);
244 unlock_extent(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
250 * helper to read a given tree block, doing retries as required when
251 * the checksums don't match and we have alternate mirrors to try.
253 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
254 struct extent_buffer
*eb
,
255 u64 start
, u64 parent_transid
)
257 struct extent_io_tree
*io_tree
;
262 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
264 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
265 btree_get_extent
, mirror_num
);
267 !verify_parent_transid(io_tree
, eb
, parent_transid
))
270 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
276 if (mirror_num
> num_copies
)
283 * checksum a dirty tree block before IO. This has extra checks to make sure
284 * we only fill in the checksum field in the first page of a multi-page block
287 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
289 struct extent_io_tree
*tree
;
290 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
294 struct extent_buffer
*eb
;
297 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
299 if (page
->private == EXTENT_PAGE_PRIVATE
)
303 len
= page
->private >> 2;
306 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
307 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
308 btrfs_header_generation(eb
));
310 found_start
= btrfs_header_bytenr(eb
);
311 if (found_start
!= start
) {
315 if (eb
->first_page
!= page
) {
319 if (!PageUptodate(page
)) {
323 found_level
= btrfs_header_level(eb
);
325 csum_tree_block(root
, eb
, 0);
327 free_extent_buffer(eb
);
332 static int check_tree_block_fsid(struct btrfs_root
*root
,
333 struct extent_buffer
*eb
)
335 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
336 u8 fsid
[BTRFS_UUID_SIZE
];
339 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
342 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
346 fs_devices
= fs_devices
->seed
;
351 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
352 struct extent_state
*state
)
354 struct extent_io_tree
*tree
;
358 struct extent_buffer
*eb
;
359 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
362 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
363 if (page
->private == EXTENT_PAGE_PRIVATE
)
368 len
= page
->private >> 2;
371 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
373 found_start
= btrfs_header_bytenr(eb
);
374 if (found_start
!= start
) {
375 printk(KERN_INFO
"btrfs bad tree block start %llu %llu\n",
376 (unsigned long long)found_start
,
377 (unsigned long long)eb
->start
);
381 if (eb
->first_page
!= page
) {
382 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
383 eb
->first_page
->index
, page
->index
);
388 if (check_tree_block_fsid(root
, eb
)) {
389 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
390 (unsigned long long)eb
->start
);
394 found_level
= btrfs_header_level(eb
);
396 ret
= csum_tree_block(root
, eb
, 1);
400 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
401 end
= eb
->start
+ end
- 1;
403 free_extent_buffer(eb
);
408 static void end_workqueue_bio(struct bio
*bio
, int err
)
410 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
411 struct btrfs_fs_info
*fs_info
;
413 fs_info
= end_io_wq
->info
;
414 end_io_wq
->error
= err
;
415 end_io_wq
->work
.func
= end_workqueue_fn
;
416 end_io_wq
->work
.flags
= 0;
418 if (bio
->bi_rw
& (1 << BIO_RW
)) {
419 if (end_io_wq
->metadata
)
420 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
423 btrfs_queue_worker(&fs_info
->endio_write_workers
,
426 if (end_io_wq
->metadata
)
427 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
430 btrfs_queue_worker(&fs_info
->endio_workers
,
435 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
438 struct end_io_wq
*end_io_wq
;
439 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
443 end_io_wq
->private = bio
->bi_private
;
444 end_io_wq
->end_io
= bio
->bi_end_io
;
445 end_io_wq
->info
= info
;
446 end_io_wq
->error
= 0;
447 end_io_wq
->bio
= bio
;
448 end_io_wq
->metadata
= metadata
;
450 bio
->bi_private
= end_io_wq
;
451 bio
->bi_end_io
= end_workqueue_bio
;
455 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
457 unsigned long limit
= min_t(unsigned long,
458 info
->workers
.max_workers
,
459 info
->fs_devices
->open_devices
);
463 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
465 return atomic_read(&info
->nr_async_bios
) >
466 btrfs_async_submit_limit(info
);
469 static void run_one_async_start(struct btrfs_work
*work
)
471 struct btrfs_fs_info
*fs_info
;
472 struct async_submit_bio
*async
;
474 async
= container_of(work
, struct async_submit_bio
, work
);
475 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
476 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
477 async
->mirror_num
, async
->bio_flags
);
480 static void run_one_async_done(struct btrfs_work
*work
)
482 struct btrfs_fs_info
*fs_info
;
483 struct async_submit_bio
*async
;
486 async
= container_of(work
, struct async_submit_bio
, work
);
487 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
489 limit
= btrfs_async_submit_limit(fs_info
);
490 limit
= limit
* 2 / 3;
492 atomic_dec(&fs_info
->nr_async_submits
);
494 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
495 waitqueue_active(&fs_info
->async_submit_wait
))
496 wake_up(&fs_info
->async_submit_wait
);
498 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
499 async
->mirror_num
, async
->bio_flags
);
502 static void run_one_async_free(struct btrfs_work
*work
)
504 struct async_submit_bio
*async
;
506 async
= container_of(work
, struct async_submit_bio
, work
);
510 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
511 int rw
, struct bio
*bio
, int mirror_num
,
512 unsigned long bio_flags
,
513 extent_submit_bio_hook_t
*submit_bio_start
,
514 extent_submit_bio_hook_t
*submit_bio_done
)
516 struct async_submit_bio
*async
;
518 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
522 async
->inode
= inode
;
525 async
->mirror_num
= mirror_num
;
526 async
->submit_bio_start
= submit_bio_start
;
527 async
->submit_bio_done
= submit_bio_done
;
529 async
->work
.func
= run_one_async_start
;
530 async
->work
.ordered_func
= run_one_async_done
;
531 async
->work
.ordered_free
= run_one_async_free
;
533 async
->work
.flags
= 0;
534 async
->bio_flags
= bio_flags
;
536 atomic_inc(&fs_info
->nr_async_submits
);
537 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
539 int limit
= btrfs_async_submit_limit(fs_info
);
540 if (atomic_read(&fs_info
->nr_async_submits
) > limit
) {
541 wait_event_timeout(fs_info
->async_submit_wait
,
542 (atomic_read(&fs_info
->nr_async_submits
) < limit
),
545 wait_event_timeout(fs_info
->async_submit_wait
,
546 (atomic_read(&fs_info
->nr_async_bios
) < limit
),
550 while (atomic_read(&fs_info
->async_submit_draining
) &&
551 atomic_read(&fs_info
->nr_async_submits
)) {
552 wait_event(fs_info
->async_submit_wait
,
553 (atomic_read(&fs_info
->nr_async_submits
) == 0));
559 static int btree_csum_one_bio(struct bio
*bio
)
561 struct bio_vec
*bvec
= bio
->bi_io_vec
;
563 struct btrfs_root
*root
;
565 WARN_ON(bio
->bi_vcnt
<= 0);
566 while (bio_index
< bio
->bi_vcnt
) {
567 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
568 csum_dirty_buffer(root
, bvec
->bv_page
);
575 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
576 struct bio
*bio
, int mirror_num
,
577 unsigned long bio_flags
)
580 * when we're called for a write, we're already in the async
581 * submission context. Just jump into btrfs_map_bio
583 btree_csum_one_bio(bio
);
587 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
588 int mirror_num
, unsigned long bio_flags
)
591 * when we're called for a write, we're already in the async
592 * submission context. Just jump into btrfs_map_bio
594 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
597 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
598 int mirror_num
, unsigned long bio_flags
)
602 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
606 if (!(rw
& (1 << BIO_RW
))) {
608 * called for a read, do the setup so that checksum validation
609 * can happen in the async kernel threads
611 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
615 * kthread helpers are used to submit writes so that checksumming
616 * can happen in parallel across all CPUs
618 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
619 inode
, rw
, bio
, mirror_num
, 0,
620 __btree_submit_bio_start
,
621 __btree_submit_bio_done
);
624 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
626 struct extent_io_tree
*tree
;
627 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
629 if (current
->flags
& PF_MEMALLOC
) {
630 redirty_page_for_writepage(wbc
, page
);
634 return extent_write_full_page(tree
, page
, btree_get_extent
, wbc
);
637 static int btree_writepages(struct address_space
*mapping
,
638 struct writeback_control
*wbc
)
640 struct extent_io_tree
*tree
;
641 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
642 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
645 unsigned long thresh
= 32 * 1024 * 1024;
647 if (wbc
->for_kupdate
)
650 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
651 thresh
, EXTENT_DIRTY
);
652 if (num_dirty
< thresh
)
655 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
658 static int btree_readpage(struct file
*file
, struct page
*page
)
660 struct extent_io_tree
*tree
;
661 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
662 return extent_read_full_page(tree
, page
, btree_get_extent
);
665 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
667 struct extent_io_tree
*tree
;
668 struct extent_map_tree
*map
;
671 if (PageWriteback(page
) || PageDirty(page
))
674 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
675 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
677 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
681 ret
= try_release_extent_buffer(tree
, page
);
683 ClearPagePrivate(page
);
684 set_page_private(page
, 0);
685 page_cache_release(page
);
691 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
693 struct extent_io_tree
*tree
;
694 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
695 extent_invalidatepage(tree
, page
, offset
);
696 btree_releasepage(page
, GFP_NOFS
);
697 if (PagePrivate(page
)) {
698 printk(KERN_WARNING
"btrfs warning page private not zero "
699 "on page %llu\n", (unsigned long long)page_offset(page
));
700 ClearPagePrivate(page
);
701 set_page_private(page
, 0);
702 page_cache_release(page
);
707 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
709 struct buffer_head
*bh
;
710 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
711 struct buffer_head
*head
;
712 if (!page_has_buffers(page
)) {
713 create_empty_buffers(page
, root
->fs_info
->sb
->s_blocksize
,
714 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
716 head
= page_buffers(page
);
719 if (buffer_dirty(bh
))
720 csum_tree_block(root
, bh
, 0);
721 bh
= bh
->b_this_page
;
722 } while (bh
!= head
);
723 return block_write_full_page(page
, btree_get_block
, wbc
);
727 static struct address_space_operations btree_aops
= {
728 .readpage
= btree_readpage
,
729 .writepage
= btree_writepage
,
730 .writepages
= btree_writepages
,
731 .releasepage
= btree_releasepage
,
732 .invalidatepage
= btree_invalidatepage
,
733 .sync_page
= block_sync_page
,
736 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
739 struct extent_buffer
*buf
= NULL
;
740 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
743 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
746 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
747 buf
, 0, 0, btree_get_extent
, 0);
748 free_extent_buffer(buf
);
752 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
753 u64 bytenr
, u32 blocksize
)
755 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
756 struct extent_buffer
*eb
;
757 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
758 bytenr
, blocksize
, GFP_NOFS
);
762 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
763 u64 bytenr
, u32 blocksize
)
765 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
766 struct extent_buffer
*eb
;
768 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
769 bytenr
, blocksize
, NULL
, GFP_NOFS
);
774 int btrfs_write_tree_block(struct extent_buffer
*buf
)
776 return btrfs_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
777 buf
->start
+ buf
->len
- 1, WB_SYNC_ALL
);
780 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
782 return btrfs_wait_on_page_writeback_range(buf
->first_page
->mapping
,
783 buf
->start
, buf
->start
+ buf
->len
- 1);
786 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
787 u32 blocksize
, u64 parent_transid
)
789 struct extent_buffer
*buf
= NULL
;
790 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
791 struct extent_io_tree
*io_tree
;
794 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
796 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
800 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
803 buf
->flags
|= EXTENT_UPTODATE
;
810 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
811 struct extent_buffer
*buf
)
813 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
814 if (btrfs_header_generation(buf
) ==
815 root
->fs_info
->running_transaction
->transid
) {
816 WARN_ON(!btrfs_tree_locked(buf
));
817 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
823 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
824 u32 stripesize
, struct btrfs_root
*root
,
825 struct btrfs_fs_info
*fs_info
,
829 root
->commit_root
= NULL
;
830 root
->ref_tree
= NULL
;
831 root
->sectorsize
= sectorsize
;
832 root
->nodesize
= nodesize
;
833 root
->leafsize
= leafsize
;
834 root
->stripesize
= stripesize
;
836 root
->track_dirty
= 0;
838 root
->fs_info
= fs_info
;
839 root
->objectid
= objectid
;
840 root
->last_trans
= 0;
841 root
->highest_inode
= 0;
842 root
->last_inode_alloc
= 0;
846 INIT_LIST_HEAD(&root
->dirty_list
);
847 INIT_LIST_HEAD(&root
->orphan_list
);
848 INIT_LIST_HEAD(&root
->dead_list
);
849 spin_lock_init(&root
->node_lock
);
850 spin_lock_init(&root
->list_lock
);
851 mutex_init(&root
->objectid_mutex
);
852 mutex_init(&root
->log_mutex
);
853 extent_io_tree_init(&root
->dirty_log_pages
,
854 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
856 btrfs_leaf_ref_tree_init(&root
->ref_tree_struct
);
857 root
->ref_tree
= &root
->ref_tree_struct
;
859 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
860 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
861 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
862 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
863 root
->defrag_trans_start
= fs_info
->generation
;
864 init_completion(&root
->kobj_unregister
);
865 root
->defrag_running
= 0;
866 root
->defrag_level
= 0;
867 root
->root_key
.objectid
= objectid
;
868 root
->anon_super
.s_root
= NULL
;
869 root
->anon_super
.s_dev
= 0;
870 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
871 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
872 init_rwsem(&root
->anon_super
.s_umount
);
877 static int find_and_setup_root(struct btrfs_root
*tree_root
,
878 struct btrfs_fs_info
*fs_info
,
880 struct btrfs_root
*root
)
886 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
887 tree_root
->sectorsize
, tree_root
->stripesize
,
888 root
, fs_info
, objectid
);
889 ret
= btrfs_find_last_root(tree_root
, objectid
,
890 &root
->root_item
, &root
->root_key
);
893 generation
= btrfs_root_generation(&root
->root_item
);
894 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
895 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
896 blocksize
, generation
);
901 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
902 struct btrfs_fs_info
*fs_info
)
904 struct extent_buffer
*eb
;
905 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
914 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
915 0, &start
, &end
, EXTENT_DIRTY
);
919 clear_extent_dirty(&log_root_tree
->dirty_log_pages
,
920 start
, end
, GFP_NOFS
);
922 eb
= fs_info
->log_root_tree
->node
;
924 WARN_ON(btrfs_header_level(eb
) != 0);
925 WARN_ON(btrfs_header_nritems(eb
) != 0);
927 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
931 free_extent_buffer(eb
);
932 kfree(fs_info
->log_root_tree
);
933 fs_info
->log_root_tree
= NULL
;
937 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
938 struct btrfs_fs_info
*fs_info
)
940 struct btrfs_root
*root
;
941 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
943 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
947 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
948 tree_root
->sectorsize
, tree_root
->stripesize
,
949 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
951 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
952 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
953 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
956 root
->node
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
957 0, BTRFS_TREE_LOG_OBJECTID
,
958 trans
->transid
, 0, 0, 0);
960 btrfs_set_header_nritems(root
->node
, 0);
961 btrfs_set_header_level(root
->node
, 0);
962 btrfs_set_header_bytenr(root
->node
, root
->node
->start
);
963 btrfs_set_header_generation(root
->node
, trans
->transid
);
964 btrfs_set_header_owner(root
->node
, BTRFS_TREE_LOG_OBJECTID
);
966 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
967 (unsigned long)btrfs_header_fsid(root
->node
),
969 btrfs_mark_buffer_dirty(root
->node
);
970 btrfs_tree_unlock(root
->node
);
971 fs_info
->log_root_tree
= root
;
975 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
976 struct btrfs_key
*location
)
978 struct btrfs_root
*root
;
979 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
980 struct btrfs_path
*path
;
981 struct extent_buffer
*l
;
987 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
989 return ERR_PTR(-ENOMEM
);
990 if (location
->offset
== (u64
)-1) {
991 ret
= find_and_setup_root(tree_root
, fs_info
,
992 location
->objectid
, root
);
1000 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1001 tree_root
->sectorsize
, tree_root
->stripesize
,
1002 root
, fs_info
, location
->objectid
);
1004 path
= btrfs_alloc_path();
1006 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1013 read_extent_buffer(l
, &root
->root_item
,
1014 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1015 sizeof(root
->root_item
));
1016 memcpy(&root
->root_key
, location
, sizeof(*location
));
1019 btrfs_release_path(root
, path
);
1020 btrfs_free_path(path
);
1023 return ERR_PTR(ret
);
1025 generation
= btrfs_root_generation(&root
->root_item
);
1026 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1027 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1028 blocksize
, generation
);
1029 BUG_ON(!root
->node
);
1031 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1033 ret
= btrfs_find_highest_inode(root
, &highest_inode
);
1035 root
->highest_inode
= highest_inode
;
1036 root
->last_inode_alloc
= highest_inode
;
1042 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1045 struct btrfs_root
*root
;
1047 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1048 return fs_info
->tree_root
;
1049 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1050 return fs_info
->extent_root
;
1052 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1053 (unsigned long)root_objectid
);
1057 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1058 struct btrfs_key
*location
)
1060 struct btrfs_root
*root
;
1063 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1064 return fs_info
->tree_root
;
1065 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1066 return fs_info
->extent_root
;
1067 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1068 return fs_info
->chunk_root
;
1069 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1070 return fs_info
->dev_root
;
1071 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1072 return fs_info
->csum_root
;
1074 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1075 (unsigned long)location
->objectid
);
1079 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1083 set_anon_super(&root
->anon_super
, NULL
);
1085 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1086 (unsigned long)root
->root_key
.objectid
,
1089 free_extent_buffer(root
->node
);
1091 return ERR_PTR(ret
);
1093 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
1094 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1095 root
->root_key
.objectid
, root
);
1097 btrfs_orphan_cleanup(root
);
1102 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1103 struct btrfs_key
*location
,
1104 const char *name
, int namelen
)
1106 struct btrfs_root
*root
;
1109 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1116 ret
= btrfs_set_root_name(root
, name
, namelen
);
1118 free_extent_buffer(root
->node
);
1120 return ERR_PTR(ret
);
1123 ret
= btrfs_sysfs_add_root(root
);
1125 free_extent_buffer(root
->node
);
1128 return ERR_PTR(ret
);
1135 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1137 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1139 struct list_head
*cur
;
1140 struct btrfs_device
*device
;
1141 struct backing_dev_info
*bdi
;
1143 if ((bdi_bits
& (1 << BDI_write_congested
)) &&
1144 btrfs_congested_async(info
, 0))
1147 list_for_each(cur
, &info
->fs_devices
->devices
) {
1148 device
= list_entry(cur
, struct btrfs_device
, dev_list
);
1151 bdi
= blk_get_backing_dev_info(device
->bdev
);
1152 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1161 * this unplugs every device on the box, and it is only used when page
1164 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1166 struct list_head
*cur
;
1167 struct btrfs_device
*device
;
1168 struct btrfs_fs_info
*info
;
1170 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1171 list_for_each(cur
, &info
->fs_devices
->devices
) {
1172 device
= list_entry(cur
, struct btrfs_device
, dev_list
);
1176 bdi
= blk_get_backing_dev_info(device
->bdev
);
1177 if (bdi
->unplug_io_fn
)
1178 bdi
->unplug_io_fn(bdi
, page
);
1182 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1184 struct inode
*inode
;
1185 struct extent_map_tree
*em_tree
;
1186 struct extent_map
*em
;
1187 struct address_space
*mapping
;
1190 /* the generic O_DIRECT read code does this */
1192 __unplug_io_fn(bdi
, page
);
1197 * page->mapping may change at any time. Get a consistent copy
1198 * and use that for everything below
1201 mapping
= page
->mapping
;
1205 inode
= mapping
->host
;
1208 * don't do the expensive searching for a small number of
1211 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1212 __unplug_io_fn(bdi
, page
);
1216 offset
= page_offset(page
);
1218 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1219 spin_lock(&em_tree
->lock
);
1220 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1221 spin_unlock(&em_tree
->lock
);
1223 __unplug_io_fn(bdi
, page
);
1227 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1228 free_extent_map(em
);
1229 __unplug_io_fn(bdi
, page
);
1232 offset
= offset
- em
->start
;
1233 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1234 em
->block_start
+ offset
, page
);
1235 free_extent_map(em
);
1238 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1241 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1243 bdi
->capabilities
= default_backing_dev_info
.capabilities
;
1244 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1245 bdi
->unplug_io_data
= info
;
1246 bdi
->congested_fn
= btrfs_congested_fn
;
1247 bdi
->congested_data
= info
;
1251 static int bio_ready_for_csum(struct bio
*bio
)
1257 struct extent_io_tree
*io_tree
= NULL
;
1258 struct btrfs_fs_info
*info
= NULL
;
1259 struct bio_vec
*bvec
;
1263 bio_for_each_segment(bvec
, bio
, i
) {
1264 page
= bvec
->bv_page
;
1265 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1266 length
+= bvec
->bv_len
;
1269 if (!page
->private) {
1270 length
+= bvec
->bv_len
;
1273 length
= bvec
->bv_len
;
1274 buf_len
= page
->private >> 2;
1275 start
= page_offset(page
) + bvec
->bv_offset
;
1276 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1277 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1279 /* are we fully contained in this bio? */
1280 if (buf_len
<= length
)
1283 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1284 start
+ buf_len
- 1);
1291 * called by the kthread helper functions to finally call the bio end_io
1292 * functions. This is where read checksum verification actually happens
1294 static void end_workqueue_fn(struct btrfs_work
*work
)
1297 struct end_io_wq
*end_io_wq
;
1298 struct btrfs_fs_info
*fs_info
;
1301 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1302 bio
= end_io_wq
->bio
;
1303 fs_info
= end_io_wq
->info
;
1305 /* metadata bio reads are special because the whole tree block must
1306 * be checksummed at once. This makes sure the entire block is in
1307 * ram and up to date before trying to verify things. For
1308 * blocksize <= pagesize, it is basically a noop
1310 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1311 !bio_ready_for_csum(bio
)) {
1312 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1316 error
= end_io_wq
->error
;
1317 bio
->bi_private
= end_io_wq
->private;
1318 bio
->bi_end_io
= end_io_wq
->end_io
;
1320 bio_endio(bio
, error
);
1323 static int cleaner_kthread(void *arg
)
1325 struct btrfs_root
*root
= arg
;
1329 if (root
->fs_info
->closing
)
1332 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1333 mutex_lock(&root
->fs_info
->cleaner_mutex
);
1334 btrfs_clean_old_snapshots(root
);
1335 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1337 if (freezing(current
)) {
1341 if (root
->fs_info
->closing
)
1343 set_current_state(TASK_INTERRUPTIBLE
);
1345 __set_current_state(TASK_RUNNING
);
1347 } while (!kthread_should_stop());
1351 static int transaction_kthread(void *arg
)
1353 struct btrfs_root
*root
= arg
;
1354 struct btrfs_trans_handle
*trans
;
1355 struct btrfs_transaction
*cur
;
1357 unsigned long delay
;
1362 if (root
->fs_info
->closing
)
1366 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1367 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1369 if (root
->fs_info
->total_ref_cache_size
> 20 * 1024 * 1024) {
1370 printk(KERN_INFO
"btrfs: total reference cache "
1372 root
->fs_info
->total_ref_cache_size
);
1375 mutex_lock(&root
->fs_info
->trans_mutex
);
1376 cur
= root
->fs_info
->running_transaction
;
1378 mutex_unlock(&root
->fs_info
->trans_mutex
);
1382 now
= get_seconds();
1383 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1384 mutex_unlock(&root
->fs_info
->trans_mutex
);
1388 mutex_unlock(&root
->fs_info
->trans_mutex
);
1389 trans
= btrfs_start_transaction(root
, 1);
1390 ret
= btrfs_commit_transaction(trans
, root
);
1392 wake_up_process(root
->fs_info
->cleaner_kthread
);
1393 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1395 if (freezing(current
)) {
1398 if (root
->fs_info
->closing
)
1400 set_current_state(TASK_INTERRUPTIBLE
);
1401 schedule_timeout(delay
);
1402 __set_current_state(TASK_RUNNING
);
1404 } while (!kthread_should_stop());
1408 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1409 struct btrfs_fs_devices
*fs_devices
,
1419 struct btrfs_key location
;
1420 struct buffer_head
*bh
;
1421 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1423 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1425 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1427 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1429 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1431 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1433 struct btrfs_root
*log_tree_root
;
1438 struct btrfs_super_block
*disk_super
;
1440 if (!extent_root
|| !tree_root
|| !fs_info
||
1441 !chunk_root
|| !dev_root
|| !csum_root
) {
1445 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_NOFS
);
1446 INIT_LIST_HEAD(&fs_info
->trans_list
);
1447 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1448 INIT_LIST_HEAD(&fs_info
->hashers
);
1449 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1450 spin_lock_init(&fs_info
->hash_lock
);
1451 spin_lock_init(&fs_info
->delalloc_lock
);
1452 spin_lock_init(&fs_info
->new_trans_lock
);
1453 spin_lock_init(&fs_info
->ref_cache_lock
);
1455 init_completion(&fs_info
->kobj_unregister
);
1456 fs_info
->tree_root
= tree_root
;
1457 fs_info
->extent_root
= extent_root
;
1458 fs_info
->csum_root
= csum_root
;
1459 fs_info
->chunk_root
= chunk_root
;
1460 fs_info
->dev_root
= dev_root
;
1461 fs_info
->fs_devices
= fs_devices
;
1462 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1463 INIT_LIST_HEAD(&fs_info
->space_info
);
1464 btrfs_mapping_init(&fs_info
->mapping_tree
);
1465 atomic_set(&fs_info
->nr_async_submits
, 0);
1466 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1467 atomic_set(&fs_info
->async_submit_draining
, 0);
1468 atomic_set(&fs_info
->nr_async_bios
, 0);
1469 atomic_set(&fs_info
->throttles
, 0);
1470 atomic_set(&fs_info
->throttle_gen
, 0);
1472 fs_info
->max_extent
= (u64
)-1;
1473 fs_info
->max_inline
= 8192 * 1024;
1474 setup_bdi(fs_info
, &fs_info
->bdi
);
1475 fs_info
->btree_inode
= new_inode(sb
);
1476 fs_info
->btree_inode
->i_ino
= 1;
1477 fs_info
->btree_inode
->i_nlink
= 1;
1479 fs_info
->thread_pool_size
= min_t(unsigned long,
1480 num_online_cpus() + 2, 8);
1482 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1483 spin_lock_init(&fs_info
->ordered_extent_lock
);
1485 sb
->s_blocksize
= 4096;
1486 sb
->s_blocksize_bits
= blksize_bits(4096);
1489 * we set the i_size on the btree inode to the max possible int.
1490 * the real end of the address space is determined by all of
1491 * the devices in the system
1493 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1494 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1495 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1497 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1498 fs_info
->btree_inode
->i_mapping
,
1500 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1503 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1505 spin_lock_init(&fs_info
->block_group_cache_lock
);
1506 fs_info
->block_group_cache_tree
.rb_node
= NULL
;
1508 extent_io_tree_init(&fs_info
->pinned_extents
,
1509 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1510 extent_io_tree_init(&fs_info
->pending_del
,
1511 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1512 extent_io_tree_init(&fs_info
->extent_ins
,
1513 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1514 fs_info
->do_barriers
= 1;
1516 INIT_LIST_HEAD(&fs_info
->dead_reloc_roots
);
1517 btrfs_leaf_ref_tree_init(&fs_info
->reloc_ref_tree
);
1518 btrfs_leaf_ref_tree_init(&fs_info
->shared_ref_tree
);
1520 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1521 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1522 sizeof(struct btrfs_key
));
1523 insert_inode_hash(fs_info
->btree_inode
);
1525 mutex_init(&fs_info
->trans_mutex
);
1526 mutex_init(&fs_info
->tree_log_mutex
);
1527 mutex_init(&fs_info
->drop_mutex
);
1528 mutex_init(&fs_info
->extent_ins_mutex
);
1529 mutex_init(&fs_info
->pinned_mutex
);
1530 mutex_init(&fs_info
->chunk_mutex
);
1531 mutex_init(&fs_info
->transaction_kthread_mutex
);
1532 mutex_init(&fs_info
->cleaner_mutex
);
1533 mutex_init(&fs_info
->volume_mutex
);
1534 mutex_init(&fs_info
->tree_reloc_mutex
);
1535 init_waitqueue_head(&fs_info
->transaction_throttle
);
1536 init_waitqueue_head(&fs_info
->transaction_wait
);
1537 init_waitqueue_head(&fs_info
->async_submit_wait
);
1538 init_waitqueue_head(&fs_info
->tree_log_wait
);
1539 atomic_set(&fs_info
->tree_log_commit
, 0);
1540 atomic_set(&fs_info
->tree_log_writers
, 0);
1541 fs_info
->tree_log_transid
= 0;
1543 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1544 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1547 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1551 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1552 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1553 sizeof(fs_info
->super_for_commit
));
1556 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1558 disk_super
= &fs_info
->super_copy
;
1559 if (!btrfs_super_root(disk_super
))
1562 ret
= btrfs_parse_options(tree_root
, options
);
1568 features
= btrfs_super_incompat_flags(disk_super
) &
1569 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1571 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1572 "unsupported optional features (%Lx).\n",
1578 features
= btrfs_super_compat_ro_flags(disk_super
) &
1579 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1580 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1581 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1582 "unsupported option features (%Lx).\n",
1589 * we need to start all the end_io workers up front because the
1590 * queue work function gets called at interrupt time, and so it
1591 * cannot dynamically grow.
1593 btrfs_init_workers(&fs_info
->workers
, "worker",
1594 fs_info
->thread_pool_size
);
1596 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1597 fs_info
->thread_pool_size
);
1599 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1600 min_t(u64
, fs_devices
->num_devices
,
1601 fs_info
->thread_pool_size
));
1603 /* a higher idle thresh on the submit workers makes it much more
1604 * likely that bios will be send down in a sane order to the
1607 fs_info
->submit_workers
.idle_thresh
= 64;
1609 fs_info
->workers
.idle_thresh
= 16;
1610 fs_info
->workers
.ordered
= 1;
1612 fs_info
->delalloc_workers
.idle_thresh
= 2;
1613 fs_info
->delalloc_workers
.ordered
= 1;
1615 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1);
1616 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1617 fs_info
->thread_pool_size
);
1618 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1619 fs_info
->thread_pool_size
);
1620 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1621 "endio-meta-write", fs_info
->thread_pool_size
);
1622 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1623 fs_info
->thread_pool_size
);
1626 * endios are largely parallel and should have a very
1629 fs_info
->endio_workers
.idle_thresh
= 4;
1630 fs_info
->endio_write_workers
.idle_thresh
= 64;
1631 fs_info
->endio_meta_write_workers
.idle_thresh
= 64;
1633 btrfs_start_workers(&fs_info
->workers
, 1);
1634 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1635 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1636 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1637 btrfs_start_workers(&fs_info
->endio_workers
, fs_info
->thread_pool_size
);
1638 btrfs_start_workers(&fs_info
->endio_meta_workers
,
1639 fs_info
->thread_pool_size
);
1640 btrfs_start_workers(&fs_info
->endio_meta_write_workers
,
1641 fs_info
->thread_pool_size
);
1642 btrfs_start_workers(&fs_info
->endio_write_workers
,
1643 fs_info
->thread_pool_size
);
1645 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1646 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1647 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1649 nodesize
= btrfs_super_nodesize(disk_super
);
1650 leafsize
= btrfs_super_leafsize(disk_super
);
1651 sectorsize
= btrfs_super_sectorsize(disk_super
);
1652 stripesize
= btrfs_super_stripesize(disk_super
);
1653 tree_root
->nodesize
= nodesize
;
1654 tree_root
->leafsize
= leafsize
;
1655 tree_root
->sectorsize
= sectorsize
;
1656 tree_root
->stripesize
= stripesize
;
1658 sb
->s_blocksize
= sectorsize
;
1659 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1661 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1662 sizeof(disk_super
->magic
))) {
1663 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1664 goto fail_sb_buffer
;
1667 mutex_lock(&fs_info
->chunk_mutex
);
1668 ret
= btrfs_read_sys_array(tree_root
);
1669 mutex_unlock(&fs_info
->chunk_mutex
);
1671 printk(KERN_WARNING
"btrfs: failed to read the system "
1672 "array on %s\n", sb
->s_id
);
1673 goto fail_sys_array
;
1676 blocksize
= btrfs_level_size(tree_root
,
1677 btrfs_super_chunk_root_level(disk_super
));
1678 generation
= btrfs_super_chunk_root_generation(disk_super
);
1680 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1681 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1683 chunk_root
->node
= read_tree_block(chunk_root
,
1684 btrfs_super_chunk_root(disk_super
),
1685 blocksize
, generation
);
1686 BUG_ON(!chunk_root
->node
);
1688 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1689 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1692 mutex_lock(&fs_info
->chunk_mutex
);
1693 ret
= btrfs_read_chunk_tree(chunk_root
);
1694 mutex_unlock(&fs_info
->chunk_mutex
);
1696 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1698 goto fail_chunk_root
;
1701 btrfs_close_extra_devices(fs_devices
);
1703 blocksize
= btrfs_level_size(tree_root
,
1704 btrfs_super_root_level(disk_super
));
1705 generation
= btrfs_super_generation(disk_super
);
1707 tree_root
->node
= read_tree_block(tree_root
,
1708 btrfs_super_root(disk_super
),
1709 blocksize
, generation
);
1710 if (!tree_root
->node
)
1711 goto fail_chunk_root
;
1714 ret
= find_and_setup_root(tree_root
, fs_info
,
1715 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1717 goto fail_tree_root
;
1718 extent_root
->track_dirty
= 1;
1720 ret
= find_and_setup_root(tree_root
, fs_info
,
1721 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1722 dev_root
->track_dirty
= 1;
1725 goto fail_extent_root
;
1727 ret
= find_and_setup_root(tree_root
, fs_info
,
1728 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1730 goto fail_extent_root
;
1732 csum_root
->track_dirty
= 1;
1734 btrfs_read_block_groups(extent_root
);
1736 fs_info
->generation
= generation
;
1737 fs_info
->last_trans_committed
= generation
;
1738 fs_info
->data_alloc_profile
= (u64
)-1;
1739 fs_info
->metadata_alloc_profile
= (u64
)-1;
1740 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1741 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1743 if (!fs_info
->cleaner_kthread
)
1744 goto fail_csum_root
;
1746 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1748 "btrfs-transaction");
1749 if (!fs_info
->transaction_kthread
)
1752 if (btrfs_super_log_root(disk_super
) != 0) {
1753 u64 bytenr
= btrfs_super_log_root(disk_super
);
1755 if (fs_devices
->rw_devices
== 0) {
1756 printk(KERN_WARNING
"Btrfs log replay required "
1759 goto fail_trans_kthread
;
1762 btrfs_level_size(tree_root
,
1763 btrfs_super_log_root_level(disk_super
));
1765 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1768 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1769 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1771 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1774 ret
= btrfs_recover_log_trees(log_tree_root
);
1777 if (sb
->s_flags
& MS_RDONLY
) {
1778 ret
= btrfs_commit_super(tree_root
);
1783 if (!(sb
->s_flags
& MS_RDONLY
)) {
1784 ret
= btrfs_cleanup_reloc_trees(tree_root
);
1788 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1789 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1790 location
.offset
= (u64
)-1;
1792 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
1793 if (!fs_info
->fs_root
)
1794 goto fail_trans_kthread
;
1798 kthread_stop(fs_info
->transaction_kthread
);
1800 kthread_stop(fs_info
->cleaner_kthread
);
1803 * make sure we're done with the btree inode before we stop our
1806 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
1807 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1810 free_extent_buffer(csum_root
->node
);
1812 free_extent_buffer(extent_root
->node
);
1814 free_extent_buffer(tree_root
->node
);
1816 free_extent_buffer(chunk_root
->node
);
1818 free_extent_buffer(dev_root
->node
);
1820 btrfs_stop_workers(&fs_info
->fixup_workers
);
1821 btrfs_stop_workers(&fs_info
->delalloc_workers
);
1822 btrfs_stop_workers(&fs_info
->workers
);
1823 btrfs_stop_workers(&fs_info
->endio_workers
);
1824 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
1825 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
1826 btrfs_stop_workers(&fs_info
->endio_write_workers
);
1827 btrfs_stop_workers(&fs_info
->submit_workers
);
1829 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
1830 iput(fs_info
->btree_inode
);
1832 btrfs_close_devices(fs_info
->fs_devices
);
1833 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
1837 bdi_destroy(&fs_info
->bdi
);
1842 return ERR_PTR(err
);
1845 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
1847 char b
[BDEVNAME_SIZE
];
1850 set_buffer_uptodate(bh
);
1852 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
1853 printk(KERN_WARNING
"lost page write due to "
1854 "I/O error on %s\n",
1855 bdevname(bh
->b_bdev
, b
));
1857 /* note, we dont' set_buffer_write_io_error because we have
1858 * our own ways of dealing with the IO errors
1860 clear_buffer_uptodate(bh
);
1866 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
1868 struct buffer_head
*bh
;
1869 struct buffer_head
*latest
= NULL
;
1870 struct btrfs_super_block
*super
;
1875 /* we would like to check all the supers, but that would make
1876 * a btrfs mount succeed after a mkfs from a different FS.
1877 * So, we need to add a special mount option to scan for
1878 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1880 for (i
= 0; i
< 1; i
++) {
1881 bytenr
= btrfs_sb_offset(i
);
1882 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
1884 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
1888 super
= (struct btrfs_super_block
*)bh
->b_data
;
1889 if (btrfs_super_bytenr(super
) != bytenr
||
1890 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
1891 sizeof(super
->magic
))) {
1896 if (!latest
|| btrfs_super_generation(super
) > transid
) {
1899 transid
= btrfs_super_generation(super
);
1907 static int write_dev_supers(struct btrfs_device
*device
,
1908 struct btrfs_super_block
*sb
,
1909 int do_barriers
, int wait
, int max_mirrors
)
1911 struct buffer_head
*bh
;
1917 int last_barrier
= 0;
1919 if (max_mirrors
== 0)
1920 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
1922 /* make sure only the last submit_bh does a barrier */
1924 for (i
= 0; i
< max_mirrors
; i
++) {
1925 bytenr
= btrfs_sb_offset(i
);
1926 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1927 device
->total_bytes
)
1933 for (i
= 0; i
< max_mirrors
; i
++) {
1934 bytenr
= btrfs_sb_offset(i
);
1935 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
1939 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
1940 BTRFS_SUPER_INFO_SIZE
);
1944 if (buffer_uptodate(bh
)) {
1949 btrfs_set_super_bytenr(sb
, bytenr
);
1952 crc
= btrfs_csum_data(NULL
, (char *)sb
+
1953 BTRFS_CSUM_SIZE
, crc
,
1954 BTRFS_SUPER_INFO_SIZE
-
1956 btrfs_csum_final(crc
, sb
->csum
);
1958 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
1959 BTRFS_SUPER_INFO_SIZE
);
1960 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
1962 set_buffer_uptodate(bh
);
1965 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
1968 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
1969 ret
= submit_bh(WRITE_BARRIER
, bh
);
1970 if (ret
== -EOPNOTSUPP
) {
1971 printk("btrfs: disabling barriers on dev %s\n",
1973 set_buffer_uptodate(bh
);
1974 device
->barriers
= 0;
1977 ret
= submit_bh(WRITE
, bh
);
1980 ret
= submit_bh(WRITE
, bh
);
1985 if (!buffer_uptodate(bh
))
1993 return errors
< i
? 0 : -1;
1996 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
1998 struct list_head
*cur
;
1999 struct list_head
*head
= &root
->fs_info
->fs_devices
->devices
;
2000 struct btrfs_device
*dev
;
2001 struct btrfs_super_block
*sb
;
2002 struct btrfs_dev_item
*dev_item
;
2006 int total_errors
= 0;
2009 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2010 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2012 sb
= &root
->fs_info
->super_for_commit
;
2013 dev_item
= &sb
->dev_item
;
2014 list_for_each(cur
, head
) {
2015 dev
= list_entry(cur
, struct btrfs_device
, dev_list
);
2020 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2023 btrfs_set_stack_device_generation(dev_item
, 0);
2024 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2025 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2026 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2027 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2028 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2029 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2030 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2031 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2032 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2034 flags
= btrfs_super_flags(sb
);
2035 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2037 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2041 if (total_errors
> max_errors
) {
2042 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2048 list_for_each(cur
, head
) {
2049 dev
= list_entry(cur
, struct btrfs_device
, dev_list
);
2052 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2055 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2059 if (total_errors
> max_errors
) {
2060 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2067 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2068 struct btrfs_root
*root
, int max_mirrors
)
2072 ret
= write_all_supers(root
, max_mirrors
);
2076 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2078 radix_tree_delete(&fs_info
->fs_roots_radix
,
2079 (unsigned long)root
->root_key
.objectid
);
2080 if (root
->anon_super
.s_dev
) {
2081 down_write(&root
->anon_super
.s_umount
);
2082 kill_anon_super(&root
->anon_super
);
2085 free_extent_buffer(root
->node
);
2086 if (root
->commit_root
)
2087 free_extent_buffer(root
->commit_root
);
2093 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2096 struct btrfs_root
*gang
[8];
2100 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2105 for (i
= 0; i
< ret
; i
++)
2106 btrfs_free_fs_root(fs_info
, gang
[i
]);
2111 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2113 u64 root_objectid
= 0;
2114 struct btrfs_root
*gang
[8];
2119 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2120 (void **)gang
, root_objectid
,
2124 for (i
= 0; i
< ret
; i
++) {
2125 root_objectid
= gang
[i
]->root_key
.objectid
;
2126 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
2127 root_objectid
, gang
[i
]);
2129 btrfs_orphan_cleanup(gang
[i
]);
2136 int btrfs_commit_super(struct btrfs_root
*root
)
2138 struct btrfs_trans_handle
*trans
;
2141 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2142 btrfs_clean_old_snapshots(root
);
2143 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2144 trans
= btrfs_start_transaction(root
, 1);
2145 ret
= btrfs_commit_transaction(trans
, root
);
2147 /* run commit again to drop the original snapshot */
2148 trans
= btrfs_start_transaction(root
, 1);
2149 btrfs_commit_transaction(trans
, root
);
2150 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2153 ret
= write_ctree_super(NULL
, root
, 0);
2157 int close_ctree(struct btrfs_root
*root
)
2159 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2162 fs_info
->closing
= 1;
2165 kthread_stop(root
->fs_info
->transaction_kthread
);
2166 kthread_stop(root
->fs_info
->cleaner_kthread
);
2168 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2169 ret
= btrfs_commit_super(root
);
2171 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2174 if (fs_info
->delalloc_bytes
) {
2175 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2176 fs_info
->delalloc_bytes
);
2178 if (fs_info
->total_ref_cache_size
) {
2179 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2180 (unsigned long long)fs_info
->total_ref_cache_size
);
2183 if (fs_info
->extent_root
->node
)
2184 free_extent_buffer(fs_info
->extent_root
->node
);
2186 if (fs_info
->tree_root
->node
)
2187 free_extent_buffer(fs_info
->tree_root
->node
);
2189 if (root
->fs_info
->chunk_root
->node
)
2190 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2192 if (root
->fs_info
->dev_root
->node
)
2193 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2195 if (root
->fs_info
->csum_root
->node
)
2196 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2198 btrfs_free_block_groups(root
->fs_info
);
2200 del_fs_roots(fs_info
);
2202 iput(fs_info
->btree_inode
);
2204 btrfs_stop_workers(&fs_info
->fixup_workers
);
2205 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2206 btrfs_stop_workers(&fs_info
->workers
);
2207 btrfs_stop_workers(&fs_info
->endio_workers
);
2208 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2209 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2210 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2211 btrfs_stop_workers(&fs_info
->submit_workers
);
2214 while (!list_empty(&fs_info
->hashers
)) {
2215 struct btrfs_hasher
*hasher
;
2216 hasher
= list_entry(fs_info
->hashers
.next
, struct btrfs_hasher
,
2218 list_del(&hasher
->hashers
);
2219 crypto_free_hash(&fs_info
->hash_tfm
);
2223 btrfs_close_devices(fs_info
->fs_devices
);
2224 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2226 bdi_destroy(&fs_info
->bdi
);
2228 kfree(fs_info
->extent_root
);
2229 kfree(fs_info
->tree_root
);
2230 kfree(fs_info
->chunk_root
);
2231 kfree(fs_info
->dev_root
);
2232 kfree(fs_info
->csum_root
);
2236 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2239 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2241 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2245 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2250 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2252 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2253 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2257 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2259 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2260 u64 transid
= btrfs_header_generation(buf
);
2261 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2263 WARN_ON(!btrfs_tree_locked(buf
));
2264 if (transid
!= root
->fs_info
->generation
) {
2265 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2266 "found %llu running %llu\n",
2267 (unsigned long long)buf
->start
,
2268 (unsigned long long)transid
,
2269 (unsigned long long)root
->fs_info
->generation
);
2272 set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
, buf
);
2275 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2278 * looks as though older kernels can get into trouble with
2279 * this code, they end up stuck in balance_dirty_pages forever
2281 struct extent_io_tree
*tree
;
2284 unsigned long thresh
= 32 * 1024 * 1024;
2285 tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
2287 if (current_is_pdflush() || current
->flags
& PF_MEMALLOC
)
2290 num_dirty
= count_range_bits(tree
, &start
, (u64
)-1,
2291 thresh
, EXTENT_DIRTY
);
2292 if (num_dirty
> thresh
) {
2293 balance_dirty_pages_ratelimited_nr(
2294 root
->fs_info
->btree_inode
->i_mapping
, 1);
2299 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2301 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2303 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2305 buf
->flags
|= EXTENT_UPTODATE
;
2309 int btree_lock_page_hook(struct page
*page
)
2311 struct inode
*inode
= page
->mapping
->host
;
2312 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2313 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2314 struct extent_buffer
*eb
;
2316 u64 bytenr
= page_offset(page
);
2318 if (page
->private == EXTENT_PAGE_PRIVATE
)
2321 len
= page
->private >> 2;
2322 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2326 btrfs_tree_lock(eb
);
2327 spin_lock(&root
->fs_info
->hash_lock
);
2328 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2329 spin_unlock(&root
->fs_info
->hash_lock
);
2330 btrfs_tree_unlock(eb
);
2331 free_extent_buffer(eb
);
2337 static struct extent_io_ops btree_extent_io_ops
= {
2338 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2339 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2340 .submit_bio_hook
= btree_submit_bio_hook
,
2341 /* note we're sharing with inode.c for the merge bio hook */
2342 .merge_bio_hook
= btrfs_merge_bio_hook
,