2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
37 #include <asm/paravirt.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48 #include <asm/pgalloc.h>
52 #include "multicalls.h"
54 EXPORT_SYMBOL_GPL(hypercall_page
);
56 DEFINE_PER_CPU(struct vcpu_info
*, xen_vcpu
);
57 DEFINE_PER_CPU(struct vcpu_info
, xen_vcpu_info
);
60 * Note about cr3 (pagetable base) values:
62 * xen_cr3 contains the current logical cr3 value; it contains the
63 * last set cr3. This may not be the current effective cr3, because
64 * its update may be being lazily deferred. However, a vcpu looking
65 * at its own cr3 can use this value knowing that it everything will
68 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
69 * hypercall to set the vcpu cr3 is complete (so it may be a little
70 * out of date, but it will never be set early). If one vcpu is
71 * looking at another vcpu's cr3 value, it should use this variable.
73 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
74 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
76 struct start_info
*xen_start_info
;
77 EXPORT_SYMBOL_GPL(xen_start_info
);
79 struct shared_info xen_dummy_shared_info
;
82 * Point at some empty memory to start with. We map the real shared_info
83 * page as soon as fixmap is up and running.
85 struct shared_info
*HYPERVISOR_shared_info
= (void *)&xen_dummy_shared_info
;
88 * Flag to determine whether vcpu info placement is available on all
89 * VCPUs. We assume it is to start with, and then set it to zero on
90 * the first failure. This is because it can succeed on some VCPUs
91 * and not others, since it can involve hypervisor memory allocation,
92 * or because the guest failed to guarantee all the appropriate
93 * constraints on all VCPUs (ie buffer can't cross a page boundary).
95 * Note that any particular CPU may be using a placed vcpu structure,
96 * but we can only optimise if the all are.
98 * 0: not available, 1: available
100 static int have_vcpu_info_placement
= 1;
102 static void xen_vcpu_setup(int cpu
)
104 struct vcpu_register_vcpu_info info
;
106 struct vcpu_info
*vcpup
;
108 BUG_ON(HYPERVISOR_shared_info
== &xen_dummy_shared_info
);
109 per_cpu(xen_vcpu
, cpu
) = &HYPERVISOR_shared_info
->vcpu_info
[cpu
];
111 if (!have_vcpu_info_placement
)
112 return; /* already tested, not available */
114 vcpup
= &per_cpu(xen_vcpu_info
, cpu
);
116 info
.mfn
= virt_to_mfn(vcpup
);
117 info
.offset
= offset_in_page(vcpup
);
119 printk(KERN_DEBUG
"trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
120 cpu
, vcpup
, info
.mfn
, info
.offset
);
122 /* Check to see if the hypervisor will put the vcpu_info
123 structure where we want it, which allows direct access via
124 a percpu-variable. */
125 err
= HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info
, cpu
, &info
);
128 printk(KERN_DEBUG
"register_vcpu_info failed: err=%d\n", err
);
129 have_vcpu_info_placement
= 0;
131 /* This cpu is using the registered vcpu info, even if
132 later ones fail to. */
133 per_cpu(xen_vcpu
, cpu
) = vcpup
;
135 printk(KERN_DEBUG
"cpu %d using vcpu_info at %p\n",
141 * On restore, set the vcpu placement up again.
142 * If it fails, then we're in a bad state, since
143 * we can't back out from using it...
145 void xen_vcpu_restore(void)
147 if (have_vcpu_info_placement
) {
150 for_each_online_cpu(cpu
) {
151 bool other_cpu
= (cpu
!= smp_processor_id());
154 HYPERVISOR_vcpu_op(VCPUOP_down
, cpu
, NULL
))
160 HYPERVISOR_vcpu_op(VCPUOP_up
, cpu
, NULL
))
164 BUG_ON(!have_vcpu_info_placement
);
168 static void __init
xen_banner(void)
170 printk(KERN_INFO
"Booting paravirtualized kernel on %s\n",
172 printk(KERN_INFO
"Hypervisor signature: %s%s\n",
173 xen_start_info
->magic
,
174 xen_feature(XENFEAT_mmu_pt_update_preserve_ad
) ? " (preserve-AD)" : "");
177 static void xen_cpuid(unsigned int *ax
, unsigned int *bx
,
178 unsigned int *cx
, unsigned int *dx
)
180 unsigned maskedx
= ~0;
183 * Mask out inconvenient features, to try and disable as many
184 * unsupported kernel subsystems as possible.
187 maskedx
= ~((1 << X86_FEATURE_APIC
) | /* disable APIC */
188 (1 << X86_FEATURE_ACPI
) | /* disable ACPI */
189 (1 << X86_FEATURE_MCE
) | /* disable MCE */
190 (1 << X86_FEATURE_MCA
) | /* disable MCA */
191 (1 << X86_FEATURE_ACC
)); /* thermal monitoring */
193 asm(XEN_EMULATE_PREFIX
"cpuid"
198 : "0" (*ax
), "2" (*cx
));
202 static void xen_set_debugreg(int reg
, unsigned long val
)
204 HYPERVISOR_set_debugreg(reg
, val
);
207 static unsigned long xen_get_debugreg(int reg
)
209 return HYPERVISOR_get_debugreg(reg
);
212 static unsigned long xen_save_fl(void)
214 struct vcpu_info
*vcpu
;
217 vcpu
= x86_read_percpu(xen_vcpu
);
219 /* flag has opposite sense of mask */
220 flags
= !vcpu
->evtchn_upcall_mask
;
222 /* convert to IF type flag
226 return (-flags
) & X86_EFLAGS_IF
;
229 static void xen_restore_fl(unsigned long flags
)
231 struct vcpu_info
*vcpu
;
233 /* convert from IF type flag */
234 flags
= !(flags
& X86_EFLAGS_IF
);
236 /* There's a one instruction preempt window here. We need to
237 make sure we're don't switch CPUs between getting the vcpu
238 pointer and updating the mask. */
240 vcpu
= x86_read_percpu(xen_vcpu
);
241 vcpu
->evtchn_upcall_mask
= flags
;
242 preempt_enable_no_resched();
244 /* Doesn't matter if we get preempted here, because any
245 pending event will get dealt with anyway. */
248 preempt_check_resched();
249 barrier(); /* unmask then check (avoid races) */
250 if (unlikely(vcpu
->evtchn_upcall_pending
))
251 force_evtchn_callback();
255 static void xen_irq_disable(void)
257 /* There's a one instruction preempt window here. We need to
258 make sure we're don't switch CPUs between getting the vcpu
259 pointer and updating the mask. */
261 x86_read_percpu(xen_vcpu
)->evtchn_upcall_mask
= 1;
262 preempt_enable_no_resched();
265 static void xen_irq_enable(void)
267 struct vcpu_info
*vcpu
;
269 /* We don't need to worry about being preempted here, since
270 either a) interrupts are disabled, so no preemption, or b)
271 the caller is confused and is trying to re-enable interrupts
272 on an indeterminate processor. */
274 vcpu
= x86_read_percpu(xen_vcpu
);
275 vcpu
->evtchn_upcall_mask
= 0;
277 /* Doesn't matter if we get preempted here, because any
278 pending event will get dealt with anyway. */
280 barrier(); /* unmask then check (avoid races) */
281 if (unlikely(vcpu
->evtchn_upcall_pending
))
282 force_evtchn_callback();
285 static void xen_safe_halt(void)
287 /* Blocking includes an implicit local_irq_enable(). */
288 if (HYPERVISOR_sched_op(SCHEDOP_block
, NULL
) != 0)
292 static void xen_halt(void)
295 HYPERVISOR_vcpu_op(VCPUOP_down
, smp_processor_id(), NULL
);
300 static void xen_leave_lazy(void)
302 paravirt_leave_lazy(paravirt_get_lazy_mode());
306 static unsigned long xen_store_tr(void)
311 static void xen_set_ldt(const void *addr
, unsigned entries
)
313 struct mmuext_op
*op
;
314 struct multicall_space mcs
= xen_mc_entry(sizeof(*op
));
317 op
->cmd
= MMUEXT_SET_LDT
;
318 op
->arg1
.linear_addr
= (unsigned long)addr
;
319 op
->arg2
.nr_ents
= entries
;
321 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
323 xen_mc_issue(PARAVIRT_LAZY_CPU
);
326 static void xen_load_gdt(const struct desc_ptr
*dtr
)
328 unsigned long *frames
;
329 unsigned long va
= dtr
->address
;
330 unsigned int size
= dtr
->size
+ 1;
331 unsigned pages
= (size
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
333 struct multicall_space mcs
;
335 /* A GDT can be up to 64k in size, which corresponds to 8192
336 8-byte entries, or 16 4k pages.. */
338 BUG_ON(size
> 65536);
339 BUG_ON(va
& ~PAGE_MASK
);
341 mcs
= xen_mc_entry(sizeof(*frames
) * pages
);
344 for (f
= 0; va
< dtr
->address
+ size
; va
+= PAGE_SIZE
, f
++) {
345 frames
[f
] = virt_to_mfn(va
);
346 make_lowmem_page_readonly((void *)va
);
349 MULTI_set_gdt(mcs
.mc
, frames
, size
/ sizeof(struct desc_struct
));
351 xen_mc_issue(PARAVIRT_LAZY_CPU
);
354 static void load_TLS_descriptor(struct thread_struct
*t
,
355 unsigned int cpu
, unsigned int i
)
357 struct desc_struct
*gdt
= get_cpu_gdt_table(cpu
);
358 xmaddr_t maddr
= virt_to_machine(&gdt
[GDT_ENTRY_TLS_MIN
+i
]);
359 struct multicall_space mc
= __xen_mc_entry(0);
361 MULTI_update_descriptor(mc
.mc
, maddr
.maddr
, t
->tls_array
[i
]);
364 static void xen_load_tls(struct thread_struct
*t
, unsigned int cpu
)
368 load_TLS_descriptor(t
, cpu
, 0);
369 load_TLS_descriptor(t
, cpu
, 1);
370 load_TLS_descriptor(t
, cpu
, 2);
372 xen_mc_issue(PARAVIRT_LAZY_CPU
);
375 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
376 * it means we're in a context switch, and %gs has just been
377 * saved. This means we can zero it out to prevent faults on
378 * exit from the hypervisor if the next process has no %gs.
379 * Either way, it has been saved, and the new value will get
380 * loaded properly. This will go away as soon as Xen has been
381 * modified to not save/restore %gs for normal hypercalls.
383 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU
)
387 static void xen_write_ldt_entry(struct desc_struct
*dt
, int entrynum
,
390 unsigned long lp
= (unsigned long)&dt
[entrynum
];
391 xmaddr_t mach_lp
= virt_to_machine(lp
);
392 u64 entry
= *(u64
*)ptr
;
397 if (HYPERVISOR_update_descriptor(mach_lp
.maddr
, entry
))
403 static int cvt_gate_to_trap(int vector
, u32 low
, u32 high
,
404 struct trap_info
*info
)
408 type
= (high
>> 8) & 0x1f;
409 dpl
= (high
>> 13) & 3;
411 if (type
!= 0xf && type
!= 0xe)
414 info
->vector
= vector
;
415 info
->address
= (high
& 0xffff0000) | (low
& 0x0000ffff);
416 info
->cs
= low
>> 16;
418 /* interrupt gates clear IF */
425 /* Locations of each CPU's IDT */
426 static DEFINE_PER_CPU(struct desc_ptr
, idt_desc
);
428 /* Set an IDT entry. If the entry is part of the current IDT, then
430 static void xen_write_idt_entry(gate_desc
*dt
, int entrynum
, const gate_desc
*g
)
432 unsigned long p
= (unsigned long)&dt
[entrynum
];
433 unsigned long start
, end
;
437 start
= __get_cpu_var(idt_desc
).address
;
438 end
= start
+ __get_cpu_var(idt_desc
).size
+ 1;
442 native_write_idt_entry(dt
, entrynum
, g
);
444 if (p
>= start
&& (p
+ 8) <= end
) {
445 struct trap_info info
[2];
446 u32
*desc
= (u32
*)g
;
450 if (cvt_gate_to_trap(entrynum
, desc
[0], desc
[1], &info
[0]))
451 if (HYPERVISOR_set_trap_table(info
))
458 static void xen_convert_trap_info(const struct desc_ptr
*desc
,
459 struct trap_info
*traps
)
461 unsigned in
, out
, count
;
463 count
= (desc
->size
+1) / 8;
466 for (in
= out
= 0; in
< count
; in
++) {
467 const u32
*entry
= (u32
*)(desc
->address
+ in
* 8);
469 if (cvt_gate_to_trap(in
, entry
[0], entry
[1], &traps
[out
]))
472 traps
[out
].address
= 0;
475 void xen_copy_trap_info(struct trap_info
*traps
)
477 const struct desc_ptr
*desc
= &__get_cpu_var(idt_desc
);
479 xen_convert_trap_info(desc
, traps
);
482 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
483 hold a spinlock to protect the static traps[] array (static because
484 it avoids allocation, and saves stack space). */
485 static void xen_load_idt(const struct desc_ptr
*desc
)
487 static DEFINE_SPINLOCK(lock
);
488 static struct trap_info traps
[257];
492 __get_cpu_var(idt_desc
) = *desc
;
494 xen_convert_trap_info(desc
, traps
);
497 if (HYPERVISOR_set_trap_table(traps
))
503 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
504 they're handled differently. */
505 static void xen_write_gdt_entry(struct desc_struct
*dt
, int entry
,
506 const void *desc
, int type
)
517 xmaddr_t maddr
= virt_to_machine(&dt
[entry
]);
520 if (HYPERVISOR_update_descriptor(maddr
.maddr
, *(u64
*)desc
))
529 static void xen_load_sp0(struct tss_struct
*tss
,
530 struct thread_struct
*thread
)
532 struct multicall_space mcs
= xen_mc_entry(0);
533 MULTI_stack_switch(mcs
.mc
, __KERNEL_DS
, thread
->sp0
);
534 xen_mc_issue(PARAVIRT_LAZY_CPU
);
537 static void xen_set_iopl_mask(unsigned mask
)
539 struct physdev_set_iopl set_iopl
;
541 /* Force the change at ring 0. */
542 set_iopl
.iopl
= (mask
== 0) ? 1 : (mask
>> 12) & 3;
543 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl
, &set_iopl
);
546 static void xen_io_delay(void)
550 #ifdef CONFIG_X86_LOCAL_APIC
551 static u32
xen_apic_read(unsigned long reg
)
556 static void xen_apic_write(unsigned long reg
, u32 val
)
558 /* Warn to see if there's any stray references */
563 static void xen_flush_tlb(void)
565 struct mmuext_op
*op
;
566 struct multicall_space mcs
;
570 mcs
= xen_mc_entry(sizeof(*op
));
573 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
574 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
576 xen_mc_issue(PARAVIRT_LAZY_MMU
);
581 static void xen_flush_tlb_single(unsigned long addr
)
583 struct mmuext_op
*op
;
584 struct multicall_space mcs
;
588 mcs
= xen_mc_entry(sizeof(*op
));
590 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
591 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
592 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
594 xen_mc_issue(PARAVIRT_LAZY_MMU
);
599 static void xen_flush_tlb_others(const cpumask_t
*cpus
, struct mm_struct
*mm
,
606 cpumask_t cpumask
= *cpus
;
607 struct multicall_space mcs
;
610 * A couple of (to be removed) sanity checks:
612 * - current CPU must not be in mask
613 * - mask must exist :)
615 BUG_ON(cpus_empty(cpumask
));
616 BUG_ON(cpu_isset(smp_processor_id(), cpumask
));
619 /* If a CPU which we ran on has gone down, OK. */
620 cpus_and(cpumask
, cpumask
, cpu_online_map
);
621 if (cpus_empty(cpumask
))
624 mcs
= xen_mc_entry(sizeof(*args
));
626 args
->mask
= cpumask
;
627 args
->op
.arg2
.vcpumask
= &args
->mask
;
629 if (va
== TLB_FLUSH_ALL
) {
630 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
632 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
633 args
->op
.arg1
.linear_addr
= va
;
636 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
638 xen_mc_issue(PARAVIRT_LAZY_MMU
);
641 static void xen_clts(void)
643 struct multicall_space mcs
;
645 mcs
= xen_mc_entry(0);
647 MULTI_fpu_taskswitch(mcs
.mc
, 0);
649 xen_mc_issue(PARAVIRT_LAZY_CPU
);
652 static void xen_write_cr0(unsigned long cr0
)
654 struct multicall_space mcs
;
656 /* Only pay attention to cr0.TS; everything else is
658 mcs
= xen_mc_entry(0);
660 MULTI_fpu_taskswitch(mcs
.mc
, (cr0
& X86_CR0_TS
) != 0);
662 xen_mc_issue(PARAVIRT_LAZY_CPU
);
665 static void xen_write_cr2(unsigned long cr2
)
667 x86_read_percpu(xen_vcpu
)->arch
.cr2
= cr2
;
670 static unsigned long xen_read_cr2(void)
672 return x86_read_percpu(xen_vcpu
)->arch
.cr2
;
675 static unsigned long xen_read_cr2_direct(void)
677 return x86_read_percpu(xen_vcpu_info
.arch
.cr2
);
680 static void xen_write_cr4(unsigned long cr4
)
685 native_write_cr4(cr4
);
688 static unsigned long xen_read_cr3(void)
690 return x86_read_percpu(xen_cr3
);
693 static void set_current_cr3(void *v
)
695 x86_write_percpu(xen_current_cr3
, (unsigned long)v
);
698 static void xen_write_cr3(unsigned long cr3
)
700 struct mmuext_op
*op
;
701 struct multicall_space mcs
;
702 unsigned long mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
704 BUG_ON(preemptible());
706 mcs
= xen_mc_entry(sizeof(*op
)); /* disables interrupts */
708 /* Update while interrupts are disabled, so its atomic with
710 x86_write_percpu(xen_cr3
, cr3
);
713 op
->cmd
= MMUEXT_NEW_BASEPTR
;
716 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
718 /* Update xen_update_cr3 once the batch has actually
720 xen_mc_callback(set_current_cr3
, (void *)cr3
);
722 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
725 /* Early in boot, while setting up the initial pagetable, assume
726 everything is pinned. */
727 static __init
void xen_alloc_pte_init(struct mm_struct
*mm
, u32 pfn
)
729 #ifdef CONFIG_FLATMEM
730 BUG_ON(mem_map
); /* should only be used early */
732 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
735 /* Early release_pte assumes that all pts are pinned, since there's
736 only init_mm and anything attached to that is pinned. */
737 static void xen_release_pte_init(u32 pfn
)
739 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
742 static void pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
746 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
747 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
751 /* This needs to make sure the new pte page is pinned iff its being
752 attached to a pinned pagetable. */
753 static void xen_alloc_ptpage(struct mm_struct
*mm
, u32 pfn
, unsigned level
)
755 struct page
*page
= pfn_to_page(pfn
);
757 if (PagePinned(virt_to_page(mm
->pgd
))) {
760 if (!PageHighMem(page
)) {
761 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
763 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
765 /* make sure there are no stray mappings of
771 static void xen_alloc_pte(struct mm_struct
*mm
, u32 pfn
)
773 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
776 static void xen_alloc_pmd(struct mm_struct
*mm
, u32 pfn
)
778 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
781 /* This should never happen until we're OK to use struct page */
782 static void xen_release_ptpage(u32 pfn
, unsigned level
)
784 struct page
*page
= pfn_to_page(pfn
);
786 if (PagePinned(page
)) {
787 if (!PageHighMem(page
)) {
789 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
790 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
792 ClearPagePinned(page
);
796 static void xen_release_pte(u32 pfn
)
798 xen_release_ptpage(pfn
, PT_PTE
);
801 static void xen_release_pmd(u32 pfn
)
803 xen_release_ptpage(pfn
, PT_PMD
);
806 #if PAGETABLE_LEVELS == 4
807 static void xen_alloc_pud(struct mm_struct
*mm
, u32 pfn
)
809 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
812 static void xen_release_pud(u32 pfn
)
814 xen_release_ptpage(pfn
, PT_PUD
);
818 #ifdef CONFIG_HIGHPTE
819 static void *xen_kmap_atomic_pte(struct page
*page
, enum km_type type
)
821 pgprot_t prot
= PAGE_KERNEL
;
823 if (PagePinned(page
))
824 prot
= PAGE_KERNEL_RO
;
826 if (0 && PageHighMem(page
))
827 printk("mapping highpte %lx type %d prot %s\n",
828 page_to_pfn(page
), type
,
829 (unsigned long)pgprot_val(prot
) & _PAGE_RW
? "WRITE" : "READ");
831 return kmap_atomic_prot(page
, type
, prot
);
835 static __init pte_t
mask_rw_pte(pte_t
*ptep
, pte_t pte
)
837 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
838 if (pte_val_ma(*ptep
) & _PAGE_PRESENT
)
839 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
845 /* Init-time set_pte while constructing initial pagetables, which
846 doesn't allow RO pagetable pages to be remapped RW */
847 static __init
void xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
849 pte
= mask_rw_pte(ptep
, pte
);
851 xen_set_pte(ptep
, pte
);
854 static __init
void xen_pagetable_setup_start(pgd_t
*base
)
857 pgd_t
*xen_pgd
= (pgd_t
*)xen_start_info
->pt_base
;
862 * copy top-level of Xen-supplied pagetable into place. This
863 * is a stand-in while we copy the pmd pages.
865 memcpy(base
, xen_pgd
, PTRS_PER_PGD
* sizeof(pgd_t
));
868 * For PAE, need to allocate new pmds, rather than
869 * share Xen's, since Xen doesn't like pmd's being
870 * shared between address spaces.
872 for (i
= 0; i
< PTRS_PER_PGD
; i
++) {
873 if (pgd_val_ma(xen_pgd
[i
]) & _PAGE_PRESENT
) {
874 pmd_t
*pmd
= (pmd_t
*)alloc_bootmem_low_pages(PAGE_SIZE
);
876 memcpy(pmd
, (void *)pgd_page_vaddr(xen_pgd
[i
]),
879 make_lowmem_page_readonly(pmd
);
881 set_pgd(&base
[i
], __pgd(1 + __pa(pmd
)));
886 /* make sure zero_page is mapped RO so we can use it in pagetables */
887 make_lowmem_page_readonly(empty_zero_page
);
888 make_lowmem_page_readonly(base
);
890 * Switch to new pagetable. This is done before
891 * pagetable_init has done anything so that the new pages
892 * added to the table can be prepared properly for Xen.
894 xen_write_cr3(__pa(base
));
896 /* Unpin initial Xen pagetable */
897 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
898 PFN_DOWN(__pa(xen_start_info
->pt_base
)));
899 #endif /* CONFIG_X86_32 */
902 void xen_setup_shared_info(void)
904 if (!xen_feature(XENFEAT_auto_translated_physmap
)) {
905 unsigned long addr
= fix_to_virt(FIX_PARAVIRT_BOOTMAP
);
908 * Create a mapping for the shared info page.
909 * Should be set_fixmap(), but shared_info is a machine
910 * address with no corresponding pseudo-phys address.
913 PFN_DOWN(xen_start_info
->shared_info
),
916 HYPERVISOR_shared_info
= (struct shared_info
*)addr
;
918 HYPERVISOR_shared_info
=
919 (struct shared_info
*)__va(xen_start_info
->shared_info
);
922 /* In UP this is as good a place as any to set up shared info */
923 xen_setup_vcpu_info_placement();
926 xen_setup_mfn_list_list();
929 static __init
void xen_pagetable_setup_done(pgd_t
*base
)
931 /* This will work as long as patching hasn't happened yet
933 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
934 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
935 pv_mmu_ops
.release_pte
= xen_release_pte
;
936 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
937 #if PAGETABLE_LEVELS == 4
938 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
939 pv_mmu_ops
.release_pud
= xen_release_pud
;
942 pv_mmu_ops
.set_pte
= xen_set_pte
;
944 xen_setup_shared_info();
947 /* Actually pin the pagetable down, but we can't set PG_pinned
948 yet because the page structures don't exist yet. */
949 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(base
)));
953 static __init
void xen_post_allocator_init(void)
955 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
956 pv_mmu_ops
.set_pud
= xen_set_pud
;
957 #if PAGETABLE_LEVELS == 4
958 pv_mmu_ops
.set_pgd
= xen_set_pgd
;
961 xen_mark_init_mm_pinned();
964 /* This is called once we have the cpu_possible_map */
965 void xen_setup_vcpu_info_placement(void)
969 for_each_possible_cpu(cpu
)
972 /* xen_vcpu_setup managed to place the vcpu_info within the
973 percpu area for all cpus, so make use of it */
974 if (have_vcpu_info_placement
) {
975 printk(KERN_INFO
"Xen: using vcpu_info placement\n");
977 pv_irq_ops
.save_fl
= xen_save_fl_direct
;
978 pv_irq_ops
.restore_fl
= xen_restore_fl_direct
;
979 pv_irq_ops
.irq_disable
= xen_irq_disable_direct
;
980 pv_irq_ops
.irq_enable
= xen_irq_enable_direct
;
981 pv_mmu_ops
.read_cr2
= xen_read_cr2_direct
;
985 static unsigned xen_patch(u8 type
, u16 clobbers
, void *insnbuf
,
986 unsigned long addr
, unsigned len
)
988 char *start
, *end
, *reloc
;
991 start
= end
= reloc
= NULL
;
993 #define SITE(op, x) \
994 case PARAVIRT_PATCH(op.x): \
995 if (have_vcpu_info_placement) { \
996 start = (char *)xen_##x##_direct; \
997 end = xen_##x##_direct_end; \
998 reloc = xen_##x##_direct_reloc; \
1003 SITE(pv_irq_ops
, irq_enable
);
1004 SITE(pv_irq_ops
, irq_disable
);
1005 SITE(pv_irq_ops
, save_fl
);
1006 SITE(pv_irq_ops
, restore_fl
);
1010 if (start
== NULL
|| (end
-start
) > len
)
1013 ret
= paravirt_patch_insns(insnbuf
, len
, start
, end
);
1015 /* Note: because reloc is assigned from something that
1016 appears to be an array, gcc assumes it's non-null,
1017 but doesn't know its relationship with start and
1019 if (reloc
> start
&& reloc
< end
) {
1020 int reloc_off
= reloc
- start
;
1021 long *relocp
= (long *)(insnbuf
+ reloc_off
);
1022 long delta
= start
- (char *)addr
;
1030 ret
= paravirt_patch_default(type
, clobbers
, insnbuf
,
1038 static void xen_set_fixmap(unsigned idx
, unsigned long phys
, pgprot_t prot
)
1042 phys
>>= PAGE_SHIFT
;
1045 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
1046 #ifdef CONFIG_X86_F00F_BUG
1051 #ifdef CONFIG_X86_LOCAL_APIC
1052 case FIX_APIC_BASE
: /* maps dummy local APIC */
1054 pte
= pfn_pte(phys
, prot
);
1058 pte
= mfn_pte(phys
, prot
);
1062 __native_set_fixmap(idx
, pte
);
1065 static const struct pv_info xen_info __initdata
= {
1066 .paravirt_enabled
= 1,
1067 .shared_kernel_pmd
= 0,
1072 static const struct pv_init_ops xen_init_ops __initdata
= {
1075 .banner
= xen_banner
,
1076 .memory_setup
= xen_memory_setup
,
1077 .arch_setup
= xen_arch_setup
,
1078 .post_allocator_init
= xen_post_allocator_init
,
1081 static const struct pv_time_ops xen_time_ops __initdata
= {
1082 .time_init
= xen_time_init
,
1084 .set_wallclock
= xen_set_wallclock
,
1085 .get_wallclock
= xen_get_wallclock
,
1086 .get_tsc_khz
= xen_tsc_khz
,
1087 .sched_clock
= xen_sched_clock
,
1090 static const struct pv_cpu_ops xen_cpu_ops __initdata
= {
1093 .set_debugreg
= xen_set_debugreg
,
1094 .get_debugreg
= xen_get_debugreg
,
1098 .read_cr0
= native_read_cr0
,
1099 .write_cr0
= xen_write_cr0
,
1101 .read_cr4
= native_read_cr4
,
1102 .read_cr4_safe
= native_read_cr4_safe
,
1103 .write_cr4
= xen_write_cr4
,
1105 .wbinvd
= native_wbinvd
,
1107 .read_msr
= native_read_msr_safe
,
1108 .write_msr
= native_write_msr_safe
,
1109 .read_tsc
= native_read_tsc
,
1110 .read_pmc
= native_read_pmc
,
1113 .irq_enable_sysexit
= xen_sysexit
,
1115 .load_tr_desc
= paravirt_nop
,
1116 .set_ldt
= xen_set_ldt
,
1117 .load_gdt
= xen_load_gdt
,
1118 .load_idt
= xen_load_idt
,
1119 .load_tls
= xen_load_tls
,
1121 .store_gdt
= native_store_gdt
,
1122 .store_idt
= native_store_idt
,
1123 .store_tr
= xen_store_tr
,
1125 .write_ldt_entry
= xen_write_ldt_entry
,
1126 .write_gdt_entry
= xen_write_gdt_entry
,
1127 .write_idt_entry
= xen_write_idt_entry
,
1128 .load_sp0
= xen_load_sp0
,
1130 .set_iopl_mask
= xen_set_iopl_mask
,
1131 .io_delay
= xen_io_delay
,
1134 .enter
= paravirt_enter_lazy_cpu
,
1135 .leave
= xen_leave_lazy
,
1139 static const struct pv_irq_ops xen_irq_ops __initdata
= {
1140 .init_IRQ
= xen_init_IRQ
,
1141 .save_fl
= xen_save_fl
,
1142 .restore_fl
= xen_restore_fl
,
1143 .irq_disable
= xen_irq_disable
,
1144 .irq_enable
= xen_irq_enable
,
1145 .safe_halt
= xen_safe_halt
,
1147 #ifdef CONFIG_X86_64
1148 .adjust_exception_frame
= paravirt_nop
,
1152 static const struct pv_apic_ops xen_apic_ops __initdata
= {
1153 #ifdef CONFIG_X86_LOCAL_APIC
1154 .apic_write
= xen_apic_write
,
1155 .apic_write_atomic
= xen_apic_write
,
1156 .apic_read
= xen_apic_read
,
1157 .setup_boot_clock
= paravirt_nop
,
1158 .setup_secondary_clock
= paravirt_nop
,
1159 .startup_ipi_hook
= paravirt_nop
,
1163 static const struct pv_mmu_ops xen_mmu_ops __initdata
= {
1164 .pagetable_setup_start
= xen_pagetable_setup_start
,
1165 .pagetable_setup_done
= xen_pagetable_setup_done
,
1167 .read_cr2
= xen_read_cr2
,
1168 .write_cr2
= xen_write_cr2
,
1170 .read_cr3
= xen_read_cr3
,
1171 .write_cr3
= xen_write_cr3
,
1173 .flush_tlb_user
= xen_flush_tlb
,
1174 .flush_tlb_kernel
= xen_flush_tlb
,
1175 .flush_tlb_single
= xen_flush_tlb_single
,
1176 .flush_tlb_others
= xen_flush_tlb_others
,
1178 .pte_update
= paravirt_nop
,
1179 .pte_update_defer
= paravirt_nop
,
1181 .pgd_alloc
= __paravirt_pgd_alloc
,
1182 .pgd_free
= paravirt_nop
,
1184 .alloc_pte
= xen_alloc_pte_init
,
1185 .release_pte
= xen_release_pte_init
,
1186 .alloc_pmd
= xen_alloc_pte_init
,
1187 .alloc_pmd_clone
= paravirt_nop
,
1188 .release_pmd
= xen_release_pte_init
,
1190 #ifdef CONFIG_HIGHPTE
1191 .kmap_atomic_pte
= xen_kmap_atomic_pte
,
1194 .set_pte
= xen_set_pte_init
,
1195 .set_pte_at
= xen_set_pte_at
,
1196 .set_pmd
= xen_set_pmd_hyper
,
1198 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
1199 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
1201 .pte_val
= xen_pte_val
,
1202 .pte_flags
= native_pte_val
,
1203 .pgd_val
= xen_pgd_val
,
1205 .make_pte
= xen_make_pte
,
1206 .make_pgd
= xen_make_pgd
,
1208 #ifdef CONFIG_X86_PAE
1209 .set_pte_atomic
= xen_set_pte_atomic
,
1210 .set_pte_present
= xen_set_pte_at
,
1211 .pte_clear
= xen_pte_clear
,
1212 .pmd_clear
= xen_pmd_clear
,
1213 #endif /* CONFIG_X86_PAE */
1214 .set_pud
= xen_set_pud_hyper
,
1216 .make_pmd
= xen_make_pmd
,
1217 .pmd_val
= xen_pmd_val
,
1219 #if PAGETABLE_LEVELS == 4
1220 .pud_val
= xen_pud_val
,
1221 .make_pud
= xen_make_pud
,
1222 .set_pgd
= xen_set_pgd_hyper
,
1224 .alloc_pud
= xen_alloc_pte_init
,
1225 .release_pud
= xen_release_pte_init
,
1226 #endif /* PAGETABLE_LEVELS == 4 */
1228 .activate_mm
= xen_activate_mm
,
1229 .dup_mmap
= xen_dup_mmap
,
1230 .exit_mmap
= xen_exit_mmap
,
1233 .enter
= paravirt_enter_lazy_mmu
,
1234 .leave
= xen_leave_lazy
,
1237 .set_fixmap
= xen_set_fixmap
,
1240 static void xen_reboot(int reason
)
1242 struct sched_shutdown r
= { .reason
= reason
};
1248 if (HYPERVISOR_sched_op(SCHEDOP_shutdown
, &r
))
1252 static void xen_restart(char *msg
)
1254 xen_reboot(SHUTDOWN_reboot
);
1257 static void xen_emergency_restart(void)
1259 xen_reboot(SHUTDOWN_reboot
);
1262 static void xen_machine_halt(void)
1264 xen_reboot(SHUTDOWN_poweroff
);
1267 static void xen_crash_shutdown(struct pt_regs
*regs
)
1269 xen_reboot(SHUTDOWN_crash
);
1272 static const struct machine_ops __initdata xen_machine_ops
= {
1273 .restart
= xen_restart
,
1274 .halt
= xen_machine_halt
,
1275 .power_off
= xen_machine_halt
,
1276 .shutdown
= xen_machine_halt
,
1277 .crash_shutdown
= xen_crash_shutdown
,
1278 .emergency_restart
= xen_emergency_restart
,
1282 static void __init
xen_reserve_top(void)
1284 #ifdef CONFIG_X86_32
1285 unsigned long top
= HYPERVISOR_VIRT_START
;
1286 struct xen_platform_parameters pp
;
1288 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1289 top
= pp
.virt_start
;
1291 reserve_top_address(-top
+ 2 * PAGE_SIZE
);
1292 #endif /* CONFIG_X86_32 */
1295 /* First C function to be called on Xen boot */
1296 asmlinkage
void __init
xen_start_kernel(void)
1300 if (!xen_start_info
)
1303 BUG_ON(memcmp(xen_start_info
->magic
, "xen-3", 5) != 0);
1305 xen_setup_features();
1307 /* Install Xen paravirt ops */
1309 pv_init_ops
= xen_init_ops
;
1310 pv_time_ops
= xen_time_ops
;
1311 pv_cpu_ops
= xen_cpu_ops
;
1312 pv_irq_ops
= xen_irq_ops
;
1313 pv_apic_ops
= xen_apic_ops
;
1314 pv_mmu_ops
= xen_mmu_ops
;
1316 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad
)) {
1317 pv_mmu_ops
.ptep_modify_prot_start
= xen_ptep_modify_prot_start
;
1318 pv_mmu_ops
.ptep_modify_prot_commit
= xen_ptep_modify_prot_commit
;
1321 machine_ops
= xen_machine_ops
;
1323 #ifdef CONFIG_X86_64
1324 /* Disable until direct per-cpu data access. */
1325 have_vcpu_info_placement
= 0;
1331 if (!xen_feature(XENFEAT_auto_translated_physmap
))
1332 xen_build_dynamic_phys_to_machine();
1334 pgd
= (pgd_t
*)xen_start_info
->pt_base
;
1336 #ifdef CONFIG_X86_32
1337 init_pg_tables_start
= __pa(pgd
);
1338 init_pg_tables_end
= __pa(pgd
) + xen_start_info
->nr_pt_frames
*PAGE_SIZE
;
1339 max_pfn_mapped
= (init_pg_tables_end
+ 512*1024) >> PAGE_SHIFT
;
1342 init_mm
.pgd
= pgd
; /* use the Xen pagetables to start */
1344 /* keep using Xen gdt for now; no urgent need to change it */
1346 x86_write_percpu(xen_cr3
, __pa(pgd
));
1347 x86_write_percpu(xen_current_cr3
, __pa(pgd
));
1349 /* Don't do the full vcpu_info placement stuff until we have a
1350 possible map and a non-dummy shared_info. */
1351 per_cpu(xen_vcpu
, 0) = &HYPERVISOR_shared_info
->vcpu_info
[0];
1353 pv_info
.kernel_rpl
= 1;
1354 if (xen_feature(XENFEAT_supervisor_mode_kernel
))
1355 pv_info
.kernel_rpl
= 0;
1357 /* Prevent unwanted bits from being set in PTEs. */
1358 __supported_pte_mask
&= ~_PAGE_GLOBAL
;
1359 if (!is_initial_xendomain())
1360 __supported_pte_mask
&= ~(_PAGE_PWT
| _PAGE_PCD
);
1362 /* set the limit of our address space */
1365 /* set up basic CPUID stuff */
1366 cpu_detect(&new_cpu_data
);
1367 #ifdef CONFIG_X86_32
1368 new_cpu_data
.hard_math
= 1;
1370 new_cpu_data
.x86_capability
[0] = cpuid_edx(1);
1372 /* Poke various useful things into boot_params */
1373 boot_params
.hdr
.type_of_loader
= (9 << 4) | 0;
1374 boot_params
.hdr
.ramdisk_image
= xen_start_info
->mod_start
1375 ? __pa(xen_start_info
->mod_start
) : 0;
1376 boot_params
.hdr
.ramdisk_size
= xen_start_info
->mod_len
;
1378 if (!is_initial_xendomain()) {
1379 add_preferred_console("xenboot", 0, NULL
);
1380 add_preferred_console("tty", 0, NULL
);
1381 add_preferred_console("hvc", 0, NULL
);
1384 /* Start the world */
1385 #ifdef CONFIG_X86_32
1386 i386_start_kernel();
1388 x86_64_start_kernel((char *)&boot_params
);