4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
132 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
134 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
141 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
143 sg
->__cpu_power
+= val
;
144 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
148 static inline int rt_policy(int policy
)
150 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
155 static inline int task_has_rt_policy(struct task_struct
*p
)
157 return rt_policy(p
->policy
);
161 * This is the priority-queue data structure of the RT scheduling class:
163 struct rt_prio_array
{
164 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
165 struct list_head queue
[MAX_RT_PRIO
];
168 struct rt_bandwidth
{
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock
;
173 struct hrtimer rt_period_timer
;
176 static struct rt_bandwidth def_rt_bandwidth
;
178 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
180 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
182 struct rt_bandwidth
*rt_b
=
183 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
189 now
= hrtimer_cb_get_time(timer
);
190 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
195 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
198 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
202 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
204 rt_b
->rt_period
= ns_to_ktime(period
);
205 rt_b
->rt_runtime
= runtime
;
207 spin_lock_init(&rt_b
->rt_runtime_lock
);
209 hrtimer_init(&rt_b
->rt_period_timer
,
210 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
211 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
214 static inline int rt_bandwidth_enabled(void)
216 return sysctl_sched_rt_runtime
>= 0;
219 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
223 if (rt_bandwidth_enabled() && rt_b
->rt_runtime
== RUNTIME_INF
)
226 if (hrtimer_active(&rt_b
->rt_period_timer
))
229 spin_lock(&rt_b
->rt_runtime_lock
);
231 if (hrtimer_active(&rt_b
->rt_period_timer
))
234 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
235 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
236 hrtimer_start_expires(&rt_b
->rt_period_timer
,
239 spin_unlock(&rt_b
->rt_runtime_lock
);
242 #ifdef CONFIG_RT_GROUP_SCHED
243 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
245 hrtimer_cancel(&rt_b
->rt_period_timer
);
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
253 static DEFINE_MUTEX(sched_domains_mutex
);
255 #ifdef CONFIG_GROUP_SCHED
257 #include <linux/cgroup.h>
261 static LIST_HEAD(task_groups
);
263 /* task group related information */
265 #ifdef CONFIG_CGROUP_SCHED
266 struct cgroup_subsys_state css
;
269 #ifdef CONFIG_USER_SCHED
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity
**se
;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq
**cfs_rq
;
278 unsigned long shares
;
281 #ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity
**rt_se
;
283 struct rt_rq
**rt_rq
;
285 struct rt_bandwidth rt_bandwidth
;
289 struct list_head list
;
291 struct task_group
*parent
;
292 struct list_head siblings
;
293 struct list_head children
;
296 #ifdef CONFIG_USER_SCHED
298 /* Helper function to pass uid information to create_sched_user() */
299 void set_tg_uid(struct user_struct
*user
)
301 user
->tg
->uid
= user
->uid
;
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
309 struct task_group root_task_group
;
311 #ifdef CONFIG_FAIR_GROUP_SCHED
312 /* Default task group's sched entity on each cpu */
313 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
314 /* Default task group's cfs_rq on each cpu */
315 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
316 #endif /* CONFIG_FAIR_GROUP_SCHED */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
320 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
321 #endif /* CONFIG_RT_GROUP_SCHED */
322 #else /* !CONFIG_USER_SCHED */
323 #define root_task_group init_task_group
324 #endif /* CONFIG_USER_SCHED */
326 /* task_group_lock serializes add/remove of task groups and also changes to
327 * a task group's cpu shares.
329 static DEFINE_SPINLOCK(task_group_lock
);
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 #ifdef CONFIG_USER_SCHED
333 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
334 #else /* !CONFIG_USER_SCHED */
335 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
336 #endif /* CONFIG_USER_SCHED */
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
347 #define MAX_SHARES (1UL << 18)
349 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
352 /* Default task group.
353 * Every task in system belong to this group at bootup.
355 struct task_group init_task_group
;
357 /* return group to which a task belongs */
358 static inline struct task_group
*task_group(struct task_struct
*p
)
360 struct task_group
*tg
;
362 #ifdef CONFIG_USER_SCHED
364 tg
= __task_cred(p
)->user
->tg
;
366 #elif defined(CONFIG_CGROUP_SCHED)
367 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
368 struct task_group
, css
);
370 tg
= &init_task_group
;
375 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
376 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
380 p
->se
.parent
= task_group(p
)->se
[cpu
];
383 #ifdef CONFIG_RT_GROUP_SCHED
384 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
385 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
391 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
392 static inline struct task_group
*task_group(struct task_struct
*p
)
397 #endif /* CONFIG_GROUP_SCHED */
399 /* CFS-related fields in a runqueue */
401 struct load_weight load
;
402 unsigned long nr_running
;
407 struct rb_root tasks_timeline
;
408 struct rb_node
*rb_leftmost
;
410 struct list_head tasks
;
411 struct list_head
*balance_iterator
;
414 * 'curr' points to currently running entity on this cfs_rq.
415 * It is set to NULL otherwise (i.e when none are currently running).
417 struct sched_entity
*curr
, *next
, *last
;
419 unsigned int nr_spread_over
;
421 #ifdef CONFIG_FAIR_GROUP_SCHED
422 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
432 struct list_head leaf_cfs_rq_list
;
433 struct task_group
*tg
; /* group that "owns" this runqueue */
437 * the part of load.weight contributed by tasks
439 unsigned long task_weight
;
442 * h_load = weight * f(tg)
444 * Where f(tg) is the recursive weight fraction assigned to
447 unsigned long h_load
;
450 * this cpu's part of tg->shares
452 unsigned long shares
;
455 * load.weight at the time we set shares
457 unsigned long rq_weight
;
462 /* Real-Time classes' related field in a runqueue: */
464 struct rt_prio_array active
;
465 unsigned long rt_nr_running
;
466 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
467 int highest_prio
; /* highest queued rt task prio */
470 unsigned long rt_nr_migratory
;
476 /* Nests inside the rq lock: */
477 spinlock_t rt_runtime_lock
;
479 #ifdef CONFIG_RT_GROUP_SCHED
480 unsigned long rt_nr_boosted
;
483 struct list_head leaf_rt_rq_list
;
484 struct task_group
*tg
;
485 struct sched_rt_entity
*rt_se
;
492 * We add the notion of a root-domain which will be used to define per-domain
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
495 * exclusive cpuset is created, we also create and attach a new root-domain
502 cpumask_var_t online
;
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
508 cpumask_var_t rto_mask
;
511 struct cpupri cpupri
;
513 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
519 unsigned int sched_mc_preferred_wakeup_cpu
;
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
527 static struct root_domain def_root_domain
;
532 * This is the main, per-CPU runqueue data structure.
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
546 unsigned long nr_running
;
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
549 unsigned char idle_at_tick
;
551 unsigned long last_tick_seen
;
552 unsigned char in_nohz_recently
;
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load
;
556 unsigned long nr_load_updates
;
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list
;
566 #ifdef CONFIG_RT_GROUP_SCHED
567 struct list_head leaf_rt_rq_list
;
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
576 unsigned long nr_uninterruptible
;
578 struct task_struct
*curr
, *idle
;
579 unsigned long next_balance
;
580 struct mm_struct
*prev_mm
;
587 struct root_domain
*rd
;
588 struct sched_domain
*sd
;
590 /* For active balancing */
593 /* cpu of this runqueue: */
597 unsigned long avg_load_per_task
;
599 struct task_struct
*migration_thread
;
600 struct list_head migration_queue
;
603 #ifdef CONFIG_SCHED_HRTICK
605 int hrtick_csd_pending
;
606 struct call_single_data hrtick_csd
;
608 struct hrtimer hrtick_timer
;
611 #ifdef CONFIG_SCHEDSTATS
613 struct sched_info rq_sched_info
;
614 unsigned long long rq_cpu_time
;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
617 /* sys_sched_yield() stats */
618 unsigned int yld_exp_empty
;
619 unsigned int yld_act_empty
;
620 unsigned int yld_both_empty
;
621 unsigned int yld_count
;
623 /* schedule() stats */
624 unsigned int sched_switch
;
625 unsigned int sched_count
;
626 unsigned int sched_goidle
;
628 /* try_to_wake_up() stats */
629 unsigned int ttwu_count
;
630 unsigned int ttwu_local
;
633 unsigned int bkl_count
;
637 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
639 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
641 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
644 static inline int cpu_of(struct rq
*rq
)
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655 * See detach_destroy_domains: synchronize_sched for details.
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
660 #define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
663 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664 #define this_rq() (&__get_cpu_var(runqueues))
665 #define task_rq(p) cpu_rq(task_cpu(p))
666 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
668 static inline void update_rq_clock(struct rq
*rq
)
670 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
676 #ifdef CONFIG_SCHED_DEBUG
677 # define const_debug __read_mostly
679 # define const_debug static const
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
689 int runqueue_is_locked(void)
692 struct rq
*rq
= cpu_rq(cpu
);
695 ret
= spin_is_locked(&rq
->lock
);
701 * Debugging: various feature bits
704 #define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
708 #include "sched_features.h"
713 #define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
716 const_debug
unsigned int sysctl_sched_features
=
717 #include "sched_features.h"
722 #ifdef CONFIG_SCHED_DEBUG
723 #define SCHED_FEAT(name, enabled) \
726 static __read_mostly
char *sched_feat_names
[] = {
727 #include "sched_features.h"
733 static int sched_feat_show(struct seq_file
*m
, void *v
)
737 for (i
= 0; sched_feat_names
[i
]; i
++) {
738 if (!(sysctl_sched_features
& (1UL << i
)))
740 seq_printf(m
, "%s ", sched_feat_names
[i
]);
748 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
749 size_t cnt
, loff_t
*ppos
)
759 if (copy_from_user(&buf
, ubuf
, cnt
))
764 if (strncmp(buf
, "NO_", 3) == 0) {
769 for (i
= 0; sched_feat_names
[i
]; i
++) {
770 int len
= strlen(sched_feat_names
[i
]);
772 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
774 sysctl_sched_features
&= ~(1UL << i
);
776 sysctl_sched_features
|= (1UL << i
);
781 if (!sched_feat_names
[i
])
789 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
791 return single_open(filp
, sched_feat_show
, NULL
);
794 static struct file_operations sched_feat_fops
= {
795 .open
= sched_feat_open
,
796 .write
= sched_feat_write
,
799 .release
= single_release
,
802 static __init
int sched_init_debug(void)
804 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
809 late_initcall(sched_init_debug
);
813 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
819 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
822 * ratelimit for updating the group shares.
825 unsigned int sysctl_sched_shares_ratelimit
= 250000;
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
832 unsigned int sysctl_sched_shares_thresh
= 4;
835 * period over which we measure -rt task cpu usage in us.
838 unsigned int sysctl_sched_rt_period
= 1000000;
840 static __read_mostly
int scheduler_running
;
843 * part of the period that we allow rt tasks to run in us.
846 int sysctl_sched_rt_runtime
= 950000;
848 static inline u64
global_rt_period(void)
850 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
853 static inline u64
global_rt_runtime(void)
855 if (sysctl_sched_rt_runtime
< 0)
858 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
868 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
870 return rq
->curr
== p
;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
876 return task_current(rq
, p
);
879 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
883 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq
->lock
.owner
= current
;
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
894 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
896 spin_unlock_irq(&rq
->lock
);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
905 return task_current(rq
, p
);
909 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq
->lock
);
922 spin_unlock(&rq
->lock
);
926 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
951 struct rq
*rq
= task_rq(p
);
952 spin_lock(&rq
->lock
);
953 if (likely(rq
== task_rq(p
)))
955 spin_unlock(&rq
->lock
);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
970 local_irq_save(*flags
);
972 spin_lock(&rq
->lock
);
973 if (likely(rq
== task_rq(p
)))
975 spin_unlock_irqrestore(&rq
->lock
, *flags
);
979 void task_rq_unlock_wait(struct task_struct
*p
)
981 struct rq
*rq
= task_rq(p
);
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq
->lock
);
987 static void __task_rq_unlock(struct rq
*rq
)
990 spin_unlock(&rq
->lock
);
993 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
996 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq
*this_rq_lock(void)
1003 __acquires(rq
->lock
)
1007 local_irq_disable();
1009 spin_lock(&rq
->lock
);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq
*rq
)
1033 if (!sched_feat(HRTICK
))
1035 if (!cpu_active(cpu_of(rq
)))
1037 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1040 static void hrtick_clear(struct rq
*rq
)
1042 if (hrtimer_active(&rq
->hrtick_timer
))
1043 hrtimer_cancel(&rq
->hrtick_timer
);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1052 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1054 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1056 spin_lock(&rq
->lock
);
1057 update_rq_clock(rq
);
1058 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1059 spin_unlock(&rq
->lock
);
1061 return HRTIMER_NORESTART
;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg
)
1070 struct rq
*rq
= arg
;
1072 spin_lock(&rq
->lock
);
1073 hrtimer_restart(&rq
->hrtick_timer
);
1074 rq
->hrtick_csd_pending
= 0;
1075 spin_unlock(&rq
->lock
);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq
*rq
, u64 delay
)
1085 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1086 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1088 hrtimer_set_expires(timer
, time
);
1090 if (rq
== this_rq()) {
1091 hrtimer_restart(timer
);
1092 } else if (!rq
->hrtick_csd_pending
) {
1093 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1094 rq
->hrtick_csd_pending
= 1;
1099 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1101 int cpu
= (int)(long)hcpu
;
1104 case CPU_UP_CANCELED
:
1105 case CPU_UP_CANCELED_FROZEN
:
1106 case CPU_DOWN_PREPARE
:
1107 case CPU_DOWN_PREPARE_FROZEN
:
1109 case CPU_DEAD_FROZEN
:
1110 hrtick_clear(cpu_rq(cpu
));
1117 static __init
void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick
, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq
*rq
, u64 delay
)
1129 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
), HRTIMER_MODE_REL
);
1132 static inline void init_hrtick(void)
1135 #endif /* CONFIG_SMP */
1137 static void init_rq_hrtick(struct rq
*rq
)
1140 rq
->hrtick_csd_pending
= 0;
1142 rq
->hrtick_csd
.flags
= 0;
1143 rq
->hrtick_csd
.func
= __hrtick_start
;
1144 rq
->hrtick_csd
.info
= rq
;
1147 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1148 rq
->hrtick_timer
.function
= hrtick
;
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq
*rq
)
1155 static inline void init_rq_hrtick(struct rq
*rq
)
1159 static inline void init_hrtick(void)
1162 #endif /* CONFIG_SCHED_HRTICK */
1165 * resched_task - mark a task 'to be rescheduled now'.
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1177 static void resched_task(struct task_struct
*p
)
1181 assert_spin_locked(&task_rq(p
)->lock
);
1183 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1186 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1189 if (cpu
== smp_processor_id())
1192 /* NEED_RESCHED must be visible before we test polling */
1194 if (!tsk_is_polling(p
))
1195 smp_send_reschedule(cpu
);
1198 static void resched_cpu(int cpu
)
1200 struct rq
*rq
= cpu_rq(cpu
);
1201 unsigned long flags
;
1203 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1205 resched_task(cpu_curr(cpu
));
1206 spin_unlock_irqrestore(&rq
->lock
, flags
);
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1220 void wake_up_idle_cpu(int cpu
)
1222 struct rq
*rq
= cpu_rq(cpu
);
1224 if (cpu
== smp_processor_id())
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1234 if (rq
->curr
!= rq
->idle
)
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1242 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1244 /* NEED_RESCHED must be visible before we test polling */
1246 if (!tsk_is_polling(rq
->idle
))
1247 smp_send_reschedule(cpu
);
1249 #endif /* CONFIG_NO_HZ */
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct
*p
)
1254 assert_spin_locked(&task_rq(p
)->lock
);
1255 set_tsk_need_resched(p
);
1257 #endif /* CONFIG_SMP */
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1262 # define WMULT_CONST (1UL << 32)
1265 #define WMULT_SHIFT 32
1268 * Shift right and round:
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1273 * delta *= weight / lw
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1277 struct load_weight
*lw
)
1281 if (!lw
->inv_weight
) {
1282 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1285 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1289 tmp
= (u64
)delta_exec
* weight
;
1291 * Check whether we'd overflow the 64-bit multiplication:
1293 if (unlikely(tmp
> WMULT_CONST
))
1294 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1297 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1299 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1302 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1308 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1338 static const int prio_to_weight
[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1356 static const u32 prio_to_wmult
[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1367 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1374 struct rq_iterator
{
1376 struct task_struct
*(*start
)(void *);
1377 struct task_struct
*(*next
)(void *);
1381 static unsigned long
1382 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1383 unsigned long max_load_move
, struct sched_domain
*sd
,
1384 enum cpu_idle_type idle
, int *all_pinned
,
1385 int *this_best_prio
, struct rq_iterator
*iterator
);
1388 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1389 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1390 struct rq_iterator
*iterator
);
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1396 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1399 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1401 update_load_add(&rq
->load
, load
);
1404 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1406 update_load_sub(&rq
->load
, load
);
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor
)(struct task_group
*, void *);
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1416 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1418 struct task_group
*parent
, *child
;
1422 parent
= &root_task_group
;
1424 ret
= (*down
)(parent
, data
);
1427 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1434 ret
= (*up
)(parent
, data
);
1439 parent
= parent
->parent
;
1448 static int tg_nop(struct task_group
*tg
, void *data
)
1455 static unsigned long source_load(int cpu
, int type
);
1456 static unsigned long target_load(int cpu
, int type
);
1457 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1459 static unsigned long cpu_avg_load_per_task(int cpu
)
1461 struct rq
*rq
= cpu_rq(cpu
);
1462 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1465 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1467 rq
->avg_load_per_task
= 0;
1469 return rq
->avg_load_per_task
;
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1474 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1477 * Calculate and set the cpu's group shares.
1480 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1481 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1483 unsigned long shares
;
1484 unsigned long rq_weight
;
1489 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1497 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1498 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1500 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1501 sysctl_sched_shares_thresh
) {
1502 struct rq
*rq
= cpu_rq(cpu
);
1503 unsigned long flags
;
1505 spin_lock_irqsave(&rq
->lock
, flags
);
1506 tg
->cfs_rq
[cpu
]->shares
= shares
;
1508 __set_se_shares(tg
->se
[cpu
], shares
);
1509 spin_unlock_irqrestore(&rq
->lock
, flags
);
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
1518 static int tg_shares_up(struct task_group
*tg
, void *data
)
1520 unsigned long weight
, rq_weight
= 0;
1521 unsigned long shares
= 0;
1522 struct sched_domain
*sd
= data
;
1525 for_each_cpu(i
, sched_domain_span(sd
)) {
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1531 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1533 weight
= NICE_0_LOAD
;
1535 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1536 rq_weight
+= weight
;
1537 shares
+= tg
->cfs_rq
[i
]->shares
;
1540 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1541 shares
= tg
->shares
;
1543 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1544 shares
= tg
->shares
;
1546 for_each_cpu(i
, sched_domain_span(sd
))
1547 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
1557 static int tg_load_down(struct task_group
*tg
, void *data
)
1560 long cpu
= (long)data
;
1563 load
= cpu_rq(cpu
)->load
.weight
;
1565 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1566 load
*= tg
->cfs_rq
[cpu
]->shares
;
1567 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1570 tg
->cfs_rq
[cpu
]->h_load
= load
;
1575 static void update_shares(struct sched_domain
*sd
)
1577 u64 now
= cpu_clock(raw_smp_processor_id());
1578 s64 elapsed
= now
- sd
->last_update
;
1580 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1581 sd
->last_update
= now
;
1582 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1586 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1588 spin_unlock(&rq
->lock
);
1590 spin_lock(&rq
->lock
);
1593 static void update_h_load(long cpu
)
1595 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1600 static inline void update_shares(struct sched_domain
*sd
)
1604 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1613 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1614 __releases(this_rq
->lock
)
1615 __acquires(busiest
->lock
)
1616 __acquires(this_rq
->lock
)
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq
->lock
);
1625 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1626 if (busiest
< this_rq
) {
1627 spin_unlock(&this_rq
->lock
);
1628 spin_lock(&busiest
->lock
);
1629 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1632 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1637 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1638 __releases(busiest
->lock
)
1640 spin_unlock(&busiest
->lock
);
1641 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1645 #ifdef CONFIG_FAIR_GROUP_SCHED
1646 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1649 cfs_rq
->shares
= shares
;
1654 #include "sched_stats.h"
1655 #include "sched_idletask.c"
1656 #include "sched_fair.c"
1657 #include "sched_rt.c"
1658 #ifdef CONFIG_SCHED_DEBUG
1659 # include "sched_debug.c"
1662 #define sched_class_highest (&rt_sched_class)
1663 #define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
1666 static void inc_nr_running(struct rq
*rq
)
1671 static void dec_nr_running(struct rq
*rq
)
1676 static void set_load_weight(struct task_struct
*p
)
1678 if (task_has_rt_policy(p
)) {
1679 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1680 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1685 * SCHED_IDLE tasks get minimal weight:
1687 if (p
->policy
== SCHED_IDLE
) {
1688 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1689 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1693 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1694 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1697 static void update_avg(u64
*avg
, u64 sample
)
1699 s64 diff
= sample
- *avg
;
1703 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1705 sched_info_queued(p
);
1706 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1710 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1712 if (sleep
&& p
->se
.last_wakeup
) {
1713 update_avg(&p
->se
.avg_overlap
,
1714 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1715 p
->se
.last_wakeup
= 0;
1718 sched_info_dequeued(p
);
1719 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1724 * __normal_prio - return the priority that is based on the static prio
1726 static inline int __normal_prio(struct task_struct
*p
)
1728 return p
->static_prio
;
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1738 static inline int normal_prio(struct task_struct
*p
)
1742 if (task_has_rt_policy(p
))
1743 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1745 prio
= __normal_prio(p
);
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1756 static int effective_prio(struct task_struct
*p
)
1758 p
->normal_prio
= normal_prio(p
);
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1764 if (!rt_prio(p
->prio
))
1765 return p
->normal_prio
;
1770 * activate_task - move a task to the runqueue.
1772 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1774 if (task_contributes_to_load(p
))
1775 rq
->nr_uninterruptible
--;
1777 enqueue_task(rq
, p
, wakeup
);
1782 * deactivate_task - remove a task from the runqueue.
1784 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1786 if (task_contributes_to_load(p
))
1787 rq
->nr_uninterruptible
++;
1789 dequeue_task(rq
, p
, sleep
);
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1797 inline int task_curr(const struct task_struct
*p
)
1799 return cpu_curr(task_cpu(p
)) == p
;
1802 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1804 set_task_rq(p
, cpu
);
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1812 task_thread_info(p
)->cpu
= cpu
;
1816 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1817 const struct sched_class
*prev_class
,
1818 int oldprio
, int running
)
1820 if (prev_class
!= p
->sched_class
) {
1821 if (prev_class
->switched_from
)
1822 prev_class
->switched_from(rq
, p
, running
);
1823 p
->sched_class
->switched_to(rq
, p
, running
);
1825 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1830 /* Used instead of source_load when we know the type == 0 */
1831 static unsigned long weighted_cpuload(const int cpu
)
1833 return cpu_rq(cpu
)->load
.weight
;
1837 * Is this task likely cache-hot:
1840 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1845 * Buddy candidates are cache hot:
1847 if (sched_feat(CACHE_HOT_BUDDY
) &&
1848 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1849 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1852 if (p
->sched_class
!= &fair_sched_class
)
1855 if (sysctl_sched_migration_cost
== -1)
1857 if (sysctl_sched_migration_cost
== 0)
1860 delta
= now
- p
->se
.exec_start
;
1862 return delta
< (s64
)sysctl_sched_migration_cost
;
1866 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1868 int old_cpu
= task_cpu(p
);
1869 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1870 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1871 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1874 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1876 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1878 #ifdef CONFIG_SCHEDSTATS
1879 if (p
->se
.wait_start
)
1880 p
->se
.wait_start
-= clock_offset
;
1881 if (p
->se
.sleep_start
)
1882 p
->se
.sleep_start
-= clock_offset
;
1883 if (p
->se
.block_start
)
1884 p
->se
.block_start
-= clock_offset
;
1885 if (old_cpu
!= new_cpu
) {
1886 schedstat_inc(p
, se
.nr_migrations
);
1887 if (task_hot(p
, old_rq
->clock
, NULL
))
1888 schedstat_inc(p
, se
.nr_forced2_migrations
);
1891 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1892 new_cfsrq
->min_vruntime
;
1894 __set_task_cpu(p
, new_cpu
);
1897 struct migration_req
{
1898 struct list_head list
;
1900 struct task_struct
*task
;
1903 struct completion done
;
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1911 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1913 struct rq
*rq
= task_rq(p
);
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1919 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1920 set_task_cpu(p
, dest_cpu
);
1924 init_completion(&req
->done
);
1926 req
->dest_cpu
= dest_cpu
;
1927 list_add(&req
->list
, &rq
->migration_queue
);
1933 * wait_task_inactive - wait for a thread to unschedule.
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1948 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1950 unsigned long flags
;
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1975 while (task_running(rq
, p
)) {
1976 if (match_state
&& unlikely(p
->state
!= match_state
))
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1986 rq
= task_rq_lock(p
, &flags
);
1987 trace_sched_wait_task(rq
, p
);
1988 running
= task_running(rq
, p
);
1989 on_rq
= p
->se
.on_rq
;
1991 if (!match_state
|| p
->state
== match_state
)
1992 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1993 task_rq_unlock(rq
, &flags
);
1996 * If it changed from the expected state, bail out now.
1998 if (unlikely(!ncsw
))
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2005 * Oops. Go back and try again..
2007 if (unlikely(running
)) {
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2021 if (unlikely(on_rq
)) {
2022 schedule_timeout_uninterruptible(1);
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2050 void kick_process(struct task_struct
*p
)
2056 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2057 smp_send_reschedule(cpu
);
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2068 static unsigned long source_load(int cpu
, int type
)
2070 struct rq
*rq
= cpu_rq(cpu
);
2071 unsigned long total
= weighted_cpuload(cpu
);
2073 if (type
== 0 || !sched_feat(LB_BIAS
))
2076 return min(rq
->cpu_load
[type
-1], total
);
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
2083 static unsigned long target_load(int cpu
, int type
)
2085 struct rq
*rq
= cpu_rq(cpu
);
2086 unsigned long total
= weighted_cpuload(cpu
);
2088 if (type
== 0 || !sched_feat(LB_BIAS
))
2091 return max(rq
->cpu_load
[type
-1], total
);
2095 * find_idlest_group finds and returns the least busy CPU group within the
2098 static struct sched_group
*
2099 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2101 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2102 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2103 int load_idx
= sd
->forkexec_idx
;
2104 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2107 unsigned long load
, avg_load
;
2111 /* Skip over this group if it has no CPUs allowed */
2112 if (!cpumask_intersects(sched_group_cpus(group
),
2116 local_group
= cpumask_test_cpu(this_cpu
,
2117 sched_group_cpus(group
));
2119 /* Tally up the load of all CPUs in the group */
2122 for_each_cpu(i
, sched_group_cpus(group
)) {
2123 /* Bias balancing toward cpus of our domain */
2125 load
= source_load(i
, load_idx
);
2127 load
= target_load(i
, load_idx
);
2132 /* Adjust by relative CPU power of the group */
2133 avg_load
= sg_div_cpu_power(group
,
2134 avg_load
* SCHED_LOAD_SCALE
);
2137 this_load
= avg_load
;
2139 } else if (avg_load
< min_load
) {
2140 min_load
= avg_load
;
2143 } while (group
= group
->next
, group
!= sd
->groups
);
2145 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2154 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2156 unsigned long load
, min_load
= ULONG_MAX
;
2160 /* Traverse only the allowed CPUs */
2161 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2162 load
= weighted_cpuload(i
);
2164 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2178 * Balance, ie. select the least loaded group.
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2182 * preempt must be disabled.
2184 static int sched_balance_self(int cpu
, int flag
)
2186 struct task_struct
*t
= current
;
2187 struct sched_domain
*tmp
, *sd
= NULL
;
2189 for_each_domain(cpu
, tmp
) {
2191 * If power savings logic is enabled for a domain, stop there.
2193 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2195 if (tmp
->flags
& flag
)
2203 struct sched_group
*group
;
2204 int new_cpu
, weight
;
2206 if (!(sd
->flags
& flag
)) {
2211 group
= find_idlest_group(sd
, t
, cpu
);
2217 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2218 if (new_cpu
== -1 || new_cpu
== cpu
) {
2219 /* Now try balancing at a lower domain level of cpu */
2224 /* Now try balancing at a lower domain level of new_cpu */
2226 weight
= cpumask_weight(sched_domain_span(sd
));
2228 for_each_domain(cpu
, tmp
) {
2229 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2231 if (tmp
->flags
& flag
)
2234 /* while loop will break here if sd == NULL */
2240 #endif /* CONFIG_SMP */
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2254 * returns failure only if the task is already active.
2256 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2258 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2259 unsigned long flags
;
2263 if (!sched_feat(SYNC_WAKEUPS
))
2267 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2268 struct sched_domain
*sd
;
2270 this_cpu
= raw_smp_processor_id();
2273 for_each_domain(this_cpu
, sd
) {
2274 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2283 rq
= task_rq_lock(p
, &flags
);
2284 update_rq_clock(rq
);
2285 old_state
= p
->state
;
2286 if (!(old_state
& state
))
2294 this_cpu
= smp_processor_id();
2297 if (unlikely(task_running(rq
, p
)))
2300 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2301 if (cpu
!= orig_cpu
) {
2302 set_task_cpu(p
, cpu
);
2303 task_rq_unlock(rq
, &flags
);
2304 /* might preempt at this point */
2305 rq
= task_rq_lock(p
, &flags
);
2306 old_state
= p
->state
;
2307 if (!(old_state
& state
))
2312 this_cpu
= smp_processor_id();
2316 #ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq
, ttwu_count
);
2318 if (cpu
== this_cpu
)
2319 schedstat_inc(rq
, ttwu_local
);
2321 struct sched_domain
*sd
;
2322 for_each_domain(this_cpu
, sd
) {
2323 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2324 schedstat_inc(sd
, ttwu_wake_remote
);
2329 #endif /* CONFIG_SCHEDSTATS */
2332 #endif /* CONFIG_SMP */
2333 schedstat_inc(p
, se
.nr_wakeups
);
2335 schedstat_inc(p
, se
.nr_wakeups_sync
);
2336 if (orig_cpu
!= cpu
)
2337 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2338 if (cpu
== this_cpu
)
2339 schedstat_inc(p
, se
.nr_wakeups_local
);
2341 schedstat_inc(p
, se
.nr_wakeups_remote
);
2342 activate_task(rq
, p
, 1);
2346 trace_sched_wakeup(rq
, p
, success
);
2347 check_preempt_curr(rq
, p
, sync
);
2349 p
->state
= TASK_RUNNING
;
2351 if (p
->sched_class
->task_wake_up
)
2352 p
->sched_class
->task_wake_up(rq
, p
);
2355 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2357 task_rq_unlock(rq
, &flags
);
2362 int wake_up_process(struct task_struct
*p
)
2364 return try_to_wake_up(p
, TASK_ALL
, 0);
2366 EXPORT_SYMBOL(wake_up_process
);
2368 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2370 return try_to_wake_up(p
, state
, 0);
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
2377 * __sched_fork() is basic setup used by init_idle() too:
2379 static void __sched_fork(struct task_struct
*p
)
2381 p
->se
.exec_start
= 0;
2382 p
->se
.sum_exec_runtime
= 0;
2383 p
->se
.prev_sum_exec_runtime
= 0;
2384 p
->se
.last_wakeup
= 0;
2385 p
->se
.avg_overlap
= 0;
2387 #ifdef CONFIG_SCHEDSTATS
2388 p
->se
.wait_start
= 0;
2389 p
->se
.sum_sleep_runtime
= 0;
2390 p
->se
.sleep_start
= 0;
2391 p
->se
.block_start
= 0;
2392 p
->se
.sleep_max
= 0;
2393 p
->se
.block_max
= 0;
2395 p
->se
.slice_max
= 0;
2399 INIT_LIST_HEAD(&p
->rt
.run_list
);
2401 INIT_LIST_HEAD(&p
->se
.group_node
);
2403 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2413 p
->state
= TASK_RUNNING
;
2417 * fork()/clone()-time setup:
2419 void sched_fork(struct task_struct
*p
, int clone_flags
)
2421 int cpu
= get_cpu();
2426 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2428 set_task_cpu(p
, cpu
);
2431 * Make sure we do not leak PI boosting priority to the child:
2433 p
->prio
= current
->normal_prio
;
2434 if (!rt_prio(p
->prio
))
2435 p
->sched_class
= &fair_sched_class
;
2437 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2438 if (likely(sched_info_on()))
2439 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2441 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2444 #ifdef CONFIG_PREEMPT
2445 /* Want to start with kernel preemption disabled. */
2446 task_thread_info(p
)->preempt_count
= 1;
2452 * wake_up_new_task - wake up a newly created task for the first time.
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2458 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2460 unsigned long flags
;
2463 rq
= task_rq_lock(p
, &flags
);
2464 BUG_ON(p
->state
!= TASK_RUNNING
);
2465 update_rq_clock(rq
);
2467 p
->prio
= effective_prio(p
);
2469 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2470 activate_task(rq
, p
, 0);
2473 * Let the scheduling class do new task startup
2474 * management (if any):
2476 p
->sched_class
->task_new(rq
, p
);
2479 trace_sched_wakeup_new(rq
, p
, 1);
2480 check_preempt_curr(rq
, p
, 0);
2482 if (p
->sched_class
->task_wake_up
)
2483 p
->sched_class
->task_wake_up(rq
, p
);
2485 task_rq_unlock(rq
, &flags
);
2488 #ifdef CONFIG_PREEMPT_NOTIFIERS
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
2494 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2496 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2498 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
2502 * @notifier: notifier struct to unregister
2504 * This is safe to call from within a preemption notifier.
2506 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2508 hlist_del(¬ifier
->link
);
2510 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2512 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2514 struct preempt_notifier
*notifier
;
2515 struct hlist_node
*node
;
2517 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2518 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2522 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2523 struct task_struct
*next
)
2525 struct preempt_notifier
*notifier
;
2526 struct hlist_node
*node
;
2528 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2529 notifier
->ops
->sched_out(notifier
, next
);
2532 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2534 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2539 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2540 struct task_struct
*next
)
2544 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
2549 * @prev: the current task that is being switched out
2550 * @next: the task we are going to switch to.
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2556 * prepare_task_switch sets up locking and calls architecture specific
2560 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2561 struct task_struct
*next
)
2563 fire_sched_out_preempt_notifiers(prev
, next
);
2564 prepare_lock_switch(rq
, next
);
2565 prepare_arch_switch(next
);
2569 * finish_task_switch - clean up after a task-switch
2570 * @rq: runqueue associated with task-switch
2571 * @prev: the thread we just switched away from.
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
2578 * Note that we may have delayed dropping an mm in context_switch(). If
2579 * so, we finish that here outside of the runqueue lock. (Doing it
2580 * with the lock held can cause deadlocks; see schedule() for
2583 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2584 __releases(rq
->lock
)
2586 struct mm_struct
*mm
= rq
->prev_mm
;
2592 * A task struct has one reference for the use as "current".
2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
2596 * The test for TASK_DEAD must occur while the runqueue locks are
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2600 * Manfred Spraul <manfred@colorfullife.com>
2602 prev_state
= prev
->state
;
2603 finish_arch_switch(prev
);
2604 finish_lock_switch(rq
, prev
);
2606 if (current
->sched_class
->post_schedule
)
2607 current
->sched_class
->post_schedule(rq
);
2610 fire_sched_in_preempt_notifiers(current
);
2613 if (unlikely(prev_state
== TASK_DEAD
)) {
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
2618 kprobe_flush_task(prev
);
2619 put_task_struct(prev
);
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2627 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2628 __releases(rq
->lock
)
2630 struct rq
*rq
= this_rq();
2632 finish_task_switch(rq
, prev
);
2633 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2637 if (current
->set_child_tid
)
2638 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2646 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2647 struct task_struct
*next
)
2649 struct mm_struct
*mm
, *oldmm
;
2651 prepare_task_switch(rq
, prev
, next
);
2652 trace_sched_switch(rq
, prev
, next
);
2654 oldmm
= prev
->active_mm
;
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2660 arch_enter_lazy_cpu_mode();
2662 if (unlikely(!mm
)) {
2663 next
->active_mm
= oldmm
;
2664 atomic_inc(&oldmm
->mm_count
);
2665 enter_lazy_tlb(oldmm
, next
);
2667 switch_mm(oldmm
, mm
, next
);
2669 if (unlikely(!prev
->mm
)) {
2670 prev
->active_mm
= NULL
;
2671 rq
->prev_mm
= oldmm
;
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2679 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2680 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev
, next
, prev
);
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2692 finish_task_switch(this_rq(), prev
);
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2702 unsigned long nr_running(void)
2704 unsigned long i
, sum
= 0;
2706 for_each_online_cpu(i
)
2707 sum
+= cpu_rq(i
)->nr_running
;
2712 unsigned long nr_uninterruptible(void)
2714 unsigned long i
, sum
= 0;
2716 for_each_possible_cpu(i
)
2717 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2723 if (unlikely((long)sum
< 0))
2729 unsigned long long nr_context_switches(void)
2732 unsigned long long sum
= 0;
2734 for_each_possible_cpu(i
)
2735 sum
+= cpu_rq(i
)->nr_switches
;
2740 unsigned long nr_iowait(void)
2742 unsigned long i
, sum
= 0;
2744 for_each_possible_cpu(i
)
2745 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2750 unsigned long nr_active(void)
2752 unsigned long i
, running
= 0, uninterruptible
= 0;
2754 for_each_online_cpu(i
) {
2755 running
+= cpu_rq(i
)->nr_running
;
2756 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2759 if (unlikely((long)uninterruptible
< 0))
2760 uninterruptible
= 0;
2762 return running
+ uninterruptible
;
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
2769 static void update_cpu_load(struct rq
*this_rq
)
2771 unsigned long this_load
= this_rq
->load
.weight
;
2774 this_rq
->nr_load_updates
++;
2776 /* Update our load: */
2777 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2778 unsigned long old_load
, new_load
;
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2782 old_load
= this_rq
->cpu_load
[i
];
2783 new_load
= this_load
;
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2789 if (new_load
> old_load
)
2790 new_load
+= scale
-1;
2791 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2798 * double_rq_lock - safely lock two runqueues
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2803 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2804 __acquires(rq1
->lock
)
2805 __acquires(rq2
->lock
)
2807 BUG_ON(!irqs_disabled());
2809 spin_lock(&rq1
->lock
);
2810 __acquire(rq2
->lock
); /* Fake it out ;) */
2813 spin_lock(&rq1
->lock
);
2814 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2816 spin_lock(&rq2
->lock
);
2817 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2820 update_rq_clock(rq1
);
2821 update_rq_clock(rq2
);
2825 * double_rq_unlock - safely unlock two runqueues
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2830 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2831 __releases(rq1
->lock
)
2832 __releases(rq2
->lock
)
2834 spin_unlock(&rq1
->lock
);
2836 spin_unlock(&rq2
->lock
);
2838 __release(rq2
->lock
);
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2845 * the cpu_allowed mask is restored.
2847 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2849 struct migration_req req
;
2850 unsigned long flags
;
2853 rq
= task_rq_lock(p
, &flags
);
2854 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2855 || unlikely(!cpu_active(dest_cpu
)))
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p
, dest_cpu
, &req
)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct
*mt
= rq
->migration_thread
;
2863 get_task_struct(mt
);
2864 task_rq_unlock(rq
, &flags
);
2865 wake_up_process(mt
);
2866 put_task_struct(mt
);
2867 wait_for_completion(&req
.done
);
2872 task_rq_unlock(rq
, &flags
);
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
2879 void sched_exec(void)
2881 int new_cpu
, this_cpu
= get_cpu();
2882 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2884 if (new_cpu
!= this_cpu
)
2885 sched_migrate_task(current
, new_cpu
);
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2892 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2893 struct rq
*this_rq
, int this_cpu
)
2895 deactivate_task(src_rq
, p
, 0);
2896 set_task_cpu(p
, this_cpu
);
2897 activate_task(this_rq
, p
, 0);
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2902 check_preempt_curr(this_rq
, p
, 0);
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2909 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2910 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2919 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2920 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2925 if (task_running(rq
, p
)) {
2926 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2936 if (!task_hot(p
, rq
->clock
, sd
) ||
2937 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2938 #ifdef CONFIG_SCHEDSTATS
2939 if (task_hot(p
, rq
->clock
, sd
)) {
2940 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2941 schedstat_inc(p
, se
.nr_forced_migrations
);
2947 if (task_hot(p
, rq
->clock
, sd
)) {
2948 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2954 static unsigned long
2955 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2956 unsigned long max_load_move
, struct sched_domain
*sd
,
2957 enum cpu_idle_type idle
, int *all_pinned
,
2958 int *this_best_prio
, struct rq_iterator
*iterator
)
2960 int loops
= 0, pulled
= 0, pinned
= 0;
2961 struct task_struct
*p
;
2962 long rem_load_move
= max_load_move
;
2964 if (max_load_move
== 0)
2970 * Start the load-balancing iterator:
2972 p
= iterator
->start(iterator
->arg
);
2974 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2977 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2978 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2979 p
= iterator
->next(iterator
->arg
);
2983 pull_task(busiest
, p
, this_rq
, this_cpu
);
2985 rem_load_move
-= p
->se
.load
.weight
;
2988 * We only want to steal up to the prescribed amount of weighted load.
2990 if (rem_load_move
> 0) {
2991 if (p
->prio
< *this_best_prio
)
2992 *this_best_prio
= p
->prio
;
2993 p
= iterator
->next(iterator
->arg
);
2998 * Right now, this is one of only two places pull_task() is called,
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3002 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3005 *all_pinned
= pinned
;
3007 return max_load_move
- rem_load_move
;
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
3015 * Called with both runqueues locked.
3017 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3018 unsigned long max_load_move
,
3019 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3022 const struct sched_class
*class = sched_class_highest
;
3023 unsigned long total_load_moved
= 0;
3024 int this_best_prio
= this_rq
->curr
->prio
;
3028 class->load_balance(this_rq
, this_cpu
, busiest
,
3029 max_load_move
- total_load_moved
,
3030 sd
, idle
, all_pinned
, &this_best_prio
);
3031 class = class->next
;
3033 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3036 } while (class && max_load_move
> total_load_moved
);
3038 return total_load_moved
> 0;
3042 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3043 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3044 struct rq_iterator
*iterator
)
3046 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3050 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3051 pull_task(busiest
, p
, this_rq
, this_cpu
);
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3057 schedstat_inc(sd
, lb_gained
[idle
]);
3061 p
= iterator
->next(iterator
->arg
);
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3072 * Called with both runqueues locked.
3074 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3075 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3077 const struct sched_class
*class;
3079 for (class = sched_class_highest
; class; class = class->next
)
3080 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3087 * find_busiest_group finds and returns the busiest CPU group within the
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
3091 static struct sched_group
*
3092 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3093 unsigned long *imbalance
, enum cpu_idle_type idle
,
3094 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3096 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3097 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3098 unsigned long max_pull
;
3099 unsigned long busiest_load_per_task
, busiest_nr_running
;
3100 unsigned long this_load_per_task
, this_nr_running
;
3101 int load_idx
, group_imb
= 0;
3102 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance
= 1;
3104 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3105 unsigned long min_nr_running
= ULONG_MAX
;
3106 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3109 max_load
= this_load
= total_load
= total_pwr
= 0;
3110 busiest_load_per_task
= busiest_nr_running
= 0;
3111 this_load_per_task
= this_nr_running
= 0;
3113 if (idle
== CPU_NOT_IDLE
)
3114 load_idx
= sd
->busy_idx
;
3115 else if (idle
== CPU_NEWLY_IDLE
)
3116 load_idx
= sd
->newidle_idx
;
3118 load_idx
= sd
->idle_idx
;
3121 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3124 int __group_imb
= 0;
3125 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3126 unsigned long sum_nr_running
, sum_weighted_load
;
3127 unsigned long sum_avg_load_per_task
;
3128 unsigned long avg_load_per_task
;
3130 local_group
= cpumask_test_cpu(this_cpu
,
3131 sched_group_cpus(group
));
3134 balance_cpu
= cpumask_first(sched_group_cpus(group
));
3136 /* Tally up the load of all CPUs in the group */
3137 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3138 sum_avg_load_per_task
= avg_load_per_task
= 0;
3141 min_cpu_load
= ~0UL;
3143 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3144 struct rq
*rq
= cpu_rq(i
);
3146 if (*sd_idle
&& rq
->nr_running
)
3149 /* Bias balancing toward cpus of our domain */
3151 if (idle_cpu(i
) && !first_idle_cpu
) {
3156 load
= target_load(i
, load_idx
);
3158 load
= source_load(i
, load_idx
);
3159 if (load
> max_cpu_load
)
3160 max_cpu_load
= load
;
3161 if (min_cpu_load
> load
)
3162 min_cpu_load
= load
;
3166 sum_nr_running
+= rq
->nr_running
;
3167 sum_weighted_load
+= weighted_cpuload(i
);
3169 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
3178 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3179 balance_cpu
!= this_cpu
&& balance
) {
3184 total_load
+= avg_load
;
3185 total_pwr
+= group
->__cpu_power
;
3187 /* Adjust by relative CPU power of the group */
3188 avg_load
= sg_div_cpu_power(group
,
3189 avg_load
* SCHED_LOAD_SCALE
);
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3201 avg_load_per_task
= sg_div_cpu_power(group
,
3202 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3204 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3207 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3210 this_load
= avg_load
;
3212 this_nr_running
= sum_nr_running
;
3213 this_load_per_task
= sum_weighted_load
;
3214 } else if (avg_load
> max_load
&&
3215 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3216 max_load
= avg_load
;
3218 busiest_nr_running
= sum_nr_running
;
3219 busiest_load_per_task
= sum_weighted_load
;
3220 group_imb
= __group_imb
;
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3225 * Busy processors will not participate in power savings
3228 if (idle
== CPU_NOT_IDLE
||
3229 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3236 if (local_group
&& (this_nr_running
>= group_capacity
||
3238 power_savings_balance
= 0;
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
3244 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3249 * Calculate the group which has the least non-idle load.
3250 * This is the group from where we need to pick up the load
3253 if ((sum_nr_running
< min_nr_running
) ||
3254 (sum_nr_running
== min_nr_running
&&
3255 cpumask_first(sched_group_cpus(group
)) >
3256 cpumask_first(sched_group_cpus(group_min
)))) {
3258 min_nr_running
= sum_nr_running
;
3259 min_load_per_task
= sum_weighted_load
/
3264 * Calculate the group which is almost near its
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3268 if (sum_nr_running
<= group_capacity
- 1) {
3269 if (sum_nr_running
> leader_nr_running
||
3270 (sum_nr_running
== leader_nr_running
&&
3271 cpumask_first(sched_group_cpus(group
)) <
3272 cpumask_first(sched_group_cpus(group_leader
)))) {
3273 group_leader
= group
;
3274 leader_nr_running
= sum_nr_running
;
3279 group
= group
->next
;
3280 } while (group
!= sd
->groups
);
3282 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3285 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3287 if (this_load
>= avg_load
||
3288 100*max_load
<= sd
->imbalance_pct
*this_load
)
3291 busiest_load_per_task
/= busiest_nr_running
;
3293 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
3303 * by pulling tasks to us. Be careful of negative numbers as they'll
3304 * appear as very large values with unsigned longs.
3306 if (max_load
<= busiest_load_per_task
)
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3314 if (max_load
< avg_load
) {
3316 goto small_imbalance
;
3319 /* Don't want to pull so many tasks that a group would go idle */
3320 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3322 /* How much load to actually move to equalise the imbalance */
3323 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3324 (avg_load
- this_load
) * this->__cpu_power
)
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3333 if (*imbalance
< busiest_load_per_task
) {
3334 unsigned long tmp
, pwr_now
, pwr_move
;
3338 pwr_move
= pwr_now
= 0;
3340 if (this_nr_running
) {
3341 this_load_per_task
/= this_nr_running
;
3342 if (busiest_load_per_task
> this_load_per_task
)
3345 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3347 if (max_load
- this_load
+ busiest_load_per_task
>=
3348 busiest_load_per_task
* imbn
) {
3349 *imbalance
= busiest_load_per_task
;
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3359 pwr_now
+= busiest
->__cpu_power
*
3360 min(busiest_load_per_task
, max_load
);
3361 pwr_now
+= this->__cpu_power
*
3362 min(this_load_per_task
, this_load
);
3363 pwr_now
/= SCHED_LOAD_SCALE
;
3365 /* Amount of load we'd subtract */
3366 tmp
= sg_div_cpu_power(busiest
,
3367 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3369 pwr_move
+= busiest
->__cpu_power
*
3370 min(busiest_load_per_task
, max_load
- tmp
);
3372 /* Amount of load we'd add */
3373 if (max_load
* busiest
->__cpu_power
<
3374 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3375 tmp
= sg_div_cpu_power(this,
3376 max_load
* busiest
->__cpu_power
);
3378 tmp
= sg_div_cpu_power(this,
3379 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3380 pwr_move
+= this->__cpu_power
*
3381 min(this_load_per_task
, this_load
+ tmp
);
3382 pwr_move
/= SCHED_LOAD_SCALE
;
3384 /* Move if we gain throughput */
3385 if (pwr_move
> pwr_now
)
3386 *imbalance
= busiest_load_per_task
;
3392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3393 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3396 if (this == group_leader
&& group_leader
!= group_min
) {
3397 *imbalance
= min_load_per_task
;
3398 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3399 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3400 cpumask_first(sched_group_cpus(group_leader
));
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3414 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3415 unsigned long imbalance
, const struct cpumask
*cpus
)
3417 struct rq
*busiest
= NULL
, *rq
;
3418 unsigned long max_load
= 0;
3421 for_each_cpu(i
, sched_group_cpus(group
)) {
3424 if (!cpumask_test_cpu(i
, cpus
))
3428 wl
= weighted_cpuload(i
);
3430 if (rq
->nr_running
== 1 && wl
> imbalance
)
3433 if (wl
> max_load
) {
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3446 #define MAX_PINNED_INTERVAL 512
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
3452 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3453 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3454 int *balance
, struct cpumask
*cpus
)
3456 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3457 struct sched_group
*group
;
3458 unsigned long imbalance
;
3460 unsigned long flags
;
3462 cpumask_setall(cpus
);
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3468 * portraying it as CPU_NOT_IDLE.
3470 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3471 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3474 schedstat_inc(sd
, lb_count
[idle
]);
3478 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3485 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3489 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3491 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3495 BUG_ON(busiest
== this_rq
);
3497 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3500 if (busiest
->nr_running
> 1) {
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
3504 * still unbalanced. ld_moved simply stays zero, so it is
3505 * correctly treated as an imbalance.
3507 local_irq_save(flags
);
3508 double_rq_lock(this_rq
, busiest
);
3509 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3510 imbalance
, sd
, idle
, &all_pinned
);
3511 double_rq_unlock(this_rq
, busiest
);
3512 local_irq_restore(flags
);
3515 * some other cpu did the load balance for us.
3517 if (ld_moved
&& this_cpu
!= smp_processor_id())
3518 resched_cpu(this_cpu
);
3520 /* All tasks on this runqueue were pinned by CPU affinity */
3521 if (unlikely(all_pinned
)) {
3522 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3523 if (!cpumask_empty(cpus
))
3530 schedstat_inc(sd
, lb_failed
[idle
]);
3531 sd
->nr_balance_failed
++;
3533 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3535 spin_lock_irqsave(&busiest
->lock
, flags
);
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3540 if (!cpumask_test_cpu(this_cpu
,
3541 &busiest
->curr
->cpus_allowed
)) {
3542 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3544 goto out_one_pinned
;
3547 if (!busiest
->active_balance
) {
3548 busiest
->active_balance
= 1;
3549 busiest
->push_cpu
= this_cpu
;
3552 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3554 wake_up_process(busiest
->migration_thread
);
3557 * We've kicked active balancing, reset the failure
3560 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3563 sd
->nr_balance_failed
= 0;
3565 if (likely(!active_balance
)) {
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd
->balance_interval
= sd
->min_interval
;
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3575 if (sd
->balance_interval
< sd
->max_interval
)
3576 sd
->balance_interval
*= 2;
3579 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3580 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3586 schedstat_inc(sd
, lb_balanced
[idle
]);
3588 sd
->nr_balance_failed
= 0;
3591 /* tune up the balancing interval */
3592 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3593 (sd
->balance_interval
< sd
->max_interval
))
3594 sd
->balance_interval
*= 2;
3596 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3597 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3612 * this_rq is locked.
3615 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3616 struct cpumask
*cpus
)
3618 struct sched_group
*group
;
3619 struct rq
*busiest
= NULL
;
3620 unsigned long imbalance
;
3625 cpumask_setall(cpus
);
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
3631 * portraying it as CPU_NOT_IDLE.
3633 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3634 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3637 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3639 update_shares_locked(this_rq
, sd
);
3640 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3641 &sd_idle
, cpus
, NULL
);
3643 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3647 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3649 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3653 BUG_ON(busiest
== this_rq
);
3655 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3658 if (busiest
->nr_running
> 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq
, busiest
);
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest
);
3663 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3664 imbalance
, sd
, CPU_NEWLY_IDLE
,
3666 double_unlock_balance(this_rq
, busiest
);
3668 if (unlikely(all_pinned
)) {
3669 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3670 if (!cpumask_empty(cpus
))
3676 int active_balance
= 0;
3678 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3679 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3680 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3683 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3686 if (sd
->nr_balance_failed
++ < 2)
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq
, busiest
);
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3718 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3719 double_unlock_balance(this_rq
, busiest
);
3724 if (!busiest
->active_balance
) {
3725 busiest
->active_balance
= 1;
3726 busiest
->push_cpu
= this_cpu
;
3730 double_unlock_balance(this_rq
, busiest
);
3732 wake_up_process(busiest
->migration_thread
);
3735 sd
->nr_balance_failed
= 0;
3737 update_shares_locked(this_rq
, sd
);
3741 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3742 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3743 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3745 sd
->nr_balance_failed
= 0;
3751 * idle_balance is called by schedule() if this_cpu is about to become
3752 * idle. Attempts to pull tasks from other CPUs.
3754 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3756 struct sched_domain
*sd
;
3757 int pulled_task
= 0;
3758 unsigned long next_balance
= jiffies
+ HZ
;
3759 cpumask_var_t tmpmask
;
3761 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3764 for_each_domain(this_cpu
, sd
) {
3765 unsigned long interval
;
3767 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3770 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3771 /* If we've pulled tasks over stop searching: */
3772 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3775 interval
= msecs_to_jiffies(sd
->balance_interval
);
3776 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3777 next_balance
= sd
->last_balance
+ interval
;
3781 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3783 * We are going idle. next_balance may be set based on
3784 * a busy processor. So reset next_balance.
3786 this_rq
->next_balance
= next_balance
;
3788 free_cpumask_var(tmpmask
);
3792 * active_load_balance is run by migration threads. It pushes running tasks
3793 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3794 * running on each physical CPU where possible, and avoids physical /
3795 * logical imbalances.
3797 * Called with busiest_rq locked.
3799 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3801 int target_cpu
= busiest_rq
->push_cpu
;
3802 struct sched_domain
*sd
;
3803 struct rq
*target_rq
;
3805 /* Is there any task to move? */
3806 if (busiest_rq
->nr_running
<= 1)
3809 target_rq
= cpu_rq(target_cpu
);
3812 * This condition is "impossible", if it occurs
3813 * we need to fix it. Originally reported by
3814 * Bjorn Helgaas on a 128-cpu setup.
3816 BUG_ON(busiest_rq
== target_rq
);
3818 /* move a task from busiest_rq to target_rq */
3819 double_lock_balance(busiest_rq
, target_rq
);
3820 update_rq_clock(busiest_rq
);
3821 update_rq_clock(target_rq
);
3823 /* Search for an sd spanning us and the target CPU. */
3824 for_each_domain(target_cpu
, sd
) {
3825 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3826 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3831 schedstat_inc(sd
, alb_count
);
3833 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3835 schedstat_inc(sd
, alb_pushed
);
3837 schedstat_inc(sd
, alb_failed
);
3839 double_unlock_balance(busiest_rq
, target_rq
);
3844 atomic_t load_balancer
;
3845 cpumask_var_t cpu_mask
;
3846 } nohz ____cacheline_aligned
= {
3847 .load_balancer
= ATOMIC_INIT(-1),
3851 * This routine will try to nominate the ilb (idle load balancing)
3852 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3853 * load balancing on behalf of all those cpus. If all the cpus in the system
3854 * go into this tickless mode, then there will be no ilb owner (as there is
3855 * no need for one) and all the cpus will sleep till the next wakeup event
3858 * For the ilb owner, tick is not stopped. And this tick will be used
3859 * for idle load balancing. ilb owner will still be part of
3862 * While stopping the tick, this cpu will become the ilb owner if there
3863 * is no other owner. And will be the owner till that cpu becomes busy
3864 * or if all cpus in the system stop their ticks at which point
3865 * there is no need for ilb owner.
3867 * When the ilb owner becomes busy, it nominates another owner, during the
3868 * next busy scheduler_tick()
3870 int select_nohz_load_balancer(int stop_tick
)
3872 int cpu
= smp_processor_id();
3875 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3876 cpu_rq(cpu
)->in_nohz_recently
= 1;
3879 * If we are going offline and still the leader, give up!
3881 if (!cpu_active(cpu
) &&
3882 atomic_read(&nohz
.load_balancer
) == cpu
) {
3883 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3888 /* time for ilb owner also to sleep */
3889 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3890 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3891 atomic_set(&nohz
.load_balancer
, -1);
3895 if (atomic_read(&nohz
.load_balancer
) == -1) {
3896 /* make me the ilb owner */
3897 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3899 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3902 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3905 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3907 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3908 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3915 static DEFINE_SPINLOCK(balancing
);
3918 * It checks each scheduling domain to see if it is due to be balanced,
3919 * and initiates a balancing operation if so.
3921 * Balancing parameters are set up in arch_init_sched_domains.
3923 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3926 struct rq
*rq
= cpu_rq(cpu
);
3927 unsigned long interval
;
3928 struct sched_domain
*sd
;
3929 /* Earliest time when we have to do rebalance again */
3930 unsigned long next_balance
= jiffies
+ 60*HZ
;
3931 int update_next_balance
= 0;
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
3939 for_each_domain(cpu
, sd
) {
3940 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3943 interval
= sd
->balance_interval
;
3944 if (idle
!= CPU_IDLE
)
3945 interval
*= sd
->busy_factor
;
3947 /* scale ms to jiffies */
3948 interval
= msecs_to_jiffies(interval
);
3949 if (unlikely(!interval
))
3951 if (interval
> HZ
*NR_CPUS
/10)
3952 interval
= HZ
*NR_CPUS
/10;
3954 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3956 if (need_serialize
) {
3957 if (!spin_trylock(&balancing
))
3961 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3962 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
3964 * We've pulled tasks over so either we're no
3965 * longer idle, or one of our SMT siblings is
3968 idle
= CPU_NOT_IDLE
;
3970 sd
->last_balance
= jiffies
;
3973 spin_unlock(&balancing
);
3975 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3976 next_balance
= sd
->last_balance
+ interval
;
3977 update_next_balance
= 1;
3981 * Stop the load balance at this level. There is another
3982 * CPU in our sched group which is doing load balancing more
3990 * next_balance will be updated only when there is a need.
3991 * When the cpu is attached to null domain for ex, it will not be
3994 if (likely(update_next_balance
))
3995 rq
->next_balance
= next_balance
;
3997 free_cpumask_var(tmp
);
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4003 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4005 static void run_rebalance_domains(struct softirq_action
*h
)
4007 int this_cpu
= smp_processor_id();
4008 struct rq
*this_rq
= cpu_rq(this_cpu
);
4009 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4010 CPU_IDLE
: CPU_NOT_IDLE
;
4012 rebalance_domains(this_cpu
, idle
);
4016 * If this cpu is the owner for idle load balancing, then do the
4017 * balancing on behalf of the other idle cpus whose ticks are
4020 if (this_rq
->idle_at_tick
&&
4021 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4025 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4026 if (balance_cpu
== this_cpu
)
4030 * If this cpu gets work to do, stop the load balancing
4031 * work being done for other cpus. Next load
4032 * balancing owner will pick it up.
4037 rebalance_domains(balance_cpu
, CPU_IDLE
);
4039 rq
= cpu_rq(balance_cpu
);
4040 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4041 this_rq
->next_balance
= rq
->next_balance
;
4048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4050 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4051 * idle load balancing owner or decide to stop the periodic load balancing,
4052 * if the whole system is idle.
4054 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4058 * If we were in the nohz mode recently and busy at the current
4059 * scheduler tick, then check if we need to nominate new idle
4062 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4063 rq
->in_nohz_recently
= 0;
4065 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4066 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4067 atomic_set(&nohz
.load_balancer
, -1);
4070 if (atomic_read(&nohz
.load_balancer
) == -1) {
4072 * simple selection for now: Nominate the
4073 * first cpu in the nohz list to be the next
4076 * TBD: Traverse the sched domains and nominate
4077 * the nearest cpu in the nohz.cpu_mask.
4079 int ilb
= cpumask_first(nohz
.cpu_mask
);
4081 if (ilb
< nr_cpu_ids
)
4087 * If this cpu is idle and doing idle load balancing for all the
4088 * cpus with ticks stopped, is it time for that to stop?
4090 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4091 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4097 * If this cpu is idle and the idle load balancing is done by
4098 * someone else, then no need raise the SCHED_SOFTIRQ
4100 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4101 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4104 if (time_after_eq(jiffies
, rq
->next_balance
))
4105 raise_softirq(SCHED_SOFTIRQ
);
4108 #else /* CONFIG_SMP */
4111 * on UP we do not need to balance between CPUs:
4113 static inline void idle_balance(int cpu
, struct rq
*rq
)
4119 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4121 EXPORT_PER_CPU_SYMBOL(kstat
);
4124 * Return any ns on the sched_clock that have not yet been banked in
4125 * @p in case that task is currently running.
4127 unsigned long long task_delta_exec(struct task_struct
*p
)
4129 unsigned long flags
;
4133 rq
= task_rq_lock(p
, &flags
);
4135 if (task_current(rq
, p
)) {
4138 update_rq_clock(rq
);
4139 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4140 if ((s64
)delta_exec
> 0)
4144 task_rq_unlock(rq
, &flags
);
4150 * Account user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4154 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4156 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4159 p
->utime
= cputime_add(p
->utime
, cputime
);
4160 account_group_user_time(p
, cputime
);
4162 /* Add user time to cpustat. */
4163 tmp
= cputime_to_cputime64(cputime
);
4164 if (TASK_NICE(p
) > 0)
4165 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4167 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4168 /* Account for user time used */
4169 acct_update_integrals(p
);
4173 * Account guest cpu time to a process.
4174 * @p: the process that the cpu time gets accounted to
4175 * @cputime: the cpu time spent in virtual machine since the last update
4177 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4180 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4182 tmp
= cputime_to_cputime64(cputime
);
4184 p
->utime
= cputime_add(p
->utime
, cputime
);
4185 account_group_user_time(p
, cputime
);
4186 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4188 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4189 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4193 * Account scaled user cpu time to a process.
4194 * @p: the process that the cpu time gets accounted to
4195 * @cputime: the cpu time spent in user space since the last update
4197 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4199 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4203 * Account system cpu time to a process.
4204 * @p: the process that the cpu time gets accounted to
4205 * @hardirq_offset: the offset to subtract from hardirq_count()
4206 * @cputime: the cpu time spent in kernel space since the last update
4208 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4211 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4212 struct rq
*rq
= this_rq();
4215 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4216 account_guest_time(p
, cputime
);
4220 p
->stime
= cputime_add(p
->stime
, cputime
);
4221 account_group_system_time(p
, cputime
);
4223 /* Add system time to cpustat. */
4224 tmp
= cputime_to_cputime64(cputime
);
4225 if (hardirq_count() - hardirq_offset
)
4226 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4227 else if (softirq_count())
4228 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4229 else if (p
!= rq
->idle
)
4230 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4231 else if (atomic_read(&rq
->nr_iowait
) > 0)
4232 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4234 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4235 /* Account for system time used */
4236 acct_update_integrals(p
);
4240 * Account scaled system cpu time to a process.
4241 * @p: the process that the cpu time gets accounted to
4242 * @hardirq_offset: the offset to subtract from hardirq_count()
4243 * @cputime: the cpu time spent in kernel space since the last update
4245 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4247 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4251 * Account for involuntary wait time.
4252 * @p: the process from which the cpu time has been stolen
4253 * @steal: the cpu time spent in involuntary wait
4255 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4257 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4258 cputime64_t tmp
= cputime_to_cputime64(steal
);
4259 struct rq
*rq
= this_rq();
4261 if (p
== rq
->idle
) {
4262 p
->stime
= cputime_add(p
->stime
, steal
);
4263 if (atomic_read(&rq
->nr_iowait
) > 0)
4264 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4266 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4268 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4272 * Use precise platform statistics if available:
4274 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4275 cputime_t
task_utime(struct task_struct
*p
)
4280 cputime_t
task_stime(struct task_struct
*p
)
4285 cputime_t
task_utime(struct task_struct
*p
)
4287 clock_t utime
= cputime_to_clock_t(p
->utime
),
4288 total
= utime
+ cputime_to_clock_t(p
->stime
);
4292 * Use CFS's precise accounting:
4294 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4298 do_div(temp
, total
);
4300 utime
= (clock_t)temp
;
4302 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4303 return p
->prev_utime
;
4306 cputime_t
task_stime(struct task_struct
*p
)
4311 * Use CFS's precise accounting. (we subtract utime from
4312 * the total, to make sure the total observed by userspace
4313 * grows monotonically - apps rely on that):
4315 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4316 cputime_to_clock_t(task_utime(p
));
4319 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4321 return p
->prev_stime
;
4325 inline cputime_t
task_gtime(struct task_struct
*p
)
4331 * This function gets called by the timer code, with HZ frequency.
4332 * We call it with interrupts disabled.
4334 * It also gets called by the fork code, when changing the parent's
4337 void scheduler_tick(void)
4339 int cpu
= smp_processor_id();
4340 struct rq
*rq
= cpu_rq(cpu
);
4341 struct task_struct
*curr
= rq
->curr
;
4345 spin_lock(&rq
->lock
);
4346 update_rq_clock(rq
);
4347 update_cpu_load(rq
);
4348 curr
->sched_class
->task_tick(rq
, curr
, 0);
4349 spin_unlock(&rq
->lock
);
4352 rq
->idle_at_tick
= idle_cpu(cpu
);
4353 trigger_load_balance(rq
, cpu
);
4357 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4358 defined(CONFIG_PREEMPT_TRACER))
4360 static inline unsigned long get_parent_ip(unsigned long addr
)
4362 if (in_lock_functions(addr
)) {
4363 addr
= CALLER_ADDR2
;
4364 if (in_lock_functions(addr
))
4365 addr
= CALLER_ADDR3
;
4370 void __kprobes
add_preempt_count(int val
)
4372 #ifdef CONFIG_DEBUG_PREEMPT
4376 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4379 preempt_count() += val
;
4380 #ifdef CONFIG_DEBUG_PREEMPT
4382 * Spinlock count overflowing soon?
4384 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4387 if (preempt_count() == val
)
4388 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4390 EXPORT_SYMBOL(add_preempt_count
);
4392 void __kprobes
sub_preempt_count(int val
)
4394 #ifdef CONFIG_DEBUG_PREEMPT
4398 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count() - (!!kernel_locked())))
4401 * Is the spinlock portion underflowing?
4403 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4404 !(preempt_count() & PREEMPT_MASK
)))
4408 if (preempt_count() == val
)
4409 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4410 preempt_count() -= val
;
4412 EXPORT_SYMBOL(sub_preempt_count
);
4417 * Print scheduling while atomic bug:
4419 static noinline
void __schedule_bug(struct task_struct
*prev
)
4421 struct pt_regs
*regs
= get_irq_regs();
4423 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4424 prev
->comm
, prev
->pid
, preempt_count());
4426 debug_show_held_locks(prev
);
4428 if (irqs_disabled())
4429 print_irqtrace_events(prev
);
4438 * Various schedule()-time debugging checks and statistics:
4440 static inline void schedule_debug(struct task_struct
*prev
)
4443 * Test if we are atomic. Since do_exit() needs to call into
4444 * schedule() atomically, we ignore that path for now.
4445 * Otherwise, whine if we are scheduling when we should not be.
4447 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4448 __schedule_bug(prev
);
4450 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4452 schedstat_inc(this_rq(), sched_count
);
4453 #ifdef CONFIG_SCHEDSTATS
4454 if (unlikely(prev
->lock_depth
>= 0)) {
4455 schedstat_inc(this_rq(), bkl_count
);
4456 schedstat_inc(prev
, sched_info
.bkl_count
);
4462 * Pick up the highest-prio task:
4464 static inline struct task_struct
*
4465 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4467 const struct sched_class
*class;
4468 struct task_struct
*p
;
4471 * Optimization: we know that if all tasks are in
4472 * the fair class we can call that function directly:
4474 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4475 p
= fair_sched_class
.pick_next_task(rq
);
4480 class = sched_class_highest
;
4482 p
= class->pick_next_task(rq
);
4486 * Will never be NULL as the idle class always
4487 * returns a non-NULL p:
4489 class = class->next
;
4494 * schedule() is the main scheduler function.
4496 asmlinkage
void __sched
schedule(void)
4498 struct task_struct
*prev
, *next
;
4499 unsigned long *switch_count
;
4505 cpu
= smp_processor_id();
4509 switch_count
= &prev
->nivcsw
;
4511 release_kernel_lock(prev
);
4512 need_resched_nonpreemptible
:
4514 schedule_debug(prev
);
4516 if (sched_feat(HRTICK
))
4519 spin_lock_irq(&rq
->lock
);
4520 update_rq_clock(rq
);
4521 clear_tsk_need_resched(prev
);
4523 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4524 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4525 prev
->state
= TASK_RUNNING
;
4527 deactivate_task(rq
, prev
, 1);
4528 switch_count
= &prev
->nvcsw
;
4532 if (prev
->sched_class
->pre_schedule
)
4533 prev
->sched_class
->pre_schedule(rq
, prev
);
4536 if (unlikely(!rq
->nr_running
))
4537 idle_balance(cpu
, rq
);
4539 prev
->sched_class
->put_prev_task(rq
, prev
);
4540 next
= pick_next_task(rq
, prev
);
4542 if (likely(prev
!= next
)) {
4543 sched_info_switch(prev
, next
);
4549 context_switch(rq
, prev
, next
); /* unlocks the rq */
4551 * the context switch might have flipped the stack from under
4552 * us, hence refresh the local variables.
4554 cpu
= smp_processor_id();
4557 spin_unlock_irq(&rq
->lock
);
4559 if (unlikely(reacquire_kernel_lock(current
) < 0))
4560 goto need_resched_nonpreemptible
;
4562 preempt_enable_no_resched();
4563 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4566 EXPORT_SYMBOL(schedule
);
4568 #ifdef CONFIG_PREEMPT
4570 * this is the entry point to schedule() from in-kernel preemption
4571 * off of preempt_enable. Kernel preemptions off return from interrupt
4572 * occur there and call schedule directly.
4574 asmlinkage
void __sched
preempt_schedule(void)
4576 struct thread_info
*ti
= current_thread_info();
4579 * If there is a non-zero preempt_count or interrupts are disabled,
4580 * we do not want to preempt the current task. Just return..
4582 if (likely(ti
->preempt_count
|| irqs_disabled()))
4586 add_preempt_count(PREEMPT_ACTIVE
);
4588 sub_preempt_count(PREEMPT_ACTIVE
);
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4595 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4597 EXPORT_SYMBOL(preempt_schedule
);
4600 * this is the entry point to schedule() from kernel preemption
4601 * off of irq context.
4602 * Note, that this is called and return with irqs disabled. This will
4603 * protect us against recursive calling from irq.
4605 asmlinkage
void __sched
preempt_schedule_irq(void)
4607 struct thread_info
*ti
= current_thread_info();
4609 /* Catch callers which need to be fixed */
4610 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4613 add_preempt_count(PREEMPT_ACTIVE
);
4616 local_irq_disable();
4617 sub_preempt_count(PREEMPT_ACTIVE
);
4620 * Check again in case we missed a preemption opportunity
4621 * between schedule and now.
4624 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4627 #endif /* CONFIG_PREEMPT */
4629 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4632 return try_to_wake_up(curr
->private, mode
, sync
);
4634 EXPORT_SYMBOL(default_wake_function
);
4637 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4638 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4639 * number) then we wake all the non-exclusive tasks and one exclusive task.
4641 * There are circumstances in which we can try to wake a task which has already
4642 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4643 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4645 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4646 int nr_exclusive
, int sync
, void *key
)
4648 wait_queue_t
*curr
, *next
;
4650 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4651 unsigned flags
= curr
->flags
;
4653 if (curr
->func(curr
, mode
, sync
, key
) &&
4654 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4660 * __wake_up - wake up threads blocked on a waitqueue.
4662 * @mode: which threads
4663 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4664 * @key: is directly passed to the wakeup function
4666 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4667 int nr_exclusive
, void *key
)
4669 unsigned long flags
;
4671 spin_lock_irqsave(&q
->lock
, flags
);
4672 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4673 spin_unlock_irqrestore(&q
->lock
, flags
);
4675 EXPORT_SYMBOL(__wake_up
);
4678 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4680 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4682 __wake_up_common(q
, mode
, 1, 0, NULL
);
4686 * __wake_up_sync - wake up threads blocked on a waitqueue.
4688 * @mode: which threads
4689 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4691 * The sync wakeup differs that the waker knows that it will schedule
4692 * away soon, so while the target thread will be woken up, it will not
4693 * be migrated to another CPU - ie. the two threads are 'synchronized'
4694 * with each other. This can prevent needless bouncing between CPUs.
4696 * On UP it can prevent extra preemption.
4699 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4701 unsigned long flags
;
4707 if (unlikely(!nr_exclusive
))
4710 spin_lock_irqsave(&q
->lock
, flags
);
4711 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4712 spin_unlock_irqrestore(&q
->lock
, flags
);
4714 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4717 * complete: - signals a single thread waiting on this completion
4718 * @x: holds the state of this particular completion
4720 * This will wake up a single thread waiting on this completion. Threads will be
4721 * awakened in the same order in which they were queued.
4723 * See also complete_all(), wait_for_completion() and related routines.
4725 void complete(struct completion
*x
)
4727 unsigned long flags
;
4729 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4731 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4732 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4734 EXPORT_SYMBOL(complete
);
4737 * complete_all: - signals all threads waiting on this completion
4738 * @x: holds the state of this particular completion
4740 * This will wake up all threads waiting on this particular completion event.
4742 void complete_all(struct completion
*x
)
4744 unsigned long flags
;
4746 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4747 x
->done
+= UINT_MAX
/2;
4748 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4749 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4751 EXPORT_SYMBOL(complete_all
);
4753 static inline long __sched
4754 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4757 DECLARE_WAITQUEUE(wait
, current
);
4759 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4760 __add_wait_queue_tail(&x
->wait
, &wait
);
4762 if (signal_pending_state(state
, current
)) {
4763 timeout
= -ERESTARTSYS
;
4766 __set_current_state(state
);
4767 spin_unlock_irq(&x
->wait
.lock
);
4768 timeout
= schedule_timeout(timeout
);
4769 spin_lock_irq(&x
->wait
.lock
);
4770 } while (!x
->done
&& timeout
);
4771 __remove_wait_queue(&x
->wait
, &wait
);
4776 return timeout
?: 1;
4780 wait_for_common(struct completion
*x
, long timeout
, int state
)
4784 spin_lock_irq(&x
->wait
.lock
);
4785 timeout
= do_wait_for_common(x
, timeout
, state
);
4786 spin_unlock_irq(&x
->wait
.lock
);
4791 * wait_for_completion: - waits for completion of a task
4792 * @x: holds the state of this particular completion
4794 * This waits to be signaled for completion of a specific task. It is NOT
4795 * interruptible and there is no timeout.
4797 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4798 * and interrupt capability. Also see complete().
4800 void __sched
wait_for_completion(struct completion
*x
)
4802 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4804 EXPORT_SYMBOL(wait_for_completion
);
4807 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4808 * @x: holds the state of this particular completion
4809 * @timeout: timeout value in jiffies
4811 * This waits for either a completion of a specific task to be signaled or for a
4812 * specified timeout to expire. The timeout is in jiffies. It is not
4815 unsigned long __sched
4816 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4818 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4820 EXPORT_SYMBOL(wait_for_completion_timeout
);
4823 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4824 * @x: holds the state of this particular completion
4826 * This waits for completion of a specific task to be signaled. It is
4829 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4831 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4832 if (t
== -ERESTARTSYS
)
4836 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4839 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4840 * @x: holds the state of this particular completion
4841 * @timeout: timeout value in jiffies
4843 * This waits for either a completion of a specific task to be signaled or for a
4844 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4846 unsigned long __sched
4847 wait_for_completion_interruptible_timeout(struct completion
*x
,
4848 unsigned long timeout
)
4850 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4852 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4855 * wait_for_completion_killable: - waits for completion of a task (killable)
4856 * @x: holds the state of this particular completion
4858 * This waits to be signaled for completion of a specific task. It can be
4859 * interrupted by a kill signal.
4861 int __sched
wait_for_completion_killable(struct completion
*x
)
4863 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4864 if (t
== -ERESTARTSYS
)
4868 EXPORT_SYMBOL(wait_for_completion_killable
);
4871 * try_wait_for_completion - try to decrement a completion without blocking
4872 * @x: completion structure
4874 * Returns: 0 if a decrement cannot be done without blocking
4875 * 1 if a decrement succeeded.
4877 * If a completion is being used as a counting completion,
4878 * attempt to decrement the counter without blocking. This
4879 * enables us to avoid waiting if the resource the completion
4880 * is protecting is not available.
4882 bool try_wait_for_completion(struct completion
*x
)
4886 spin_lock_irq(&x
->wait
.lock
);
4891 spin_unlock_irq(&x
->wait
.lock
);
4894 EXPORT_SYMBOL(try_wait_for_completion
);
4897 * completion_done - Test to see if a completion has any waiters
4898 * @x: completion structure
4900 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4901 * 1 if there are no waiters.
4904 bool completion_done(struct completion
*x
)
4908 spin_lock_irq(&x
->wait
.lock
);
4911 spin_unlock_irq(&x
->wait
.lock
);
4914 EXPORT_SYMBOL(completion_done
);
4917 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4919 unsigned long flags
;
4922 init_waitqueue_entry(&wait
, current
);
4924 __set_current_state(state
);
4926 spin_lock_irqsave(&q
->lock
, flags
);
4927 __add_wait_queue(q
, &wait
);
4928 spin_unlock(&q
->lock
);
4929 timeout
= schedule_timeout(timeout
);
4930 spin_lock_irq(&q
->lock
);
4931 __remove_wait_queue(q
, &wait
);
4932 spin_unlock_irqrestore(&q
->lock
, flags
);
4937 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4939 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4941 EXPORT_SYMBOL(interruptible_sleep_on
);
4944 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4946 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4948 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4950 void __sched
sleep_on(wait_queue_head_t
*q
)
4952 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4954 EXPORT_SYMBOL(sleep_on
);
4956 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4958 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4960 EXPORT_SYMBOL(sleep_on_timeout
);
4962 #ifdef CONFIG_RT_MUTEXES
4965 * rt_mutex_setprio - set the current priority of a task
4967 * @prio: prio value (kernel-internal form)
4969 * This function changes the 'effective' priority of a task. It does
4970 * not touch ->normal_prio like __setscheduler().
4972 * Used by the rt_mutex code to implement priority inheritance logic.
4974 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4976 unsigned long flags
;
4977 int oldprio
, on_rq
, running
;
4979 const struct sched_class
*prev_class
= p
->sched_class
;
4981 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4983 rq
= task_rq_lock(p
, &flags
);
4984 update_rq_clock(rq
);
4987 on_rq
= p
->se
.on_rq
;
4988 running
= task_current(rq
, p
);
4990 dequeue_task(rq
, p
, 0);
4992 p
->sched_class
->put_prev_task(rq
, p
);
4995 p
->sched_class
= &rt_sched_class
;
4997 p
->sched_class
= &fair_sched_class
;
5002 p
->sched_class
->set_curr_task(rq
);
5004 enqueue_task(rq
, p
, 0);
5006 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5008 task_rq_unlock(rq
, &flags
);
5013 void set_user_nice(struct task_struct
*p
, long nice
)
5015 int old_prio
, delta
, on_rq
;
5016 unsigned long flags
;
5019 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5022 * We have to be careful, if called from sys_setpriority(),
5023 * the task might be in the middle of scheduling on another CPU.
5025 rq
= task_rq_lock(p
, &flags
);
5026 update_rq_clock(rq
);
5028 * The RT priorities are set via sched_setscheduler(), but we still
5029 * allow the 'normal' nice value to be set - but as expected
5030 * it wont have any effect on scheduling until the task is
5031 * SCHED_FIFO/SCHED_RR:
5033 if (task_has_rt_policy(p
)) {
5034 p
->static_prio
= NICE_TO_PRIO(nice
);
5037 on_rq
= p
->se
.on_rq
;
5039 dequeue_task(rq
, p
, 0);
5041 p
->static_prio
= NICE_TO_PRIO(nice
);
5044 p
->prio
= effective_prio(p
);
5045 delta
= p
->prio
- old_prio
;
5048 enqueue_task(rq
, p
, 0);
5050 * If the task increased its priority or is running and
5051 * lowered its priority, then reschedule its CPU:
5053 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5054 resched_task(rq
->curr
);
5057 task_rq_unlock(rq
, &flags
);
5059 EXPORT_SYMBOL(set_user_nice
);
5062 * can_nice - check if a task can reduce its nice value
5066 int can_nice(const struct task_struct
*p
, const int nice
)
5068 /* convert nice value [19,-20] to rlimit style value [1,40] */
5069 int nice_rlim
= 20 - nice
;
5071 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5072 capable(CAP_SYS_NICE
));
5075 #ifdef __ARCH_WANT_SYS_NICE
5078 * sys_nice - change the priority of the current process.
5079 * @increment: priority increment
5081 * sys_setpriority is a more generic, but much slower function that
5082 * does similar things.
5084 asmlinkage
long sys_nice(int increment
)
5089 * Setpriority might change our priority at the same moment.
5090 * We don't have to worry. Conceptually one call occurs first
5091 * and we have a single winner.
5093 if (increment
< -40)
5098 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5104 if (increment
< 0 && !can_nice(current
, nice
))
5107 retval
= security_task_setnice(current
, nice
);
5111 set_user_nice(current
, nice
);
5118 * task_prio - return the priority value of a given task.
5119 * @p: the task in question.
5121 * This is the priority value as seen by users in /proc.
5122 * RT tasks are offset by -200. Normal tasks are centered
5123 * around 0, value goes from -16 to +15.
5125 int task_prio(const struct task_struct
*p
)
5127 return p
->prio
- MAX_RT_PRIO
;
5131 * task_nice - return the nice value of a given task.
5132 * @p: the task in question.
5134 int task_nice(const struct task_struct
*p
)
5136 return TASK_NICE(p
);
5138 EXPORT_SYMBOL(task_nice
);
5141 * idle_cpu - is a given cpu idle currently?
5142 * @cpu: the processor in question.
5144 int idle_cpu(int cpu
)
5146 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5150 * idle_task - return the idle task for a given cpu.
5151 * @cpu: the processor in question.
5153 struct task_struct
*idle_task(int cpu
)
5155 return cpu_rq(cpu
)->idle
;
5159 * find_process_by_pid - find a process with a matching PID value.
5160 * @pid: the pid in question.
5162 static struct task_struct
*find_process_by_pid(pid_t pid
)
5164 return pid
? find_task_by_vpid(pid
) : current
;
5167 /* Actually do priority change: must hold rq lock. */
5169 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5171 BUG_ON(p
->se
.on_rq
);
5174 switch (p
->policy
) {
5178 p
->sched_class
= &fair_sched_class
;
5182 p
->sched_class
= &rt_sched_class
;
5186 p
->rt_priority
= prio
;
5187 p
->normal_prio
= normal_prio(p
);
5188 /* we are holding p->pi_lock already */
5189 p
->prio
= rt_mutex_getprio(p
);
5194 * check the target process has a UID that matches the current process's
5196 static bool check_same_owner(struct task_struct
*p
)
5198 const struct cred
*cred
= current_cred(), *pcred
;
5202 pcred
= __task_cred(p
);
5203 match
= (cred
->euid
== pcred
->euid
||
5204 cred
->euid
== pcred
->uid
);
5209 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5210 struct sched_param
*param
, bool user
)
5212 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5213 unsigned long flags
;
5214 const struct sched_class
*prev_class
= p
->sched_class
;
5217 /* may grab non-irq protected spin_locks */
5218 BUG_ON(in_interrupt());
5220 /* double check policy once rq lock held */
5222 policy
= oldpolicy
= p
->policy
;
5223 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5224 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5225 policy
!= SCHED_IDLE
)
5228 * Valid priorities for SCHED_FIFO and SCHED_RR are
5229 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5230 * SCHED_BATCH and SCHED_IDLE is 0.
5232 if (param
->sched_priority
< 0 ||
5233 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5234 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5236 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5240 * Allow unprivileged RT tasks to decrease priority:
5242 if (user
&& !capable(CAP_SYS_NICE
)) {
5243 if (rt_policy(policy
)) {
5244 unsigned long rlim_rtprio
;
5246 if (!lock_task_sighand(p
, &flags
))
5248 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5249 unlock_task_sighand(p
, &flags
);
5251 /* can't set/change the rt policy */
5252 if (policy
!= p
->policy
&& !rlim_rtprio
)
5255 /* can't increase priority */
5256 if (param
->sched_priority
> p
->rt_priority
&&
5257 param
->sched_priority
> rlim_rtprio
)
5261 * Like positive nice levels, dont allow tasks to
5262 * move out of SCHED_IDLE either:
5264 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5267 /* can't change other user's priorities */
5268 if (!check_same_owner(p
))
5273 #ifdef CONFIG_RT_GROUP_SCHED
5275 * Do not allow realtime tasks into groups that have no runtime
5278 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5279 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5283 retval
= security_task_setscheduler(p
, policy
, param
);
5289 * make sure no PI-waiters arrive (or leave) while we are
5290 * changing the priority of the task:
5292 spin_lock_irqsave(&p
->pi_lock
, flags
);
5294 * To be able to change p->policy safely, the apropriate
5295 * runqueue lock must be held.
5297 rq
= __task_rq_lock(p
);
5298 /* recheck policy now with rq lock held */
5299 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5300 policy
= oldpolicy
= -1;
5301 __task_rq_unlock(rq
);
5302 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5305 update_rq_clock(rq
);
5306 on_rq
= p
->se
.on_rq
;
5307 running
= task_current(rq
, p
);
5309 deactivate_task(rq
, p
, 0);
5311 p
->sched_class
->put_prev_task(rq
, p
);
5314 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5317 p
->sched_class
->set_curr_task(rq
);
5319 activate_task(rq
, p
, 0);
5321 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5323 __task_rq_unlock(rq
);
5324 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5326 rt_mutex_adjust_pi(p
);
5332 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5333 * @p: the task in question.
5334 * @policy: new policy.
5335 * @param: structure containing the new RT priority.
5337 * NOTE that the task may be already dead.
5339 int sched_setscheduler(struct task_struct
*p
, int policy
,
5340 struct sched_param
*param
)
5342 return __sched_setscheduler(p
, policy
, param
, true);
5344 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5347 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5348 * @p: the task in question.
5349 * @policy: new policy.
5350 * @param: structure containing the new RT priority.
5352 * Just like sched_setscheduler, only don't bother checking if the
5353 * current context has permission. For example, this is needed in
5354 * stop_machine(): we create temporary high priority worker threads,
5355 * but our caller might not have that capability.
5357 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5358 struct sched_param
*param
)
5360 return __sched_setscheduler(p
, policy
, param
, false);
5364 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5366 struct sched_param lparam
;
5367 struct task_struct
*p
;
5370 if (!param
|| pid
< 0)
5372 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5377 p
= find_process_by_pid(pid
);
5379 retval
= sched_setscheduler(p
, policy
, &lparam
);
5386 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5387 * @pid: the pid in question.
5388 * @policy: new policy.
5389 * @param: structure containing the new RT priority.
5392 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5394 /* negative values for policy are not valid */
5398 return do_sched_setscheduler(pid
, policy
, param
);
5402 * sys_sched_setparam - set/change the RT priority of a thread
5403 * @pid: the pid in question.
5404 * @param: structure containing the new RT priority.
5406 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5408 return do_sched_setscheduler(pid
, -1, param
);
5412 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5413 * @pid: the pid in question.
5415 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5417 struct task_struct
*p
;
5424 read_lock(&tasklist_lock
);
5425 p
= find_process_by_pid(pid
);
5427 retval
= security_task_getscheduler(p
);
5431 read_unlock(&tasklist_lock
);
5436 * sys_sched_getscheduler - get the RT priority of a thread
5437 * @pid: the pid in question.
5438 * @param: structure containing the RT priority.
5440 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5442 struct sched_param lp
;
5443 struct task_struct
*p
;
5446 if (!param
|| pid
< 0)
5449 read_lock(&tasklist_lock
);
5450 p
= find_process_by_pid(pid
);
5455 retval
= security_task_getscheduler(p
);
5459 lp
.sched_priority
= p
->rt_priority
;
5460 read_unlock(&tasklist_lock
);
5463 * This one might sleep, we cannot do it with a spinlock held ...
5465 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5470 read_unlock(&tasklist_lock
);
5474 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5476 cpumask_var_t cpus_allowed
, new_mask
;
5477 struct task_struct
*p
;
5481 read_lock(&tasklist_lock
);
5483 p
= find_process_by_pid(pid
);
5485 read_unlock(&tasklist_lock
);
5491 * It is not safe to call set_cpus_allowed with the
5492 * tasklist_lock held. We will bump the task_struct's
5493 * usage count and then drop tasklist_lock.
5496 read_unlock(&tasklist_lock
);
5498 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5502 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5504 goto out_free_cpus_allowed
;
5507 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5510 retval
= security_task_setscheduler(p
, 0, NULL
);
5514 cpuset_cpus_allowed(p
, cpus_allowed
);
5515 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5517 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5520 cpuset_cpus_allowed(p
, cpus_allowed
);
5521 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5523 * We must have raced with a concurrent cpuset
5524 * update. Just reset the cpus_allowed to the
5525 * cpuset's cpus_allowed
5527 cpumask_copy(new_mask
, cpus_allowed
);
5532 free_cpumask_var(new_mask
);
5533 out_free_cpus_allowed
:
5534 free_cpumask_var(cpus_allowed
);
5541 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5542 struct cpumask
*new_mask
)
5544 if (len
< cpumask_size())
5545 cpumask_clear(new_mask
);
5546 else if (len
> cpumask_size())
5547 len
= cpumask_size();
5549 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5553 * sys_sched_setaffinity - set the cpu affinity of a process
5554 * @pid: pid of the process
5555 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5556 * @user_mask_ptr: user-space pointer to the new cpu mask
5558 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5559 unsigned long __user
*user_mask_ptr
)
5561 cpumask_var_t new_mask
;
5564 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5567 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5569 retval
= sched_setaffinity(pid
, new_mask
);
5570 free_cpumask_var(new_mask
);
5574 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5576 struct task_struct
*p
;
5580 read_lock(&tasklist_lock
);
5583 p
= find_process_by_pid(pid
);
5587 retval
= security_task_getscheduler(p
);
5591 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5594 read_unlock(&tasklist_lock
);
5601 * sys_sched_getaffinity - get the cpu affinity of a process
5602 * @pid: pid of the process
5603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5606 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5607 unsigned long __user
*user_mask_ptr
)
5612 if (len
< cpumask_size())
5615 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5618 ret
= sched_getaffinity(pid
, mask
);
5620 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5623 ret
= cpumask_size();
5625 free_cpumask_var(mask
);
5631 * sys_sched_yield - yield the current processor to other threads.
5633 * This function yields the current CPU to other tasks. If there are no
5634 * other threads running on this CPU then this function will return.
5636 asmlinkage
long sys_sched_yield(void)
5638 struct rq
*rq
= this_rq_lock();
5640 schedstat_inc(rq
, yld_count
);
5641 current
->sched_class
->yield_task(rq
);
5644 * Since we are going to call schedule() anyway, there's
5645 * no need to preempt or enable interrupts:
5647 __release(rq
->lock
);
5648 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5649 _raw_spin_unlock(&rq
->lock
);
5650 preempt_enable_no_resched();
5657 static void __cond_resched(void)
5659 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5660 __might_sleep(__FILE__
, __LINE__
);
5663 * The BKS might be reacquired before we have dropped
5664 * PREEMPT_ACTIVE, which could trigger a second
5665 * cond_resched() call.
5668 add_preempt_count(PREEMPT_ACTIVE
);
5670 sub_preempt_count(PREEMPT_ACTIVE
);
5671 } while (need_resched());
5674 int __sched
_cond_resched(void)
5676 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5677 system_state
== SYSTEM_RUNNING
) {
5683 EXPORT_SYMBOL(_cond_resched
);
5686 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5687 * call schedule, and on return reacquire the lock.
5689 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5690 * operations here to prevent schedule() from being called twice (once via
5691 * spin_unlock(), once by hand).
5693 int cond_resched_lock(spinlock_t
*lock
)
5695 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5698 if (spin_needbreak(lock
) || resched
) {
5700 if (resched
&& need_resched())
5709 EXPORT_SYMBOL(cond_resched_lock
);
5711 int __sched
cond_resched_softirq(void)
5713 BUG_ON(!in_softirq());
5715 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5723 EXPORT_SYMBOL(cond_resched_softirq
);
5726 * yield - yield the current processor to other threads.
5728 * This is a shortcut for kernel-space yielding - it marks the
5729 * thread runnable and calls sys_sched_yield().
5731 void __sched
yield(void)
5733 set_current_state(TASK_RUNNING
);
5736 EXPORT_SYMBOL(yield
);
5739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5740 * that process accounting knows that this is a task in IO wait state.
5742 * But don't do that if it is a deliberate, throttling IO wait (this task
5743 * has set its backing_dev_info: the queue against which it should throttle)
5745 void __sched
io_schedule(void)
5747 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5749 delayacct_blkio_start();
5750 atomic_inc(&rq
->nr_iowait
);
5752 atomic_dec(&rq
->nr_iowait
);
5753 delayacct_blkio_end();
5755 EXPORT_SYMBOL(io_schedule
);
5757 long __sched
io_schedule_timeout(long timeout
)
5759 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5762 delayacct_blkio_start();
5763 atomic_inc(&rq
->nr_iowait
);
5764 ret
= schedule_timeout(timeout
);
5765 atomic_dec(&rq
->nr_iowait
);
5766 delayacct_blkio_end();
5771 * sys_sched_get_priority_max - return maximum RT priority.
5772 * @policy: scheduling class.
5774 * this syscall returns the maximum rt_priority that can be used
5775 * by a given scheduling class.
5777 asmlinkage
long sys_sched_get_priority_max(int policy
)
5784 ret
= MAX_USER_RT_PRIO
-1;
5796 * sys_sched_get_priority_min - return minimum RT priority.
5797 * @policy: scheduling class.
5799 * this syscall returns the minimum rt_priority that can be used
5800 * by a given scheduling class.
5802 asmlinkage
long sys_sched_get_priority_min(int policy
)
5820 * sys_sched_rr_get_interval - return the default timeslice of a process.
5821 * @pid: pid of the process.
5822 * @interval: userspace pointer to the timeslice value.
5824 * this syscall writes the default timeslice value of a given process
5825 * into the user-space timespec buffer. A value of '0' means infinity.
5828 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5830 struct task_struct
*p
;
5831 unsigned int time_slice
;
5839 read_lock(&tasklist_lock
);
5840 p
= find_process_by_pid(pid
);
5844 retval
= security_task_getscheduler(p
);
5849 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5850 * tasks that are on an otherwise idle runqueue:
5853 if (p
->policy
== SCHED_RR
) {
5854 time_slice
= DEF_TIMESLICE
;
5855 } else if (p
->policy
!= SCHED_FIFO
) {
5856 struct sched_entity
*se
= &p
->se
;
5857 unsigned long flags
;
5860 rq
= task_rq_lock(p
, &flags
);
5861 if (rq
->cfs
.load
.weight
)
5862 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5863 task_rq_unlock(rq
, &flags
);
5865 read_unlock(&tasklist_lock
);
5866 jiffies_to_timespec(time_slice
, &t
);
5867 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5871 read_unlock(&tasklist_lock
);
5875 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5877 void sched_show_task(struct task_struct
*p
)
5879 unsigned long free
= 0;
5882 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5883 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5884 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5885 #if BITS_PER_LONG == 32
5886 if (state
== TASK_RUNNING
)
5887 printk(KERN_CONT
" running ");
5889 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5891 if (state
== TASK_RUNNING
)
5892 printk(KERN_CONT
" running task ");
5894 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5896 #ifdef CONFIG_DEBUG_STACK_USAGE
5898 unsigned long *n
= end_of_stack(p
);
5901 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5904 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5905 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5907 show_stack(p
, NULL
);
5910 void show_state_filter(unsigned long state_filter
)
5912 struct task_struct
*g
, *p
;
5914 #if BITS_PER_LONG == 32
5916 " task PC stack pid father\n");
5919 " task PC stack pid father\n");
5921 read_lock(&tasklist_lock
);
5922 do_each_thread(g
, p
) {
5924 * reset the NMI-timeout, listing all files on a slow
5925 * console might take alot of time:
5927 touch_nmi_watchdog();
5928 if (!state_filter
|| (p
->state
& state_filter
))
5930 } while_each_thread(g
, p
);
5932 touch_all_softlockup_watchdogs();
5934 #ifdef CONFIG_SCHED_DEBUG
5935 sysrq_sched_debug_show();
5937 read_unlock(&tasklist_lock
);
5939 * Only show locks if all tasks are dumped:
5941 if (state_filter
== -1)
5942 debug_show_all_locks();
5945 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5947 idle
->sched_class
= &idle_sched_class
;
5951 * init_idle - set up an idle thread for a given CPU
5952 * @idle: task in question
5953 * @cpu: cpu the idle task belongs to
5955 * NOTE: this function does not set the idle thread's NEED_RESCHED
5956 * flag, to make booting more robust.
5958 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5960 struct rq
*rq
= cpu_rq(cpu
);
5961 unsigned long flags
;
5963 spin_lock_irqsave(&rq
->lock
, flags
);
5966 idle
->se
.exec_start
= sched_clock();
5968 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5969 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5970 __set_task_cpu(idle
, cpu
);
5972 rq
->curr
= rq
->idle
= idle
;
5973 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5976 spin_unlock_irqrestore(&rq
->lock
, flags
);
5978 /* Set the preempt count _outside_ the spinlocks! */
5979 #if defined(CONFIG_PREEMPT)
5980 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5982 task_thread_info(idle
)->preempt_count
= 0;
5985 * The idle tasks have their own, simple scheduling class:
5987 idle
->sched_class
= &idle_sched_class
;
5988 ftrace_graph_init_task(idle
);
5992 * In a system that switches off the HZ timer nohz_cpu_mask
5993 * indicates which cpus entered this state. This is used
5994 * in the rcu update to wait only for active cpus. For system
5995 * which do not switch off the HZ timer nohz_cpu_mask should
5996 * always be CPU_BITS_NONE.
5998 cpumask_var_t nohz_cpu_mask
;
6001 * Increase the granularity value when there are more CPUs,
6002 * because with more CPUs the 'effective latency' as visible
6003 * to users decreases. But the relationship is not linear,
6004 * so pick a second-best guess by going with the log2 of the
6007 * This idea comes from the SD scheduler of Con Kolivas:
6009 static inline void sched_init_granularity(void)
6011 unsigned int factor
= 1 + ilog2(num_online_cpus());
6012 const unsigned long limit
= 200000000;
6014 sysctl_sched_min_granularity
*= factor
;
6015 if (sysctl_sched_min_granularity
> limit
)
6016 sysctl_sched_min_granularity
= limit
;
6018 sysctl_sched_latency
*= factor
;
6019 if (sysctl_sched_latency
> limit
)
6020 sysctl_sched_latency
= limit
;
6022 sysctl_sched_wakeup_granularity
*= factor
;
6024 sysctl_sched_shares_ratelimit
*= factor
;
6029 * This is how migration works:
6031 * 1) we queue a struct migration_req structure in the source CPU's
6032 * runqueue and wake up that CPU's migration thread.
6033 * 2) we down() the locked semaphore => thread blocks.
6034 * 3) migration thread wakes up (implicitly it forces the migrated
6035 * thread off the CPU)
6036 * 4) it gets the migration request and checks whether the migrated
6037 * task is still in the wrong runqueue.
6038 * 5) if it's in the wrong runqueue then the migration thread removes
6039 * it and puts it into the right queue.
6040 * 6) migration thread up()s the semaphore.
6041 * 7) we wake up and the migration is done.
6045 * Change a given task's CPU affinity. Migrate the thread to a
6046 * proper CPU and schedule it away if the CPU it's executing on
6047 * is removed from the allowed bitmask.
6049 * NOTE: the caller must have a valid reference to the task, the
6050 * task must not exit() & deallocate itself prematurely. The
6051 * call is not atomic; no spinlocks may be held.
6053 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6055 struct migration_req req
;
6056 unsigned long flags
;
6060 rq
= task_rq_lock(p
, &flags
);
6061 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6066 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6067 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6072 if (p
->sched_class
->set_cpus_allowed
)
6073 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6075 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6076 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6079 /* Can the task run on the task's current CPU? If so, we're done */
6080 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6083 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6084 /* Need help from migration thread: drop lock and wait. */
6085 task_rq_unlock(rq
, &flags
);
6086 wake_up_process(rq
->migration_thread
);
6087 wait_for_completion(&req
.done
);
6088 tlb_migrate_finish(p
->mm
);
6092 task_rq_unlock(rq
, &flags
);
6096 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6099 * Move (not current) task off this cpu, onto dest cpu. We're doing
6100 * this because either it can't run here any more (set_cpus_allowed()
6101 * away from this CPU, or CPU going down), or because we're
6102 * attempting to rebalance this task on exec (sched_exec).
6104 * So we race with normal scheduler movements, but that's OK, as long
6105 * as the task is no longer on this CPU.
6107 * Returns non-zero if task was successfully migrated.
6109 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6111 struct rq
*rq_dest
, *rq_src
;
6114 if (unlikely(!cpu_active(dest_cpu
)))
6117 rq_src
= cpu_rq(src_cpu
);
6118 rq_dest
= cpu_rq(dest_cpu
);
6120 double_rq_lock(rq_src
, rq_dest
);
6121 /* Already moved. */
6122 if (task_cpu(p
) != src_cpu
)
6124 /* Affinity changed (again). */
6125 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6128 on_rq
= p
->se
.on_rq
;
6130 deactivate_task(rq_src
, p
, 0);
6132 set_task_cpu(p
, dest_cpu
);
6134 activate_task(rq_dest
, p
, 0);
6135 check_preempt_curr(rq_dest
, p
, 0);
6140 double_rq_unlock(rq_src
, rq_dest
);
6145 * migration_thread - this is a highprio system thread that performs
6146 * thread migration by bumping thread off CPU then 'pushing' onto
6149 static int migration_thread(void *data
)
6151 int cpu
= (long)data
;
6155 BUG_ON(rq
->migration_thread
!= current
);
6157 set_current_state(TASK_INTERRUPTIBLE
);
6158 while (!kthread_should_stop()) {
6159 struct migration_req
*req
;
6160 struct list_head
*head
;
6162 spin_lock_irq(&rq
->lock
);
6164 if (cpu_is_offline(cpu
)) {
6165 spin_unlock_irq(&rq
->lock
);
6169 if (rq
->active_balance
) {
6170 active_load_balance(rq
, cpu
);
6171 rq
->active_balance
= 0;
6174 head
= &rq
->migration_queue
;
6176 if (list_empty(head
)) {
6177 spin_unlock_irq(&rq
->lock
);
6179 set_current_state(TASK_INTERRUPTIBLE
);
6182 req
= list_entry(head
->next
, struct migration_req
, list
);
6183 list_del_init(head
->next
);
6185 spin_unlock(&rq
->lock
);
6186 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6189 complete(&req
->done
);
6191 __set_current_state(TASK_RUNNING
);
6195 /* Wait for kthread_stop */
6196 set_current_state(TASK_INTERRUPTIBLE
);
6197 while (!kthread_should_stop()) {
6199 set_current_state(TASK_INTERRUPTIBLE
);
6201 __set_current_state(TASK_RUNNING
);
6205 #ifdef CONFIG_HOTPLUG_CPU
6207 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6211 local_irq_disable();
6212 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6218 * Figure out where task on dead CPU should go, use force if necessary.
6220 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6223 /* FIXME: Use cpumask_of_node here. */
6224 cpumask_t _nodemask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6225 const struct cpumask
*nodemask
= &_nodemask
;
6228 /* Look for allowed, online CPU in same node. */
6229 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6230 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6233 /* Any allowed, online CPU? */
6234 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6235 if (dest_cpu
< nr_cpu_ids
)
6238 /* No more Mr. Nice Guy. */
6239 if (dest_cpu
>= nr_cpu_ids
) {
6240 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6241 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6244 * Don't tell them about moving exiting tasks or
6245 * kernel threads (both mm NULL), since they never
6248 if (p
->mm
&& printk_ratelimit()) {
6249 printk(KERN_INFO
"process %d (%s) no "
6250 "longer affine to cpu%d\n",
6251 task_pid_nr(p
), p
->comm
, dead_cpu
);
6256 /* It can have affinity changed while we were choosing. */
6257 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6262 * While a dead CPU has no uninterruptible tasks queued at this point,
6263 * it might still have a nonzero ->nr_uninterruptible counter, because
6264 * for performance reasons the counter is not stricly tracking tasks to
6265 * their home CPUs. So we just add the counter to another CPU's counter,
6266 * to keep the global sum constant after CPU-down:
6268 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6270 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6271 unsigned long flags
;
6273 local_irq_save(flags
);
6274 double_rq_lock(rq_src
, rq_dest
);
6275 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6276 rq_src
->nr_uninterruptible
= 0;
6277 double_rq_unlock(rq_src
, rq_dest
);
6278 local_irq_restore(flags
);
6281 /* Run through task list and migrate tasks from the dead cpu. */
6282 static void migrate_live_tasks(int src_cpu
)
6284 struct task_struct
*p
, *t
;
6286 read_lock(&tasklist_lock
);
6288 do_each_thread(t
, p
) {
6292 if (task_cpu(p
) == src_cpu
)
6293 move_task_off_dead_cpu(src_cpu
, p
);
6294 } while_each_thread(t
, p
);
6296 read_unlock(&tasklist_lock
);
6300 * Schedules idle task to be the next runnable task on current CPU.
6301 * It does so by boosting its priority to highest possible.
6302 * Used by CPU offline code.
6304 void sched_idle_next(void)
6306 int this_cpu
= smp_processor_id();
6307 struct rq
*rq
= cpu_rq(this_cpu
);
6308 struct task_struct
*p
= rq
->idle
;
6309 unsigned long flags
;
6311 /* cpu has to be offline */
6312 BUG_ON(cpu_online(this_cpu
));
6315 * Strictly not necessary since rest of the CPUs are stopped by now
6316 * and interrupts disabled on the current cpu.
6318 spin_lock_irqsave(&rq
->lock
, flags
);
6320 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6322 update_rq_clock(rq
);
6323 activate_task(rq
, p
, 0);
6325 spin_unlock_irqrestore(&rq
->lock
, flags
);
6329 * Ensures that the idle task is using init_mm right before its cpu goes
6332 void idle_task_exit(void)
6334 struct mm_struct
*mm
= current
->active_mm
;
6336 BUG_ON(cpu_online(smp_processor_id()));
6339 switch_mm(mm
, &init_mm
, current
);
6343 /* called under rq->lock with disabled interrupts */
6344 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6346 struct rq
*rq
= cpu_rq(dead_cpu
);
6348 /* Must be exiting, otherwise would be on tasklist. */
6349 BUG_ON(!p
->exit_state
);
6351 /* Cannot have done final schedule yet: would have vanished. */
6352 BUG_ON(p
->state
== TASK_DEAD
);
6357 * Drop lock around migration; if someone else moves it,
6358 * that's OK. No task can be added to this CPU, so iteration is
6361 spin_unlock_irq(&rq
->lock
);
6362 move_task_off_dead_cpu(dead_cpu
, p
);
6363 spin_lock_irq(&rq
->lock
);
6368 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6369 static void migrate_dead_tasks(unsigned int dead_cpu
)
6371 struct rq
*rq
= cpu_rq(dead_cpu
);
6372 struct task_struct
*next
;
6375 if (!rq
->nr_running
)
6377 update_rq_clock(rq
);
6378 next
= pick_next_task(rq
, rq
->curr
);
6381 next
->sched_class
->put_prev_task(rq
, next
);
6382 migrate_dead(dead_cpu
, next
);
6386 #endif /* CONFIG_HOTPLUG_CPU */
6388 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6390 static struct ctl_table sd_ctl_dir
[] = {
6392 .procname
= "sched_domain",
6398 static struct ctl_table sd_ctl_root
[] = {
6400 .ctl_name
= CTL_KERN
,
6401 .procname
= "kernel",
6403 .child
= sd_ctl_dir
,
6408 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6410 struct ctl_table
*entry
=
6411 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6416 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6418 struct ctl_table
*entry
;
6421 * In the intermediate directories, both the child directory and
6422 * procname are dynamically allocated and could fail but the mode
6423 * will always be set. In the lowest directory the names are
6424 * static strings and all have proc handlers.
6426 for (entry
= *tablep
; entry
->mode
; entry
++) {
6428 sd_free_ctl_entry(&entry
->child
);
6429 if (entry
->proc_handler
== NULL
)
6430 kfree(entry
->procname
);
6438 set_table_entry(struct ctl_table
*entry
,
6439 const char *procname
, void *data
, int maxlen
,
6440 mode_t mode
, proc_handler
*proc_handler
)
6442 entry
->procname
= procname
;
6444 entry
->maxlen
= maxlen
;
6446 entry
->proc_handler
= proc_handler
;
6449 static struct ctl_table
*
6450 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6452 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6457 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6458 sizeof(long), 0644, proc_doulongvec_minmax
);
6459 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6460 sizeof(long), 0644, proc_doulongvec_minmax
);
6461 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6462 sizeof(int), 0644, proc_dointvec_minmax
);
6463 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6464 sizeof(int), 0644, proc_dointvec_minmax
);
6465 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6466 sizeof(int), 0644, proc_dointvec_minmax
);
6467 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6468 sizeof(int), 0644, proc_dointvec_minmax
);
6469 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6470 sizeof(int), 0644, proc_dointvec_minmax
);
6471 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6472 sizeof(int), 0644, proc_dointvec_minmax
);
6473 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6474 sizeof(int), 0644, proc_dointvec_minmax
);
6475 set_table_entry(&table
[9], "cache_nice_tries",
6476 &sd
->cache_nice_tries
,
6477 sizeof(int), 0644, proc_dointvec_minmax
);
6478 set_table_entry(&table
[10], "flags", &sd
->flags
,
6479 sizeof(int), 0644, proc_dointvec_minmax
);
6480 set_table_entry(&table
[11], "name", sd
->name
,
6481 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6482 /* &table[12] is terminator */
6487 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6489 struct ctl_table
*entry
, *table
;
6490 struct sched_domain
*sd
;
6491 int domain_num
= 0, i
;
6494 for_each_domain(cpu
, sd
)
6496 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6501 for_each_domain(cpu
, sd
) {
6502 snprintf(buf
, 32, "domain%d", i
);
6503 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6505 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6512 static struct ctl_table_header
*sd_sysctl_header
;
6513 static void register_sched_domain_sysctl(void)
6515 int i
, cpu_num
= num_online_cpus();
6516 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6519 WARN_ON(sd_ctl_dir
[0].child
);
6520 sd_ctl_dir
[0].child
= entry
;
6525 for_each_online_cpu(i
) {
6526 snprintf(buf
, 32, "cpu%d", i
);
6527 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6529 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6533 WARN_ON(sd_sysctl_header
);
6534 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6537 /* may be called multiple times per register */
6538 static void unregister_sched_domain_sysctl(void)
6540 if (sd_sysctl_header
)
6541 unregister_sysctl_table(sd_sysctl_header
);
6542 sd_sysctl_header
= NULL
;
6543 if (sd_ctl_dir
[0].child
)
6544 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6547 static void register_sched_domain_sysctl(void)
6550 static void unregister_sched_domain_sysctl(void)
6555 static void set_rq_online(struct rq
*rq
)
6558 const struct sched_class
*class;
6560 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6563 for_each_class(class) {
6564 if (class->rq_online
)
6565 class->rq_online(rq
);
6570 static void set_rq_offline(struct rq
*rq
)
6573 const struct sched_class
*class;
6575 for_each_class(class) {
6576 if (class->rq_offline
)
6577 class->rq_offline(rq
);
6580 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6586 * migration_call - callback that gets triggered when a CPU is added.
6587 * Here we can start up the necessary migration thread for the new CPU.
6589 static int __cpuinit
6590 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6592 struct task_struct
*p
;
6593 int cpu
= (long)hcpu
;
6594 unsigned long flags
;
6599 case CPU_UP_PREPARE
:
6600 case CPU_UP_PREPARE_FROZEN
:
6601 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6604 kthread_bind(p
, cpu
);
6605 /* Must be high prio: stop_machine expects to yield to it. */
6606 rq
= task_rq_lock(p
, &flags
);
6607 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6608 task_rq_unlock(rq
, &flags
);
6609 cpu_rq(cpu
)->migration_thread
= p
;
6613 case CPU_ONLINE_FROZEN
:
6614 /* Strictly unnecessary, as first user will wake it. */
6615 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6617 /* Update our root-domain */
6619 spin_lock_irqsave(&rq
->lock
, flags
);
6621 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6625 spin_unlock_irqrestore(&rq
->lock
, flags
);
6628 #ifdef CONFIG_HOTPLUG_CPU
6629 case CPU_UP_CANCELED
:
6630 case CPU_UP_CANCELED_FROZEN
:
6631 if (!cpu_rq(cpu
)->migration_thread
)
6633 /* Unbind it from offline cpu so it can run. Fall thru. */
6634 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6635 cpumask_any(cpu_online_mask
));
6636 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6637 cpu_rq(cpu
)->migration_thread
= NULL
;
6641 case CPU_DEAD_FROZEN
:
6642 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6643 migrate_live_tasks(cpu
);
6645 kthread_stop(rq
->migration_thread
);
6646 rq
->migration_thread
= NULL
;
6647 /* Idle task back to normal (off runqueue, low prio) */
6648 spin_lock_irq(&rq
->lock
);
6649 update_rq_clock(rq
);
6650 deactivate_task(rq
, rq
->idle
, 0);
6651 rq
->idle
->static_prio
= MAX_PRIO
;
6652 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6653 rq
->idle
->sched_class
= &idle_sched_class
;
6654 migrate_dead_tasks(cpu
);
6655 spin_unlock_irq(&rq
->lock
);
6657 migrate_nr_uninterruptible(rq
);
6658 BUG_ON(rq
->nr_running
!= 0);
6661 * No need to migrate the tasks: it was best-effort if
6662 * they didn't take sched_hotcpu_mutex. Just wake up
6665 spin_lock_irq(&rq
->lock
);
6666 while (!list_empty(&rq
->migration_queue
)) {
6667 struct migration_req
*req
;
6669 req
= list_entry(rq
->migration_queue
.next
,
6670 struct migration_req
, list
);
6671 list_del_init(&req
->list
);
6672 spin_unlock_irq(&rq
->lock
);
6673 complete(&req
->done
);
6674 spin_lock_irq(&rq
->lock
);
6676 spin_unlock_irq(&rq
->lock
);
6680 case CPU_DYING_FROZEN
:
6681 /* Update our root-domain */
6683 spin_lock_irqsave(&rq
->lock
, flags
);
6685 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6688 spin_unlock_irqrestore(&rq
->lock
, flags
);
6695 /* Register at highest priority so that task migration (migrate_all_tasks)
6696 * happens before everything else.
6698 static struct notifier_block __cpuinitdata migration_notifier
= {
6699 .notifier_call
= migration_call
,
6703 static int __init
migration_init(void)
6705 void *cpu
= (void *)(long)smp_processor_id();
6708 /* Start one for the boot CPU: */
6709 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6710 BUG_ON(err
== NOTIFY_BAD
);
6711 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6712 register_cpu_notifier(&migration_notifier
);
6716 early_initcall(migration_init
);
6721 #ifdef CONFIG_SCHED_DEBUG
6723 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6724 struct cpumask
*groupmask
)
6726 struct sched_group
*group
= sd
->groups
;
6729 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6730 cpumask_clear(groupmask
);
6732 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6734 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6735 printk("does not load-balance\n");
6737 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6742 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6744 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6745 printk(KERN_ERR
"ERROR: domain->span does not contain "
6748 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6749 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6753 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6757 printk(KERN_ERR
"ERROR: group is NULL\n");
6761 if (!group
->__cpu_power
) {
6762 printk(KERN_CONT
"\n");
6763 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6768 if (!cpumask_weight(sched_group_cpus(group
))) {
6769 printk(KERN_CONT
"\n");
6770 printk(KERN_ERR
"ERROR: empty group\n");
6774 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6775 printk(KERN_CONT
"\n");
6776 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6780 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6782 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6783 printk(KERN_CONT
" %s", str
);
6785 group
= group
->next
;
6786 } while (group
!= sd
->groups
);
6787 printk(KERN_CONT
"\n");
6789 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6790 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6793 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6794 printk(KERN_ERR
"ERROR: parent span is not a superset "
6795 "of domain->span\n");
6799 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6801 cpumask_var_t groupmask
;
6805 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6809 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6811 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6812 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6817 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6824 free_cpumask_var(groupmask
);
6826 #else /* !CONFIG_SCHED_DEBUG */
6827 # define sched_domain_debug(sd, cpu) do { } while (0)
6828 #endif /* CONFIG_SCHED_DEBUG */
6830 static int sd_degenerate(struct sched_domain
*sd
)
6832 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6835 /* Following flags need at least 2 groups */
6836 if (sd
->flags
& (SD_LOAD_BALANCE
|
6837 SD_BALANCE_NEWIDLE
|
6841 SD_SHARE_PKG_RESOURCES
)) {
6842 if (sd
->groups
!= sd
->groups
->next
)
6846 /* Following flags don't use groups */
6847 if (sd
->flags
& (SD_WAKE_IDLE
|
6856 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6858 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6860 if (sd_degenerate(parent
))
6863 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6866 /* Does parent contain flags not in child? */
6867 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6868 if (cflags
& SD_WAKE_AFFINE
)
6869 pflags
&= ~SD_WAKE_BALANCE
;
6870 /* Flags needing groups don't count if only 1 group in parent */
6871 if (parent
->groups
== parent
->groups
->next
) {
6872 pflags
&= ~(SD_LOAD_BALANCE
|
6873 SD_BALANCE_NEWIDLE
|
6877 SD_SHARE_PKG_RESOURCES
);
6878 if (nr_node_ids
== 1)
6879 pflags
&= ~SD_SERIALIZE
;
6881 if (~cflags
& pflags
)
6887 static void free_rootdomain(struct root_domain
*rd
)
6889 cpupri_cleanup(&rd
->cpupri
);
6891 free_cpumask_var(rd
->rto_mask
);
6892 free_cpumask_var(rd
->online
);
6893 free_cpumask_var(rd
->span
);
6897 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6899 unsigned long flags
;
6901 spin_lock_irqsave(&rq
->lock
, flags
);
6904 struct root_domain
*old_rd
= rq
->rd
;
6906 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6909 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6911 if (atomic_dec_and_test(&old_rd
->refcount
))
6912 free_rootdomain(old_rd
);
6915 atomic_inc(&rd
->refcount
);
6918 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6919 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
6922 spin_unlock_irqrestore(&rq
->lock
, flags
);
6925 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6927 memset(rd
, 0, sizeof(*rd
));
6930 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
6931 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
6932 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
6933 cpupri_init(&rd
->cpupri
, true);
6937 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6939 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6941 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6944 if (cpupri_init(&rd
->cpupri
, false) != 0)
6949 free_cpumask_var(rd
->rto_mask
);
6951 free_cpumask_var(rd
->online
);
6953 free_cpumask_var(rd
->span
);
6959 static void init_defrootdomain(void)
6961 init_rootdomain(&def_root_domain
, true);
6963 atomic_set(&def_root_domain
.refcount
, 1);
6966 static struct root_domain
*alloc_rootdomain(void)
6968 struct root_domain
*rd
;
6970 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6974 if (init_rootdomain(rd
, false) != 0) {
6983 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6984 * hold the hotplug lock.
6987 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6989 struct rq
*rq
= cpu_rq(cpu
);
6990 struct sched_domain
*tmp
;
6992 /* Remove the sched domains which do not contribute to scheduling. */
6993 for (tmp
= sd
; tmp
; ) {
6994 struct sched_domain
*parent
= tmp
->parent
;
6998 if (sd_parent_degenerate(tmp
, parent
)) {
6999 tmp
->parent
= parent
->parent
;
7001 parent
->parent
->child
= tmp
;
7006 if (sd
&& sd_degenerate(sd
)) {
7012 sched_domain_debug(sd
, cpu
);
7014 rq_attach_root(rq
, rd
);
7015 rcu_assign_pointer(rq
->sd
, sd
);
7018 /* cpus with isolated domains */
7019 static cpumask_var_t cpu_isolated_map
;
7021 /* Setup the mask of cpus configured for isolated domains */
7022 static int __init
isolated_cpu_setup(char *str
)
7024 cpulist_parse(str
, cpu_isolated_map
);
7028 __setup("isolcpus=", isolated_cpu_setup
);
7031 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7032 * to a function which identifies what group(along with sched group) a CPU
7033 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7034 * (due to the fact that we keep track of groups covered with a struct cpumask).
7036 * init_sched_build_groups will build a circular linked list of the groups
7037 * covered by the given span, and will set each group's ->cpumask correctly,
7038 * and ->cpu_power to 0.
7041 init_sched_build_groups(const struct cpumask
*span
,
7042 const struct cpumask
*cpu_map
,
7043 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7044 struct sched_group
**sg
,
7045 struct cpumask
*tmpmask
),
7046 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7048 struct sched_group
*first
= NULL
, *last
= NULL
;
7051 cpumask_clear(covered
);
7053 for_each_cpu(i
, span
) {
7054 struct sched_group
*sg
;
7055 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7058 if (cpumask_test_cpu(i
, covered
))
7061 cpumask_clear(sched_group_cpus(sg
));
7062 sg
->__cpu_power
= 0;
7064 for_each_cpu(j
, span
) {
7065 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7068 cpumask_set_cpu(j
, covered
);
7069 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7080 #define SD_NODES_PER_DOMAIN 16
7085 * find_next_best_node - find the next node to include in a sched_domain
7086 * @node: node whose sched_domain we're building
7087 * @used_nodes: nodes already in the sched_domain
7089 * Find the next node to include in a given scheduling domain. Simply
7090 * finds the closest node not already in the @used_nodes map.
7092 * Should use nodemask_t.
7094 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7096 int i
, n
, val
, min_val
, best_node
= 0;
7100 for (i
= 0; i
< nr_node_ids
; i
++) {
7101 /* Start at @node */
7102 n
= (node
+ i
) % nr_node_ids
;
7104 if (!nr_cpus_node(n
))
7107 /* Skip already used nodes */
7108 if (node_isset(n
, *used_nodes
))
7111 /* Simple min distance search */
7112 val
= node_distance(node
, n
);
7114 if (val
< min_val
) {
7120 node_set(best_node
, *used_nodes
);
7125 * sched_domain_node_span - get a cpumask for a node's sched_domain
7126 * @node: node whose cpumask we're constructing
7127 * @span: resulting cpumask
7129 * Given a node, construct a good cpumask for its sched_domain to span. It
7130 * should be one that prevents unnecessary balancing, but also spreads tasks
7133 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7135 nodemask_t used_nodes
;
7136 /* FIXME: use cpumask_of_node() */
7137 node_to_cpumask_ptr(nodemask
, node
);
7141 nodes_clear(used_nodes
);
7143 cpus_or(*span
, *span
, *nodemask
);
7144 node_set(node
, used_nodes
);
7146 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7147 int next_node
= find_next_best_node(node
, &used_nodes
);
7149 node_to_cpumask_ptr_next(nodemask
, next_node
);
7150 cpus_or(*span
, *span
, *nodemask
);
7153 #endif /* CONFIG_NUMA */
7155 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7158 * The cpus mask in sched_group and sched_domain hangs off the end.
7159 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7160 * for nr_cpu_ids < CONFIG_NR_CPUS.
7162 struct static_sched_group
{
7163 struct sched_group sg
;
7164 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7167 struct static_sched_domain
{
7168 struct sched_domain sd
;
7169 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7173 * SMT sched-domains:
7175 #ifdef CONFIG_SCHED_SMT
7176 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7177 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7180 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7181 struct sched_group
**sg
, struct cpumask
*unused
)
7184 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7187 #endif /* CONFIG_SCHED_SMT */
7190 * multi-core sched-domains:
7192 #ifdef CONFIG_SCHED_MC
7193 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7194 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7195 #endif /* CONFIG_SCHED_MC */
7197 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7199 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7200 struct sched_group
**sg
, struct cpumask
*mask
)
7204 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7205 group
= cpumask_first(mask
);
7207 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7210 #elif defined(CONFIG_SCHED_MC)
7212 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7213 struct sched_group
**sg
, struct cpumask
*unused
)
7216 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7221 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7222 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7225 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7226 struct sched_group
**sg
, struct cpumask
*mask
)
7229 #ifdef CONFIG_SCHED_MC
7230 /* FIXME: Use cpu_coregroup_mask. */
7231 *mask
= cpu_coregroup_map(cpu
);
7232 cpus_and(*mask
, *mask
, *cpu_map
);
7233 group
= cpumask_first(mask
);
7234 #elif defined(CONFIG_SCHED_SMT)
7235 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7236 group
= cpumask_first(mask
);
7241 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7247 * The init_sched_build_groups can't handle what we want to do with node
7248 * groups, so roll our own. Now each node has its own list of groups which
7249 * gets dynamically allocated.
7251 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7252 static struct sched_group
***sched_group_nodes_bycpu
;
7254 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7255 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7257 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7258 struct sched_group
**sg
,
7259 struct cpumask
*nodemask
)
7262 /* FIXME: use cpumask_of_node */
7263 node_to_cpumask_ptr(pnodemask
, cpu_to_node(cpu
));
7265 cpumask_and(nodemask
, pnodemask
, cpu_map
);
7266 group
= cpumask_first(nodemask
);
7269 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7273 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7275 struct sched_group
*sg
= group_head
;
7281 for_each_cpu(j
, sched_group_cpus(sg
)) {
7282 struct sched_domain
*sd
;
7284 sd
= &per_cpu(phys_domains
, j
).sd
;
7285 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7287 * Only add "power" once for each
7293 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7296 } while (sg
!= group_head
);
7298 #endif /* CONFIG_NUMA */
7301 /* Free memory allocated for various sched_group structures */
7302 static void free_sched_groups(const struct cpumask
*cpu_map
,
7303 struct cpumask
*nodemask
)
7307 for_each_cpu(cpu
, cpu_map
) {
7308 struct sched_group
**sched_group_nodes
7309 = sched_group_nodes_bycpu
[cpu
];
7311 if (!sched_group_nodes
)
7314 for (i
= 0; i
< nr_node_ids
; i
++) {
7315 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7316 /* FIXME: Use cpumask_of_node */
7317 node_to_cpumask_ptr(pnodemask
, i
);
7319 cpus_and(*nodemask
, *pnodemask
, *cpu_map
);
7320 if (cpumask_empty(nodemask
))
7330 if (oldsg
!= sched_group_nodes
[i
])
7333 kfree(sched_group_nodes
);
7334 sched_group_nodes_bycpu
[cpu
] = NULL
;
7337 #else /* !CONFIG_NUMA */
7338 static void free_sched_groups(const struct cpumask
*cpu_map
,
7339 struct cpumask
*nodemask
)
7342 #endif /* CONFIG_NUMA */
7345 * Initialize sched groups cpu_power.
7347 * cpu_power indicates the capacity of sched group, which is used while
7348 * distributing the load between different sched groups in a sched domain.
7349 * Typically cpu_power for all the groups in a sched domain will be same unless
7350 * there are asymmetries in the topology. If there are asymmetries, group
7351 * having more cpu_power will pickup more load compared to the group having
7354 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7355 * the maximum number of tasks a group can handle in the presence of other idle
7356 * or lightly loaded groups in the same sched domain.
7358 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7360 struct sched_domain
*child
;
7361 struct sched_group
*group
;
7363 WARN_ON(!sd
|| !sd
->groups
);
7365 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7370 sd
->groups
->__cpu_power
= 0;
7373 * For perf policy, if the groups in child domain share resources
7374 * (for example cores sharing some portions of the cache hierarchy
7375 * or SMT), then set this domain groups cpu_power such that each group
7376 * can handle only one task, when there are other idle groups in the
7377 * same sched domain.
7379 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7381 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7382 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7387 * add cpu_power of each child group to this groups cpu_power
7389 group
= child
->groups
;
7391 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7392 group
= group
->next
;
7393 } while (group
!= child
->groups
);
7397 * Initializers for schedule domains
7398 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7401 #ifdef CONFIG_SCHED_DEBUG
7402 # define SD_INIT_NAME(sd, type) sd->name = #type
7404 # define SD_INIT_NAME(sd, type) do { } while (0)
7407 #define SD_INIT(sd, type) sd_init_##type(sd)
7409 #define SD_INIT_FUNC(type) \
7410 static noinline void sd_init_##type(struct sched_domain *sd) \
7412 memset(sd, 0, sizeof(*sd)); \
7413 *sd = SD_##type##_INIT; \
7414 sd->level = SD_LV_##type; \
7415 SD_INIT_NAME(sd, type); \
7420 SD_INIT_FUNC(ALLNODES
)
7423 #ifdef CONFIG_SCHED_SMT
7424 SD_INIT_FUNC(SIBLING
)
7426 #ifdef CONFIG_SCHED_MC
7430 static int default_relax_domain_level
= -1;
7432 static int __init
setup_relax_domain_level(char *str
)
7436 val
= simple_strtoul(str
, NULL
, 0);
7437 if (val
< SD_LV_MAX
)
7438 default_relax_domain_level
= val
;
7442 __setup("relax_domain_level=", setup_relax_domain_level
);
7444 static void set_domain_attribute(struct sched_domain
*sd
,
7445 struct sched_domain_attr
*attr
)
7449 if (!attr
|| attr
->relax_domain_level
< 0) {
7450 if (default_relax_domain_level
< 0)
7453 request
= default_relax_domain_level
;
7455 request
= attr
->relax_domain_level
;
7456 if (request
< sd
->level
) {
7457 /* turn off idle balance on this domain */
7458 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7460 /* turn on idle balance on this domain */
7461 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7466 * Build sched domains for a given set of cpus and attach the sched domains
7467 * to the individual cpus
7469 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7470 struct sched_domain_attr
*attr
)
7472 int i
, err
= -ENOMEM
;
7473 struct root_domain
*rd
;
7474 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7477 cpumask_var_t domainspan
, covered
, notcovered
;
7478 struct sched_group
**sched_group_nodes
= NULL
;
7479 int sd_allnodes
= 0;
7481 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7483 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7484 goto free_domainspan
;
7485 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7489 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7490 goto free_notcovered
;
7491 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7493 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7494 goto free_this_sibling_map
;
7495 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7496 goto free_this_core_map
;
7497 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7498 goto free_send_covered
;
7502 * Allocate the per-node list of sched groups
7504 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7506 if (!sched_group_nodes
) {
7507 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7512 rd
= alloc_rootdomain();
7514 printk(KERN_WARNING
"Cannot alloc root domain\n");
7515 goto free_sched_groups
;
7519 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7523 * Set up domains for cpus specified by the cpu_map.
7525 for_each_cpu(i
, cpu_map
) {
7526 struct sched_domain
*sd
= NULL
, *p
;
7528 /* FIXME: use cpumask_of_node */
7529 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7530 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7533 if (cpumask_weight(cpu_map
) >
7534 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7535 sd
= &per_cpu(allnodes_domains
, i
);
7536 SD_INIT(sd
, ALLNODES
);
7537 set_domain_attribute(sd
, attr
);
7538 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7539 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7545 sd
= &per_cpu(node_domains
, i
);
7547 set_domain_attribute(sd
, attr
);
7548 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7552 cpumask_and(sched_domain_span(sd
),
7553 sched_domain_span(sd
), cpu_map
);
7557 sd
= &per_cpu(phys_domains
, i
).sd
;
7559 set_domain_attribute(sd
, attr
);
7560 cpumask_copy(sched_domain_span(sd
), nodemask
);
7564 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7566 #ifdef CONFIG_SCHED_MC
7568 sd
= &per_cpu(core_domains
, i
).sd
;
7570 set_domain_attribute(sd
, attr
);
7571 *sched_domain_span(sd
) = cpu_coregroup_map(i
);
7572 cpumask_and(sched_domain_span(sd
),
7573 sched_domain_span(sd
), cpu_map
);
7576 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7579 #ifdef CONFIG_SCHED_SMT
7581 sd
= &per_cpu(cpu_domains
, i
).sd
;
7582 SD_INIT(sd
, SIBLING
);
7583 set_domain_attribute(sd
, attr
);
7584 cpumask_and(sched_domain_span(sd
),
7585 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7588 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7592 #ifdef CONFIG_SCHED_SMT
7593 /* Set up CPU (sibling) groups */
7594 for_each_cpu(i
, cpu_map
) {
7595 cpumask_and(this_sibling_map
,
7596 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7597 if (i
!= cpumask_first(this_sibling_map
))
7600 init_sched_build_groups(this_sibling_map
, cpu_map
,
7602 send_covered
, tmpmask
);
7606 #ifdef CONFIG_SCHED_MC
7607 /* Set up multi-core groups */
7608 for_each_cpu(i
, cpu_map
) {
7609 /* FIXME: Use cpu_coregroup_mask */
7610 *this_core_map
= cpu_coregroup_map(i
);
7611 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7612 if (i
!= cpumask_first(this_core_map
))
7615 init_sched_build_groups(this_core_map
, cpu_map
,
7617 send_covered
, tmpmask
);
7621 /* Set up physical groups */
7622 for (i
= 0; i
< nr_node_ids
; i
++) {
7623 /* FIXME: Use cpumask_of_node */
7624 *nodemask
= node_to_cpumask(i
);
7625 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7626 if (cpumask_empty(nodemask
))
7629 init_sched_build_groups(nodemask
, cpu_map
,
7631 send_covered
, tmpmask
);
7635 /* Set up node groups */
7637 init_sched_build_groups(cpu_map
, cpu_map
,
7638 &cpu_to_allnodes_group
,
7639 send_covered
, tmpmask
);
7642 for (i
= 0; i
< nr_node_ids
; i
++) {
7643 /* Set up node groups */
7644 struct sched_group
*sg
, *prev
;
7647 /* FIXME: Use cpumask_of_node */
7648 *nodemask
= node_to_cpumask(i
);
7649 cpumask_clear(covered
);
7651 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7652 if (cpumask_empty(nodemask
)) {
7653 sched_group_nodes
[i
] = NULL
;
7657 sched_domain_node_span(i
, domainspan
);
7658 cpumask_and(domainspan
, domainspan
, cpu_map
);
7660 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7663 printk(KERN_WARNING
"Can not alloc domain group for "
7667 sched_group_nodes
[i
] = sg
;
7668 for_each_cpu(j
, nodemask
) {
7669 struct sched_domain
*sd
;
7671 sd
= &per_cpu(node_domains
, j
);
7674 sg
->__cpu_power
= 0;
7675 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7677 cpumask_or(covered
, covered
, nodemask
);
7680 for (j
= 0; j
< nr_node_ids
; j
++) {
7681 int n
= (i
+ j
) % nr_node_ids
;
7682 /* FIXME: Use cpumask_of_node */
7683 node_to_cpumask_ptr(pnodemask
, n
);
7685 cpumask_complement(notcovered
, covered
);
7686 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7687 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7688 if (cpumask_empty(tmpmask
))
7691 cpumask_and(tmpmask
, tmpmask
, pnodemask
);
7692 if (cpumask_empty(tmpmask
))
7695 sg
= kmalloc_node(sizeof(struct sched_group
) +
7700 "Can not alloc domain group for node %d\n", j
);
7703 sg
->__cpu_power
= 0;
7704 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7705 sg
->next
= prev
->next
;
7706 cpumask_or(covered
, covered
, tmpmask
);
7713 /* Calculate CPU power for physical packages and nodes */
7714 #ifdef CONFIG_SCHED_SMT
7715 for_each_cpu(i
, cpu_map
) {
7716 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7718 init_sched_groups_power(i
, sd
);
7721 #ifdef CONFIG_SCHED_MC
7722 for_each_cpu(i
, cpu_map
) {
7723 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7725 init_sched_groups_power(i
, sd
);
7729 for_each_cpu(i
, cpu_map
) {
7730 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7732 init_sched_groups_power(i
, sd
);
7736 for (i
= 0; i
< nr_node_ids
; i
++)
7737 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7740 struct sched_group
*sg
;
7742 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7744 init_numa_sched_groups_power(sg
);
7748 /* Attach the domains */
7749 for_each_cpu(i
, cpu_map
) {
7750 struct sched_domain
*sd
;
7751 #ifdef CONFIG_SCHED_SMT
7752 sd
= &per_cpu(cpu_domains
, i
).sd
;
7753 #elif defined(CONFIG_SCHED_MC)
7754 sd
= &per_cpu(core_domains
, i
).sd
;
7756 sd
= &per_cpu(phys_domains
, i
).sd
;
7758 cpu_attach_domain(sd
, rd
, i
);
7764 free_cpumask_var(tmpmask
);
7766 free_cpumask_var(send_covered
);
7768 free_cpumask_var(this_core_map
);
7769 free_this_sibling_map
:
7770 free_cpumask_var(this_sibling_map
);
7772 free_cpumask_var(nodemask
);
7775 free_cpumask_var(notcovered
);
7777 free_cpumask_var(covered
);
7779 free_cpumask_var(domainspan
);
7786 kfree(sched_group_nodes
);
7792 free_sched_groups(cpu_map
, tmpmask
);
7793 free_rootdomain(rd
);
7798 static int build_sched_domains(const struct cpumask
*cpu_map
)
7800 return __build_sched_domains(cpu_map
, NULL
);
7803 static struct cpumask
*doms_cur
; /* current sched domains */
7804 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7805 static struct sched_domain_attr
*dattr_cur
;
7806 /* attribues of custom domains in 'doms_cur' */
7809 * Special case: If a kmalloc of a doms_cur partition (array of
7810 * cpumask) fails, then fallback to a single sched domain,
7811 * as determined by the single cpumask fallback_doms.
7813 static cpumask_var_t fallback_doms
;
7816 * arch_update_cpu_topology lets virtualized architectures update the
7817 * cpu core maps. It is supposed to return 1 if the topology changed
7818 * or 0 if it stayed the same.
7820 int __attribute__((weak
)) arch_update_cpu_topology(void)
7826 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7827 * For now this just excludes isolated cpus, but could be used to
7828 * exclude other special cases in the future.
7830 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7834 arch_update_cpu_topology();
7836 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
7838 doms_cur
= fallback_doms
;
7839 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
7841 err
= build_sched_domains(doms_cur
);
7842 register_sched_domain_sysctl();
7847 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7848 struct cpumask
*tmpmask
)
7850 free_sched_groups(cpu_map
, tmpmask
);
7854 * Detach sched domains from a group of cpus specified in cpu_map
7855 * These cpus will now be attached to the NULL domain
7857 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7859 /* Save because hotplug lock held. */
7860 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7863 for_each_cpu(i
, cpu_map
)
7864 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7865 synchronize_sched();
7866 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7869 /* handle null as "default" */
7870 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7871 struct sched_domain_attr
*new, int idx_new
)
7873 struct sched_domain_attr tmp
;
7880 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7881 new ? (new + idx_new
) : &tmp
,
7882 sizeof(struct sched_domain_attr
));
7886 * Partition sched domains as specified by the 'ndoms_new'
7887 * cpumasks in the array doms_new[] of cpumasks. This compares
7888 * doms_new[] to the current sched domain partitioning, doms_cur[].
7889 * It destroys each deleted domain and builds each new domain.
7891 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7892 * The masks don't intersect (don't overlap.) We should setup one
7893 * sched domain for each mask. CPUs not in any of the cpumasks will
7894 * not be load balanced. If the same cpumask appears both in the
7895 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7898 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7899 * ownership of it and will kfree it when done with it. If the caller
7900 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7901 * ndoms_new == 1, and partition_sched_domains() will fallback to
7902 * the single partition 'fallback_doms', it also forces the domains
7905 * If doms_new == NULL it will be replaced with cpu_online_mask.
7906 * ndoms_new == 0 is a special case for destroying existing domains,
7907 * and it will not create the default domain.
7909 * Call with hotplug lock held
7911 /* FIXME: Change to struct cpumask *doms_new[] */
7912 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
7913 struct sched_domain_attr
*dattr_new
)
7918 mutex_lock(&sched_domains_mutex
);
7920 /* always unregister in case we don't destroy any domains */
7921 unregister_sched_domain_sysctl();
7923 /* Let architecture update cpu core mappings. */
7924 new_topology
= arch_update_cpu_topology();
7926 n
= doms_new
? ndoms_new
: 0;
7928 /* Destroy deleted domains */
7929 for (i
= 0; i
< ndoms_cur
; i
++) {
7930 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7931 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
7932 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7935 /* no match - a current sched domain not in new doms_new[] */
7936 detach_destroy_domains(doms_cur
+ i
);
7941 if (doms_new
== NULL
) {
7943 doms_new
= fallback_doms
;
7944 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
7945 WARN_ON_ONCE(dattr_new
);
7948 /* Build new domains */
7949 for (i
= 0; i
< ndoms_new
; i
++) {
7950 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7951 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
7952 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7955 /* no match - add a new doms_new */
7956 __build_sched_domains(doms_new
+ i
,
7957 dattr_new
? dattr_new
+ i
: NULL
);
7962 /* Remember the new sched domains */
7963 if (doms_cur
!= fallback_doms
)
7965 kfree(dattr_cur
); /* kfree(NULL) is safe */
7966 doms_cur
= doms_new
;
7967 dattr_cur
= dattr_new
;
7968 ndoms_cur
= ndoms_new
;
7970 register_sched_domain_sysctl();
7972 mutex_unlock(&sched_domains_mutex
);
7975 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7976 int arch_reinit_sched_domains(void)
7980 /* Destroy domains first to force the rebuild */
7981 partition_sched_domains(0, NULL
, NULL
);
7983 rebuild_sched_domains();
7989 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7992 unsigned int level
= 0;
7994 if (sscanf(buf
, "%u", &level
) != 1)
7998 * level is always be positive so don't check for
7999 * level < POWERSAVINGS_BALANCE_NONE which is 0
8000 * What happens on 0 or 1 byte write,
8001 * need to check for count as well?
8004 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8008 sched_smt_power_savings
= level
;
8010 sched_mc_power_savings
= level
;
8012 ret
= arch_reinit_sched_domains();
8014 return ret
? ret
: count
;
8017 #ifdef CONFIG_SCHED_MC
8018 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8021 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8023 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8024 const char *buf
, size_t count
)
8026 return sched_power_savings_store(buf
, count
, 0);
8028 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8029 sched_mc_power_savings_show
,
8030 sched_mc_power_savings_store
);
8033 #ifdef CONFIG_SCHED_SMT
8034 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8037 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8039 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8040 const char *buf
, size_t count
)
8042 return sched_power_savings_store(buf
, count
, 1);
8044 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8045 sched_smt_power_savings_show
,
8046 sched_smt_power_savings_store
);
8049 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8053 #ifdef CONFIG_SCHED_SMT
8055 err
= sysfs_create_file(&cls
->kset
.kobj
,
8056 &attr_sched_smt_power_savings
.attr
);
8058 #ifdef CONFIG_SCHED_MC
8059 if (!err
&& mc_capable())
8060 err
= sysfs_create_file(&cls
->kset
.kobj
,
8061 &attr_sched_mc_power_savings
.attr
);
8065 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8067 #ifndef CONFIG_CPUSETS
8069 * Add online and remove offline CPUs from the scheduler domains.
8070 * When cpusets are enabled they take over this function.
8072 static int update_sched_domains(struct notifier_block
*nfb
,
8073 unsigned long action
, void *hcpu
)
8077 case CPU_ONLINE_FROZEN
:
8079 case CPU_DEAD_FROZEN
:
8080 partition_sched_domains(1, NULL
, NULL
);
8089 static int update_runtime(struct notifier_block
*nfb
,
8090 unsigned long action
, void *hcpu
)
8092 int cpu
= (int)(long)hcpu
;
8095 case CPU_DOWN_PREPARE
:
8096 case CPU_DOWN_PREPARE_FROZEN
:
8097 disable_runtime(cpu_rq(cpu
));
8100 case CPU_DOWN_FAILED
:
8101 case CPU_DOWN_FAILED_FROZEN
:
8103 case CPU_ONLINE_FROZEN
:
8104 enable_runtime(cpu_rq(cpu
));
8112 void __init
sched_init_smp(void)
8114 cpumask_var_t non_isolated_cpus
;
8116 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8118 #if defined(CONFIG_NUMA)
8119 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8121 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8124 mutex_lock(&sched_domains_mutex
);
8125 arch_init_sched_domains(cpu_online_mask
);
8126 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8127 if (cpumask_empty(non_isolated_cpus
))
8128 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8129 mutex_unlock(&sched_domains_mutex
);
8132 #ifndef CONFIG_CPUSETS
8133 /* XXX: Theoretical race here - CPU may be hotplugged now */
8134 hotcpu_notifier(update_sched_domains
, 0);
8137 /* RT runtime code needs to handle some hotplug events */
8138 hotcpu_notifier(update_runtime
, 0);
8142 /* Move init over to a non-isolated CPU */
8143 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8145 sched_init_granularity();
8146 free_cpumask_var(non_isolated_cpus
);
8148 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8149 init_sched_rt_class();
8152 void __init
sched_init_smp(void)
8154 sched_init_granularity();
8156 #endif /* CONFIG_SMP */
8158 int in_sched_functions(unsigned long addr
)
8160 return in_lock_functions(addr
) ||
8161 (addr
>= (unsigned long)__sched_text_start
8162 && addr
< (unsigned long)__sched_text_end
);
8165 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8167 cfs_rq
->tasks_timeline
= RB_ROOT
;
8168 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8169 #ifdef CONFIG_FAIR_GROUP_SCHED
8172 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8175 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8177 struct rt_prio_array
*array
;
8180 array
= &rt_rq
->active
;
8181 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8182 INIT_LIST_HEAD(array
->queue
+ i
);
8183 __clear_bit(i
, array
->bitmap
);
8185 /* delimiter for bitsearch: */
8186 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8188 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8189 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8192 rt_rq
->rt_nr_migratory
= 0;
8193 rt_rq
->overloaded
= 0;
8197 rt_rq
->rt_throttled
= 0;
8198 rt_rq
->rt_runtime
= 0;
8199 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8201 #ifdef CONFIG_RT_GROUP_SCHED
8202 rt_rq
->rt_nr_boosted
= 0;
8207 #ifdef CONFIG_FAIR_GROUP_SCHED
8208 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8209 struct sched_entity
*se
, int cpu
, int add
,
8210 struct sched_entity
*parent
)
8212 struct rq
*rq
= cpu_rq(cpu
);
8213 tg
->cfs_rq
[cpu
] = cfs_rq
;
8214 init_cfs_rq(cfs_rq
, rq
);
8217 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8220 /* se could be NULL for init_task_group */
8225 se
->cfs_rq
= &rq
->cfs
;
8227 se
->cfs_rq
= parent
->my_q
;
8230 se
->load
.weight
= tg
->shares
;
8231 se
->load
.inv_weight
= 0;
8232 se
->parent
= parent
;
8236 #ifdef CONFIG_RT_GROUP_SCHED
8237 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8238 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8239 struct sched_rt_entity
*parent
)
8241 struct rq
*rq
= cpu_rq(cpu
);
8243 tg
->rt_rq
[cpu
] = rt_rq
;
8244 init_rt_rq(rt_rq
, rq
);
8246 rt_rq
->rt_se
= rt_se
;
8247 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8249 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8251 tg
->rt_se
[cpu
] = rt_se
;
8256 rt_se
->rt_rq
= &rq
->rt
;
8258 rt_se
->rt_rq
= parent
->my_q
;
8260 rt_se
->my_q
= rt_rq
;
8261 rt_se
->parent
= parent
;
8262 INIT_LIST_HEAD(&rt_se
->run_list
);
8266 void __init
sched_init(void)
8269 unsigned long alloc_size
= 0, ptr
;
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8274 #ifdef CONFIG_RT_GROUP_SCHED
8275 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8277 #ifdef CONFIG_USER_SCHED
8281 * As sched_init() is called before page_alloc is setup,
8282 * we use alloc_bootmem().
8285 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8287 #ifdef CONFIG_FAIR_GROUP_SCHED
8288 init_task_group
.se
= (struct sched_entity
**)ptr
;
8289 ptr
+= nr_cpu_ids
* sizeof(void **);
8291 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8292 ptr
+= nr_cpu_ids
* sizeof(void **);
8294 #ifdef CONFIG_USER_SCHED
8295 root_task_group
.se
= (struct sched_entity
**)ptr
;
8296 ptr
+= nr_cpu_ids
* sizeof(void **);
8298 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8299 ptr
+= nr_cpu_ids
* sizeof(void **);
8300 #endif /* CONFIG_USER_SCHED */
8301 #endif /* CONFIG_FAIR_GROUP_SCHED */
8302 #ifdef CONFIG_RT_GROUP_SCHED
8303 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8304 ptr
+= nr_cpu_ids
* sizeof(void **);
8306 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8307 ptr
+= nr_cpu_ids
* sizeof(void **);
8309 #ifdef CONFIG_USER_SCHED
8310 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8311 ptr
+= nr_cpu_ids
* sizeof(void **);
8313 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8314 ptr
+= nr_cpu_ids
* sizeof(void **);
8315 #endif /* CONFIG_USER_SCHED */
8316 #endif /* CONFIG_RT_GROUP_SCHED */
8320 init_defrootdomain();
8323 init_rt_bandwidth(&def_rt_bandwidth
,
8324 global_rt_period(), global_rt_runtime());
8326 #ifdef CONFIG_RT_GROUP_SCHED
8327 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8328 global_rt_period(), global_rt_runtime());
8329 #ifdef CONFIG_USER_SCHED
8330 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8331 global_rt_period(), RUNTIME_INF
);
8332 #endif /* CONFIG_USER_SCHED */
8333 #endif /* CONFIG_RT_GROUP_SCHED */
8335 #ifdef CONFIG_GROUP_SCHED
8336 list_add(&init_task_group
.list
, &task_groups
);
8337 INIT_LIST_HEAD(&init_task_group
.children
);
8339 #ifdef CONFIG_USER_SCHED
8340 INIT_LIST_HEAD(&root_task_group
.children
);
8341 init_task_group
.parent
= &root_task_group
;
8342 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8343 #endif /* CONFIG_USER_SCHED */
8344 #endif /* CONFIG_GROUP_SCHED */
8346 for_each_possible_cpu(i
) {
8350 spin_lock_init(&rq
->lock
);
8352 init_cfs_rq(&rq
->cfs
, rq
);
8353 init_rt_rq(&rq
->rt
, rq
);
8354 #ifdef CONFIG_FAIR_GROUP_SCHED
8355 init_task_group
.shares
= init_task_group_load
;
8356 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8357 #ifdef CONFIG_CGROUP_SCHED
8359 * How much cpu bandwidth does init_task_group get?
8361 * In case of task-groups formed thr' the cgroup filesystem, it
8362 * gets 100% of the cpu resources in the system. This overall
8363 * system cpu resource is divided among the tasks of
8364 * init_task_group and its child task-groups in a fair manner,
8365 * based on each entity's (task or task-group's) weight
8366 * (se->load.weight).
8368 * In other words, if init_task_group has 10 tasks of weight
8369 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8370 * then A0's share of the cpu resource is:
8372 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8374 * We achieve this by letting init_task_group's tasks sit
8375 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8377 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8378 #elif defined CONFIG_USER_SCHED
8379 root_task_group
.shares
= NICE_0_LOAD
;
8380 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8382 * In case of task-groups formed thr' the user id of tasks,
8383 * init_task_group represents tasks belonging to root user.
8384 * Hence it forms a sibling of all subsequent groups formed.
8385 * In this case, init_task_group gets only a fraction of overall
8386 * system cpu resource, based on the weight assigned to root
8387 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8388 * by letting tasks of init_task_group sit in a separate cfs_rq
8389 * (init_cfs_rq) and having one entity represent this group of
8390 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8392 init_tg_cfs_entry(&init_task_group
,
8393 &per_cpu(init_cfs_rq
, i
),
8394 &per_cpu(init_sched_entity
, i
), i
, 1,
8395 root_task_group
.se
[i
]);
8398 #endif /* CONFIG_FAIR_GROUP_SCHED */
8400 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8401 #ifdef CONFIG_RT_GROUP_SCHED
8402 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8403 #ifdef CONFIG_CGROUP_SCHED
8404 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8405 #elif defined CONFIG_USER_SCHED
8406 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8407 init_tg_rt_entry(&init_task_group
,
8408 &per_cpu(init_rt_rq
, i
),
8409 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8410 root_task_group
.rt_se
[i
]);
8414 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8415 rq
->cpu_load
[j
] = 0;
8419 rq
->active_balance
= 0;
8420 rq
->next_balance
= jiffies
;
8424 rq
->migration_thread
= NULL
;
8425 INIT_LIST_HEAD(&rq
->migration_queue
);
8426 rq_attach_root(rq
, &def_root_domain
);
8429 atomic_set(&rq
->nr_iowait
, 0);
8432 set_load_weight(&init_task
);
8434 #ifdef CONFIG_PREEMPT_NOTIFIERS
8435 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8439 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8442 #ifdef CONFIG_RT_MUTEXES
8443 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8447 * The boot idle thread does lazy MMU switching as well:
8449 atomic_inc(&init_mm
.mm_count
);
8450 enter_lazy_tlb(&init_mm
, current
);
8453 * Make us the idle thread. Technically, schedule() should not be
8454 * called from this thread, however somewhere below it might be,
8455 * but because we are the idle thread, we just pick up running again
8456 * when this runqueue becomes "idle".
8458 init_idle(current
, smp_processor_id());
8460 * During early bootup we pretend to be a normal task:
8462 current
->sched_class
= &fair_sched_class
;
8464 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8465 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8468 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8470 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8473 scheduler_running
= 1;
8476 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8477 void __might_sleep(char *file
, int line
)
8480 static unsigned long prev_jiffy
; /* ratelimiting */
8482 if ((!in_atomic() && !irqs_disabled()) ||
8483 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8485 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8487 prev_jiffy
= jiffies
;
8490 "BUG: sleeping function called from invalid context at %s:%d\n",
8493 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8494 in_atomic(), irqs_disabled(),
8495 current
->pid
, current
->comm
);
8497 debug_show_held_locks(current
);
8498 if (irqs_disabled())
8499 print_irqtrace_events(current
);
8503 EXPORT_SYMBOL(__might_sleep
);
8506 #ifdef CONFIG_MAGIC_SYSRQ
8507 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8511 update_rq_clock(rq
);
8512 on_rq
= p
->se
.on_rq
;
8514 deactivate_task(rq
, p
, 0);
8515 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8517 activate_task(rq
, p
, 0);
8518 resched_task(rq
->curr
);
8522 void normalize_rt_tasks(void)
8524 struct task_struct
*g
, *p
;
8525 unsigned long flags
;
8528 read_lock_irqsave(&tasklist_lock
, flags
);
8529 do_each_thread(g
, p
) {
8531 * Only normalize user tasks:
8536 p
->se
.exec_start
= 0;
8537 #ifdef CONFIG_SCHEDSTATS
8538 p
->se
.wait_start
= 0;
8539 p
->se
.sleep_start
= 0;
8540 p
->se
.block_start
= 0;
8545 * Renice negative nice level userspace
8548 if (TASK_NICE(p
) < 0 && p
->mm
)
8549 set_user_nice(p
, 0);
8553 spin_lock(&p
->pi_lock
);
8554 rq
= __task_rq_lock(p
);
8556 normalize_task(rq
, p
);
8558 __task_rq_unlock(rq
);
8559 spin_unlock(&p
->pi_lock
);
8560 } while_each_thread(g
, p
);
8562 read_unlock_irqrestore(&tasklist_lock
, flags
);
8565 #endif /* CONFIG_MAGIC_SYSRQ */
8569 * These functions are only useful for the IA64 MCA handling.
8571 * They can only be called when the whole system has been
8572 * stopped - every CPU needs to be quiescent, and no scheduling
8573 * activity can take place. Using them for anything else would
8574 * be a serious bug, and as a result, they aren't even visible
8575 * under any other configuration.
8579 * curr_task - return the current task for a given cpu.
8580 * @cpu: the processor in question.
8582 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8584 struct task_struct
*curr_task(int cpu
)
8586 return cpu_curr(cpu
);
8590 * set_curr_task - set the current task for a given cpu.
8591 * @cpu: the processor in question.
8592 * @p: the task pointer to set.
8594 * Description: This function must only be used when non-maskable interrupts
8595 * are serviced on a separate stack. It allows the architecture to switch the
8596 * notion of the current task on a cpu in a non-blocking manner. This function
8597 * must be called with all CPU's synchronized, and interrupts disabled, the
8598 * and caller must save the original value of the current task (see
8599 * curr_task() above) and restore that value before reenabling interrupts and
8600 * re-starting the system.
8602 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8604 void set_curr_task(int cpu
, struct task_struct
*p
)
8611 #ifdef CONFIG_FAIR_GROUP_SCHED
8612 static void free_fair_sched_group(struct task_group
*tg
)
8616 for_each_possible_cpu(i
) {
8618 kfree(tg
->cfs_rq
[i
]);
8628 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8630 struct cfs_rq
*cfs_rq
;
8631 struct sched_entity
*se
;
8635 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8638 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8642 tg
->shares
= NICE_0_LOAD
;
8644 for_each_possible_cpu(i
) {
8647 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8648 GFP_KERNEL
, cpu_to_node(i
));
8652 se
= kzalloc_node(sizeof(struct sched_entity
),
8653 GFP_KERNEL
, cpu_to_node(i
));
8657 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8666 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8668 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8669 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8672 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8674 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8676 #else /* !CONFG_FAIR_GROUP_SCHED */
8677 static inline void free_fair_sched_group(struct task_group
*tg
)
8682 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8687 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8691 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8694 #endif /* CONFIG_FAIR_GROUP_SCHED */
8696 #ifdef CONFIG_RT_GROUP_SCHED
8697 static void free_rt_sched_group(struct task_group
*tg
)
8701 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8703 for_each_possible_cpu(i
) {
8705 kfree(tg
->rt_rq
[i
]);
8707 kfree(tg
->rt_se
[i
]);
8715 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8717 struct rt_rq
*rt_rq
;
8718 struct sched_rt_entity
*rt_se
;
8722 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8725 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8729 init_rt_bandwidth(&tg
->rt_bandwidth
,
8730 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8732 for_each_possible_cpu(i
) {
8735 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8736 GFP_KERNEL
, cpu_to_node(i
));
8740 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8741 GFP_KERNEL
, cpu_to_node(i
));
8745 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8754 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8756 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8757 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8760 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8762 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8764 #else /* !CONFIG_RT_GROUP_SCHED */
8765 static inline void free_rt_sched_group(struct task_group
*tg
)
8770 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8775 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8779 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8782 #endif /* CONFIG_RT_GROUP_SCHED */
8784 #ifdef CONFIG_GROUP_SCHED
8785 static void free_sched_group(struct task_group
*tg
)
8787 free_fair_sched_group(tg
);
8788 free_rt_sched_group(tg
);
8792 /* allocate runqueue etc for a new task group */
8793 struct task_group
*sched_create_group(struct task_group
*parent
)
8795 struct task_group
*tg
;
8796 unsigned long flags
;
8799 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8801 return ERR_PTR(-ENOMEM
);
8803 if (!alloc_fair_sched_group(tg
, parent
))
8806 if (!alloc_rt_sched_group(tg
, parent
))
8809 spin_lock_irqsave(&task_group_lock
, flags
);
8810 for_each_possible_cpu(i
) {
8811 register_fair_sched_group(tg
, i
);
8812 register_rt_sched_group(tg
, i
);
8814 list_add_rcu(&tg
->list
, &task_groups
);
8816 WARN_ON(!parent
); /* root should already exist */
8818 tg
->parent
= parent
;
8819 INIT_LIST_HEAD(&tg
->children
);
8820 list_add_rcu(&tg
->siblings
, &parent
->children
);
8821 spin_unlock_irqrestore(&task_group_lock
, flags
);
8826 free_sched_group(tg
);
8827 return ERR_PTR(-ENOMEM
);
8830 /* rcu callback to free various structures associated with a task group */
8831 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8833 /* now it should be safe to free those cfs_rqs */
8834 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8837 /* Destroy runqueue etc associated with a task group */
8838 void sched_destroy_group(struct task_group
*tg
)
8840 unsigned long flags
;
8843 spin_lock_irqsave(&task_group_lock
, flags
);
8844 for_each_possible_cpu(i
) {
8845 unregister_fair_sched_group(tg
, i
);
8846 unregister_rt_sched_group(tg
, i
);
8848 list_del_rcu(&tg
->list
);
8849 list_del_rcu(&tg
->siblings
);
8850 spin_unlock_irqrestore(&task_group_lock
, flags
);
8852 /* wait for possible concurrent references to cfs_rqs complete */
8853 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8856 /* change task's runqueue when it moves between groups.
8857 * The caller of this function should have put the task in its new group
8858 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8859 * reflect its new group.
8861 void sched_move_task(struct task_struct
*tsk
)
8864 unsigned long flags
;
8867 rq
= task_rq_lock(tsk
, &flags
);
8869 update_rq_clock(rq
);
8871 running
= task_current(rq
, tsk
);
8872 on_rq
= tsk
->se
.on_rq
;
8875 dequeue_task(rq
, tsk
, 0);
8876 if (unlikely(running
))
8877 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8879 set_task_rq(tsk
, task_cpu(tsk
));
8881 #ifdef CONFIG_FAIR_GROUP_SCHED
8882 if (tsk
->sched_class
->moved_group
)
8883 tsk
->sched_class
->moved_group(tsk
);
8886 if (unlikely(running
))
8887 tsk
->sched_class
->set_curr_task(rq
);
8889 enqueue_task(rq
, tsk
, 0);
8891 task_rq_unlock(rq
, &flags
);
8893 #endif /* CONFIG_GROUP_SCHED */
8895 #ifdef CONFIG_FAIR_GROUP_SCHED
8896 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8898 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8903 dequeue_entity(cfs_rq
, se
, 0);
8905 se
->load
.weight
= shares
;
8906 se
->load
.inv_weight
= 0;
8909 enqueue_entity(cfs_rq
, se
, 0);
8912 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8914 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8915 struct rq
*rq
= cfs_rq
->rq
;
8916 unsigned long flags
;
8918 spin_lock_irqsave(&rq
->lock
, flags
);
8919 __set_se_shares(se
, shares
);
8920 spin_unlock_irqrestore(&rq
->lock
, flags
);
8923 static DEFINE_MUTEX(shares_mutex
);
8925 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8928 unsigned long flags
;
8931 * We can't change the weight of the root cgroup.
8936 if (shares
< MIN_SHARES
)
8937 shares
= MIN_SHARES
;
8938 else if (shares
> MAX_SHARES
)
8939 shares
= MAX_SHARES
;
8941 mutex_lock(&shares_mutex
);
8942 if (tg
->shares
== shares
)
8945 spin_lock_irqsave(&task_group_lock
, flags
);
8946 for_each_possible_cpu(i
)
8947 unregister_fair_sched_group(tg
, i
);
8948 list_del_rcu(&tg
->siblings
);
8949 spin_unlock_irqrestore(&task_group_lock
, flags
);
8951 /* wait for any ongoing reference to this group to finish */
8952 synchronize_sched();
8955 * Now we are free to modify the group's share on each cpu
8956 * w/o tripping rebalance_share or load_balance_fair.
8958 tg
->shares
= shares
;
8959 for_each_possible_cpu(i
) {
8963 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8964 set_se_shares(tg
->se
[i
], shares
);
8968 * Enable load balance activity on this group, by inserting it back on
8969 * each cpu's rq->leaf_cfs_rq_list.
8971 spin_lock_irqsave(&task_group_lock
, flags
);
8972 for_each_possible_cpu(i
)
8973 register_fair_sched_group(tg
, i
);
8974 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8975 spin_unlock_irqrestore(&task_group_lock
, flags
);
8977 mutex_unlock(&shares_mutex
);
8981 unsigned long sched_group_shares(struct task_group
*tg
)
8987 #ifdef CONFIG_RT_GROUP_SCHED
8989 * Ensure that the real time constraints are schedulable.
8991 static DEFINE_MUTEX(rt_constraints_mutex
);
8993 static unsigned long to_ratio(u64 period
, u64 runtime
)
8995 if (runtime
== RUNTIME_INF
)
8998 return div64_u64(runtime
<< 20, period
);
9001 /* Must be called with tasklist_lock held */
9002 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9004 struct task_struct
*g
, *p
;
9006 do_each_thread(g
, p
) {
9007 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9009 } while_each_thread(g
, p
);
9014 struct rt_schedulable_data
{
9015 struct task_group
*tg
;
9020 static int tg_schedulable(struct task_group
*tg
, void *data
)
9022 struct rt_schedulable_data
*d
= data
;
9023 struct task_group
*child
;
9024 unsigned long total
, sum
= 0;
9025 u64 period
, runtime
;
9027 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9028 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9031 period
= d
->rt_period
;
9032 runtime
= d
->rt_runtime
;
9036 * Cannot have more runtime than the period.
9038 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9042 * Ensure we don't starve existing RT tasks.
9044 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9047 total
= to_ratio(period
, runtime
);
9050 * Nobody can have more than the global setting allows.
9052 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9056 * The sum of our children's runtime should not exceed our own.
9058 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9059 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9060 runtime
= child
->rt_bandwidth
.rt_runtime
;
9062 if (child
== d
->tg
) {
9063 period
= d
->rt_period
;
9064 runtime
= d
->rt_runtime
;
9067 sum
+= to_ratio(period
, runtime
);
9076 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9078 struct rt_schedulable_data data
= {
9080 .rt_period
= period
,
9081 .rt_runtime
= runtime
,
9084 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9087 static int tg_set_bandwidth(struct task_group
*tg
,
9088 u64 rt_period
, u64 rt_runtime
)
9092 mutex_lock(&rt_constraints_mutex
);
9093 read_lock(&tasklist_lock
);
9094 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9098 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9099 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9100 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9102 for_each_possible_cpu(i
) {
9103 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9105 spin_lock(&rt_rq
->rt_runtime_lock
);
9106 rt_rq
->rt_runtime
= rt_runtime
;
9107 spin_unlock(&rt_rq
->rt_runtime_lock
);
9109 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9111 read_unlock(&tasklist_lock
);
9112 mutex_unlock(&rt_constraints_mutex
);
9117 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9119 u64 rt_runtime
, rt_period
;
9121 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9122 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9123 if (rt_runtime_us
< 0)
9124 rt_runtime
= RUNTIME_INF
;
9126 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9129 long sched_group_rt_runtime(struct task_group
*tg
)
9133 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9136 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9137 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9138 return rt_runtime_us
;
9141 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9143 u64 rt_runtime
, rt_period
;
9145 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9146 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9151 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9154 long sched_group_rt_period(struct task_group
*tg
)
9158 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9159 do_div(rt_period_us
, NSEC_PER_USEC
);
9160 return rt_period_us
;
9163 static int sched_rt_global_constraints(void)
9165 u64 runtime
, period
;
9168 if (sysctl_sched_rt_period
<= 0)
9171 runtime
= global_rt_runtime();
9172 period
= global_rt_period();
9175 * Sanity check on the sysctl variables.
9177 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9180 mutex_lock(&rt_constraints_mutex
);
9181 read_lock(&tasklist_lock
);
9182 ret
= __rt_schedulable(NULL
, 0, 0);
9183 read_unlock(&tasklist_lock
);
9184 mutex_unlock(&rt_constraints_mutex
);
9188 #else /* !CONFIG_RT_GROUP_SCHED */
9189 static int sched_rt_global_constraints(void)
9191 unsigned long flags
;
9194 if (sysctl_sched_rt_period
<= 0)
9197 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9198 for_each_possible_cpu(i
) {
9199 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9201 spin_lock(&rt_rq
->rt_runtime_lock
);
9202 rt_rq
->rt_runtime
= global_rt_runtime();
9203 spin_unlock(&rt_rq
->rt_runtime_lock
);
9205 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9209 #endif /* CONFIG_RT_GROUP_SCHED */
9211 int sched_rt_handler(struct ctl_table
*table
, int write
,
9212 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9216 int old_period
, old_runtime
;
9217 static DEFINE_MUTEX(mutex
);
9220 old_period
= sysctl_sched_rt_period
;
9221 old_runtime
= sysctl_sched_rt_runtime
;
9223 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9225 if (!ret
&& write
) {
9226 ret
= sched_rt_global_constraints();
9228 sysctl_sched_rt_period
= old_period
;
9229 sysctl_sched_rt_runtime
= old_runtime
;
9231 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9232 def_rt_bandwidth
.rt_period
=
9233 ns_to_ktime(global_rt_period());
9236 mutex_unlock(&mutex
);
9241 #ifdef CONFIG_CGROUP_SCHED
9243 /* return corresponding task_group object of a cgroup */
9244 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9246 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9247 struct task_group
, css
);
9250 static struct cgroup_subsys_state
*
9251 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9253 struct task_group
*tg
, *parent
;
9255 if (!cgrp
->parent
) {
9256 /* This is early initialization for the top cgroup */
9257 return &init_task_group
.css
;
9260 parent
= cgroup_tg(cgrp
->parent
);
9261 tg
= sched_create_group(parent
);
9263 return ERR_PTR(-ENOMEM
);
9269 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9271 struct task_group
*tg
= cgroup_tg(cgrp
);
9273 sched_destroy_group(tg
);
9277 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9278 struct task_struct
*tsk
)
9280 #ifdef CONFIG_RT_GROUP_SCHED
9281 /* Don't accept realtime tasks when there is no way for them to run */
9282 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9285 /* We don't support RT-tasks being in separate groups */
9286 if (tsk
->sched_class
!= &fair_sched_class
)
9294 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9295 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9297 sched_move_task(tsk
);
9300 #ifdef CONFIG_FAIR_GROUP_SCHED
9301 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9304 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9307 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9309 struct task_group
*tg
= cgroup_tg(cgrp
);
9311 return (u64
) tg
->shares
;
9313 #endif /* CONFIG_FAIR_GROUP_SCHED */
9315 #ifdef CONFIG_RT_GROUP_SCHED
9316 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9319 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9322 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9324 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9327 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9330 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9333 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9335 return sched_group_rt_period(cgroup_tg(cgrp
));
9337 #endif /* CONFIG_RT_GROUP_SCHED */
9339 static struct cftype cpu_files
[] = {
9340 #ifdef CONFIG_FAIR_GROUP_SCHED
9343 .read_u64
= cpu_shares_read_u64
,
9344 .write_u64
= cpu_shares_write_u64
,
9347 #ifdef CONFIG_RT_GROUP_SCHED
9349 .name
= "rt_runtime_us",
9350 .read_s64
= cpu_rt_runtime_read
,
9351 .write_s64
= cpu_rt_runtime_write
,
9354 .name
= "rt_period_us",
9355 .read_u64
= cpu_rt_period_read_uint
,
9356 .write_u64
= cpu_rt_period_write_uint
,
9361 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9363 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9366 struct cgroup_subsys cpu_cgroup_subsys
= {
9368 .create
= cpu_cgroup_create
,
9369 .destroy
= cpu_cgroup_destroy
,
9370 .can_attach
= cpu_cgroup_can_attach
,
9371 .attach
= cpu_cgroup_attach
,
9372 .populate
= cpu_cgroup_populate
,
9373 .subsys_id
= cpu_cgroup_subsys_id
,
9377 #endif /* CONFIG_CGROUP_SCHED */
9379 #ifdef CONFIG_CGROUP_CPUACCT
9382 * CPU accounting code for task groups.
9384 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9385 * (balbir@in.ibm.com).
9388 /* track cpu usage of a group of tasks and its child groups */
9390 struct cgroup_subsys_state css
;
9391 /* cpuusage holds pointer to a u64-type object on every cpu */
9393 struct cpuacct
*parent
;
9396 struct cgroup_subsys cpuacct_subsys
;
9398 /* return cpu accounting group corresponding to this container */
9399 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9401 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9402 struct cpuacct
, css
);
9405 /* return cpu accounting group to which this task belongs */
9406 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9408 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9409 struct cpuacct
, css
);
9412 /* create a new cpu accounting group */
9413 static struct cgroup_subsys_state
*cpuacct_create(
9414 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9416 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9419 return ERR_PTR(-ENOMEM
);
9421 ca
->cpuusage
= alloc_percpu(u64
);
9422 if (!ca
->cpuusage
) {
9424 return ERR_PTR(-ENOMEM
);
9428 ca
->parent
= cgroup_ca(cgrp
->parent
);
9433 /* destroy an existing cpu accounting group */
9435 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9437 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9439 free_percpu(ca
->cpuusage
);
9443 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9445 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9448 #ifndef CONFIG_64BIT
9450 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9452 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9454 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9462 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9464 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9466 #ifndef CONFIG_64BIT
9468 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9470 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9472 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9478 /* return total cpu usage (in nanoseconds) of a group */
9479 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9481 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9482 u64 totalcpuusage
= 0;
9485 for_each_present_cpu(i
)
9486 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9488 return totalcpuusage
;
9491 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9494 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9503 for_each_present_cpu(i
)
9504 cpuacct_cpuusage_write(ca
, i
, 0);
9510 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9513 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9517 for_each_present_cpu(i
) {
9518 percpu
= cpuacct_cpuusage_read(ca
, i
);
9519 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9521 seq_printf(m
, "\n");
9525 static struct cftype files
[] = {
9528 .read_u64
= cpuusage_read
,
9529 .write_u64
= cpuusage_write
,
9532 .name
= "usage_percpu",
9533 .read_seq_string
= cpuacct_percpu_seq_read
,
9538 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9540 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9544 * charge this task's execution time to its accounting group.
9546 * called with rq->lock held.
9548 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9553 if (!cpuacct_subsys
.active
)
9556 cpu
= task_cpu(tsk
);
9559 for (; ca
; ca
= ca
->parent
) {
9560 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9561 *cpuusage
+= cputime
;
9565 struct cgroup_subsys cpuacct_subsys
= {
9567 .create
= cpuacct_create
,
9568 .destroy
= cpuacct_destroy
,
9569 .populate
= cpuacct_populate
,
9570 .subsys_id
= cpuacct_subsys_id
,
9572 #endif /* CONFIG_CGROUP_CPUACCT */