4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
61 * dentry->d_inode->i_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
78 int sysctl_vfs_cache_pressure __read_mostly
= 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
81 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
84 EXPORT_SYMBOL(rename_lock
);
86 static struct kmem_cache
*dentry_cache __read_mostly
;
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
99 static unsigned int d_hash_mask __read_mostly
;
100 static unsigned int d_hash_shift __read_mostly
;
102 struct dcache_hash_bucket
{
103 struct hlist_bl_head head
;
105 static struct dcache_hash_bucket
*dentry_hashtable __read_mostly
;
107 static inline struct dcache_hash_bucket
*d_hash(struct dentry
*parent
,
110 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
111 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 static inline void spin_lock_bucket(struct dcache_hash_bucket
*b
)
117 bit_spin_lock(0, (unsigned long *)&b
->head
.first
);
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket
*b
)
122 __bit_spin_unlock(0, (unsigned long *)&b
->head
.first
);
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat
= {
130 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
137 for_each_possible_cpu(i
)
138 sum
+= per_cpu(nr_dentry
, i
);
139 return sum
< 0 ? 0 : sum
;
142 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
143 size_t *lenp
, loff_t
*ppos
)
145 dentry_stat
.nr_dentry
= get_nr_dentry();
146 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
150 static void __d_free(struct rcu_head
*head
)
152 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
154 WARN_ON(!list_empty(&dentry
->d_alias
));
155 if (dname_external(dentry
))
156 kfree(dentry
->d_name
.name
);
157 kmem_cache_free(dentry_cache
, dentry
);
163 static void d_free(struct dentry
*dentry
)
165 BUG_ON(dentry
->d_count
);
166 this_cpu_dec(nr_dentry
);
167 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
168 dentry
->d_op
->d_release(dentry
);
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry
->d_hash
))
172 __d_free(&dentry
->d_u
.d_rcu
);
174 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * @dentry: the target dentry
180 * After this call, in-progress rcu-walk path lookup will fail. This
181 * should be called after unhashing, and after changing d_inode (if
182 * the dentry has not already been unhashed).
184 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
186 assert_spin_locked(&dentry
->d_lock
);
187 /* Go through a barrier */
188 write_seqcount_barrier(&dentry
->d_seq
);
192 * Release the dentry's inode, using the filesystem
193 * d_iput() operation if defined. Dentry has no refcount
196 static void dentry_iput(struct dentry
* dentry
)
197 __releases(dentry
->d_lock
)
198 __releases(dentry
->d_inode
->i_lock
)
200 struct inode
*inode
= dentry
->d_inode
;
202 dentry
->d_inode
= NULL
;
203 list_del_init(&dentry
->d_alias
);
204 spin_unlock(&dentry
->d_lock
);
205 spin_unlock(&inode
->i_lock
);
207 fsnotify_inoderemove(inode
);
208 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
209 dentry
->d_op
->d_iput(dentry
, inode
);
213 spin_unlock(&dentry
->d_lock
);
218 * Release the dentry's inode, using the filesystem
219 * d_iput() operation if defined. dentry remains in-use.
221 static void dentry_unlink_inode(struct dentry
* dentry
)
222 __releases(dentry
->d_lock
)
223 __releases(dentry
->d_inode
->i_lock
)
225 struct inode
*inode
= dentry
->d_inode
;
226 dentry
->d_inode
= NULL
;
227 list_del_init(&dentry
->d_alias
);
228 dentry_rcuwalk_barrier(dentry
);
229 spin_unlock(&dentry
->d_lock
);
230 spin_unlock(&inode
->i_lock
);
232 fsnotify_inoderemove(inode
);
233 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
234 dentry
->d_op
->d_iput(dentry
, inode
);
240 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
242 static void dentry_lru_add(struct dentry
*dentry
)
244 if (list_empty(&dentry
->d_lru
)) {
245 spin_lock(&dcache_lru_lock
);
246 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
247 dentry
->d_sb
->s_nr_dentry_unused
++;
248 dentry_stat
.nr_unused
++;
249 spin_unlock(&dcache_lru_lock
);
253 static void __dentry_lru_del(struct dentry
*dentry
)
255 list_del_init(&dentry
->d_lru
);
256 dentry
->d_sb
->s_nr_dentry_unused
--;
257 dentry_stat
.nr_unused
--;
260 static void dentry_lru_del(struct dentry
*dentry
)
262 if (!list_empty(&dentry
->d_lru
)) {
263 spin_lock(&dcache_lru_lock
);
264 __dentry_lru_del(dentry
);
265 spin_unlock(&dcache_lru_lock
);
269 static void dentry_lru_move_tail(struct dentry
*dentry
)
271 spin_lock(&dcache_lru_lock
);
272 if (list_empty(&dentry
->d_lru
)) {
273 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
274 dentry
->d_sb
->s_nr_dentry_unused
++;
275 dentry_stat
.nr_unused
++;
277 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
279 spin_unlock(&dcache_lru_lock
);
283 * d_kill - kill dentry and return parent
284 * @dentry: dentry to kill
285 * @parent: parent dentry
287 * The dentry must already be unhashed and removed from the LRU.
289 * If this is the root of the dentry tree, return NULL.
291 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
294 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
295 __releases(dentry
->d_lock
)
296 __releases(parent
->d_lock
)
297 __releases(dentry
->d_inode
->i_lock
)
299 dentry
->d_parent
= NULL
;
300 list_del(&dentry
->d_u
.d_child
);
302 spin_unlock(&parent
->d_lock
);
305 * dentry_iput drops the locks, at which point nobody (except
306 * transient RCU lookups) can reach this dentry.
313 * d_drop - drop a dentry
314 * @dentry: dentry to drop
316 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
317 * be found through a VFS lookup any more. Note that this is different from
318 * deleting the dentry - d_delete will try to mark the dentry negative if
319 * possible, giving a successful _negative_ lookup, while d_drop will
320 * just make the cache lookup fail.
322 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
323 * reason (NFS timeouts or autofs deletes).
325 * __d_drop requires dentry->d_lock.
327 void __d_drop(struct dentry
*dentry
)
329 if (!(dentry
->d_flags
& DCACHE_UNHASHED
)) {
330 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
)) {
332 (unsigned long *)&dentry
->d_sb
->s_anon
.first
);
333 dentry
->d_flags
|= DCACHE_UNHASHED
;
334 hlist_bl_del_init(&dentry
->d_hash
);
336 (unsigned long *)&dentry
->d_sb
->s_anon
.first
);
338 struct dcache_hash_bucket
*b
;
339 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
342 * We may not actually need to put DCACHE_UNHASHED
343 * manipulations under the hash lock, but follow
344 * the principle of least surprise.
346 dentry
->d_flags
|= DCACHE_UNHASHED
;
347 hlist_bl_del_rcu(&dentry
->d_hash
);
348 spin_unlock_bucket(b
);
349 dentry_rcuwalk_barrier(dentry
);
353 EXPORT_SYMBOL(__d_drop
);
355 void d_drop(struct dentry
*dentry
)
357 spin_lock(&dentry
->d_lock
);
359 spin_unlock(&dentry
->d_lock
);
361 EXPORT_SYMBOL(d_drop
);
364 * Finish off a dentry we've decided to kill.
365 * dentry->d_lock must be held, returns with it unlocked.
366 * If ref is non-zero, then decrement the refcount too.
367 * Returns dentry requiring refcount drop, or NULL if we're done.
369 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
370 __releases(dentry
->d_lock
)
373 struct dentry
*parent
;
375 inode
= dentry
->d_inode
;
376 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
378 spin_unlock(&dentry
->d_lock
);
380 return dentry
; /* try again with same dentry */
385 parent
= dentry
->d_parent
;
386 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
388 spin_unlock(&inode
->i_lock
);
394 /* if dentry was on the d_lru list delete it from there */
395 dentry_lru_del(dentry
);
396 /* if it was on the hash then remove it */
398 return d_kill(dentry
, parent
);
404 * This is complicated by the fact that we do not want to put
405 * dentries that are no longer on any hash chain on the unused
406 * list: we'd much rather just get rid of them immediately.
408 * However, that implies that we have to traverse the dentry
409 * tree upwards to the parents which might _also_ now be
410 * scheduled for deletion (it may have been only waiting for
411 * its last child to go away).
413 * This tail recursion is done by hand as we don't want to depend
414 * on the compiler to always get this right (gcc generally doesn't).
415 * Real recursion would eat up our stack space.
419 * dput - release a dentry
420 * @dentry: dentry to release
422 * Release a dentry. This will drop the usage count and if appropriate
423 * call the dentry unlink method as well as removing it from the queues and
424 * releasing its resources. If the parent dentries were scheduled for release
425 * they too may now get deleted.
427 void dput(struct dentry
*dentry
)
433 if (dentry
->d_count
== 1)
435 spin_lock(&dentry
->d_lock
);
436 BUG_ON(!dentry
->d_count
);
437 if (dentry
->d_count
> 1) {
439 spin_unlock(&dentry
->d_lock
);
443 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
444 if (dentry
->d_op
->d_delete(dentry
))
448 /* Unreachable? Get rid of it */
449 if (d_unhashed(dentry
))
452 /* Otherwise leave it cached and ensure it's on the LRU */
453 dentry
->d_flags
|= DCACHE_REFERENCED
;
454 dentry_lru_add(dentry
);
457 spin_unlock(&dentry
->d_lock
);
461 dentry
= dentry_kill(dentry
, 1);
468 * d_invalidate - invalidate a dentry
469 * @dentry: dentry to invalidate
471 * Try to invalidate the dentry if it turns out to be
472 * possible. If there are other dentries that can be
473 * reached through this one we can't delete it and we
474 * return -EBUSY. On success we return 0.
479 int d_invalidate(struct dentry
* dentry
)
482 * If it's already been dropped, return OK.
484 spin_lock(&dentry
->d_lock
);
485 if (d_unhashed(dentry
)) {
486 spin_unlock(&dentry
->d_lock
);
490 * Check whether to do a partial shrink_dcache
491 * to get rid of unused child entries.
493 if (!list_empty(&dentry
->d_subdirs
)) {
494 spin_unlock(&dentry
->d_lock
);
495 shrink_dcache_parent(dentry
);
496 spin_lock(&dentry
->d_lock
);
500 * Somebody else still using it?
502 * If it's a directory, we can't drop it
503 * for fear of somebody re-populating it
504 * with children (even though dropping it
505 * would make it unreachable from the root,
506 * we might still populate it if it was a
507 * working directory or similar).
509 if (dentry
->d_count
> 1) {
510 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
511 spin_unlock(&dentry
->d_lock
);
517 spin_unlock(&dentry
->d_lock
);
520 EXPORT_SYMBOL(d_invalidate
);
522 /* This must be called with d_lock held */
523 static inline void __dget_dlock(struct dentry
*dentry
)
528 static inline void __dget(struct dentry
*dentry
)
530 spin_lock(&dentry
->d_lock
);
531 __dget_dlock(dentry
);
532 spin_unlock(&dentry
->d_lock
);
535 struct dentry
*dget_parent(struct dentry
*dentry
)
541 * Don't need rcu_dereference because we re-check it was correct under
545 ret
= dentry
->d_parent
;
550 spin_lock(&ret
->d_lock
);
551 if (unlikely(ret
!= dentry
->d_parent
)) {
552 spin_unlock(&ret
->d_lock
);
557 BUG_ON(!ret
->d_count
);
559 spin_unlock(&ret
->d_lock
);
563 EXPORT_SYMBOL(dget_parent
);
566 * d_find_alias - grab a hashed alias of inode
567 * @inode: inode in question
568 * @want_discon: flag, used by d_splice_alias, to request
569 * that only a DISCONNECTED alias be returned.
571 * If inode has a hashed alias, or is a directory and has any alias,
572 * acquire the reference to alias and return it. Otherwise return NULL.
573 * Notice that if inode is a directory there can be only one alias and
574 * it can be unhashed only if it has no children, or if it is the root
577 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
578 * any other hashed alias over that one unless @want_discon is set,
579 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
581 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
583 struct dentry
*alias
, *discon_alias
;
587 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
588 spin_lock(&alias
->d_lock
);
589 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
590 if (IS_ROOT(alias
) &&
591 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
592 discon_alias
= alias
;
593 } else if (!want_discon
) {
595 spin_unlock(&alias
->d_lock
);
599 spin_unlock(&alias
->d_lock
);
602 alias
= discon_alias
;
603 spin_lock(&alias
->d_lock
);
604 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
605 if (IS_ROOT(alias
) &&
606 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
608 spin_unlock(&alias
->d_lock
);
612 spin_unlock(&alias
->d_lock
);
618 struct dentry
*d_find_alias(struct inode
*inode
)
620 struct dentry
*de
= NULL
;
622 if (!list_empty(&inode
->i_dentry
)) {
623 spin_lock(&inode
->i_lock
);
624 de
= __d_find_alias(inode
, 0);
625 spin_unlock(&inode
->i_lock
);
629 EXPORT_SYMBOL(d_find_alias
);
632 * Try to kill dentries associated with this inode.
633 * WARNING: you must own a reference to inode.
635 void d_prune_aliases(struct inode
*inode
)
637 struct dentry
*dentry
;
639 spin_lock(&inode
->i_lock
);
640 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
641 spin_lock(&dentry
->d_lock
);
642 if (!dentry
->d_count
) {
643 __dget_dlock(dentry
);
645 spin_unlock(&dentry
->d_lock
);
646 spin_unlock(&inode
->i_lock
);
650 spin_unlock(&dentry
->d_lock
);
652 spin_unlock(&inode
->i_lock
);
654 EXPORT_SYMBOL(d_prune_aliases
);
657 * Try to throw away a dentry - free the inode, dput the parent.
658 * Requires dentry->d_lock is held, and dentry->d_count == 0.
659 * Releases dentry->d_lock.
661 * This may fail if locks cannot be acquired no problem, just try again.
663 static void try_prune_one_dentry(struct dentry
*dentry
)
664 __releases(dentry
->d_lock
)
666 struct dentry
*parent
;
668 parent
= dentry_kill(dentry
, 0);
670 * If dentry_kill returns NULL, we have nothing more to do.
671 * if it returns the same dentry, trylocks failed. In either
672 * case, just loop again.
674 * Otherwise, we need to prune ancestors too. This is necessary
675 * to prevent quadratic behavior of shrink_dcache_parent(), but
676 * is also expected to be beneficial in reducing dentry cache
681 if (parent
== dentry
)
684 /* Prune ancestors. */
687 spin_lock(&dentry
->d_lock
);
688 if (dentry
->d_count
> 1) {
690 spin_unlock(&dentry
->d_lock
);
693 dentry
= dentry_kill(dentry
, 1);
697 static void shrink_dentry_list(struct list_head
*list
)
699 struct dentry
*dentry
;
703 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
704 if (&dentry
->d_lru
== list
)
706 spin_lock(&dentry
->d_lock
);
707 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
708 spin_unlock(&dentry
->d_lock
);
713 * We found an inuse dentry which was not removed from
714 * the LRU because of laziness during lookup. Do not free
715 * it - just keep it off the LRU list.
717 if (dentry
->d_count
) {
718 dentry_lru_del(dentry
);
719 spin_unlock(&dentry
->d_lock
);
725 try_prune_one_dentry(dentry
);
733 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
734 * @sb: superblock to shrink dentry LRU.
735 * @count: number of entries to prune
736 * @flags: flags to control the dentry processing
738 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
740 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
742 /* called from prune_dcache() and shrink_dcache_parent() */
743 struct dentry
*dentry
;
744 LIST_HEAD(referenced
);
749 spin_lock(&dcache_lru_lock
);
750 while (!list_empty(&sb
->s_dentry_lru
)) {
751 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
752 struct dentry
, d_lru
);
753 BUG_ON(dentry
->d_sb
!= sb
);
755 if (!spin_trylock(&dentry
->d_lock
)) {
756 spin_unlock(&dcache_lru_lock
);
762 * If we are honouring the DCACHE_REFERENCED flag and the
763 * dentry has this flag set, don't free it. Clear the flag
764 * and put it back on the LRU.
766 if (flags
& DCACHE_REFERENCED
&&
767 dentry
->d_flags
& DCACHE_REFERENCED
) {
768 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
769 list_move(&dentry
->d_lru
, &referenced
);
770 spin_unlock(&dentry
->d_lock
);
772 list_move_tail(&dentry
->d_lru
, &tmp
);
773 spin_unlock(&dentry
->d_lock
);
777 cond_resched_lock(&dcache_lru_lock
);
779 if (!list_empty(&referenced
))
780 list_splice(&referenced
, &sb
->s_dentry_lru
);
781 spin_unlock(&dcache_lru_lock
);
783 shrink_dentry_list(&tmp
);
789 * prune_dcache - shrink the dcache
790 * @count: number of entries to try to free
792 * Shrink the dcache. This is done when we need more memory, or simply when we
793 * need to unmount something (at which point we need to unuse all dentries).
795 * This function may fail to free any resources if all the dentries are in use.
797 static void prune_dcache(int count
)
799 struct super_block
*sb
, *p
= NULL
;
801 int unused
= dentry_stat
.nr_unused
;
805 if (unused
== 0 || count
== 0)
810 prune_ratio
= unused
/ count
;
812 list_for_each_entry(sb
, &super_blocks
, s_list
) {
813 if (list_empty(&sb
->s_instances
))
815 if (sb
->s_nr_dentry_unused
== 0)
818 /* Now, we reclaim unused dentrins with fairness.
819 * We reclaim them same percentage from each superblock.
820 * We calculate number of dentries to scan on this sb
821 * as follows, but the implementation is arranged to avoid
823 * number of dentries to scan on this sb =
824 * count * (number of dentries on this sb /
825 * number of dentries in the machine)
827 spin_unlock(&sb_lock
);
828 if (prune_ratio
!= 1)
829 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
831 w_count
= sb
->s_nr_dentry_unused
;
834 * We need to be sure this filesystem isn't being unmounted,
835 * otherwise we could race with generic_shutdown_super(), and
836 * end up holding a reference to an inode while the filesystem
837 * is unmounted. So we try to get s_umount, and make sure
840 if (down_read_trylock(&sb
->s_umount
)) {
841 if ((sb
->s_root
!= NULL
) &&
842 (!list_empty(&sb
->s_dentry_lru
))) {
843 __shrink_dcache_sb(sb
, &w_count
,
847 up_read(&sb
->s_umount
);
854 /* more work left to do? */
860 spin_unlock(&sb_lock
);
864 * shrink_dcache_sb - shrink dcache for a superblock
867 * Shrink the dcache for the specified super block. This is used to free
868 * the dcache before unmounting a file system.
870 void shrink_dcache_sb(struct super_block
*sb
)
874 spin_lock(&dcache_lru_lock
);
875 while (!list_empty(&sb
->s_dentry_lru
)) {
876 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
877 spin_unlock(&dcache_lru_lock
);
878 shrink_dentry_list(&tmp
);
879 spin_lock(&dcache_lru_lock
);
881 spin_unlock(&dcache_lru_lock
);
883 EXPORT_SYMBOL(shrink_dcache_sb
);
886 * destroy a single subtree of dentries for unmount
887 * - see the comments on shrink_dcache_for_umount() for a description of the
890 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
892 struct dentry
*parent
;
893 unsigned detached
= 0;
895 BUG_ON(!IS_ROOT(dentry
));
897 /* detach this root from the system */
898 spin_lock(&dentry
->d_lock
);
899 dentry_lru_del(dentry
);
901 spin_unlock(&dentry
->d_lock
);
904 /* descend to the first leaf in the current subtree */
905 while (!list_empty(&dentry
->d_subdirs
)) {
908 /* this is a branch with children - detach all of them
909 * from the system in one go */
910 spin_lock(&dentry
->d_lock
);
911 list_for_each_entry(loop
, &dentry
->d_subdirs
,
913 spin_lock_nested(&loop
->d_lock
,
914 DENTRY_D_LOCK_NESTED
);
915 dentry_lru_del(loop
);
917 spin_unlock(&loop
->d_lock
);
919 spin_unlock(&dentry
->d_lock
);
921 /* move to the first child */
922 dentry
= list_entry(dentry
->d_subdirs
.next
,
923 struct dentry
, d_u
.d_child
);
926 /* consume the dentries from this leaf up through its parents
927 * until we find one with children or run out altogether */
931 if (dentry
->d_count
!= 0) {
933 "BUG: Dentry %p{i=%lx,n=%s}"
935 " [unmount of %s %s]\n",
938 dentry
->d_inode
->i_ino
: 0UL,
941 dentry
->d_sb
->s_type
->name
,
946 if (IS_ROOT(dentry
)) {
948 list_del(&dentry
->d_u
.d_child
);
950 parent
= dentry
->d_parent
;
951 spin_lock(&parent
->d_lock
);
953 list_del(&dentry
->d_u
.d_child
);
954 spin_unlock(&parent
->d_lock
);
959 inode
= dentry
->d_inode
;
961 dentry
->d_inode
= NULL
;
962 list_del_init(&dentry
->d_alias
);
963 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
964 dentry
->d_op
->d_iput(dentry
, inode
);
971 /* finished when we fall off the top of the tree,
972 * otherwise we ascend to the parent and move to the
973 * next sibling if there is one */
977 } while (list_empty(&dentry
->d_subdirs
));
979 dentry
= list_entry(dentry
->d_subdirs
.next
,
980 struct dentry
, d_u
.d_child
);
985 * destroy the dentries attached to a superblock on unmounting
986 * - we don't need to use dentry->d_lock because:
987 * - the superblock is detached from all mountings and open files, so the
988 * dentry trees will not be rearranged by the VFS
989 * - s_umount is write-locked, so the memory pressure shrinker will ignore
990 * any dentries belonging to this superblock that it comes across
991 * - the filesystem itself is no longer permitted to rearrange the dentries
994 void shrink_dcache_for_umount(struct super_block
*sb
)
996 struct dentry
*dentry
;
998 if (down_read_trylock(&sb
->s_umount
))
1001 dentry
= sb
->s_root
;
1003 spin_lock(&dentry
->d_lock
);
1005 spin_unlock(&dentry
->d_lock
);
1006 shrink_dcache_for_umount_subtree(dentry
);
1008 while (!hlist_bl_empty(&sb
->s_anon
)) {
1009 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1010 shrink_dcache_for_umount_subtree(dentry
);
1015 * Search for at least 1 mount point in the dentry's subdirs.
1016 * We descend to the next level whenever the d_subdirs
1017 * list is non-empty and continue searching.
1021 * have_submounts - check for mounts over a dentry
1022 * @parent: dentry to check.
1024 * Return true if the parent or its subdirectories contain
1027 int have_submounts(struct dentry
*parent
)
1029 struct dentry
*this_parent
;
1030 struct list_head
*next
;
1034 seq
= read_seqbegin(&rename_lock
);
1036 this_parent
= parent
;
1038 if (d_mountpoint(parent
))
1040 spin_lock(&this_parent
->d_lock
);
1042 next
= this_parent
->d_subdirs
.next
;
1044 while (next
!= &this_parent
->d_subdirs
) {
1045 struct list_head
*tmp
= next
;
1046 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1049 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1050 /* Have we found a mount point ? */
1051 if (d_mountpoint(dentry
)) {
1052 spin_unlock(&dentry
->d_lock
);
1053 spin_unlock(&this_parent
->d_lock
);
1056 if (!list_empty(&dentry
->d_subdirs
)) {
1057 spin_unlock(&this_parent
->d_lock
);
1058 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1059 this_parent
= dentry
;
1060 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1063 spin_unlock(&dentry
->d_lock
);
1066 * All done at this level ... ascend and resume the search.
1068 if (this_parent
!= parent
) {
1070 struct dentry
*child
;
1072 tmp
= this_parent
->d_parent
;
1074 spin_unlock(&this_parent
->d_lock
);
1075 child
= this_parent
;
1077 spin_lock(&this_parent
->d_lock
);
1078 /* might go back up the wrong parent if we have had a rename
1080 if (this_parent
!= child
->d_parent
||
1081 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1082 spin_unlock(&this_parent
->d_lock
);
1087 next
= child
->d_u
.d_child
.next
;
1090 spin_unlock(&this_parent
->d_lock
);
1091 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1094 write_sequnlock(&rename_lock
);
1095 return 0; /* No mount points found in tree */
1097 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1100 write_sequnlock(&rename_lock
);
1105 write_seqlock(&rename_lock
);
1108 EXPORT_SYMBOL(have_submounts
);
1111 * Search the dentry child list for the specified parent,
1112 * and move any unused dentries to the end of the unused
1113 * list for prune_dcache(). We descend to the next level
1114 * whenever the d_subdirs list is non-empty and continue
1117 * It returns zero iff there are no unused children,
1118 * otherwise it returns the number of children moved to
1119 * the end of the unused list. This may not be the total
1120 * number of unused children, because select_parent can
1121 * drop the lock and return early due to latency
1124 static int select_parent(struct dentry
* parent
)
1126 struct dentry
*this_parent
;
1127 struct list_head
*next
;
1132 seq
= read_seqbegin(&rename_lock
);
1134 this_parent
= parent
;
1135 spin_lock(&this_parent
->d_lock
);
1137 next
= this_parent
->d_subdirs
.next
;
1139 while (next
!= &this_parent
->d_subdirs
) {
1140 struct list_head
*tmp
= next
;
1141 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1144 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1147 * move only zero ref count dentries to the end
1148 * of the unused list for prune_dcache
1150 if (!dentry
->d_count
) {
1151 dentry_lru_move_tail(dentry
);
1154 dentry_lru_del(dentry
);
1158 * We can return to the caller if we have found some (this
1159 * ensures forward progress). We'll be coming back to find
1162 if (found
&& need_resched()) {
1163 spin_unlock(&dentry
->d_lock
);
1168 * Descend a level if the d_subdirs list is non-empty.
1170 if (!list_empty(&dentry
->d_subdirs
)) {
1171 spin_unlock(&this_parent
->d_lock
);
1172 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1173 this_parent
= dentry
;
1174 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1178 spin_unlock(&dentry
->d_lock
);
1181 * All done at this level ... ascend and resume the search.
1183 if (this_parent
!= parent
) {
1185 struct dentry
*child
;
1187 tmp
= this_parent
->d_parent
;
1189 spin_unlock(&this_parent
->d_lock
);
1190 child
= this_parent
;
1192 spin_lock(&this_parent
->d_lock
);
1193 /* might go back up the wrong parent if we have had a rename
1195 if (this_parent
!= child
->d_parent
||
1196 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1197 spin_unlock(&this_parent
->d_lock
);
1202 next
= child
->d_u
.d_child
.next
;
1206 spin_unlock(&this_parent
->d_lock
);
1207 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1210 write_sequnlock(&rename_lock
);
1217 write_seqlock(&rename_lock
);
1222 * shrink_dcache_parent - prune dcache
1223 * @parent: parent of entries to prune
1225 * Prune the dcache to remove unused children of the parent dentry.
1228 void shrink_dcache_parent(struct dentry
* parent
)
1230 struct super_block
*sb
= parent
->d_sb
;
1233 while ((found
= select_parent(parent
)) != 0)
1234 __shrink_dcache_sb(sb
, &found
, 0);
1236 EXPORT_SYMBOL(shrink_dcache_parent
);
1239 * Scan `nr' dentries and return the number which remain.
1241 * We need to avoid reentering the filesystem if the caller is performing a
1242 * GFP_NOFS allocation attempt. One example deadlock is:
1244 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1245 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1246 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1248 * In this case we return -1 to tell the caller that we baled.
1250 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
1253 if (!(gfp_mask
& __GFP_FS
))
1258 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1261 static struct shrinker dcache_shrinker
= {
1262 .shrink
= shrink_dcache_memory
,
1263 .seeks
= DEFAULT_SEEKS
,
1267 * d_alloc - allocate a dcache entry
1268 * @parent: parent of entry to allocate
1269 * @name: qstr of the name
1271 * Allocates a dentry. It returns %NULL if there is insufficient memory
1272 * available. On a success the dentry is returned. The name passed in is
1273 * copied and the copy passed in may be reused after this call.
1276 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1278 struct dentry
*dentry
;
1281 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1285 if (name
->len
> DNAME_INLINE_LEN
-1) {
1286 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1288 kmem_cache_free(dentry_cache
, dentry
);
1292 dname
= dentry
->d_iname
;
1294 dentry
->d_name
.name
= dname
;
1296 dentry
->d_name
.len
= name
->len
;
1297 dentry
->d_name
.hash
= name
->hash
;
1298 memcpy(dname
, name
->name
, name
->len
);
1299 dname
[name
->len
] = 0;
1301 dentry
->d_count
= 1;
1302 dentry
->d_flags
= DCACHE_UNHASHED
;
1303 spin_lock_init(&dentry
->d_lock
);
1304 seqcount_init(&dentry
->d_seq
);
1305 dentry
->d_inode
= NULL
;
1306 dentry
->d_parent
= NULL
;
1307 dentry
->d_sb
= NULL
;
1308 dentry
->d_op
= NULL
;
1309 dentry
->d_fsdata
= NULL
;
1310 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1311 INIT_LIST_HEAD(&dentry
->d_lru
);
1312 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1313 INIT_LIST_HEAD(&dentry
->d_alias
);
1314 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1317 spin_lock(&parent
->d_lock
);
1319 * don't need child lock because it is not subject
1320 * to concurrency here
1322 __dget_dlock(parent
);
1323 dentry
->d_parent
= parent
;
1324 dentry
->d_sb
= parent
->d_sb
;
1325 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1326 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1327 spin_unlock(&parent
->d_lock
);
1330 this_cpu_inc(nr_dentry
);
1334 EXPORT_SYMBOL(d_alloc
);
1336 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1338 struct dentry
*dentry
= d_alloc(NULL
, name
);
1341 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1342 dentry
->d_parent
= dentry
;
1343 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1347 EXPORT_SYMBOL(d_alloc_pseudo
);
1349 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1354 q
.len
= strlen(name
);
1355 q
.hash
= full_name_hash(q
.name
, q
.len
);
1356 return d_alloc(parent
, &q
);
1358 EXPORT_SYMBOL(d_alloc_name
);
1360 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1362 WARN_ON_ONCE(dentry
->d_op
);
1363 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1365 DCACHE_OP_REVALIDATE
|
1366 DCACHE_OP_DELETE
));
1371 dentry
->d_flags
|= DCACHE_OP_HASH
;
1373 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1374 if (op
->d_revalidate
)
1375 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1377 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1380 EXPORT_SYMBOL(d_set_d_op
);
1382 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1384 spin_lock(&dentry
->d_lock
);
1386 if (unlikely(IS_AUTOMOUNT(inode
)))
1387 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1388 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1390 dentry
->d_inode
= inode
;
1391 dentry_rcuwalk_barrier(dentry
);
1392 spin_unlock(&dentry
->d_lock
);
1393 fsnotify_d_instantiate(dentry
, inode
);
1397 * d_instantiate - fill in inode information for a dentry
1398 * @entry: dentry to complete
1399 * @inode: inode to attach to this dentry
1401 * Fill in inode information in the entry.
1403 * This turns negative dentries into productive full members
1406 * NOTE! This assumes that the inode count has been incremented
1407 * (or otherwise set) by the caller to indicate that it is now
1408 * in use by the dcache.
1411 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1413 BUG_ON(!list_empty(&entry
->d_alias
));
1415 spin_lock(&inode
->i_lock
);
1416 __d_instantiate(entry
, inode
);
1418 spin_unlock(&inode
->i_lock
);
1419 security_d_instantiate(entry
, inode
);
1421 EXPORT_SYMBOL(d_instantiate
);
1424 * d_instantiate_unique - instantiate a non-aliased dentry
1425 * @entry: dentry to instantiate
1426 * @inode: inode to attach to this dentry
1428 * Fill in inode information in the entry. On success, it returns NULL.
1429 * If an unhashed alias of "entry" already exists, then we return the
1430 * aliased dentry instead and drop one reference to inode.
1432 * Note that in order to avoid conflicts with rename() etc, the caller
1433 * had better be holding the parent directory semaphore.
1435 * This also assumes that the inode count has been incremented
1436 * (or otherwise set) by the caller to indicate that it is now
1437 * in use by the dcache.
1439 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1440 struct inode
*inode
)
1442 struct dentry
*alias
;
1443 int len
= entry
->d_name
.len
;
1444 const char *name
= entry
->d_name
.name
;
1445 unsigned int hash
= entry
->d_name
.hash
;
1448 __d_instantiate(entry
, NULL
);
1452 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1453 struct qstr
*qstr
= &alias
->d_name
;
1456 * Don't need alias->d_lock here, because aliases with
1457 * d_parent == entry->d_parent are not subject to name or
1458 * parent changes, because the parent inode i_mutex is held.
1460 if (qstr
->hash
!= hash
)
1462 if (alias
->d_parent
!= entry
->d_parent
)
1464 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1470 __d_instantiate(entry
, inode
);
1474 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1476 struct dentry
*result
;
1478 BUG_ON(!list_empty(&entry
->d_alias
));
1481 spin_lock(&inode
->i_lock
);
1482 result
= __d_instantiate_unique(entry
, inode
);
1484 spin_unlock(&inode
->i_lock
);
1487 security_d_instantiate(entry
, inode
);
1491 BUG_ON(!d_unhashed(result
));
1496 EXPORT_SYMBOL(d_instantiate_unique
);
1499 * d_alloc_root - allocate root dentry
1500 * @root_inode: inode to allocate the root for
1502 * Allocate a root ("/") dentry for the inode given. The inode is
1503 * instantiated and returned. %NULL is returned if there is insufficient
1504 * memory or the inode passed is %NULL.
1507 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1509 struct dentry
*res
= NULL
;
1512 static const struct qstr name
= { .name
= "/", .len
= 1 };
1514 res
= d_alloc(NULL
, &name
);
1516 res
->d_sb
= root_inode
->i_sb
;
1517 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1518 res
->d_parent
= res
;
1519 d_instantiate(res
, root_inode
);
1524 EXPORT_SYMBOL(d_alloc_root
);
1526 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1528 struct dentry
*alias
;
1530 if (list_empty(&inode
->i_dentry
))
1532 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1537 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1541 spin_lock(&inode
->i_lock
);
1542 de
= __d_find_any_alias(inode
);
1543 spin_unlock(&inode
->i_lock
);
1549 * d_obtain_alias - find or allocate a dentry for a given inode
1550 * @inode: inode to allocate the dentry for
1552 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1553 * similar open by handle operations. The returned dentry may be anonymous,
1554 * or may have a full name (if the inode was already in the cache).
1556 * When called on a directory inode, we must ensure that the inode only ever
1557 * has one dentry. If a dentry is found, that is returned instead of
1558 * allocating a new one.
1560 * On successful return, the reference to the inode has been transferred
1561 * to the dentry. In case of an error the reference on the inode is released.
1562 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1563 * be passed in and will be the error will be propagate to the return value,
1564 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1566 struct dentry
*d_obtain_alias(struct inode
*inode
)
1568 static const struct qstr anonstring
= { .name
= "" };
1573 return ERR_PTR(-ESTALE
);
1575 return ERR_CAST(inode
);
1577 res
= d_find_any_alias(inode
);
1581 tmp
= d_alloc(NULL
, &anonstring
);
1583 res
= ERR_PTR(-ENOMEM
);
1586 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1589 spin_lock(&inode
->i_lock
);
1590 res
= __d_find_any_alias(inode
);
1592 spin_unlock(&inode
->i_lock
);
1597 /* attach a disconnected dentry */
1598 spin_lock(&tmp
->d_lock
);
1599 tmp
->d_sb
= inode
->i_sb
;
1600 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1601 tmp
->d_inode
= inode
;
1602 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1603 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1604 bit_spin_lock(0, (unsigned long *)&tmp
->d_sb
->s_anon
.first
);
1605 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1606 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1607 __bit_spin_unlock(0, (unsigned long *)&tmp
->d_sb
->s_anon
.first
);
1608 spin_unlock(&tmp
->d_lock
);
1609 spin_unlock(&inode
->i_lock
);
1617 EXPORT_SYMBOL(d_obtain_alias
);
1620 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1621 * @inode: the inode which may have a disconnected dentry
1622 * @dentry: a negative dentry which we want to point to the inode.
1624 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1625 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1626 * and return it, else simply d_add the inode to the dentry and return NULL.
1628 * This is needed in the lookup routine of any filesystem that is exportable
1629 * (via knfsd) so that we can build dcache paths to directories effectively.
1631 * If a dentry was found and moved, then it is returned. Otherwise NULL
1632 * is returned. This matches the expected return value of ->lookup.
1635 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1637 struct dentry
*new = NULL
;
1639 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1640 spin_lock(&inode
->i_lock
);
1641 new = __d_find_alias(inode
, 1);
1643 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1644 spin_unlock(&inode
->i_lock
);
1645 security_d_instantiate(new, inode
);
1646 d_move(new, dentry
);
1649 /* already taking inode->i_lock, so d_add() by hand */
1650 __d_instantiate(dentry
, inode
);
1651 spin_unlock(&inode
->i_lock
);
1652 security_d_instantiate(dentry
, inode
);
1656 d_add(dentry
, inode
);
1659 EXPORT_SYMBOL(d_splice_alias
);
1662 * d_add_ci - lookup or allocate new dentry with case-exact name
1663 * @inode: the inode case-insensitive lookup has found
1664 * @dentry: the negative dentry that was passed to the parent's lookup func
1665 * @name: the case-exact name to be associated with the returned dentry
1667 * This is to avoid filling the dcache with case-insensitive names to the
1668 * same inode, only the actual correct case is stored in the dcache for
1669 * case-insensitive filesystems.
1671 * For a case-insensitive lookup match and if the the case-exact dentry
1672 * already exists in in the dcache, use it and return it.
1674 * If no entry exists with the exact case name, allocate new dentry with
1675 * the exact case, and return the spliced entry.
1677 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1681 struct dentry
*found
;
1685 * First check if a dentry matching the name already exists,
1686 * if not go ahead and create it now.
1688 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1690 new = d_alloc(dentry
->d_parent
, name
);
1696 found
= d_splice_alias(inode
, new);
1705 * If a matching dentry exists, and it's not negative use it.
1707 * Decrement the reference count to balance the iget() done
1710 if (found
->d_inode
) {
1711 if (unlikely(found
->d_inode
!= inode
)) {
1712 /* This can't happen because bad inodes are unhashed. */
1713 BUG_ON(!is_bad_inode(inode
));
1714 BUG_ON(!is_bad_inode(found
->d_inode
));
1721 * Negative dentry: instantiate it unless the inode is a directory and
1722 * already has a dentry.
1724 spin_lock(&inode
->i_lock
);
1725 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1726 __d_instantiate(found
, inode
);
1727 spin_unlock(&inode
->i_lock
);
1728 security_d_instantiate(found
, inode
);
1733 * In case a directory already has a (disconnected) entry grab a
1734 * reference to it, move it in place and use it.
1736 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1738 spin_unlock(&inode
->i_lock
);
1739 security_d_instantiate(found
, inode
);
1747 return ERR_PTR(error
);
1749 EXPORT_SYMBOL(d_add_ci
);
1752 * __d_lookup_rcu - search for a dentry (racy, store-free)
1753 * @parent: parent dentry
1754 * @name: qstr of name we wish to find
1755 * @seq: returns d_seq value at the point where the dentry was found
1756 * @inode: returns dentry->d_inode when the inode was found valid.
1757 * Returns: dentry, or NULL
1759 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1760 * resolution (store-free path walking) design described in
1761 * Documentation/filesystems/path-lookup.txt.
1763 * This is not to be used outside core vfs.
1765 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1766 * held, and rcu_read_lock held. The returned dentry must not be stored into
1767 * without taking d_lock and checking d_seq sequence count against @seq
1770 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1773 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1774 * the returned dentry, so long as its parent's seqlock is checked after the
1775 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1776 * is formed, giving integrity down the path walk.
1778 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1779 unsigned *seq
, struct inode
**inode
)
1781 unsigned int len
= name
->len
;
1782 unsigned int hash
= name
->hash
;
1783 const unsigned char *str
= name
->name
;
1784 struct dcache_hash_bucket
*b
= d_hash(parent
, hash
);
1785 struct hlist_bl_node
*node
;
1786 struct dentry
*dentry
;
1789 * Note: There is significant duplication with __d_lookup_rcu which is
1790 * required to prevent single threaded performance regressions
1791 * especially on architectures where smp_rmb (in seqcounts) are costly.
1792 * Keep the two functions in sync.
1796 * The hash list is protected using RCU.
1798 * Carefully use d_seq when comparing a candidate dentry, to avoid
1799 * races with d_move().
1801 * It is possible that concurrent renames can mess up our list
1802 * walk here and result in missing our dentry, resulting in the
1803 * false-negative result. d_lookup() protects against concurrent
1804 * renames using rename_lock seqlock.
1806 * See Documentation/vfs/dcache-locking.txt for more details.
1808 hlist_bl_for_each_entry_rcu(dentry
, node
, &b
->head
, d_hash
) {
1813 if (dentry
->d_name
.hash
!= hash
)
1817 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1818 if (dentry
->d_parent
!= parent
)
1820 if (d_unhashed(dentry
))
1822 tlen
= dentry
->d_name
.len
;
1823 tname
= dentry
->d_name
.name
;
1824 i
= dentry
->d_inode
;
1829 * This seqcount check is required to ensure name and
1830 * len are loaded atomically, so as not to walk off the
1831 * edge of memory when walking. If we could load this
1832 * atomically some other way, we could drop this check.
1834 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1836 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1837 if (parent
->d_op
->d_compare(parent
, *inode
,
1842 if (dentry_cmp(tname
, tlen
, str
, len
))
1846 * No extra seqcount check is required after the name
1847 * compare. The caller must perform a seqcount check in
1848 * order to do anything useful with the returned dentry
1858 * d_lookup - search for a dentry
1859 * @parent: parent dentry
1860 * @name: qstr of name we wish to find
1861 * Returns: dentry, or NULL
1863 * d_lookup searches the children of the parent dentry for the name in
1864 * question. If the dentry is found its reference count is incremented and the
1865 * dentry is returned. The caller must use dput to free the entry when it has
1866 * finished using it. %NULL is returned if the dentry does not exist.
1868 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1870 struct dentry
*dentry
;
1874 seq
= read_seqbegin(&rename_lock
);
1875 dentry
= __d_lookup(parent
, name
);
1878 } while (read_seqretry(&rename_lock
, seq
));
1881 EXPORT_SYMBOL(d_lookup
);
1884 * __d_lookup - search for a dentry (racy)
1885 * @parent: parent dentry
1886 * @name: qstr of name we wish to find
1887 * Returns: dentry, or NULL
1889 * __d_lookup is like d_lookup, however it may (rarely) return a
1890 * false-negative result due to unrelated rename activity.
1892 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1893 * however it must be used carefully, eg. with a following d_lookup in
1894 * the case of failure.
1896 * __d_lookup callers must be commented.
1898 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1900 unsigned int len
= name
->len
;
1901 unsigned int hash
= name
->hash
;
1902 const unsigned char *str
= name
->name
;
1903 struct dcache_hash_bucket
*b
= d_hash(parent
, hash
);
1904 struct hlist_bl_node
*node
;
1905 struct dentry
*found
= NULL
;
1906 struct dentry
*dentry
;
1909 * Note: There is significant duplication with __d_lookup_rcu which is
1910 * required to prevent single threaded performance regressions
1911 * especially on architectures where smp_rmb (in seqcounts) are costly.
1912 * Keep the two functions in sync.
1916 * The hash list is protected using RCU.
1918 * Take d_lock when comparing a candidate dentry, to avoid races
1921 * It is possible that concurrent renames can mess up our list
1922 * walk here and result in missing our dentry, resulting in the
1923 * false-negative result. d_lookup() protects against concurrent
1924 * renames using rename_lock seqlock.
1926 * See Documentation/vfs/dcache-locking.txt for more details.
1930 hlist_bl_for_each_entry_rcu(dentry
, node
, &b
->head
, d_hash
) {
1934 if (dentry
->d_name
.hash
!= hash
)
1937 spin_lock(&dentry
->d_lock
);
1938 if (dentry
->d_parent
!= parent
)
1940 if (d_unhashed(dentry
))
1944 * It is safe to compare names since d_move() cannot
1945 * change the qstr (protected by d_lock).
1947 tlen
= dentry
->d_name
.len
;
1948 tname
= dentry
->d_name
.name
;
1949 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1950 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1951 dentry
, dentry
->d_inode
,
1955 if (dentry_cmp(tname
, tlen
, str
, len
))
1961 spin_unlock(&dentry
->d_lock
);
1964 spin_unlock(&dentry
->d_lock
);
1972 * d_hash_and_lookup - hash the qstr then search for a dentry
1973 * @dir: Directory to search in
1974 * @name: qstr of name we wish to find
1976 * On hash failure or on lookup failure NULL is returned.
1978 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1980 struct dentry
*dentry
= NULL
;
1983 * Check for a fs-specific hash function. Note that we must
1984 * calculate the standard hash first, as the d_op->d_hash()
1985 * routine may choose to leave the hash value unchanged.
1987 name
->hash
= full_name_hash(name
->name
, name
->len
);
1988 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1989 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1992 dentry
= d_lookup(dir
, name
);
1998 * d_validate - verify dentry provided from insecure source (deprecated)
1999 * @dentry: The dentry alleged to be valid child of @dparent
2000 * @dparent: The parent dentry (known to be valid)
2002 * An insecure source has sent us a dentry, here we verify it and dget() it.
2003 * This is used by ncpfs in its readdir implementation.
2004 * Zero is returned in the dentry is invalid.
2006 * This function is slow for big directories, and deprecated, do not use it.
2008 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2010 struct dentry
*child
;
2012 spin_lock(&dparent
->d_lock
);
2013 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2014 if (dentry
== child
) {
2015 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2016 __dget_dlock(dentry
);
2017 spin_unlock(&dentry
->d_lock
);
2018 spin_unlock(&dparent
->d_lock
);
2022 spin_unlock(&dparent
->d_lock
);
2026 EXPORT_SYMBOL(d_validate
);
2029 * When a file is deleted, we have two options:
2030 * - turn this dentry into a negative dentry
2031 * - unhash this dentry and free it.
2033 * Usually, we want to just turn this into
2034 * a negative dentry, but if anybody else is
2035 * currently using the dentry or the inode
2036 * we can't do that and we fall back on removing
2037 * it from the hash queues and waiting for
2038 * it to be deleted later when it has no users
2042 * d_delete - delete a dentry
2043 * @dentry: The dentry to delete
2045 * Turn the dentry into a negative dentry if possible, otherwise
2046 * remove it from the hash queues so it can be deleted later
2049 void d_delete(struct dentry
* dentry
)
2051 struct inode
*inode
;
2054 * Are we the only user?
2057 spin_lock(&dentry
->d_lock
);
2058 inode
= dentry
->d_inode
;
2059 isdir
= S_ISDIR(inode
->i_mode
);
2060 if (dentry
->d_count
== 1) {
2061 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2062 spin_unlock(&dentry
->d_lock
);
2066 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2067 dentry_unlink_inode(dentry
);
2068 fsnotify_nameremove(dentry
, isdir
);
2072 if (!d_unhashed(dentry
))
2075 spin_unlock(&dentry
->d_lock
);
2077 fsnotify_nameremove(dentry
, isdir
);
2079 EXPORT_SYMBOL(d_delete
);
2081 static void __d_rehash(struct dentry
* entry
, struct dcache_hash_bucket
*b
)
2083 BUG_ON(!d_unhashed(entry
));
2084 spin_lock_bucket(b
);
2085 entry
->d_flags
&= ~DCACHE_UNHASHED
;
2086 hlist_bl_add_head_rcu(&entry
->d_hash
, &b
->head
);
2087 spin_unlock_bucket(b
);
2090 static void _d_rehash(struct dentry
* entry
)
2092 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2096 * d_rehash - add an entry back to the hash
2097 * @entry: dentry to add to the hash
2099 * Adds a dentry to the hash according to its name.
2102 void d_rehash(struct dentry
* entry
)
2104 spin_lock(&entry
->d_lock
);
2106 spin_unlock(&entry
->d_lock
);
2108 EXPORT_SYMBOL(d_rehash
);
2111 * dentry_update_name_case - update case insensitive dentry with a new name
2112 * @dentry: dentry to be updated
2115 * Update a case insensitive dentry with new case of name.
2117 * dentry must have been returned by d_lookup with name @name. Old and new
2118 * name lengths must match (ie. no d_compare which allows mismatched name
2121 * Parent inode i_mutex must be held over d_lookup and into this call (to
2122 * keep renames and concurrent inserts, and readdir(2) away).
2124 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2126 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
2127 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2129 spin_lock(&dentry
->d_lock
);
2130 write_seqcount_begin(&dentry
->d_seq
);
2131 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2132 write_seqcount_end(&dentry
->d_seq
);
2133 spin_unlock(&dentry
->d_lock
);
2135 EXPORT_SYMBOL(dentry_update_name_case
);
2137 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2139 if (dname_external(target
)) {
2140 if (dname_external(dentry
)) {
2142 * Both external: swap the pointers
2144 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2147 * dentry:internal, target:external. Steal target's
2148 * storage and make target internal.
2150 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2151 dentry
->d_name
.len
+ 1);
2152 dentry
->d_name
.name
= target
->d_name
.name
;
2153 target
->d_name
.name
= target
->d_iname
;
2156 if (dname_external(dentry
)) {
2158 * dentry:external, target:internal. Give dentry's
2159 * storage to target and make dentry internal
2161 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2162 target
->d_name
.len
+ 1);
2163 target
->d_name
.name
= dentry
->d_name
.name
;
2164 dentry
->d_name
.name
= dentry
->d_iname
;
2167 * Both are internal. Just copy target to dentry
2169 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2170 target
->d_name
.len
+ 1);
2171 dentry
->d_name
.len
= target
->d_name
.len
;
2175 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2178 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2181 * XXXX: do we really need to take target->d_lock?
2183 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2184 spin_lock(&target
->d_parent
->d_lock
);
2186 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2187 spin_lock(&dentry
->d_parent
->d_lock
);
2188 spin_lock_nested(&target
->d_parent
->d_lock
,
2189 DENTRY_D_LOCK_NESTED
);
2191 spin_lock(&target
->d_parent
->d_lock
);
2192 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2193 DENTRY_D_LOCK_NESTED
);
2196 if (target
< dentry
) {
2197 spin_lock_nested(&target
->d_lock
, 2);
2198 spin_lock_nested(&dentry
->d_lock
, 3);
2200 spin_lock_nested(&dentry
->d_lock
, 2);
2201 spin_lock_nested(&target
->d_lock
, 3);
2205 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2206 struct dentry
*target
)
2208 if (target
->d_parent
!= dentry
->d_parent
)
2209 spin_unlock(&dentry
->d_parent
->d_lock
);
2210 if (target
->d_parent
!= target
)
2211 spin_unlock(&target
->d_parent
->d_lock
);
2215 * When switching names, the actual string doesn't strictly have to
2216 * be preserved in the target - because we're dropping the target
2217 * anyway. As such, we can just do a simple memcpy() to copy over
2218 * the new name before we switch.
2220 * Note that we have to be a lot more careful about getting the hash
2221 * switched - we have to switch the hash value properly even if it
2222 * then no longer matches the actual (corrupted) string of the target.
2223 * The hash value has to match the hash queue that the dentry is on..
2226 * d_move - move a dentry
2227 * @dentry: entry to move
2228 * @target: new dentry
2230 * Update the dcache to reflect the move of a file name. Negative
2231 * dcache entries should not be moved in this way.
2233 void d_move(struct dentry
* dentry
, struct dentry
* target
)
2235 if (!dentry
->d_inode
)
2236 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2238 BUG_ON(d_ancestor(dentry
, target
));
2239 BUG_ON(d_ancestor(target
, dentry
));
2241 write_seqlock(&rename_lock
);
2243 dentry_lock_for_move(dentry
, target
);
2245 write_seqcount_begin(&dentry
->d_seq
);
2246 write_seqcount_begin(&target
->d_seq
);
2248 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2251 * Move the dentry to the target hash queue. Don't bother checking
2252 * for the same hash queue because of how unlikely it is.
2255 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2257 /* Unhash the target: dput() will then get rid of it */
2260 list_del(&dentry
->d_u
.d_child
);
2261 list_del(&target
->d_u
.d_child
);
2263 /* Switch the names.. */
2264 switch_names(dentry
, target
);
2265 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2267 /* ... and switch the parents */
2268 if (IS_ROOT(dentry
)) {
2269 dentry
->d_parent
= target
->d_parent
;
2270 target
->d_parent
= target
;
2271 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2273 swap(dentry
->d_parent
, target
->d_parent
);
2275 /* And add them back to the (new) parent lists */
2276 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2279 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2281 write_seqcount_end(&target
->d_seq
);
2282 write_seqcount_end(&dentry
->d_seq
);
2284 dentry_unlock_parents_for_move(dentry
, target
);
2285 spin_unlock(&target
->d_lock
);
2286 fsnotify_d_move(dentry
);
2287 spin_unlock(&dentry
->d_lock
);
2288 write_sequnlock(&rename_lock
);
2290 EXPORT_SYMBOL(d_move
);
2293 * d_ancestor - search for an ancestor
2294 * @p1: ancestor dentry
2297 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2298 * an ancestor of p2, else NULL.
2300 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2304 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2305 if (p
->d_parent
== p1
)
2312 * This helper attempts to cope with remotely renamed directories
2314 * It assumes that the caller is already holding
2315 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2317 * Note: If ever the locking in lock_rename() changes, then please
2318 * remember to update this too...
2320 static struct dentry
*__d_unalias(struct inode
*inode
,
2321 struct dentry
*dentry
, struct dentry
*alias
)
2323 struct mutex
*m1
= NULL
, *m2
= NULL
;
2326 /* If alias and dentry share a parent, then no extra locks required */
2327 if (alias
->d_parent
== dentry
->d_parent
)
2330 /* Check for loops */
2331 ret
= ERR_PTR(-ELOOP
);
2332 if (d_ancestor(alias
, dentry
))
2335 /* See lock_rename() */
2336 ret
= ERR_PTR(-EBUSY
);
2337 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2339 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2340 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2342 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2344 d_move(alias
, dentry
);
2347 spin_unlock(&inode
->i_lock
);
2356 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2357 * named dentry in place of the dentry to be replaced.
2358 * returns with anon->d_lock held!
2360 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2362 struct dentry
*dparent
, *aparent
;
2364 dentry_lock_for_move(anon
, dentry
);
2366 write_seqcount_begin(&dentry
->d_seq
);
2367 write_seqcount_begin(&anon
->d_seq
);
2369 dparent
= dentry
->d_parent
;
2370 aparent
= anon
->d_parent
;
2372 switch_names(dentry
, anon
);
2373 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2375 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2376 list_del(&dentry
->d_u
.d_child
);
2377 if (!IS_ROOT(dentry
))
2378 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2380 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2382 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2383 list_del(&anon
->d_u
.d_child
);
2385 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2387 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2389 write_seqcount_end(&dentry
->d_seq
);
2390 write_seqcount_end(&anon
->d_seq
);
2392 dentry_unlock_parents_for_move(anon
, dentry
);
2393 spin_unlock(&dentry
->d_lock
);
2395 /* anon->d_lock still locked, returns locked */
2396 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2400 * d_materialise_unique - introduce an inode into the tree
2401 * @dentry: candidate dentry
2402 * @inode: inode to bind to the dentry, to which aliases may be attached
2404 * Introduces an dentry into the tree, substituting an extant disconnected
2405 * root directory alias in its place if there is one
2407 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2409 struct dentry
*actual
;
2411 BUG_ON(!d_unhashed(dentry
));
2415 __d_instantiate(dentry
, NULL
);
2420 spin_lock(&inode
->i_lock
);
2422 if (S_ISDIR(inode
->i_mode
)) {
2423 struct dentry
*alias
;
2425 /* Does an aliased dentry already exist? */
2426 alias
= __d_find_alias(inode
, 0);
2429 /* Is this an anonymous mountpoint that we could splice
2431 if (IS_ROOT(alias
)) {
2432 __d_materialise_dentry(dentry
, alias
);
2436 /* Nope, but we must(!) avoid directory aliasing */
2437 actual
= __d_unalias(inode
, dentry
, alias
);
2444 /* Add a unique reference */
2445 actual
= __d_instantiate_unique(dentry
, inode
);
2449 BUG_ON(!d_unhashed(actual
));
2451 spin_lock(&actual
->d_lock
);
2454 spin_unlock(&actual
->d_lock
);
2455 spin_unlock(&inode
->i_lock
);
2457 if (actual
== dentry
) {
2458 security_d_instantiate(dentry
, inode
);
2465 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2467 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2471 return -ENAMETOOLONG
;
2473 memcpy(*buffer
, str
, namelen
);
2477 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2479 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2483 * prepend_path - Prepend path string to a buffer
2484 * @path: the dentry/vfsmount to report
2485 * @root: root vfsmnt/dentry (may be modified by this function)
2486 * @buffer: pointer to the end of the buffer
2487 * @buflen: pointer to buffer length
2489 * Caller holds the rename_lock.
2491 * If path is not reachable from the supplied root, then the value of
2492 * root is changed (without modifying refcounts).
2494 static int prepend_path(const struct path
*path
, struct path
*root
,
2495 char **buffer
, int *buflen
)
2497 struct dentry
*dentry
= path
->dentry
;
2498 struct vfsmount
*vfsmnt
= path
->mnt
;
2502 br_read_lock(vfsmount_lock
);
2503 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2504 struct dentry
* parent
;
2506 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2508 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2511 dentry
= vfsmnt
->mnt_mountpoint
;
2512 vfsmnt
= vfsmnt
->mnt_parent
;
2515 parent
= dentry
->d_parent
;
2517 spin_lock(&dentry
->d_lock
);
2518 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2519 spin_unlock(&dentry
->d_lock
);
2521 error
= prepend(buffer
, buflen
, "/", 1);
2530 if (!error
&& !slash
)
2531 error
= prepend(buffer
, buflen
, "/", 1);
2533 br_read_unlock(vfsmount_lock
);
2538 * Filesystems needing to implement special "root names"
2539 * should do so with ->d_dname()
2541 if (IS_ROOT(dentry
) &&
2542 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2543 WARN(1, "Root dentry has weird name <%.*s>\n",
2544 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2547 root
->dentry
= dentry
;
2552 * __d_path - return the path of a dentry
2553 * @path: the dentry/vfsmount to report
2554 * @root: root vfsmnt/dentry (may be modified by this function)
2555 * @buf: buffer to return value in
2556 * @buflen: buffer length
2558 * Convert a dentry into an ASCII path name.
2560 * Returns a pointer into the buffer or an error code if the
2561 * path was too long.
2563 * "buflen" should be positive.
2565 * If path is not reachable from the supplied root, then the value of
2566 * root is changed (without modifying refcounts).
2568 char *__d_path(const struct path
*path
, struct path
*root
,
2569 char *buf
, int buflen
)
2571 char *res
= buf
+ buflen
;
2574 prepend(&res
, &buflen
, "\0", 1);
2575 write_seqlock(&rename_lock
);
2576 error
= prepend_path(path
, root
, &res
, &buflen
);
2577 write_sequnlock(&rename_lock
);
2580 return ERR_PTR(error
);
2585 * same as __d_path but appends "(deleted)" for unlinked files.
2587 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2588 char **buf
, int *buflen
)
2590 prepend(buf
, buflen
, "\0", 1);
2591 if (d_unlinked(path
->dentry
)) {
2592 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2597 return prepend_path(path
, root
, buf
, buflen
);
2600 static int prepend_unreachable(char **buffer
, int *buflen
)
2602 return prepend(buffer
, buflen
, "(unreachable)", 13);
2606 * d_path - return the path of a dentry
2607 * @path: path to report
2608 * @buf: buffer to return value in
2609 * @buflen: buffer length
2611 * Convert a dentry into an ASCII path name. If the entry has been deleted
2612 * the string " (deleted)" is appended. Note that this is ambiguous.
2614 * Returns a pointer into the buffer or an error code if the path was
2615 * too long. Note: Callers should use the returned pointer, not the passed
2616 * in buffer, to use the name! The implementation often starts at an offset
2617 * into the buffer, and may leave 0 bytes at the start.
2619 * "buflen" should be positive.
2621 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2623 char *res
= buf
+ buflen
;
2629 * We have various synthetic filesystems that never get mounted. On
2630 * these filesystems dentries are never used for lookup purposes, and
2631 * thus don't need to be hashed. They also don't need a name until a
2632 * user wants to identify the object in /proc/pid/fd/. The little hack
2633 * below allows us to generate a name for these objects on demand:
2635 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2636 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2638 get_fs_root(current
->fs
, &root
);
2639 write_seqlock(&rename_lock
);
2641 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2643 res
= ERR_PTR(error
);
2644 write_sequnlock(&rename_lock
);
2648 EXPORT_SYMBOL(d_path
);
2651 * d_path_with_unreachable - return the path of a dentry
2652 * @path: path to report
2653 * @buf: buffer to return value in
2654 * @buflen: buffer length
2656 * The difference from d_path() is that this prepends "(unreachable)"
2657 * to paths which are unreachable from the current process' root.
2659 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2661 char *res
= buf
+ buflen
;
2666 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2667 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2669 get_fs_root(current
->fs
, &root
);
2670 write_seqlock(&rename_lock
);
2672 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2673 if (!error
&& !path_equal(&tmp
, &root
))
2674 error
= prepend_unreachable(&res
, &buflen
);
2675 write_sequnlock(&rename_lock
);
2678 res
= ERR_PTR(error
);
2684 * Helper function for dentry_operations.d_dname() members
2686 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2687 const char *fmt
, ...)
2693 va_start(args
, fmt
);
2694 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2697 if (sz
> sizeof(temp
) || sz
> buflen
)
2698 return ERR_PTR(-ENAMETOOLONG
);
2700 buffer
+= buflen
- sz
;
2701 return memcpy(buffer
, temp
, sz
);
2705 * Write full pathname from the root of the filesystem into the buffer.
2707 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2709 char *end
= buf
+ buflen
;
2712 prepend(&end
, &buflen
, "\0", 1);
2719 while (!IS_ROOT(dentry
)) {
2720 struct dentry
*parent
= dentry
->d_parent
;
2724 spin_lock(&dentry
->d_lock
);
2725 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2726 spin_unlock(&dentry
->d_lock
);
2727 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2735 return ERR_PTR(-ENAMETOOLONG
);
2738 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2742 write_seqlock(&rename_lock
);
2743 retval
= __dentry_path(dentry
, buf
, buflen
);
2744 write_sequnlock(&rename_lock
);
2748 EXPORT_SYMBOL(dentry_path_raw
);
2750 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2755 write_seqlock(&rename_lock
);
2756 if (d_unlinked(dentry
)) {
2758 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2762 retval
= __dentry_path(dentry
, buf
, buflen
);
2763 write_sequnlock(&rename_lock
);
2764 if (!IS_ERR(retval
) && p
)
2765 *p
= '/'; /* restore '/' overriden with '\0' */
2768 return ERR_PTR(-ENAMETOOLONG
);
2772 * NOTE! The user-level library version returns a
2773 * character pointer. The kernel system call just
2774 * returns the length of the buffer filled (which
2775 * includes the ending '\0' character), or a negative
2776 * error value. So libc would do something like
2778 * char *getcwd(char * buf, size_t size)
2782 * retval = sys_getcwd(buf, size);
2789 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2792 struct path pwd
, root
;
2793 char *page
= (char *) __get_free_page(GFP_USER
);
2798 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2801 write_seqlock(&rename_lock
);
2802 if (!d_unlinked(pwd
.dentry
)) {
2804 struct path tmp
= root
;
2805 char *cwd
= page
+ PAGE_SIZE
;
2806 int buflen
= PAGE_SIZE
;
2808 prepend(&cwd
, &buflen
, "\0", 1);
2809 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2810 write_sequnlock(&rename_lock
);
2815 /* Unreachable from current root */
2816 if (!path_equal(&tmp
, &root
)) {
2817 error
= prepend_unreachable(&cwd
, &buflen
);
2823 len
= PAGE_SIZE
+ page
- cwd
;
2826 if (copy_to_user(buf
, cwd
, len
))
2830 write_sequnlock(&rename_lock
);
2836 free_page((unsigned long) page
);
2841 * Test whether new_dentry is a subdirectory of old_dentry.
2843 * Trivially implemented using the dcache structure
2847 * is_subdir - is new dentry a subdirectory of old_dentry
2848 * @new_dentry: new dentry
2849 * @old_dentry: old dentry
2851 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2852 * Returns 0 otherwise.
2853 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2856 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2861 if (new_dentry
== old_dentry
)
2865 /* for restarting inner loop in case of seq retry */
2866 seq
= read_seqbegin(&rename_lock
);
2868 * Need rcu_readlock to protect against the d_parent trashing
2872 if (d_ancestor(old_dentry
, new_dentry
))
2877 } while (read_seqretry(&rename_lock
, seq
));
2882 int path_is_under(struct path
*path1
, struct path
*path2
)
2884 struct vfsmount
*mnt
= path1
->mnt
;
2885 struct dentry
*dentry
= path1
->dentry
;
2888 br_read_lock(vfsmount_lock
);
2889 if (mnt
!= path2
->mnt
) {
2891 if (mnt
->mnt_parent
== mnt
) {
2892 br_read_unlock(vfsmount_lock
);
2895 if (mnt
->mnt_parent
== path2
->mnt
)
2897 mnt
= mnt
->mnt_parent
;
2899 dentry
= mnt
->mnt_mountpoint
;
2901 res
= is_subdir(dentry
, path2
->dentry
);
2902 br_read_unlock(vfsmount_lock
);
2905 EXPORT_SYMBOL(path_is_under
);
2907 void d_genocide(struct dentry
*root
)
2909 struct dentry
*this_parent
;
2910 struct list_head
*next
;
2914 seq
= read_seqbegin(&rename_lock
);
2917 spin_lock(&this_parent
->d_lock
);
2919 next
= this_parent
->d_subdirs
.next
;
2921 while (next
!= &this_parent
->d_subdirs
) {
2922 struct list_head
*tmp
= next
;
2923 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2926 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2927 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2928 spin_unlock(&dentry
->d_lock
);
2931 if (!list_empty(&dentry
->d_subdirs
)) {
2932 spin_unlock(&this_parent
->d_lock
);
2933 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2934 this_parent
= dentry
;
2935 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2938 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2939 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2942 spin_unlock(&dentry
->d_lock
);
2944 if (this_parent
!= root
) {
2946 struct dentry
*child
;
2948 tmp
= this_parent
->d_parent
;
2949 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2950 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2951 this_parent
->d_count
--;
2954 spin_unlock(&this_parent
->d_lock
);
2955 child
= this_parent
;
2957 spin_lock(&this_parent
->d_lock
);
2958 /* might go back up the wrong parent if we have had a rename
2960 if (this_parent
!= child
->d_parent
||
2961 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
2962 spin_unlock(&this_parent
->d_lock
);
2967 next
= child
->d_u
.d_child
.next
;
2970 spin_unlock(&this_parent
->d_lock
);
2971 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2974 write_sequnlock(&rename_lock
);
2979 write_seqlock(&rename_lock
);
2984 * find_inode_number - check for dentry with name
2985 * @dir: directory to check
2986 * @name: Name to find.
2988 * Check whether a dentry already exists for the given name,
2989 * and return the inode number if it has an inode. Otherwise
2992 * This routine is used to post-process directory listings for
2993 * filesystems using synthetic inode numbers, and is necessary
2994 * to keep getcwd() working.
2997 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2999 struct dentry
* dentry
;
3002 dentry
= d_hash_and_lookup(dir
, name
);
3004 if (dentry
->d_inode
)
3005 ino
= dentry
->d_inode
->i_ino
;
3010 EXPORT_SYMBOL(find_inode_number
);
3012 static __initdata
unsigned long dhash_entries
;
3013 static int __init
set_dhash_entries(char *str
)
3017 dhash_entries
= simple_strtoul(str
, &str
, 0);
3020 __setup("dhash_entries=", set_dhash_entries
);
3022 static void __init
dcache_init_early(void)
3026 /* If hashes are distributed across NUMA nodes, defer
3027 * hash allocation until vmalloc space is available.
3033 alloc_large_system_hash("Dentry cache",
3034 sizeof(struct dcache_hash_bucket
),
3042 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3043 INIT_HLIST_BL_HEAD(&dentry_hashtable
[loop
].head
);
3046 static void __init
dcache_init(void)
3051 * A constructor could be added for stable state like the lists,
3052 * but it is probably not worth it because of the cache nature
3055 dentry_cache
= KMEM_CACHE(dentry
,
3056 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3058 register_shrinker(&dcache_shrinker
);
3060 /* Hash may have been set up in dcache_init_early */
3065 alloc_large_system_hash("Dentry cache",
3066 sizeof(struct dcache_hash_bucket
),
3074 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3075 INIT_HLIST_BL_HEAD(&dentry_hashtable
[loop
].head
);
3078 /* SLAB cache for __getname() consumers */
3079 struct kmem_cache
*names_cachep __read_mostly
;
3080 EXPORT_SYMBOL(names_cachep
);
3082 EXPORT_SYMBOL(d_genocide
);
3084 void __init
vfs_caches_init_early(void)
3086 dcache_init_early();
3090 void __init
vfs_caches_init(unsigned long mempages
)
3092 unsigned long reserve
;
3094 /* Base hash sizes on available memory, with a reserve equal to
3095 150% of current kernel size */
3097 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3098 mempages
-= reserve
;
3100 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3101 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3105 files_init(mempages
);