[CIFS] fix regression in cifs_write_begin/cifs_write_end
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / mon / mon_bin.c
blobe06810aef2dfedbec54f8b232b4219d79fba5536
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
20 #include <asm/uaccess.h>
22 #include "usb_mon.h"
25 * Defined by USB 2.0 clause 9.3, table 9.2.
27 #define SETUP_LEN 8
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 #ifdef CONFIG_COMPAT
41 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
42 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
43 #endif
46 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
47 * But it's all right. Just use a simple way to make sure the chunk is never
48 * smaller than a page.
50 * N.B. An application does not know our chunk size.
52 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
53 * page-sized chunks for the time being.
55 #define CHUNK_SIZE PAGE_SIZE
56 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
59 * The magic limit was calculated so that it allows the monitoring
60 * application to pick data once in two ticks. This way, another application,
61 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
62 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
63 * enormous overhead built into the bus protocol, so we need about 1000 KB.
65 * This is still too much for most cases, where we just snoop a few
66 * descriptor fetches for enumeration. So, the default is a "reasonable"
67 * amount for systems with HZ=250 and incomplete bus saturation.
69 * XXX What about multi-megabyte URBs which take minutes to transfer?
71 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
72 #define BUFF_DFL CHUNK_ALIGN(300*1024)
73 #define BUFF_MIN CHUNK_ALIGN(8*1024)
76 * The per-event API header (2 per URB).
78 * This structure is seen in userland as defined by the documentation.
80 struct mon_bin_hdr {
81 u64 id; /* URB ID - from submission to callback */
82 unsigned char type; /* Same as in text API; extensible. */
83 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
84 unsigned char epnum; /* Endpoint number and transfer direction */
85 unsigned char devnum; /* Device address */
86 unsigned short busnum; /* Bus number */
87 char flag_setup;
88 char flag_data;
89 s64 ts_sec; /* gettimeofday */
90 s32 ts_usec; /* gettimeofday */
91 int status;
92 unsigned int len_urb; /* Length of data (submitted or actual) */
93 unsigned int len_cap; /* Delivered length */
94 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
97 /* per file statistic */
98 struct mon_bin_stats {
99 u32 queued;
100 u32 dropped;
103 struct mon_bin_get {
104 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
105 void __user *data;
106 size_t alloc; /* Length of data (can be zero) */
109 struct mon_bin_mfetch {
110 u32 __user *offvec; /* Vector of events fetched */
111 u32 nfetch; /* Number of events to fetch (out: fetched) */
112 u32 nflush; /* Number of events to flush */
115 #ifdef CONFIG_COMPAT
116 struct mon_bin_get32 {
117 u32 hdr32;
118 u32 data32;
119 u32 alloc32;
122 struct mon_bin_mfetch32 {
123 u32 offvec32;
124 u32 nfetch32;
125 u32 nflush32;
127 #endif
129 /* Having these two values same prevents wrapping of the mon_bin_hdr */
130 #define PKT_ALIGN 64
131 #define PKT_SIZE 64
133 /* max number of USB bus supported */
134 #define MON_BIN_MAX_MINOR 128
137 * The buffer: map of used pages.
139 struct mon_pgmap {
140 struct page *pg;
141 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
145 * This gets associated with an open file struct.
147 struct mon_reader_bin {
148 /* The buffer: one per open. */
149 spinlock_t b_lock; /* Protect b_cnt, b_in */
150 unsigned int b_size; /* Current size of the buffer - bytes */
151 unsigned int b_cnt; /* Bytes used */
152 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
153 unsigned int b_read; /* Amount of read data in curr. pkt. */
154 struct mon_pgmap *b_vec; /* The map array */
155 wait_queue_head_t b_wait; /* Wait for data here */
157 struct mutex fetch_lock; /* Protect b_read, b_out */
158 int mmap_active;
160 /* A list of these is needed for "bus 0". Some time later. */
161 struct mon_reader r;
163 /* Stats */
164 unsigned int cnt_lost;
167 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
168 unsigned int offset)
170 return (struct mon_bin_hdr *)
171 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
174 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
176 static unsigned char xfer_to_pipe[4] = {
177 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
180 static struct class *mon_bin_class;
181 static dev_t mon_bin_dev0;
182 static struct cdev mon_bin_cdev;
184 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
185 unsigned int offset, unsigned int size);
186 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
187 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
188 static void mon_free_buff(struct mon_pgmap *map, int npages);
191 * This is a "chunked memcpy". It does not manipulate any counters.
192 * But it returns the new offset for repeated application.
194 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
195 unsigned int off, const unsigned char *from, unsigned int length)
197 unsigned int step_len;
198 unsigned char *buf;
199 unsigned int in_page;
201 while (length) {
203 * Determine step_len.
205 step_len = length;
206 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
207 if (in_page < step_len)
208 step_len = in_page;
211 * Copy data and advance pointers.
213 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
214 memcpy(buf, from, step_len);
215 if ((off += step_len) >= this->b_size) off = 0;
216 from += step_len;
217 length -= step_len;
219 return off;
223 * This is a little worse than the above because it's "chunked copy_to_user".
224 * The return value is an error code, not an offset.
226 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
227 char __user *to, int length)
229 unsigned int step_len;
230 unsigned char *buf;
231 unsigned int in_page;
233 while (length) {
235 * Determine step_len.
237 step_len = length;
238 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
239 if (in_page < step_len)
240 step_len = in_page;
243 * Copy data and advance pointers.
245 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
246 if (copy_to_user(to, buf, step_len))
247 return -EINVAL;
248 if ((off += step_len) >= this->b_size) off = 0;
249 to += step_len;
250 length -= step_len;
252 return 0;
256 * Allocate an (aligned) area in the buffer.
257 * This is called under b_lock.
258 * Returns ~0 on failure.
260 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
261 unsigned int size)
263 unsigned int offset;
265 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
266 if (rp->b_cnt + size > rp->b_size)
267 return ~0;
268 offset = rp->b_in;
269 rp->b_cnt += size;
270 if ((rp->b_in += size) >= rp->b_size)
271 rp->b_in -= rp->b_size;
272 return offset;
276 * This is the same thing as mon_buff_area_alloc, only it does not allow
277 * buffers to wrap. This is needed by applications which pass references
278 * into mmap-ed buffers up their stacks (libpcap can do that).
280 * Currently, we always have the header stuck with the data, although
281 * it is not strictly speaking necessary.
283 * When a buffer would wrap, we place a filler packet to mark the space.
285 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
286 unsigned int size)
288 unsigned int offset;
289 unsigned int fill_size;
291 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
292 if (rp->b_cnt + size > rp->b_size)
293 return ~0;
294 if (rp->b_in + size > rp->b_size) {
296 * This would wrap. Find if we still have space after
297 * skipping to the end of the buffer. If we do, place
298 * a filler packet and allocate a new packet.
300 fill_size = rp->b_size - rp->b_in;
301 if (rp->b_cnt + size + fill_size > rp->b_size)
302 return ~0;
303 mon_buff_area_fill(rp, rp->b_in, fill_size);
305 offset = 0;
306 rp->b_in = size;
307 rp->b_cnt += size + fill_size;
308 } else if (rp->b_in + size == rp->b_size) {
309 offset = rp->b_in;
310 rp->b_in = 0;
311 rp->b_cnt += size;
312 } else {
313 offset = rp->b_in;
314 rp->b_in += size;
315 rp->b_cnt += size;
317 return offset;
321 * Return a few (kilo-)bytes to the head of the buffer.
322 * This is used if a DMA fetch fails.
324 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
327 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
328 rp->b_cnt -= size;
329 if (rp->b_in < size)
330 rp->b_in += rp->b_size;
331 rp->b_in -= size;
335 * This has to be called under both b_lock and fetch_lock, because
336 * it accesses both b_cnt and b_out.
338 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
341 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
342 rp->b_cnt -= size;
343 if ((rp->b_out += size) >= rp->b_size)
344 rp->b_out -= rp->b_size;
347 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
348 unsigned int offset, unsigned int size)
350 struct mon_bin_hdr *ep;
352 ep = MON_OFF2HDR(rp, offset);
353 memset(ep, 0, PKT_SIZE);
354 ep->type = '@';
355 ep->len_cap = size - PKT_SIZE;
358 static inline char mon_bin_get_setup(unsigned char *setupb,
359 const struct urb *urb, char ev_type)
362 if (!usb_endpoint_xfer_control(&urb->ep->desc) || ev_type != 'S')
363 return '-';
365 if (urb->setup_packet == NULL)
366 return 'Z';
368 memcpy(setupb, urb->setup_packet, SETUP_LEN);
369 return 0;
372 static char mon_bin_get_data(const struct mon_reader_bin *rp,
373 unsigned int offset, struct urb *urb, unsigned int length)
376 if (urb->dev->bus->uses_dma &&
377 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
378 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
379 return 0;
382 if (urb->transfer_buffer == NULL)
383 return 'Z';
385 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
386 return 0;
389 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
390 char ev_type, int status)
392 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
393 unsigned long flags;
394 struct timeval ts;
395 unsigned int urb_length;
396 unsigned int offset;
397 unsigned int length;
398 unsigned char dir;
399 struct mon_bin_hdr *ep;
400 char data_tag = 0;
402 do_gettimeofday(&ts);
404 spin_lock_irqsave(&rp->b_lock, flags);
407 * Find the maximum allowable length, then allocate space.
409 urb_length = (ev_type == 'S') ?
410 urb->transfer_buffer_length : urb->actual_length;
411 length = urb_length;
413 if (length >= rp->b_size/5)
414 length = rp->b_size/5;
416 if (usb_urb_dir_in(urb)) {
417 if (ev_type == 'S') {
418 length = 0;
419 data_tag = '<';
421 /* Cannot rely on endpoint number in case of control ep.0 */
422 dir = USB_DIR_IN;
423 } else {
424 if (ev_type == 'C') {
425 length = 0;
426 data_tag = '>';
428 dir = 0;
431 if (rp->mmap_active)
432 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
433 else
434 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
435 if (offset == ~0) {
436 rp->cnt_lost++;
437 spin_unlock_irqrestore(&rp->b_lock, flags);
438 return;
441 ep = MON_OFF2HDR(rp, offset);
442 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
445 * Fill the allocated area.
447 memset(ep, 0, PKT_SIZE);
448 ep->type = ev_type;
449 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
450 ep->epnum = dir | usb_endpoint_num(epd);
451 ep->devnum = urb->dev->devnum;
452 ep->busnum = urb->dev->bus->busnum;
453 ep->id = (unsigned long) urb;
454 ep->ts_sec = ts.tv_sec;
455 ep->ts_usec = ts.tv_usec;
456 ep->status = status;
457 ep->len_urb = urb_length;
458 ep->len_cap = length;
460 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
461 if (length != 0) {
462 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
463 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
464 ep->len_cap = 0;
465 mon_buff_area_shrink(rp, length);
467 } else {
468 ep->flag_data = data_tag;
471 spin_unlock_irqrestore(&rp->b_lock, flags);
473 wake_up(&rp->b_wait);
476 static void mon_bin_submit(void *data, struct urb *urb)
478 struct mon_reader_bin *rp = data;
479 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
482 static void mon_bin_complete(void *data, struct urb *urb, int status)
484 struct mon_reader_bin *rp = data;
485 mon_bin_event(rp, urb, 'C', status);
488 static void mon_bin_error(void *data, struct urb *urb, int error)
490 struct mon_reader_bin *rp = data;
491 unsigned long flags;
492 unsigned int offset;
493 struct mon_bin_hdr *ep;
495 spin_lock_irqsave(&rp->b_lock, flags);
497 offset = mon_buff_area_alloc(rp, PKT_SIZE);
498 if (offset == ~0) {
499 /* Not incrementing cnt_lost. Just because. */
500 spin_unlock_irqrestore(&rp->b_lock, flags);
501 return;
504 ep = MON_OFF2HDR(rp, offset);
506 memset(ep, 0, PKT_SIZE);
507 ep->type = 'E';
508 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
509 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
510 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
511 ep->devnum = urb->dev->devnum;
512 ep->busnum = urb->dev->bus->busnum;
513 ep->id = (unsigned long) urb;
514 ep->status = error;
516 ep->flag_setup = '-';
517 ep->flag_data = 'E';
519 spin_unlock_irqrestore(&rp->b_lock, flags);
521 wake_up(&rp->b_wait);
524 static int mon_bin_open(struct inode *inode, struct file *file)
526 struct mon_bus *mbus;
527 struct mon_reader_bin *rp;
528 size_t size;
529 int rc;
531 lock_kernel();
532 mutex_lock(&mon_lock);
533 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
534 mutex_unlock(&mon_lock);
535 unlock_kernel();
536 return -ENODEV;
538 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
539 printk(KERN_ERR TAG ": consistency error on open\n");
540 mutex_unlock(&mon_lock);
541 unlock_kernel();
542 return -ENODEV;
545 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
546 if (rp == NULL) {
547 rc = -ENOMEM;
548 goto err_alloc;
550 spin_lock_init(&rp->b_lock);
551 init_waitqueue_head(&rp->b_wait);
552 mutex_init(&rp->fetch_lock);
554 rp->b_size = BUFF_DFL;
556 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
557 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
558 rc = -ENOMEM;
559 goto err_allocvec;
562 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
563 goto err_allocbuff;
565 rp->r.m_bus = mbus;
566 rp->r.r_data = rp;
567 rp->r.rnf_submit = mon_bin_submit;
568 rp->r.rnf_error = mon_bin_error;
569 rp->r.rnf_complete = mon_bin_complete;
571 mon_reader_add(mbus, &rp->r);
573 file->private_data = rp;
574 mutex_unlock(&mon_lock);
575 unlock_kernel();
576 return 0;
578 err_allocbuff:
579 kfree(rp->b_vec);
580 err_allocvec:
581 kfree(rp);
582 err_alloc:
583 mutex_unlock(&mon_lock);
584 unlock_kernel();
585 return rc;
589 * Extract an event from buffer and copy it to user space.
590 * Wait if there is no event ready.
591 * Returns zero or error.
593 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
594 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
596 unsigned long flags;
597 struct mon_bin_hdr *ep;
598 size_t step_len;
599 unsigned int offset;
600 int rc;
602 mutex_lock(&rp->fetch_lock);
604 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
605 mutex_unlock(&rp->fetch_lock);
606 return rc;
609 ep = MON_OFF2HDR(rp, rp->b_out);
611 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
612 mutex_unlock(&rp->fetch_lock);
613 return -EFAULT;
616 step_len = min(ep->len_cap, nbytes);
617 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
619 if (copy_from_buf(rp, offset, data, step_len)) {
620 mutex_unlock(&rp->fetch_lock);
621 return -EFAULT;
624 spin_lock_irqsave(&rp->b_lock, flags);
625 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
626 spin_unlock_irqrestore(&rp->b_lock, flags);
627 rp->b_read = 0;
629 mutex_unlock(&rp->fetch_lock);
630 return 0;
633 static int mon_bin_release(struct inode *inode, struct file *file)
635 struct mon_reader_bin *rp = file->private_data;
636 struct mon_bus* mbus = rp->r.m_bus;
638 mutex_lock(&mon_lock);
640 if (mbus->nreaders <= 0) {
641 printk(KERN_ERR TAG ": consistency error on close\n");
642 mutex_unlock(&mon_lock);
643 return 0;
645 mon_reader_del(mbus, &rp->r);
647 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
648 kfree(rp->b_vec);
649 kfree(rp);
651 mutex_unlock(&mon_lock);
652 return 0;
655 static ssize_t mon_bin_read(struct file *file, char __user *buf,
656 size_t nbytes, loff_t *ppos)
658 struct mon_reader_bin *rp = file->private_data;
659 unsigned long flags;
660 struct mon_bin_hdr *ep;
661 unsigned int offset;
662 size_t step_len;
663 char *ptr;
664 ssize_t done = 0;
665 int rc;
667 mutex_lock(&rp->fetch_lock);
669 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
670 mutex_unlock(&rp->fetch_lock);
671 return rc;
674 ep = MON_OFF2HDR(rp, rp->b_out);
676 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
677 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
678 ptr = ((char *)ep) + rp->b_read;
679 if (step_len && copy_to_user(buf, ptr, step_len)) {
680 mutex_unlock(&rp->fetch_lock);
681 return -EFAULT;
683 nbytes -= step_len;
684 buf += step_len;
685 rp->b_read += step_len;
686 done += step_len;
689 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
690 step_len = ep->len_cap;
691 step_len -= rp->b_read - sizeof(struct mon_bin_hdr);
692 if (step_len > nbytes)
693 step_len = nbytes;
694 offset = rp->b_out + PKT_SIZE;
695 offset += rp->b_read - sizeof(struct mon_bin_hdr);
696 if (offset >= rp->b_size)
697 offset -= rp->b_size;
698 if (copy_from_buf(rp, offset, buf, step_len)) {
699 mutex_unlock(&rp->fetch_lock);
700 return -EFAULT;
702 nbytes -= step_len;
703 buf += step_len;
704 rp->b_read += step_len;
705 done += step_len;
709 * Check if whole packet was read, and if so, jump to the next one.
711 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
712 spin_lock_irqsave(&rp->b_lock, flags);
713 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
714 spin_unlock_irqrestore(&rp->b_lock, flags);
715 rp->b_read = 0;
718 mutex_unlock(&rp->fetch_lock);
719 return done;
723 * Remove at most nevents from chunked buffer.
724 * Returns the number of removed events.
726 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
728 unsigned long flags;
729 struct mon_bin_hdr *ep;
730 int i;
732 mutex_lock(&rp->fetch_lock);
733 spin_lock_irqsave(&rp->b_lock, flags);
734 for (i = 0; i < nevents; ++i) {
735 if (MON_RING_EMPTY(rp))
736 break;
738 ep = MON_OFF2HDR(rp, rp->b_out);
739 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
741 spin_unlock_irqrestore(&rp->b_lock, flags);
742 rp->b_read = 0;
743 mutex_unlock(&rp->fetch_lock);
744 return i;
748 * Fetch at most max event offsets into the buffer and put them into vec.
749 * The events are usually freed later with mon_bin_flush.
750 * Return the effective number of events fetched.
752 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
753 u32 __user *vec, unsigned int max)
755 unsigned int cur_out;
756 unsigned int bytes, avail;
757 unsigned int size;
758 unsigned int nevents;
759 struct mon_bin_hdr *ep;
760 unsigned long flags;
761 int rc;
763 mutex_lock(&rp->fetch_lock);
765 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
766 mutex_unlock(&rp->fetch_lock);
767 return rc;
770 spin_lock_irqsave(&rp->b_lock, flags);
771 avail = rp->b_cnt;
772 spin_unlock_irqrestore(&rp->b_lock, flags);
774 cur_out = rp->b_out;
775 nevents = 0;
776 bytes = 0;
777 while (bytes < avail) {
778 if (nevents >= max)
779 break;
781 ep = MON_OFF2HDR(rp, cur_out);
782 if (put_user(cur_out, &vec[nevents])) {
783 mutex_unlock(&rp->fetch_lock);
784 return -EFAULT;
787 nevents++;
788 size = ep->len_cap + PKT_SIZE;
789 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
790 if ((cur_out += size) >= rp->b_size)
791 cur_out -= rp->b_size;
792 bytes += size;
795 mutex_unlock(&rp->fetch_lock);
796 return nevents;
800 * Count events. This is almost the same as the above mon_bin_fetch,
801 * only we do not store offsets into user vector, and we have no limit.
803 static int mon_bin_queued(struct mon_reader_bin *rp)
805 unsigned int cur_out;
806 unsigned int bytes, avail;
807 unsigned int size;
808 unsigned int nevents;
809 struct mon_bin_hdr *ep;
810 unsigned long flags;
812 mutex_lock(&rp->fetch_lock);
814 spin_lock_irqsave(&rp->b_lock, flags);
815 avail = rp->b_cnt;
816 spin_unlock_irqrestore(&rp->b_lock, flags);
818 cur_out = rp->b_out;
819 nevents = 0;
820 bytes = 0;
821 while (bytes < avail) {
822 ep = MON_OFF2HDR(rp, cur_out);
824 nevents++;
825 size = ep->len_cap + PKT_SIZE;
826 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
827 if ((cur_out += size) >= rp->b_size)
828 cur_out -= rp->b_size;
829 bytes += size;
832 mutex_unlock(&rp->fetch_lock);
833 return nevents;
838 static int mon_bin_ioctl(struct inode *inode, struct file *file,
839 unsigned int cmd, unsigned long arg)
841 struct mon_reader_bin *rp = file->private_data;
842 // struct mon_bus* mbus = rp->r.m_bus;
843 int ret = 0;
844 struct mon_bin_hdr *ep;
845 unsigned long flags;
847 switch (cmd) {
849 case MON_IOCQ_URB_LEN:
851 * N.B. This only returns the size of data, without the header.
853 spin_lock_irqsave(&rp->b_lock, flags);
854 if (!MON_RING_EMPTY(rp)) {
855 ep = MON_OFF2HDR(rp, rp->b_out);
856 ret = ep->len_cap;
858 spin_unlock_irqrestore(&rp->b_lock, flags);
859 break;
861 case MON_IOCQ_RING_SIZE:
862 ret = rp->b_size;
863 break;
865 case MON_IOCT_RING_SIZE:
867 * Changing the buffer size will flush it's contents; the new
868 * buffer is allocated before releasing the old one to be sure
869 * the device will stay functional also in case of memory
870 * pressure.
873 int size;
874 struct mon_pgmap *vec;
876 if (arg < BUFF_MIN || arg > BUFF_MAX)
877 return -EINVAL;
879 size = CHUNK_ALIGN(arg);
880 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
881 GFP_KERNEL)) == NULL) {
882 ret = -ENOMEM;
883 break;
886 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
887 if (ret < 0) {
888 kfree(vec);
889 break;
892 mutex_lock(&rp->fetch_lock);
893 spin_lock_irqsave(&rp->b_lock, flags);
894 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
895 kfree(rp->b_vec);
896 rp->b_vec = vec;
897 rp->b_size = size;
898 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
899 rp->cnt_lost = 0;
900 spin_unlock_irqrestore(&rp->b_lock, flags);
901 mutex_unlock(&rp->fetch_lock);
903 break;
905 case MON_IOCH_MFLUSH:
906 ret = mon_bin_flush(rp, arg);
907 break;
909 case MON_IOCX_GET:
911 struct mon_bin_get getb;
913 if (copy_from_user(&getb, (void __user *)arg,
914 sizeof(struct mon_bin_get)))
915 return -EFAULT;
917 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
918 return -EINVAL;
919 ret = mon_bin_get_event(file, rp,
920 getb.hdr, getb.data, (unsigned int)getb.alloc);
922 break;
924 #ifdef CONFIG_COMPAT
925 case MON_IOCX_GET32: {
926 struct mon_bin_get32 getb;
928 if (copy_from_user(&getb, (void __user *)arg,
929 sizeof(struct mon_bin_get32)))
930 return -EFAULT;
932 ret = mon_bin_get_event(file, rp,
933 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
934 getb.alloc32);
936 break;
937 #endif
939 case MON_IOCX_MFETCH:
941 struct mon_bin_mfetch mfetch;
942 struct mon_bin_mfetch __user *uptr;
944 uptr = (struct mon_bin_mfetch __user *)arg;
946 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
947 return -EFAULT;
949 if (mfetch.nflush) {
950 ret = mon_bin_flush(rp, mfetch.nflush);
951 if (ret < 0)
952 return ret;
953 if (put_user(ret, &uptr->nflush))
954 return -EFAULT;
956 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
957 if (ret < 0)
958 return ret;
959 if (put_user(ret, &uptr->nfetch))
960 return -EFAULT;
961 ret = 0;
963 break;
965 #ifdef CONFIG_COMPAT
966 case MON_IOCX_MFETCH32:
968 struct mon_bin_mfetch32 mfetch;
969 struct mon_bin_mfetch32 __user *uptr;
971 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
973 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
974 return -EFAULT;
976 if (mfetch.nflush32) {
977 ret = mon_bin_flush(rp, mfetch.nflush32);
978 if (ret < 0)
979 return ret;
980 if (put_user(ret, &uptr->nflush32))
981 return -EFAULT;
983 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
984 mfetch.nfetch32);
985 if (ret < 0)
986 return ret;
987 if (put_user(ret, &uptr->nfetch32))
988 return -EFAULT;
989 ret = 0;
991 break;
992 #endif
994 case MON_IOCG_STATS: {
995 struct mon_bin_stats __user *sp;
996 unsigned int nevents;
997 unsigned int ndropped;
999 spin_lock_irqsave(&rp->b_lock, flags);
1000 ndropped = rp->cnt_lost;
1001 rp->cnt_lost = 0;
1002 spin_unlock_irqrestore(&rp->b_lock, flags);
1003 nevents = mon_bin_queued(rp);
1005 sp = (struct mon_bin_stats __user *)arg;
1006 if (put_user(rp->cnt_lost, &sp->dropped))
1007 return -EFAULT;
1008 if (put_user(nevents, &sp->queued))
1009 return -EFAULT;
1012 break;
1014 default:
1015 return -ENOTTY;
1018 return ret;
1021 static unsigned int
1022 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1024 struct mon_reader_bin *rp = file->private_data;
1025 unsigned int mask = 0;
1026 unsigned long flags;
1028 if (file->f_mode & FMODE_READ)
1029 poll_wait(file, &rp->b_wait, wait);
1031 spin_lock_irqsave(&rp->b_lock, flags);
1032 if (!MON_RING_EMPTY(rp))
1033 mask |= POLLIN | POLLRDNORM; /* readable */
1034 spin_unlock_irqrestore(&rp->b_lock, flags);
1035 return mask;
1039 * open and close: just keep track of how many times the device is
1040 * mapped, to use the proper memory allocation function.
1042 static void mon_bin_vma_open(struct vm_area_struct *vma)
1044 struct mon_reader_bin *rp = vma->vm_private_data;
1045 rp->mmap_active++;
1048 static void mon_bin_vma_close(struct vm_area_struct *vma)
1050 struct mon_reader_bin *rp = vma->vm_private_data;
1051 rp->mmap_active--;
1055 * Map ring pages to user space.
1057 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1059 struct mon_reader_bin *rp = vma->vm_private_data;
1060 unsigned long offset, chunk_idx;
1061 struct page *pageptr;
1063 offset = vmf->pgoff << PAGE_SHIFT;
1064 if (offset >= rp->b_size)
1065 return VM_FAULT_SIGBUS;
1066 chunk_idx = offset / CHUNK_SIZE;
1067 pageptr = rp->b_vec[chunk_idx].pg;
1068 get_page(pageptr);
1069 vmf->page = pageptr;
1070 return 0;
1073 static struct vm_operations_struct mon_bin_vm_ops = {
1074 .open = mon_bin_vma_open,
1075 .close = mon_bin_vma_close,
1076 .fault = mon_bin_vma_fault,
1079 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1081 /* don't do anything here: "fault" will set up page table entries */
1082 vma->vm_ops = &mon_bin_vm_ops;
1083 vma->vm_flags |= VM_RESERVED;
1084 vma->vm_private_data = filp->private_data;
1085 mon_bin_vma_open(vma);
1086 return 0;
1089 static const struct file_operations mon_fops_binary = {
1090 .owner = THIS_MODULE,
1091 .open = mon_bin_open,
1092 .llseek = no_llseek,
1093 .read = mon_bin_read,
1094 /* .write = mon_text_write, */
1095 .poll = mon_bin_poll,
1096 .ioctl = mon_bin_ioctl,
1097 .release = mon_bin_release,
1098 .mmap = mon_bin_mmap,
1101 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1103 DECLARE_WAITQUEUE(waita, current);
1104 unsigned long flags;
1106 add_wait_queue(&rp->b_wait, &waita);
1107 set_current_state(TASK_INTERRUPTIBLE);
1109 spin_lock_irqsave(&rp->b_lock, flags);
1110 while (MON_RING_EMPTY(rp)) {
1111 spin_unlock_irqrestore(&rp->b_lock, flags);
1113 if (file->f_flags & O_NONBLOCK) {
1114 set_current_state(TASK_RUNNING);
1115 remove_wait_queue(&rp->b_wait, &waita);
1116 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1118 schedule();
1119 if (signal_pending(current)) {
1120 remove_wait_queue(&rp->b_wait, &waita);
1121 return -EINTR;
1123 set_current_state(TASK_INTERRUPTIBLE);
1125 spin_lock_irqsave(&rp->b_lock, flags);
1127 spin_unlock_irqrestore(&rp->b_lock, flags);
1129 set_current_state(TASK_RUNNING);
1130 remove_wait_queue(&rp->b_wait, &waita);
1131 return 0;
1134 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1136 int n;
1137 unsigned long vaddr;
1139 for (n = 0; n < npages; n++) {
1140 vaddr = get_zeroed_page(GFP_KERNEL);
1141 if (vaddr == 0) {
1142 while (n-- != 0)
1143 free_page((unsigned long) map[n].ptr);
1144 return -ENOMEM;
1146 map[n].ptr = (unsigned char *) vaddr;
1147 map[n].pg = virt_to_page(vaddr);
1149 return 0;
1152 static void mon_free_buff(struct mon_pgmap *map, int npages)
1154 int n;
1156 for (n = 0; n < npages; n++)
1157 free_page((unsigned long) map[n].ptr);
1160 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1162 struct device *dev;
1163 unsigned minor = ubus? ubus->busnum: 0;
1165 if (minor >= MON_BIN_MAX_MINOR)
1166 return 0;
1168 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1169 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1170 "usbmon%d", minor);
1171 if (IS_ERR(dev))
1172 return 0;
1174 mbus->classdev = dev;
1175 return 1;
1178 void mon_bin_del(struct mon_bus *mbus)
1180 device_destroy(mon_bin_class, mbus->classdev->devt);
1183 int __init mon_bin_init(void)
1185 int rc;
1187 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1188 if (IS_ERR(mon_bin_class)) {
1189 rc = PTR_ERR(mon_bin_class);
1190 goto err_class;
1193 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1194 if (rc < 0)
1195 goto err_dev;
1197 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1198 mon_bin_cdev.owner = THIS_MODULE;
1200 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1201 if (rc < 0)
1202 goto err_add;
1204 return 0;
1206 err_add:
1207 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1208 err_dev:
1209 class_destroy(mon_bin_class);
1210 err_class:
1211 return rc;
1214 void mon_bin_exit(void)
1216 cdev_del(&mon_bin_cdev);
1217 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1218 class_destroy(mon_bin_class);