KVM: Add API for determining the number of supported memory slots
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blobb7c32f63671dabe5254a7cae1ef89fac1a6176be
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
18 #include "segment_descriptor.h"
19 #include "irq.h"
20 #include "mmu.h"
22 #include <linux/clocksource.h>
23 #include <linux/kvm.h>
24 #include <linux/fs.h>
25 #include <linux/vmalloc.h>
26 #include <linux/module.h>
27 #include <linux/mman.h>
28 #include <linux/highmem.h>
30 #include <asm/uaccess.h>
31 #include <asm/msr.h>
33 #define MAX_IO_MSRS 256
34 #define CR0_RESERVED_BITS \
35 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
36 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
37 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
38 #define CR4_RESERVED_BITS \
39 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
40 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
41 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
42 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
44 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
45 /* EFER defaults:
46 * - enable syscall per default because its emulated by KVM
47 * - enable LME and LMA per default on 64 bit KVM
49 #ifdef CONFIG_X86_64
50 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
51 #else
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
53 #endif
55 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
56 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
58 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
59 struct kvm_cpuid_entry2 __user *entries);
61 struct kvm_x86_ops *kvm_x86_ops;
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64 { "pf_fixed", VCPU_STAT(pf_fixed) },
65 { "pf_guest", VCPU_STAT(pf_guest) },
66 { "tlb_flush", VCPU_STAT(tlb_flush) },
67 { "invlpg", VCPU_STAT(invlpg) },
68 { "exits", VCPU_STAT(exits) },
69 { "io_exits", VCPU_STAT(io_exits) },
70 { "mmio_exits", VCPU_STAT(mmio_exits) },
71 { "signal_exits", VCPU_STAT(signal_exits) },
72 { "irq_window", VCPU_STAT(irq_window_exits) },
73 { "halt_exits", VCPU_STAT(halt_exits) },
74 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
75 { "request_irq", VCPU_STAT(request_irq_exits) },
76 { "irq_exits", VCPU_STAT(irq_exits) },
77 { "host_state_reload", VCPU_STAT(host_state_reload) },
78 { "efer_reload", VCPU_STAT(efer_reload) },
79 { "fpu_reload", VCPU_STAT(fpu_reload) },
80 { "insn_emulation", VCPU_STAT(insn_emulation) },
81 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
82 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
83 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
84 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
85 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
86 { "mmu_flooded", VM_STAT(mmu_flooded) },
87 { "mmu_recycled", VM_STAT(mmu_recycled) },
88 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
89 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
90 { NULL }
94 unsigned long segment_base(u16 selector)
96 struct descriptor_table gdt;
97 struct segment_descriptor *d;
98 unsigned long table_base;
99 unsigned long v;
101 if (selector == 0)
102 return 0;
104 asm("sgdt %0" : "=m"(gdt));
105 table_base = gdt.base;
107 if (selector & 4) { /* from ldt */
108 u16 ldt_selector;
110 asm("sldt %0" : "=g"(ldt_selector));
111 table_base = segment_base(ldt_selector);
113 d = (struct segment_descriptor *)(table_base + (selector & ~7));
114 v = d->base_low | ((unsigned long)d->base_mid << 16) |
115 ((unsigned long)d->base_high << 24);
116 #ifdef CONFIG_X86_64
117 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
118 v |= ((unsigned long) \
119 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
120 #endif
121 return v;
123 EXPORT_SYMBOL_GPL(segment_base);
125 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
127 if (irqchip_in_kernel(vcpu->kvm))
128 return vcpu->arch.apic_base;
129 else
130 return vcpu->arch.apic_base;
132 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
134 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
136 /* TODO: reserve bits check */
137 if (irqchip_in_kernel(vcpu->kvm))
138 kvm_lapic_set_base(vcpu, data);
139 else
140 vcpu->arch.apic_base = data;
142 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
144 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
146 WARN_ON(vcpu->arch.exception.pending);
147 vcpu->arch.exception.pending = true;
148 vcpu->arch.exception.has_error_code = false;
149 vcpu->arch.exception.nr = nr;
151 EXPORT_SYMBOL_GPL(kvm_queue_exception);
153 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
154 u32 error_code)
156 ++vcpu->stat.pf_guest;
157 if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
158 printk(KERN_DEBUG "kvm: inject_page_fault:"
159 " double fault 0x%lx\n", addr);
160 vcpu->arch.exception.nr = DF_VECTOR;
161 vcpu->arch.exception.error_code = 0;
162 return;
164 vcpu->arch.cr2 = addr;
165 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
168 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
170 WARN_ON(vcpu->arch.exception.pending);
171 vcpu->arch.exception.pending = true;
172 vcpu->arch.exception.has_error_code = true;
173 vcpu->arch.exception.nr = nr;
174 vcpu->arch.exception.error_code = error_code;
176 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
178 static void __queue_exception(struct kvm_vcpu *vcpu)
180 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
181 vcpu->arch.exception.has_error_code,
182 vcpu->arch.exception.error_code);
186 * Load the pae pdptrs. Return true is they are all valid.
188 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
190 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
191 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
192 int i;
193 int ret;
194 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
196 down_read(&vcpu->kvm->slots_lock);
197 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
198 offset * sizeof(u64), sizeof(pdpte));
199 if (ret < 0) {
200 ret = 0;
201 goto out;
203 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
204 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
205 ret = 0;
206 goto out;
209 ret = 1;
211 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
212 out:
213 up_read(&vcpu->kvm->slots_lock);
215 return ret;
217 EXPORT_SYMBOL_GPL(load_pdptrs);
219 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
221 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
222 bool changed = true;
223 int r;
225 if (is_long_mode(vcpu) || !is_pae(vcpu))
226 return false;
228 down_read(&vcpu->kvm->slots_lock);
229 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
230 if (r < 0)
231 goto out;
232 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
233 out:
234 up_read(&vcpu->kvm->slots_lock);
236 return changed;
239 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
241 if (cr0 & CR0_RESERVED_BITS) {
242 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
243 cr0, vcpu->arch.cr0);
244 kvm_inject_gp(vcpu, 0);
245 return;
248 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
249 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
250 kvm_inject_gp(vcpu, 0);
251 return;
254 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
255 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
256 "and a clear PE flag\n");
257 kvm_inject_gp(vcpu, 0);
258 return;
261 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
262 #ifdef CONFIG_X86_64
263 if ((vcpu->arch.shadow_efer & EFER_LME)) {
264 int cs_db, cs_l;
266 if (!is_pae(vcpu)) {
267 printk(KERN_DEBUG "set_cr0: #GP, start paging "
268 "in long mode while PAE is disabled\n");
269 kvm_inject_gp(vcpu, 0);
270 return;
272 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
273 if (cs_l) {
274 printk(KERN_DEBUG "set_cr0: #GP, start paging "
275 "in long mode while CS.L == 1\n");
276 kvm_inject_gp(vcpu, 0);
277 return;
280 } else
281 #endif
282 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
283 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
284 "reserved bits\n");
285 kvm_inject_gp(vcpu, 0);
286 return;
291 kvm_x86_ops->set_cr0(vcpu, cr0);
292 vcpu->arch.cr0 = cr0;
294 kvm_mmu_reset_context(vcpu);
295 return;
297 EXPORT_SYMBOL_GPL(set_cr0);
299 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
301 set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
303 EXPORT_SYMBOL_GPL(lmsw);
305 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
307 if (cr4 & CR4_RESERVED_BITS) {
308 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
309 kvm_inject_gp(vcpu, 0);
310 return;
313 if (is_long_mode(vcpu)) {
314 if (!(cr4 & X86_CR4_PAE)) {
315 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
316 "in long mode\n");
317 kvm_inject_gp(vcpu, 0);
318 return;
320 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
321 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
322 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
323 kvm_inject_gp(vcpu, 0);
324 return;
327 if (cr4 & X86_CR4_VMXE) {
328 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
329 kvm_inject_gp(vcpu, 0);
330 return;
332 kvm_x86_ops->set_cr4(vcpu, cr4);
333 vcpu->arch.cr4 = cr4;
334 kvm_mmu_reset_context(vcpu);
336 EXPORT_SYMBOL_GPL(set_cr4);
338 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
340 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
341 kvm_mmu_flush_tlb(vcpu);
342 return;
345 if (is_long_mode(vcpu)) {
346 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
347 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
348 kvm_inject_gp(vcpu, 0);
349 return;
351 } else {
352 if (is_pae(vcpu)) {
353 if (cr3 & CR3_PAE_RESERVED_BITS) {
354 printk(KERN_DEBUG
355 "set_cr3: #GP, reserved bits\n");
356 kvm_inject_gp(vcpu, 0);
357 return;
359 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
360 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
361 "reserved bits\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
367 * We don't check reserved bits in nonpae mode, because
368 * this isn't enforced, and VMware depends on this.
372 down_read(&vcpu->kvm->slots_lock);
374 * Does the new cr3 value map to physical memory? (Note, we
375 * catch an invalid cr3 even in real-mode, because it would
376 * cause trouble later on when we turn on paging anyway.)
378 * A real CPU would silently accept an invalid cr3 and would
379 * attempt to use it - with largely undefined (and often hard
380 * to debug) behavior on the guest side.
382 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
383 kvm_inject_gp(vcpu, 0);
384 else {
385 vcpu->arch.cr3 = cr3;
386 vcpu->arch.mmu.new_cr3(vcpu);
388 up_read(&vcpu->kvm->slots_lock);
390 EXPORT_SYMBOL_GPL(set_cr3);
392 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
394 if (cr8 & CR8_RESERVED_BITS) {
395 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
396 kvm_inject_gp(vcpu, 0);
397 return;
399 if (irqchip_in_kernel(vcpu->kvm))
400 kvm_lapic_set_tpr(vcpu, cr8);
401 else
402 vcpu->arch.cr8 = cr8;
404 EXPORT_SYMBOL_GPL(set_cr8);
406 unsigned long get_cr8(struct kvm_vcpu *vcpu)
408 if (irqchip_in_kernel(vcpu->kvm))
409 return kvm_lapic_get_cr8(vcpu);
410 else
411 return vcpu->arch.cr8;
413 EXPORT_SYMBOL_GPL(get_cr8);
416 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
417 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
419 * This list is modified at module load time to reflect the
420 * capabilities of the host cpu.
422 static u32 msrs_to_save[] = {
423 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
424 MSR_K6_STAR,
425 #ifdef CONFIG_X86_64
426 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
427 #endif
428 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
431 static unsigned num_msrs_to_save;
433 static u32 emulated_msrs[] = {
434 MSR_IA32_MISC_ENABLE,
437 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
439 if (efer & efer_reserved_bits) {
440 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
441 efer);
442 kvm_inject_gp(vcpu, 0);
443 return;
446 if (is_paging(vcpu)
447 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
448 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
449 kvm_inject_gp(vcpu, 0);
450 return;
453 kvm_x86_ops->set_efer(vcpu, efer);
455 efer &= ~EFER_LMA;
456 efer |= vcpu->arch.shadow_efer & EFER_LMA;
458 vcpu->arch.shadow_efer = efer;
461 void kvm_enable_efer_bits(u64 mask)
463 efer_reserved_bits &= ~mask;
465 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
469 * Writes msr value into into the appropriate "register".
470 * Returns 0 on success, non-0 otherwise.
471 * Assumes vcpu_load() was already called.
473 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
475 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
479 * Adapt set_msr() to msr_io()'s calling convention
481 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
483 return kvm_set_msr(vcpu, index, *data);
486 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
488 static int version;
489 struct kvm_wall_clock wc;
490 struct timespec wc_ts;
492 if (!wall_clock)
493 return;
495 version++;
497 down_read(&kvm->slots_lock);
498 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
500 wc_ts = current_kernel_time();
501 wc.wc_sec = wc_ts.tv_sec;
502 wc.wc_nsec = wc_ts.tv_nsec;
503 wc.wc_version = version;
505 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
507 version++;
508 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
509 up_read(&kvm->slots_lock);
512 static void kvm_write_guest_time(struct kvm_vcpu *v)
514 struct timespec ts;
515 unsigned long flags;
516 struct kvm_vcpu_arch *vcpu = &v->arch;
517 void *shared_kaddr;
519 if ((!vcpu->time_page))
520 return;
522 /* Keep irq disabled to prevent changes to the clock */
523 local_irq_save(flags);
524 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
525 &vcpu->hv_clock.tsc_timestamp);
526 ktime_get_ts(&ts);
527 local_irq_restore(flags);
529 /* With all the info we got, fill in the values */
531 vcpu->hv_clock.system_time = ts.tv_nsec +
532 (NSEC_PER_SEC * (u64)ts.tv_sec);
534 * The interface expects us to write an even number signaling that the
535 * update is finished. Since the guest won't see the intermediate
536 * state, we just write "2" at the end
538 vcpu->hv_clock.version = 2;
540 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
542 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
543 sizeof(vcpu->hv_clock));
545 kunmap_atomic(shared_kaddr, KM_USER0);
547 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
551 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
553 switch (msr) {
554 case MSR_EFER:
555 set_efer(vcpu, data);
556 break;
557 case MSR_IA32_MC0_STATUS:
558 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
559 __FUNCTION__, data);
560 break;
561 case MSR_IA32_MCG_STATUS:
562 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
563 __FUNCTION__, data);
564 break;
565 case MSR_IA32_MCG_CTL:
566 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
567 __FUNCTION__, data);
568 break;
569 case MSR_IA32_UCODE_REV:
570 case MSR_IA32_UCODE_WRITE:
571 case 0x200 ... 0x2ff: /* MTRRs */
572 break;
573 case MSR_IA32_APICBASE:
574 kvm_set_apic_base(vcpu, data);
575 break;
576 case MSR_IA32_MISC_ENABLE:
577 vcpu->arch.ia32_misc_enable_msr = data;
578 break;
579 case MSR_KVM_WALL_CLOCK:
580 vcpu->kvm->arch.wall_clock = data;
581 kvm_write_wall_clock(vcpu->kvm, data);
582 break;
583 case MSR_KVM_SYSTEM_TIME: {
584 if (vcpu->arch.time_page) {
585 kvm_release_page_dirty(vcpu->arch.time_page);
586 vcpu->arch.time_page = NULL;
589 vcpu->arch.time = data;
591 /* we verify if the enable bit is set... */
592 if (!(data & 1))
593 break;
595 /* ...but clean it before doing the actual write */
596 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
598 vcpu->arch.hv_clock.tsc_to_system_mul =
599 clocksource_khz2mult(tsc_khz, 22);
600 vcpu->arch.hv_clock.tsc_shift = 22;
602 down_read(&current->mm->mmap_sem);
603 down_read(&vcpu->kvm->slots_lock);
604 vcpu->arch.time_page =
605 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
606 up_read(&vcpu->kvm->slots_lock);
607 up_read(&current->mm->mmap_sem);
609 if (is_error_page(vcpu->arch.time_page)) {
610 kvm_release_page_clean(vcpu->arch.time_page);
611 vcpu->arch.time_page = NULL;
614 kvm_write_guest_time(vcpu);
615 break;
617 default:
618 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
619 return 1;
621 return 0;
623 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
627 * Reads an msr value (of 'msr_index') into 'pdata'.
628 * Returns 0 on success, non-0 otherwise.
629 * Assumes vcpu_load() was already called.
631 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
633 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
636 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
638 u64 data;
640 switch (msr) {
641 case 0xc0010010: /* SYSCFG */
642 case 0xc0010015: /* HWCR */
643 case MSR_IA32_PLATFORM_ID:
644 case MSR_IA32_P5_MC_ADDR:
645 case MSR_IA32_P5_MC_TYPE:
646 case MSR_IA32_MC0_CTL:
647 case MSR_IA32_MCG_STATUS:
648 case MSR_IA32_MCG_CAP:
649 case MSR_IA32_MCG_CTL:
650 case MSR_IA32_MC0_MISC:
651 case MSR_IA32_MC0_MISC+4:
652 case MSR_IA32_MC0_MISC+8:
653 case MSR_IA32_MC0_MISC+12:
654 case MSR_IA32_MC0_MISC+16:
655 case MSR_IA32_UCODE_REV:
656 case MSR_IA32_PERF_STATUS:
657 case MSR_IA32_EBL_CR_POWERON:
658 /* MTRR registers */
659 case 0xfe:
660 case 0x200 ... 0x2ff:
661 data = 0;
662 break;
663 case 0xcd: /* fsb frequency */
664 data = 3;
665 break;
666 case MSR_IA32_APICBASE:
667 data = kvm_get_apic_base(vcpu);
668 break;
669 case MSR_IA32_MISC_ENABLE:
670 data = vcpu->arch.ia32_misc_enable_msr;
671 break;
672 case MSR_EFER:
673 data = vcpu->arch.shadow_efer;
674 break;
675 case MSR_KVM_WALL_CLOCK:
676 data = vcpu->kvm->arch.wall_clock;
677 break;
678 case MSR_KVM_SYSTEM_TIME:
679 data = vcpu->arch.time;
680 break;
681 default:
682 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
683 return 1;
685 *pdata = data;
686 return 0;
688 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
691 * Read or write a bunch of msrs. All parameters are kernel addresses.
693 * @return number of msrs set successfully.
695 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
696 struct kvm_msr_entry *entries,
697 int (*do_msr)(struct kvm_vcpu *vcpu,
698 unsigned index, u64 *data))
700 int i;
702 vcpu_load(vcpu);
704 for (i = 0; i < msrs->nmsrs; ++i)
705 if (do_msr(vcpu, entries[i].index, &entries[i].data))
706 break;
708 vcpu_put(vcpu);
710 return i;
714 * Read or write a bunch of msrs. Parameters are user addresses.
716 * @return number of msrs set successfully.
718 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
719 int (*do_msr)(struct kvm_vcpu *vcpu,
720 unsigned index, u64 *data),
721 int writeback)
723 struct kvm_msrs msrs;
724 struct kvm_msr_entry *entries;
725 int r, n;
726 unsigned size;
728 r = -EFAULT;
729 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
730 goto out;
732 r = -E2BIG;
733 if (msrs.nmsrs >= MAX_IO_MSRS)
734 goto out;
736 r = -ENOMEM;
737 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
738 entries = vmalloc(size);
739 if (!entries)
740 goto out;
742 r = -EFAULT;
743 if (copy_from_user(entries, user_msrs->entries, size))
744 goto out_free;
746 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
747 if (r < 0)
748 goto out_free;
750 r = -EFAULT;
751 if (writeback && copy_to_user(user_msrs->entries, entries, size))
752 goto out_free;
754 r = n;
756 out_free:
757 vfree(entries);
758 out:
759 return r;
763 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
764 * cached on it.
766 void decache_vcpus_on_cpu(int cpu)
768 struct kvm *vm;
769 struct kvm_vcpu *vcpu;
770 int i;
772 spin_lock(&kvm_lock);
773 list_for_each_entry(vm, &vm_list, vm_list)
774 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
775 vcpu = vm->vcpus[i];
776 if (!vcpu)
777 continue;
779 * If the vcpu is locked, then it is running on some
780 * other cpu and therefore it is not cached on the
781 * cpu in question.
783 * If it's not locked, check the last cpu it executed
784 * on.
786 if (mutex_trylock(&vcpu->mutex)) {
787 if (vcpu->cpu == cpu) {
788 kvm_x86_ops->vcpu_decache(vcpu);
789 vcpu->cpu = -1;
791 mutex_unlock(&vcpu->mutex);
794 spin_unlock(&kvm_lock);
797 int kvm_dev_ioctl_check_extension(long ext)
799 int r;
801 switch (ext) {
802 case KVM_CAP_IRQCHIP:
803 case KVM_CAP_HLT:
804 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
805 case KVM_CAP_USER_MEMORY:
806 case KVM_CAP_SET_TSS_ADDR:
807 case KVM_CAP_EXT_CPUID:
808 case KVM_CAP_CLOCKSOURCE:
809 r = 1;
810 break;
811 case KVM_CAP_VAPIC:
812 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
813 break;
814 case KVM_CAP_NR_VCPUS:
815 r = KVM_MAX_VCPUS;
816 break;
817 case KVM_CAP_NR_MEMSLOTS:
818 r = KVM_MEMORY_SLOTS;
819 break;
820 default:
821 r = 0;
822 break;
824 return r;
828 long kvm_arch_dev_ioctl(struct file *filp,
829 unsigned int ioctl, unsigned long arg)
831 void __user *argp = (void __user *)arg;
832 long r;
834 switch (ioctl) {
835 case KVM_GET_MSR_INDEX_LIST: {
836 struct kvm_msr_list __user *user_msr_list = argp;
837 struct kvm_msr_list msr_list;
838 unsigned n;
840 r = -EFAULT;
841 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
842 goto out;
843 n = msr_list.nmsrs;
844 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
845 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
846 goto out;
847 r = -E2BIG;
848 if (n < num_msrs_to_save)
849 goto out;
850 r = -EFAULT;
851 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
852 num_msrs_to_save * sizeof(u32)))
853 goto out;
854 if (copy_to_user(user_msr_list->indices
855 + num_msrs_to_save * sizeof(u32),
856 &emulated_msrs,
857 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
858 goto out;
859 r = 0;
860 break;
862 case KVM_GET_SUPPORTED_CPUID: {
863 struct kvm_cpuid2 __user *cpuid_arg = argp;
864 struct kvm_cpuid2 cpuid;
866 r = -EFAULT;
867 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
868 goto out;
869 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
870 cpuid_arg->entries);
871 if (r)
872 goto out;
874 r = -EFAULT;
875 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
876 goto out;
877 r = 0;
878 break;
880 default:
881 r = -EINVAL;
883 out:
884 return r;
887 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
889 kvm_x86_ops->vcpu_load(vcpu, cpu);
890 kvm_write_guest_time(vcpu);
893 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
895 kvm_x86_ops->vcpu_put(vcpu);
896 kvm_put_guest_fpu(vcpu);
899 static int is_efer_nx(void)
901 u64 efer;
903 rdmsrl(MSR_EFER, efer);
904 return efer & EFER_NX;
907 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
909 int i;
910 struct kvm_cpuid_entry2 *e, *entry;
912 entry = NULL;
913 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
914 e = &vcpu->arch.cpuid_entries[i];
915 if (e->function == 0x80000001) {
916 entry = e;
917 break;
920 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
921 entry->edx &= ~(1 << 20);
922 printk(KERN_INFO "kvm: guest NX capability removed\n");
926 /* when an old userspace process fills a new kernel module */
927 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
928 struct kvm_cpuid *cpuid,
929 struct kvm_cpuid_entry __user *entries)
931 int r, i;
932 struct kvm_cpuid_entry *cpuid_entries;
934 r = -E2BIG;
935 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
936 goto out;
937 r = -ENOMEM;
938 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
939 if (!cpuid_entries)
940 goto out;
941 r = -EFAULT;
942 if (copy_from_user(cpuid_entries, entries,
943 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
944 goto out_free;
945 for (i = 0; i < cpuid->nent; i++) {
946 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
947 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
948 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
949 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
950 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
951 vcpu->arch.cpuid_entries[i].index = 0;
952 vcpu->arch.cpuid_entries[i].flags = 0;
953 vcpu->arch.cpuid_entries[i].padding[0] = 0;
954 vcpu->arch.cpuid_entries[i].padding[1] = 0;
955 vcpu->arch.cpuid_entries[i].padding[2] = 0;
957 vcpu->arch.cpuid_nent = cpuid->nent;
958 cpuid_fix_nx_cap(vcpu);
959 r = 0;
961 out_free:
962 vfree(cpuid_entries);
963 out:
964 return r;
967 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
968 struct kvm_cpuid2 *cpuid,
969 struct kvm_cpuid_entry2 __user *entries)
971 int r;
973 r = -E2BIG;
974 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
975 goto out;
976 r = -EFAULT;
977 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
978 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
979 goto out;
980 vcpu->arch.cpuid_nent = cpuid->nent;
981 return 0;
983 out:
984 return r;
987 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
988 struct kvm_cpuid2 *cpuid,
989 struct kvm_cpuid_entry2 __user *entries)
991 int r;
993 r = -E2BIG;
994 if (cpuid->nent < vcpu->arch.cpuid_nent)
995 goto out;
996 r = -EFAULT;
997 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
998 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
999 goto out;
1000 return 0;
1002 out:
1003 cpuid->nent = vcpu->arch.cpuid_nent;
1004 return r;
1007 static inline u32 bit(int bitno)
1009 return 1 << (bitno & 31);
1012 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1013 u32 index)
1015 entry->function = function;
1016 entry->index = index;
1017 cpuid_count(entry->function, entry->index,
1018 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1019 entry->flags = 0;
1022 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1023 u32 index, int *nent, int maxnent)
1025 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1026 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1027 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1028 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1029 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1030 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1031 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1032 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1033 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1034 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1035 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1036 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1037 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1038 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1039 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1040 bit(X86_FEATURE_PGE) |
1041 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1042 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1043 bit(X86_FEATURE_SYSCALL) |
1044 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1045 #ifdef CONFIG_X86_64
1046 bit(X86_FEATURE_LM) |
1047 #endif
1048 bit(X86_FEATURE_MMXEXT) |
1049 bit(X86_FEATURE_3DNOWEXT) |
1050 bit(X86_FEATURE_3DNOW);
1051 const u32 kvm_supported_word3_x86_features =
1052 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1053 const u32 kvm_supported_word6_x86_features =
1054 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1056 /* all func 2 cpuid_count() should be called on the same cpu */
1057 get_cpu();
1058 do_cpuid_1_ent(entry, function, index);
1059 ++*nent;
1061 switch (function) {
1062 case 0:
1063 entry->eax = min(entry->eax, (u32)0xb);
1064 break;
1065 case 1:
1066 entry->edx &= kvm_supported_word0_x86_features;
1067 entry->ecx &= kvm_supported_word3_x86_features;
1068 break;
1069 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1070 * may return different values. This forces us to get_cpu() before
1071 * issuing the first command, and also to emulate this annoying behavior
1072 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1073 case 2: {
1074 int t, times = entry->eax & 0xff;
1076 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1077 for (t = 1; t < times && *nent < maxnent; ++t) {
1078 do_cpuid_1_ent(&entry[t], function, 0);
1079 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1080 ++*nent;
1082 break;
1084 /* function 4 and 0xb have additional index. */
1085 case 4: {
1086 int index, cache_type;
1088 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1089 /* read more entries until cache_type is zero */
1090 for (index = 1; *nent < maxnent; ++index) {
1091 cache_type = entry[index - 1].eax & 0x1f;
1092 if (!cache_type)
1093 break;
1094 do_cpuid_1_ent(&entry[index], function, index);
1095 entry[index].flags |=
1096 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1097 ++*nent;
1099 break;
1101 case 0xb: {
1102 int index, level_type;
1104 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1105 /* read more entries until level_type is zero */
1106 for (index = 1; *nent < maxnent; ++index) {
1107 level_type = entry[index - 1].ecx & 0xff;
1108 if (!level_type)
1109 break;
1110 do_cpuid_1_ent(&entry[index], function, index);
1111 entry[index].flags |=
1112 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1113 ++*nent;
1115 break;
1117 case 0x80000000:
1118 entry->eax = min(entry->eax, 0x8000001a);
1119 break;
1120 case 0x80000001:
1121 entry->edx &= kvm_supported_word1_x86_features;
1122 entry->ecx &= kvm_supported_word6_x86_features;
1123 break;
1125 put_cpu();
1128 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1129 struct kvm_cpuid_entry2 __user *entries)
1131 struct kvm_cpuid_entry2 *cpuid_entries;
1132 int limit, nent = 0, r = -E2BIG;
1133 u32 func;
1135 if (cpuid->nent < 1)
1136 goto out;
1137 r = -ENOMEM;
1138 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1139 if (!cpuid_entries)
1140 goto out;
1142 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1143 limit = cpuid_entries[0].eax;
1144 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1145 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1146 &nent, cpuid->nent);
1147 r = -E2BIG;
1148 if (nent >= cpuid->nent)
1149 goto out_free;
1151 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1152 limit = cpuid_entries[nent - 1].eax;
1153 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1154 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1155 &nent, cpuid->nent);
1156 r = -EFAULT;
1157 if (copy_to_user(entries, cpuid_entries,
1158 nent * sizeof(struct kvm_cpuid_entry2)))
1159 goto out_free;
1160 cpuid->nent = nent;
1161 r = 0;
1163 out_free:
1164 vfree(cpuid_entries);
1165 out:
1166 return r;
1169 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1170 struct kvm_lapic_state *s)
1172 vcpu_load(vcpu);
1173 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1174 vcpu_put(vcpu);
1176 return 0;
1179 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1180 struct kvm_lapic_state *s)
1182 vcpu_load(vcpu);
1183 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1184 kvm_apic_post_state_restore(vcpu);
1185 vcpu_put(vcpu);
1187 return 0;
1190 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1191 struct kvm_interrupt *irq)
1193 if (irq->irq < 0 || irq->irq >= 256)
1194 return -EINVAL;
1195 if (irqchip_in_kernel(vcpu->kvm))
1196 return -ENXIO;
1197 vcpu_load(vcpu);
1199 set_bit(irq->irq, vcpu->arch.irq_pending);
1200 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1202 vcpu_put(vcpu);
1204 return 0;
1207 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1208 struct kvm_tpr_access_ctl *tac)
1210 if (tac->flags)
1211 return -EINVAL;
1212 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1213 return 0;
1216 long kvm_arch_vcpu_ioctl(struct file *filp,
1217 unsigned int ioctl, unsigned long arg)
1219 struct kvm_vcpu *vcpu = filp->private_data;
1220 void __user *argp = (void __user *)arg;
1221 int r;
1223 switch (ioctl) {
1224 case KVM_GET_LAPIC: {
1225 struct kvm_lapic_state lapic;
1227 memset(&lapic, 0, sizeof lapic);
1228 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1229 if (r)
1230 goto out;
1231 r = -EFAULT;
1232 if (copy_to_user(argp, &lapic, sizeof lapic))
1233 goto out;
1234 r = 0;
1235 break;
1237 case KVM_SET_LAPIC: {
1238 struct kvm_lapic_state lapic;
1240 r = -EFAULT;
1241 if (copy_from_user(&lapic, argp, sizeof lapic))
1242 goto out;
1243 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1244 if (r)
1245 goto out;
1246 r = 0;
1247 break;
1249 case KVM_INTERRUPT: {
1250 struct kvm_interrupt irq;
1252 r = -EFAULT;
1253 if (copy_from_user(&irq, argp, sizeof irq))
1254 goto out;
1255 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1256 if (r)
1257 goto out;
1258 r = 0;
1259 break;
1261 case KVM_SET_CPUID: {
1262 struct kvm_cpuid __user *cpuid_arg = argp;
1263 struct kvm_cpuid cpuid;
1265 r = -EFAULT;
1266 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1267 goto out;
1268 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1269 if (r)
1270 goto out;
1271 break;
1273 case KVM_SET_CPUID2: {
1274 struct kvm_cpuid2 __user *cpuid_arg = argp;
1275 struct kvm_cpuid2 cpuid;
1277 r = -EFAULT;
1278 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1279 goto out;
1280 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1281 cpuid_arg->entries);
1282 if (r)
1283 goto out;
1284 break;
1286 case KVM_GET_CPUID2: {
1287 struct kvm_cpuid2 __user *cpuid_arg = argp;
1288 struct kvm_cpuid2 cpuid;
1290 r = -EFAULT;
1291 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1292 goto out;
1293 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1294 cpuid_arg->entries);
1295 if (r)
1296 goto out;
1297 r = -EFAULT;
1298 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1299 goto out;
1300 r = 0;
1301 break;
1303 case KVM_GET_MSRS:
1304 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1305 break;
1306 case KVM_SET_MSRS:
1307 r = msr_io(vcpu, argp, do_set_msr, 0);
1308 break;
1309 case KVM_TPR_ACCESS_REPORTING: {
1310 struct kvm_tpr_access_ctl tac;
1312 r = -EFAULT;
1313 if (copy_from_user(&tac, argp, sizeof tac))
1314 goto out;
1315 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1316 if (r)
1317 goto out;
1318 r = -EFAULT;
1319 if (copy_to_user(argp, &tac, sizeof tac))
1320 goto out;
1321 r = 0;
1322 break;
1324 case KVM_SET_VAPIC_ADDR: {
1325 struct kvm_vapic_addr va;
1327 r = -EINVAL;
1328 if (!irqchip_in_kernel(vcpu->kvm))
1329 goto out;
1330 r = -EFAULT;
1331 if (copy_from_user(&va, argp, sizeof va))
1332 goto out;
1333 r = 0;
1334 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1335 break;
1337 default:
1338 r = -EINVAL;
1340 out:
1341 return r;
1344 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1346 int ret;
1348 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1349 return -1;
1350 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1351 return ret;
1354 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1355 u32 kvm_nr_mmu_pages)
1357 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1358 return -EINVAL;
1360 down_write(&kvm->slots_lock);
1362 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1363 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1365 up_write(&kvm->slots_lock);
1366 return 0;
1369 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1371 return kvm->arch.n_alloc_mmu_pages;
1374 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1376 int i;
1377 struct kvm_mem_alias *alias;
1379 for (i = 0; i < kvm->arch.naliases; ++i) {
1380 alias = &kvm->arch.aliases[i];
1381 if (gfn >= alias->base_gfn
1382 && gfn < alias->base_gfn + alias->npages)
1383 return alias->target_gfn + gfn - alias->base_gfn;
1385 return gfn;
1389 * Set a new alias region. Aliases map a portion of physical memory into
1390 * another portion. This is useful for memory windows, for example the PC
1391 * VGA region.
1393 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1394 struct kvm_memory_alias *alias)
1396 int r, n;
1397 struct kvm_mem_alias *p;
1399 r = -EINVAL;
1400 /* General sanity checks */
1401 if (alias->memory_size & (PAGE_SIZE - 1))
1402 goto out;
1403 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1404 goto out;
1405 if (alias->slot >= KVM_ALIAS_SLOTS)
1406 goto out;
1407 if (alias->guest_phys_addr + alias->memory_size
1408 < alias->guest_phys_addr)
1409 goto out;
1410 if (alias->target_phys_addr + alias->memory_size
1411 < alias->target_phys_addr)
1412 goto out;
1414 down_write(&kvm->slots_lock);
1416 p = &kvm->arch.aliases[alias->slot];
1417 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1418 p->npages = alias->memory_size >> PAGE_SHIFT;
1419 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1421 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1422 if (kvm->arch.aliases[n - 1].npages)
1423 break;
1424 kvm->arch.naliases = n;
1426 kvm_mmu_zap_all(kvm);
1428 up_write(&kvm->slots_lock);
1430 return 0;
1432 out:
1433 return r;
1436 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1438 int r;
1440 r = 0;
1441 switch (chip->chip_id) {
1442 case KVM_IRQCHIP_PIC_MASTER:
1443 memcpy(&chip->chip.pic,
1444 &pic_irqchip(kvm)->pics[0],
1445 sizeof(struct kvm_pic_state));
1446 break;
1447 case KVM_IRQCHIP_PIC_SLAVE:
1448 memcpy(&chip->chip.pic,
1449 &pic_irqchip(kvm)->pics[1],
1450 sizeof(struct kvm_pic_state));
1451 break;
1452 case KVM_IRQCHIP_IOAPIC:
1453 memcpy(&chip->chip.ioapic,
1454 ioapic_irqchip(kvm),
1455 sizeof(struct kvm_ioapic_state));
1456 break;
1457 default:
1458 r = -EINVAL;
1459 break;
1461 return r;
1464 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1466 int r;
1468 r = 0;
1469 switch (chip->chip_id) {
1470 case KVM_IRQCHIP_PIC_MASTER:
1471 memcpy(&pic_irqchip(kvm)->pics[0],
1472 &chip->chip.pic,
1473 sizeof(struct kvm_pic_state));
1474 break;
1475 case KVM_IRQCHIP_PIC_SLAVE:
1476 memcpy(&pic_irqchip(kvm)->pics[1],
1477 &chip->chip.pic,
1478 sizeof(struct kvm_pic_state));
1479 break;
1480 case KVM_IRQCHIP_IOAPIC:
1481 memcpy(ioapic_irqchip(kvm),
1482 &chip->chip.ioapic,
1483 sizeof(struct kvm_ioapic_state));
1484 break;
1485 default:
1486 r = -EINVAL;
1487 break;
1489 kvm_pic_update_irq(pic_irqchip(kvm));
1490 return r;
1494 * Get (and clear) the dirty memory log for a memory slot.
1496 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1497 struct kvm_dirty_log *log)
1499 int r;
1500 int n;
1501 struct kvm_memory_slot *memslot;
1502 int is_dirty = 0;
1504 down_write(&kvm->slots_lock);
1506 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1507 if (r)
1508 goto out;
1510 /* If nothing is dirty, don't bother messing with page tables. */
1511 if (is_dirty) {
1512 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1513 kvm_flush_remote_tlbs(kvm);
1514 memslot = &kvm->memslots[log->slot];
1515 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1516 memset(memslot->dirty_bitmap, 0, n);
1518 r = 0;
1519 out:
1520 up_write(&kvm->slots_lock);
1521 return r;
1524 long kvm_arch_vm_ioctl(struct file *filp,
1525 unsigned int ioctl, unsigned long arg)
1527 struct kvm *kvm = filp->private_data;
1528 void __user *argp = (void __user *)arg;
1529 int r = -EINVAL;
1531 switch (ioctl) {
1532 case KVM_SET_TSS_ADDR:
1533 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1534 if (r < 0)
1535 goto out;
1536 break;
1537 case KVM_SET_MEMORY_REGION: {
1538 struct kvm_memory_region kvm_mem;
1539 struct kvm_userspace_memory_region kvm_userspace_mem;
1541 r = -EFAULT;
1542 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1543 goto out;
1544 kvm_userspace_mem.slot = kvm_mem.slot;
1545 kvm_userspace_mem.flags = kvm_mem.flags;
1546 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1547 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1548 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1549 if (r)
1550 goto out;
1551 break;
1553 case KVM_SET_NR_MMU_PAGES:
1554 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1555 if (r)
1556 goto out;
1557 break;
1558 case KVM_GET_NR_MMU_PAGES:
1559 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1560 break;
1561 case KVM_SET_MEMORY_ALIAS: {
1562 struct kvm_memory_alias alias;
1564 r = -EFAULT;
1565 if (copy_from_user(&alias, argp, sizeof alias))
1566 goto out;
1567 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1568 if (r)
1569 goto out;
1570 break;
1572 case KVM_CREATE_IRQCHIP:
1573 r = -ENOMEM;
1574 kvm->arch.vpic = kvm_create_pic(kvm);
1575 if (kvm->arch.vpic) {
1576 r = kvm_ioapic_init(kvm);
1577 if (r) {
1578 kfree(kvm->arch.vpic);
1579 kvm->arch.vpic = NULL;
1580 goto out;
1582 } else
1583 goto out;
1584 break;
1585 case KVM_IRQ_LINE: {
1586 struct kvm_irq_level irq_event;
1588 r = -EFAULT;
1589 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1590 goto out;
1591 if (irqchip_in_kernel(kvm)) {
1592 mutex_lock(&kvm->lock);
1593 if (irq_event.irq < 16)
1594 kvm_pic_set_irq(pic_irqchip(kvm),
1595 irq_event.irq,
1596 irq_event.level);
1597 kvm_ioapic_set_irq(kvm->arch.vioapic,
1598 irq_event.irq,
1599 irq_event.level);
1600 mutex_unlock(&kvm->lock);
1601 r = 0;
1603 break;
1605 case KVM_GET_IRQCHIP: {
1606 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1607 struct kvm_irqchip chip;
1609 r = -EFAULT;
1610 if (copy_from_user(&chip, argp, sizeof chip))
1611 goto out;
1612 r = -ENXIO;
1613 if (!irqchip_in_kernel(kvm))
1614 goto out;
1615 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1616 if (r)
1617 goto out;
1618 r = -EFAULT;
1619 if (copy_to_user(argp, &chip, sizeof chip))
1620 goto out;
1621 r = 0;
1622 break;
1624 case KVM_SET_IRQCHIP: {
1625 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1626 struct kvm_irqchip chip;
1628 r = -EFAULT;
1629 if (copy_from_user(&chip, argp, sizeof chip))
1630 goto out;
1631 r = -ENXIO;
1632 if (!irqchip_in_kernel(kvm))
1633 goto out;
1634 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1635 if (r)
1636 goto out;
1637 r = 0;
1638 break;
1640 default:
1643 out:
1644 return r;
1647 static void kvm_init_msr_list(void)
1649 u32 dummy[2];
1650 unsigned i, j;
1652 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1653 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1654 continue;
1655 if (j < i)
1656 msrs_to_save[j] = msrs_to_save[i];
1657 j++;
1659 num_msrs_to_save = j;
1663 * Only apic need an MMIO device hook, so shortcut now..
1665 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1666 gpa_t addr)
1668 struct kvm_io_device *dev;
1670 if (vcpu->arch.apic) {
1671 dev = &vcpu->arch.apic->dev;
1672 if (dev->in_range(dev, addr))
1673 return dev;
1675 return NULL;
1679 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1680 gpa_t addr)
1682 struct kvm_io_device *dev;
1684 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1685 if (dev == NULL)
1686 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1687 return dev;
1690 int emulator_read_std(unsigned long addr,
1691 void *val,
1692 unsigned int bytes,
1693 struct kvm_vcpu *vcpu)
1695 void *data = val;
1696 int r = X86EMUL_CONTINUE;
1698 down_read(&vcpu->kvm->slots_lock);
1699 while (bytes) {
1700 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1701 unsigned offset = addr & (PAGE_SIZE-1);
1702 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1703 int ret;
1705 if (gpa == UNMAPPED_GVA) {
1706 r = X86EMUL_PROPAGATE_FAULT;
1707 goto out;
1709 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1710 if (ret < 0) {
1711 r = X86EMUL_UNHANDLEABLE;
1712 goto out;
1715 bytes -= tocopy;
1716 data += tocopy;
1717 addr += tocopy;
1719 out:
1720 up_read(&vcpu->kvm->slots_lock);
1721 return r;
1723 EXPORT_SYMBOL_GPL(emulator_read_std);
1725 static int emulator_read_emulated(unsigned long addr,
1726 void *val,
1727 unsigned int bytes,
1728 struct kvm_vcpu *vcpu)
1730 struct kvm_io_device *mmio_dev;
1731 gpa_t gpa;
1733 if (vcpu->mmio_read_completed) {
1734 memcpy(val, vcpu->mmio_data, bytes);
1735 vcpu->mmio_read_completed = 0;
1736 return X86EMUL_CONTINUE;
1739 down_read(&vcpu->kvm->slots_lock);
1740 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1741 up_read(&vcpu->kvm->slots_lock);
1743 /* For APIC access vmexit */
1744 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1745 goto mmio;
1747 if (emulator_read_std(addr, val, bytes, vcpu)
1748 == X86EMUL_CONTINUE)
1749 return X86EMUL_CONTINUE;
1750 if (gpa == UNMAPPED_GVA)
1751 return X86EMUL_PROPAGATE_FAULT;
1753 mmio:
1755 * Is this MMIO handled locally?
1757 mutex_lock(&vcpu->kvm->lock);
1758 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1759 if (mmio_dev) {
1760 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1761 mutex_unlock(&vcpu->kvm->lock);
1762 return X86EMUL_CONTINUE;
1764 mutex_unlock(&vcpu->kvm->lock);
1766 vcpu->mmio_needed = 1;
1767 vcpu->mmio_phys_addr = gpa;
1768 vcpu->mmio_size = bytes;
1769 vcpu->mmio_is_write = 0;
1771 return X86EMUL_UNHANDLEABLE;
1774 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1775 const void *val, int bytes)
1777 int ret;
1779 down_read(&vcpu->kvm->slots_lock);
1780 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1781 if (ret < 0) {
1782 up_read(&vcpu->kvm->slots_lock);
1783 return 0;
1785 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1786 up_read(&vcpu->kvm->slots_lock);
1787 return 1;
1790 static int emulator_write_emulated_onepage(unsigned long addr,
1791 const void *val,
1792 unsigned int bytes,
1793 struct kvm_vcpu *vcpu)
1795 struct kvm_io_device *mmio_dev;
1796 gpa_t gpa;
1798 down_read(&vcpu->kvm->slots_lock);
1799 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1800 up_read(&vcpu->kvm->slots_lock);
1802 if (gpa == UNMAPPED_GVA) {
1803 kvm_inject_page_fault(vcpu, addr, 2);
1804 return X86EMUL_PROPAGATE_FAULT;
1807 /* For APIC access vmexit */
1808 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1809 goto mmio;
1811 if (emulator_write_phys(vcpu, gpa, val, bytes))
1812 return X86EMUL_CONTINUE;
1814 mmio:
1816 * Is this MMIO handled locally?
1818 mutex_lock(&vcpu->kvm->lock);
1819 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1820 if (mmio_dev) {
1821 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1822 mutex_unlock(&vcpu->kvm->lock);
1823 return X86EMUL_CONTINUE;
1825 mutex_unlock(&vcpu->kvm->lock);
1827 vcpu->mmio_needed = 1;
1828 vcpu->mmio_phys_addr = gpa;
1829 vcpu->mmio_size = bytes;
1830 vcpu->mmio_is_write = 1;
1831 memcpy(vcpu->mmio_data, val, bytes);
1833 return X86EMUL_CONTINUE;
1836 int emulator_write_emulated(unsigned long addr,
1837 const void *val,
1838 unsigned int bytes,
1839 struct kvm_vcpu *vcpu)
1841 /* Crossing a page boundary? */
1842 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1843 int rc, now;
1845 now = -addr & ~PAGE_MASK;
1846 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1847 if (rc != X86EMUL_CONTINUE)
1848 return rc;
1849 addr += now;
1850 val += now;
1851 bytes -= now;
1853 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1855 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1857 static int emulator_cmpxchg_emulated(unsigned long addr,
1858 const void *old,
1859 const void *new,
1860 unsigned int bytes,
1861 struct kvm_vcpu *vcpu)
1863 static int reported;
1865 if (!reported) {
1866 reported = 1;
1867 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1869 #ifndef CONFIG_X86_64
1870 /* guests cmpxchg8b have to be emulated atomically */
1871 if (bytes == 8) {
1872 gpa_t gpa;
1873 struct page *page;
1874 char *kaddr;
1875 u64 val;
1877 down_read(&vcpu->kvm->slots_lock);
1878 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1880 if (gpa == UNMAPPED_GVA ||
1881 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1882 goto emul_write;
1884 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1885 goto emul_write;
1887 val = *(u64 *)new;
1889 down_read(&current->mm->mmap_sem);
1890 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1891 up_read(&current->mm->mmap_sem);
1893 kaddr = kmap_atomic(page, KM_USER0);
1894 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
1895 kunmap_atomic(kaddr, KM_USER0);
1896 kvm_release_page_dirty(page);
1897 emul_write:
1898 up_read(&vcpu->kvm->slots_lock);
1900 #endif
1902 return emulator_write_emulated(addr, new, bytes, vcpu);
1905 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1907 return kvm_x86_ops->get_segment_base(vcpu, seg);
1910 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1912 return X86EMUL_CONTINUE;
1915 int emulate_clts(struct kvm_vcpu *vcpu)
1917 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1918 return X86EMUL_CONTINUE;
1921 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1923 struct kvm_vcpu *vcpu = ctxt->vcpu;
1925 switch (dr) {
1926 case 0 ... 3:
1927 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1928 return X86EMUL_CONTINUE;
1929 default:
1930 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1931 return X86EMUL_UNHANDLEABLE;
1935 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1937 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1938 int exception;
1940 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1941 if (exception) {
1942 /* FIXME: better handling */
1943 return X86EMUL_UNHANDLEABLE;
1945 return X86EMUL_CONTINUE;
1948 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1950 static int reported;
1951 u8 opcodes[4];
1952 unsigned long rip = vcpu->arch.rip;
1953 unsigned long rip_linear;
1955 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1957 if (reported)
1958 return;
1960 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1962 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1963 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1964 reported = 1;
1966 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1968 struct x86_emulate_ops emulate_ops = {
1969 .read_std = emulator_read_std,
1970 .read_emulated = emulator_read_emulated,
1971 .write_emulated = emulator_write_emulated,
1972 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1975 int emulate_instruction(struct kvm_vcpu *vcpu,
1976 struct kvm_run *run,
1977 unsigned long cr2,
1978 u16 error_code,
1979 int emulation_type)
1981 int r;
1982 struct decode_cache *c;
1984 vcpu->arch.mmio_fault_cr2 = cr2;
1985 kvm_x86_ops->cache_regs(vcpu);
1987 vcpu->mmio_is_write = 0;
1988 vcpu->arch.pio.string = 0;
1990 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
1991 int cs_db, cs_l;
1992 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1994 vcpu->arch.emulate_ctxt.vcpu = vcpu;
1995 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1996 vcpu->arch.emulate_ctxt.mode =
1997 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
1998 ? X86EMUL_MODE_REAL : cs_l
1999 ? X86EMUL_MODE_PROT64 : cs_db
2000 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2002 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2003 vcpu->arch.emulate_ctxt.cs_base = 0;
2004 vcpu->arch.emulate_ctxt.ds_base = 0;
2005 vcpu->arch.emulate_ctxt.es_base = 0;
2006 vcpu->arch.emulate_ctxt.ss_base = 0;
2007 } else {
2008 vcpu->arch.emulate_ctxt.cs_base =
2009 get_segment_base(vcpu, VCPU_SREG_CS);
2010 vcpu->arch.emulate_ctxt.ds_base =
2011 get_segment_base(vcpu, VCPU_SREG_DS);
2012 vcpu->arch.emulate_ctxt.es_base =
2013 get_segment_base(vcpu, VCPU_SREG_ES);
2014 vcpu->arch.emulate_ctxt.ss_base =
2015 get_segment_base(vcpu, VCPU_SREG_SS);
2018 vcpu->arch.emulate_ctxt.gs_base =
2019 get_segment_base(vcpu, VCPU_SREG_GS);
2020 vcpu->arch.emulate_ctxt.fs_base =
2021 get_segment_base(vcpu, VCPU_SREG_FS);
2023 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2025 /* Reject the instructions other than VMCALL/VMMCALL when
2026 * try to emulate invalid opcode */
2027 c = &vcpu->arch.emulate_ctxt.decode;
2028 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2029 (!(c->twobyte && c->b == 0x01 &&
2030 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2031 c->modrm_mod == 3 && c->modrm_rm == 1)))
2032 return EMULATE_FAIL;
2034 ++vcpu->stat.insn_emulation;
2035 if (r) {
2036 ++vcpu->stat.insn_emulation_fail;
2037 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2038 return EMULATE_DONE;
2039 return EMULATE_FAIL;
2043 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2045 if (vcpu->arch.pio.string)
2046 return EMULATE_DO_MMIO;
2048 if ((r || vcpu->mmio_is_write) && run) {
2049 run->exit_reason = KVM_EXIT_MMIO;
2050 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2051 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2052 run->mmio.len = vcpu->mmio_size;
2053 run->mmio.is_write = vcpu->mmio_is_write;
2056 if (r) {
2057 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2058 return EMULATE_DONE;
2059 if (!vcpu->mmio_needed) {
2060 kvm_report_emulation_failure(vcpu, "mmio");
2061 return EMULATE_FAIL;
2063 return EMULATE_DO_MMIO;
2066 kvm_x86_ops->decache_regs(vcpu);
2067 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2069 if (vcpu->mmio_is_write) {
2070 vcpu->mmio_needed = 0;
2071 return EMULATE_DO_MMIO;
2074 return EMULATE_DONE;
2076 EXPORT_SYMBOL_GPL(emulate_instruction);
2078 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2080 int i;
2082 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2083 if (vcpu->arch.pio.guest_pages[i]) {
2084 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2085 vcpu->arch.pio.guest_pages[i] = NULL;
2089 static int pio_copy_data(struct kvm_vcpu *vcpu)
2091 void *p = vcpu->arch.pio_data;
2092 void *q;
2093 unsigned bytes;
2094 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2096 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2097 PAGE_KERNEL);
2098 if (!q) {
2099 free_pio_guest_pages(vcpu);
2100 return -ENOMEM;
2102 q += vcpu->arch.pio.guest_page_offset;
2103 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2104 if (vcpu->arch.pio.in)
2105 memcpy(q, p, bytes);
2106 else
2107 memcpy(p, q, bytes);
2108 q -= vcpu->arch.pio.guest_page_offset;
2109 vunmap(q);
2110 free_pio_guest_pages(vcpu);
2111 return 0;
2114 int complete_pio(struct kvm_vcpu *vcpu)
2116 struct kvm_pio_request *io = &vcpu->arch.pio;
2117 long delta;
2118 int r;
2120 kvm_x86_ops->cache_regs(vcpu);
2122 if (!io->string) {
2123 if (io->in)
2124 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2125 io->size);
2126 } else {
2127 if (io->in) {
2128 r = pio_copy_data(vcpu);
2129 if (r) {
2130 kvm_x86_ops->cache_regs(vcpu);
2131 return r;
2135 delta = 1;
2136 if (io->rep) {
2137 delta *= io->cur_count;
2139 * The size of the register should really depend on
2140 * current address size.
2142 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2144 if (io->down)
2145 delta = -delta;
2146 delta *= io->size;
2147 if (io->in)
2148 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2149 else
2150 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2153 kvm_x86_ops->decache_regs(vcpu);
2155 io->count -= io->cur_count;
2156 io->cur_count = 0;
2158 return 0;
2161 static void kernel_pio(struct kvm_io_device *pio_dev,
2162 struct kvm_vcpu *vcpu,
2163 void *pd)
2165 /* TODO: String I/O for in kernel device */
2167 mutex_lock(&vcpu->kvm->lock);
2168 if (vcpu->arch.pio.in)
2169 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2170 vcpu->arch.pio.size,
2171 pd);
2172 else
2173 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2174 vcpu->arch.pio.size,
2175 pd);
2176 mutex_unlock(&vcpu->kvm->lock);
2179 static void pio_string_write(struct kvm_io_device *pio_dev,
2180 struct kvm_vcpu *vcpu)
2182 struct kvm_pio_request *io = &vcpu->arch.pio;
2183 void *pd = vcpu->arch.pio_data;
2184 int i;
2186 mutex_lock(&vcpu->kvm->lock);
2187 for (i = 0; i < io->cur_count; i++) {
2188 kvm_iodevice_write(pio_dev, io->port,
2189 io->size,
2190 pd);
2191 pd += io->size;
2193 mutex_unlock(&vcpu->kvm->lock);
2196 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2197 gpa_t addr)
2199 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2202 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2203 int size, unsigned port)
2205 struct kvm_io_device *pio_dev;
2207 vcpu->run->exit_reason = KVM_EXIT_IO;
2208 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2209 vcpu->run->io.size = vcpu->arch.pio.size = size;
2210 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2211 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2212 vcpu->run->io.port = vcpu->arch.pio.port = port;
2213 vcpu->arch.pio.in = in;
2214 vcpu->arch.pio.string = 0;
2215 vcpu->arch.pio.down = 0;
2216 vcpu->arch.pio.guest_page_offset = 0;
2217 vcpu->arch.pio.rep = 0;
2219 kvm_x86_ops->cache_regs(vcpu);
2220 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2221 kvm_x86_ops->decache_regs(vcpu);
2223 kvm_x86_ops->skip_emulated_instruction(vcpu);
2225 pio_dev = vcpu_find_pio_dev(vcpu, port);
2226 if (pio_dev) {
2227 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2228 complete_pio(vcpu);
2229 return 1;
2231 return 0;
2233 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2235 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2236 int size, unsigned long count, int down,
2237 gva_t address, int rep, unsigned port)
2239 unsigned now, in_page;
2240 int i, ret = 0;
2241 int nr_pages = 1;
2242 struct page *page;
2243 struct kvm_io_device *pio_dev;
2245 vcpu->run->exit_reason = KVM_EXIT_IO;
2246 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2247 vcpu->run->io.size = vcpu->arch.pio.size = size;
2248 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2249 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2250 vcpu->run->io.port = vcpu->arch.pio.port = port;
2251 vcpu->arch.pio.in = in;
2252 vcpu->arch.pio.string = 1;
2253 vcpu->arch.pio.down = down;
2254 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2255 vcpu->arch.pio.rep = rep;
2257 if (!count) {
2258 kvm_x86_ops->skip_emulated_instruction(vcpu);
2259 return 1;
2262 if (!down)
2263 in_page = PAGE_SIZE - offset_in_page(address);
2264 else
2265 in_page = offset_in_page(address) + size;
2266 now = min(count, (unsigned long)in_page / size);
2267 if (!now) {
2269 * String I/O straddles page boundary. Pin two guest pages
2270 * so that we satisfy atomicity constraints. Do just one
2271 * transaction to avoid complexity.
2273 nr_pages = 2;
2274 now = 1;
2276 if (down) {
2278 * String I/O in reverse. Yuck. Kill the guest, fix later.
2280 pr_unimpl(vcpu, "guest string pio down\n");
2281 kvm_inject_gp(vcpu, 0);
2282 return 1;
2284 vcpu->run->io.count = now;
2285 vcpu->arch.pio.cur_count = now;
2287 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2288 kvm_x86_ops->skip_emulated_instruction(vcpu);
2290 for (i = 0; i < nr_pages; ++i) {
2291 down_read(&vcpu->kvm->slots_lock);
2292 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2293 vcpu->arch.pio.guest_pages[i] = page;
2294 up_read(&vcpu->kvm->slots_lock);
2295 if (!page) {
2296 kvm_inject_gp(vcpu, 0);
2297 free_pio_guest_pages(vcpu);
2298 return 1;
2302 pio_dev = vcpu_find_pio_dev(vcpu, port);
2303 if (!vcpu->arch.pio.in) {
2304 /* string PIO write */
2305 ret = pio_copy_data(vcpu);
2306 if (ret >= 0 && pio_dev) {
2307 pio_string_write(pio_dev, vcpu);
2308 complete_pio(vcpu);
2309 if (vcpu->arch.pio.count == 0)
2310 ret = 1;
2312 } else if (pio_dev)
2313 pr_unimpl(vcpu, "no string pio read support yet, "
2314 "port %x size %d count %ld\n",
2315 port, size, count);
2317 return ret;
2319 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2321 int kvm_arch_init(void *opaque)
2323 int r;
2324 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2326 if (kvm_x86_ops) {
2327 printk(KERN_ERR "kvm: already loaded the other module\n");
2328 r = -EEXIST;
2329 goto out;
2332 if (!ops->cpu_has_kvm_support()) {
2333 printk(KERN_ERR "kvm: no hardware support\n");
2334 r = -EOPNOTSUPP;
2335 goto out;
2337 if (ops->disabled_by_bios()) {
2338 printk(KERN_ERR "kvm: disabled by bios\n");
2339 r = -EOPNOTSUPP;
2340 goto out;
2343 r = kvm_mmu_module_init();
2344 if (r)
2345 goto out;
2347 kvm_init_msr_list();
2349 kvm_x86_ops = ops;
2350 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2351 return 0;
2353 out:
2354 return r;
2357 void kvm_arch_exit(void)
2359 kvm_x86_ops = NULL;
2360 kvm_mmu_module_exit();
2363 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2365 ++vcpu->stat.halt_exits;
2366 if (irqchip_in_kernel(vcpu->kvm)) {
2367 vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2368 kvm_vcpu_block(vcpu);
2369 if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2370 return -EINTR;
2371 return 1;
2372 } else {
2373 vcpu->run->exit_reason = KVM_EXIT_HLT;
2374 return 0;
2377 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2379 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2381 unsigned long nr, a0, a1, a2, a3, ret;
2383 kvm_x86_ops->cache_regs(vcpu);
2385 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2386 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2387 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2388 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2389 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2391 if (!is_long_mode(vcpu)) {
2392 nr &= 0xFFFFFFFF;
2393 a0 &= 0xFFFFFFFF;
2394 a1 &= 0xFFFFFFFF;
2395 a2 &= 0xFFFFFFFF;
2396 a3 &= 0xFFFFFFFF;
2399 switch (nr) {
2400 case KVM_HC_VAPIC_POLL_IRQ:
2401 ret = 0;
2402 break;
2403 default:
2404 ret = -KVM_ENOSYS;
2405 break;
2407 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2408 kvm_x86_ops->decache_regs(vcpu);
2409 return 0;
2411 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2413 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2415 char instruction[3];
2416 int ret = 0;
2420 * Blow out the MMU to ensure that no other VCPU has an active mapping
2421 * to ensure that the updated hypercall appears atomically across all
2422 * VCPUs.
2424 kvm_mmu_zap_all(vcpu->kvm);
2426 kvm_x86_ops->cache_regs(vcpu);
2427 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2428 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2429 != X86EMUL_CONTINUE)
2430 ret = -EFAULT;
2432 return ret;
2435 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2437 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2440 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2442 struct descriptor_table dt = { limit, base };
2444 kvm_x86_ops->set_gdt(vcpu, &dt);
2447 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2449 struct descriptor_table dt = { limit, base };
2451 kvm_x86_ops->set_idt(vcpu, &dt);
2454 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2455 unsigned long *rflags)
2457 lmsw(vcpu, msw);
2458 *rflags = kvm_x86_ops->get_rflags(vcpu);
2461 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2463 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2464 switch (cr) {
2465 case 0:
2466 return vcpu->arch.cr0;
2467 case 2:
2468 return vcpu->arch.cr2;
2469 case 3:
2470 return vcpu->arch.cr3;
2471 case 4:
2472 return vcpu->arch.cr4;
2473 case 8:
2474 return get_cr8(vcpu);
2475 default:
2476 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2477 return 0;
2481 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2482 unsigned long *rflags)
2484 switch (cr) {
2485 case 0:
2486 set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2487 *rflags = kvm_x86_ops->get_rflags(vcpu);
2488 break;
2489 case 2:
2490 vcpu->arch.cr2 = val;
2491 break;
2492 case 3:
2493 set_cr3(vcpu, val);
2494 break;
2495 case 4:
2496 set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2497 break;
2498 case 8:
2499 set_cr8(vcpu, val & 0xfUL);
2500 break;
2501 default:
2502 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
2506 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2508 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2509 int j, nent = vcpu->arch.cpuid_nent;
2511 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2512 /* when no next entry is found, the current entry[i] is reselected */
2513 for (j = i + 1; j == i; j = (j + 1) % nent) {
2514 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2515 if (ej->function == e->function) {
2516 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2517 return j;
2520 return 0; /* silence gcc, even though control never reaches here */
2523 /* find an entry with matching function, matching index (if needed), and that
2524 * should be read next (if it's stateful) */
2525 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2526 u32 function, u32 index)
2528 if (e->function != function)
2529 return 0;
2530 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2531 return 0;
2532 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2533 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2534 return 0;
2535 return 1;
2538 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2540 int i;
2541 u32 function, index;
2542 struct kvm_cpuid_entry2 *e, *best;
2544 kvm_x86_ops->cache_regs(vcpu);
2545 function = vcpu->arch.regs[VCPU_REGS_RAX];
2546 index = vcpu->arch.regs[VCPU_REGS_RCX];
2547 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2548 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2549 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2550 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2551 best = NULL;
2552 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2553 e = &vcpu->arch.cpuid_entries[i];
2554 if (is_matching_cpuid_entry(e, function, index)) {
2555 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2556 move_to_next_stateful_cpuid_entry(vcpu, i);
2557 best = e;
2558 break;
2561 * Both basic or both extended?
2563 if (((e->function ^ function) & 0x80000000) == 0)
2564 if (!best || e->function > best->function)
2565 best = e;
2567 if (best) {
2568 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2569 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2570 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2571 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2573 kvm_x86_ops->decache_regs(vcpu);
2574 kvm_x86_ops->skip_emulated_instruction(vcpu);
2576 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2579 * Check if userspace requested an interrupt window, and that the
2580 * interrupt window is open.
2582 * No need to exit to userspace if we already have an interrupt queued.
2584 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2585 struct kvm_run *kvm_run)
2587 return (!vcpu->arch.irq_summary &&
2588 kvm_run->request_interrupt_window &&
2589 vcpu->arch.interrupt_window_open &&
2590 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2593 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2594 struct kvm_run *kvm_run)
2596 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2597 kvm_run->cr8 = get_cr8(vcpu);
2598 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2599 if (irqchip_in_kernel(vcpu->kvm))
2600 kvm_run->ready_for_interrupt_injection = 1;
2601 else
2602 kvm_run->ready_for_interrupt_injection =
2603 (vcpu->arch.interrupt_window_open &&
2604 vcpu->arch.irq_summary == 0);
2607 static void vapic_enter(struct kvm_vcpu *vcpu)
2609 struct kvm_lapic *apic = vcpu->arch.apic;
2610 struct page *page;
2612 if (!apic || !apic->vapic_addr)
2613 return;
2615 down_read(&current->mm->mmap_sem);
2616 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2617 up_read(&current->mm->mmap_sem);
2619 vcpu->arch.apic->vapic_page = page;
2622 static void vapic_exit(struct kvm_vcpu *vcpu)
2624 struct kvm_lapic *apic = vcpu->arch.apic;
2626 if (!apic || !apic->vapic_addr)
2627 return;
2629 kvm_release_page_dirty(apic->vapic_page);
2630 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2633 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2635 int r;
2637 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2638 pr_debug("vcpu %d received sipi with vector # %x\n",
2639 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2640 kvm_lapic_reset(vcpu);
2641 r = kvm_x86_ops->vcpu_reset(vcpu);
2642 if (r)
2643 return r;
2644 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2647 vapic_enter(vcpu);
2649 preempted:
2650 if (vcpu->guest_debug.enabled)
2651 kvm_x86_ops->guest_debug_pre(vcpu);
2653 again:
2654 r = kvm_mmu_reload(vcpu);
2655 if (unlikely(r))
2656 goto out;
2658 if (vcpu->requests) {
2659 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2660 __kvm_migrate_apic_timer(vcpu);
2661 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2662 &vcpu->requests)) {
2663 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2664 r = 0;
2665 goto out;
2669 kvm_inject_pending_timer_irqs(vcpu);
2671 preempt_disable();
2673 kvm_x86_ops->prepare_guest_switch(vcpu);
2674 kvm_load_guest_fpu(vcpu);
2676 local_irq_disable();
2678 if (need_resched()) {
2679 local_irq_enable();
2680 preempt_enable();
2681 r = 1;
2682 goto out;
2685 if (signal_pending(current)) {
2686 local_irq_enable();
2687 preempt_enable();
2688 r = -EINTR;
2689 kvm_run->exit_reason = KVM_EXIT_INTR;
2690 ++vcpu->stat.signal_exits;
2691 goto out;
2694 if (vcpu->arch.exception.pending)
2695 __queue_exception(vcpu);
2696 else if (irqchip_in_kernel(vcpu->kvm))
2697 kvm_x86_ops->inject_pending_irq(vcpu);
2698 else
2699 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2701 kvm_lapic_sync_to_vapic(vcpu);
2703 vcpu->guest_mode = 1;
2704 kvm_guest_enter();
2706 if (vcpu->requests)
2707 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2708 kvm_x86_ops->tlb_flush(vcpu);
2710 kvm_x86_ops->run(vcpu, kvm_run);
2712 vcpu->guest_mode = 0;
2713 local_irq_enable();
2715 ++vcpu->stat.exits;
2718 * We must have an instruction between local_irq_enable() and
2719 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2720 * the interrupt shadow. The stat.exits increment will do nicely.
2721 * But we need to prevent reordering, hence this barrier():
2723 barrier();
2725 kvm_guest_exit();
2727 preempt_enable();
2730 * Profile KVM exit RIPs:
2732 if (unlikely(prof_on == KVM_PROFILING)) {
2733 kvm_x86_ops->cache_regs(vcpu);
2734 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2737 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2738 vcpu->arch.exception.pending = false;
2740 kvm_lapic_sync_from_vapic(vcpu);
2742 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2744 if (r > 0) {
2745 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2746 r = -EINTR;
2747 kvm_run->exit_reason = KVM_EXIT_INTR;
2748 ++vcpu->stat.request_irq_exits;
2749 goto out;
2751 if (!need_resched())
2752 goto again;
2755 out:
2756 if (r > 0) {
2757 kvm_resched(vcpu);
2758 goto preempted;
2761 post_kvm_run_save(vcpu, kvm_run);
2763 vapic_exit(vcpu);
2765 return r;
2768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2770 int r;
2771 sigset_t sigsaved;
2773 vcpu_load(vcpu);
2775 if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2776 kvm_vcpu_block(vcpu);
2777 vcpu_put(vcpu);
2778 return -EAGAIN;
2781 if (vcpu->sigset_active)
2782 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2784 /* re-sync apic's tpr */
2785 if (!irqchip_in_kernel(vcpu->kvm))
2786 set_cr8(vcpu, kvm_run->cr8);
2788 if (vcpu->arch.pio.cur_count) {
2789 r = complete_pio(vcpu);
2790 if (r)
2791 goto out;
2793 #if CONFIG_HAS_IOMEM
2794 if (vcpu->mmio_needed) {
2795 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2796 vcpu->mmio_read_completed = 1;
2797 vcpu->mmio_needed = 0;
2798 r = emulate_instruction(vcpu, kvm_run,
2799 vcpu->arch.mmio_fault_cr2, 0,
2800 EMULTYPE_NO_DECODE);
2801 if (r == EMULATE_DO_MMIO) {
2803 * Read-modify-write. Back to userspace.
2805 r = 0;
2806 goto out;
2809 #endif
2810 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2811 kvm_x86_ops->cache_regs(vcpu);
2812 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2813 kvm_x86_ops->decache_regs(vcpu);
2816 r = __vcpu_run(vcpu, kvm_run);
2818 out:
2819 if (vcpu->sigset_active)
2820 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2822 vcpu_put(vcpu);
2823 return r;
2826 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2828 vcpu_load(vcpu);
2830 kvm_x86_ops->cache_regs(vcpu);
2832 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
2833 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
2834 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
2835 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
2836 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
2837 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
2838 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2839 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2840 #ifdef CONFIG_X86_64
2841 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
2842 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
2843 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
2844 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
2845 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
2846 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
2847 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
2848 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2849 #endif
2851 regs->rip = vcpu->arch.rip;
2852 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2855 * Don't leak debug flags in case they were set for guest debugging
2857 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2858 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2860 vcpu_put(vcpu);
2862 return 0;
2865 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2867 vcpu_load(vcpu);
2869 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
2870 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
2871 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
2872 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
2873 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
2874 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
2875 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
2876 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2877 #ifdef CONFIG_X86_64
2878 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
2879 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
2880 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
2881 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
2882 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
2883 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
2884 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
2885 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2886 #endif
2888 vcpu->arch.rip = regs->rip;
2889 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2891 kvm_x86_ops->decache_regs(vcpu);
2893 vcpu_put(vcpu);
2895 return 0;
2898 static void get_segment(struct kvm_vcpu *vcpu,
2899 struct kvm_segment *var, int seg)
2901 return kvm_x86_ops->get_segment(vcpu, var, seg);
2904 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2906 struct kvm_segment cs;
2908 get_segment(vcpu, &cs, VCPU_SREG_CS);
2909 *db = cs.db;
2910 *l = cs.l;
2912 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2914 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2915 struct kvm_sregs *sregs)
2917 struct descriptor_table dt;
2918 int pending_vec;
2920 vcpu_load(vcpu);
2922 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2923 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2924 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2925 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2926 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2927 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2929 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2930 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2932 kvm_x86_ops->get_idt(vcpu, &dt);
2933 sregs->idt.limit = dt.limit;
2934 sregs->idt.base = dt.base;
2935 kvm_x86_ops->get_gdt(vcpu, &dt);
2936 sregs->gdt.limit = dt.limit;
2937 sregs->gdt.base = dt.base;
2939 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2940 sregs->cr0 = vcpu->arch.cr0;
2941 sregs->cr2 = vcpu->arch.cr2;
2942 sregs->cr3 = vcpu->arch.cr3;
2943 sregs->cr4 = vcpu->arch.cr4;
2944 sregs->cr8 = get_cr8(vcpu);
2945 sregs->efer = vcpu->arch.shadow_efer;
2946 sregs->apic_base = kvm_get_apic_base(vcpu);
2948 if (irqchip_in_kernel(vcpu->kvm)) {
2949 memset(sregs->interrupt_bitmap, 0,
2950 sizeof sregs->interrupt_bitmap);
2951 pending_vec = kvm_x86_ops->get_irq(vcpu);
2952 if (pending_vec >= 0)
2953 set_bit(pending_vec,
2954 (unsigned long *)sregs->interrupt_bitmap);
2955 } else
2956 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2957 sizeof sregs->interrupt_bitmap);
2959 vcpu_put(vcpu);
2961 return 0;
2964 static void set_segment(struct kvm_vcpu *vcpu,
2965 struct kvm_segment *var, int seg)
2967 return kvm_x86_ops->set_segment(vcpu, var, seg);
2970 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2971 struct kvm_sregs *sregs)
2973 int mmu_reset_needed = 0;
2974 int i, pending_vec, max_bits;
2975 struct descriptor_table dt;
2977 vcpu_load(vcpu);
2979 dt.limit = sregs->idt.limit;
2980 dt.base = sregs->idt.base;
2981 kvm_x86_ops->set_idt(vcpu, &dt);
2982 dt.limit = sregs->gdt.limit;
2983 dt.base = sregs->gdt.base;
2984 kvm_x86_ops->set_gdt(vcpu, &dt);
2986 vcpu->arch.cr2 = sregs->cr2;
2987 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
2988 vcpu->arch.cr3 = sregs->cr3;
2990 set_cr8(vcpu, sregs->cr8);
2992 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
2993 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2994 kvm_set_apic_base(vcpu, sregs->apic_base);
2996 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2998 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
2999 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3000 vcpu->arch.cr0 = sregs->cr0;
3002 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3003 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3004 if (!is_long_mode(vcpu) && is_pae(vcpu))
3005 load_pdptrs(vcpu, vcpu->arch.cr3);
3007 if (mmu_reset_needed)
3008 kvm_mmu_reset_context(vcpu);
3010 if (!irqchip_in_kernel(vcpu->kvm)) {
3011 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3012 sizeof vcpu->arch.irq_pending);
3013 vcpu->arch.irq_summary = 0;
3014 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3015 if (vcpu->arch.irq_pending[i])
3016 __set_bit(i, &vcpu->arch.irq_summary);
3017 } else {
3018 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3019 pending_vec = find_first_bit(
3020 (const unsigned long *)sregs->interrupt_bitmap,
3021 max_bits);
3022 /* Only pending external irq is handled here */
3023 if (pending_vec < max_bits) {
3024 kvm_x86_ops->set_irq(vcpu, pending_vec);
3025 pr_debug("Set back pending irq %d\n",
3026 pending_vec);
3030 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3031 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3032 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3033 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3034 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3035 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3037 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3038 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3040 vcpu_put(vcpu);
3042 return 0;
3045 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3046 struct kvm_debug_guest *dbg)
3048 int r;
3050 vcpu_load(vcpu);
3052 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3054 vcpu_put(vcpu);
3056 return r;
3060 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3061 * we have asm/x86/processor.h
3063 struct fxsave {
3064 u16 cwd;
3065 u16 swd;
3066 u16 twd;
3067 u16 fop;
3068 u64 rip;
3069 u64 rdp;
3070 u32 mxcsr;
3071 u32 mxcsr_mask;
3072 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3073 #ifdef CONFIG_X86_64
3074 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3075 #else
3076 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3077 #endif
3081 * Translate a guest virtual address to a guest physical address.
3083 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3084 struct kvm_translation *tr)
3086 unsigned long vaddr = tr->linear_address;
3087 gpa_t gpa;
3089 vcpu_load(vcpu);
3090 down_read(&vcpu->kvm->slots_lock);
3091 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3092 up_read(&vcpu->kvm->slots_lock);
3093 tr->physical_address = gpa;
3094 tr->valid = gpa != UNMAPPED_GVA;
3095 tr->writeable = 1;
3096 tr->usermode = 0;
3097 vcpu_put(vcpu);
3099 return 0;
3102 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3104 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3106 vcpu_load(vcpu);
3108 memcpy(fpu->fpr, fxsave->st_space, 128);
3109 fpu->fcw = fxsave->cwd;
3110 fpu->fsw = fxsave->swd;
3111 fpu->ftwx = fxsave->twd;
3112 fpu->last_opcode = fxsave->fop;
3113 fpu->last_ip = fxsave->rip;
3114 fpu->last_dp = fxsave->rdp;
3115 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3117 vcpu_put(vcpu);
3119 return 0;
3122 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3124 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3126 vcpu_load(vcpu);
3128 memcpy(fxsave->st_space, fpu->fpr, 128);
3129 fxsave->cwd = fpu->fcw;
3130 fxsave->swd = fpu->fsw;
3131 fxsave->twd = fpu->ftwx;
3132 fxsave->fop = fpu->last_opcode;
3133 fxsave->rip = fpu->last_ip;
3134 fxsave->rdp = fpu->last_dp;
3135 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3137 vcpu_put(vcpu);
3139 return 0;
3142 void fx_init(struct kvm_vcpu *vcpu)
3144 unsigned after_mxcsr_mask;
3146 /* Initialize guest FPU by resetting ours and saving into guest's */
3147 preempt_disable();
3148 fx_save(&vcpu->arch.host_fx_image);
3149 fpu_init();
3150 fx_save(&vcpu->arch.guest_fx_image);
3151 fx_restore(&vcpu->arch.host_fx_image);
3152 preempt_enable();
3154 vcpu->arch.cr0 |= X86_CR0_ET;
3155 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3156 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3157 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3158 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3160 EXPORT_SYMBOL_GPL(fx_init);
3162 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3164 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3165 return;
3167 vcpu->guest_fpu_loaded = 1;
3168 fx_save(&vcpu->arch.host_fx_image);
3169 fx_restore(&vcpu->arch.guest_fx_image);
3171 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3173 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3175 if (!vcpu->guest_fpu_loaded)
3176 return;
3178 vcpu->guest_fpu_loaded = 0;
3179 fx_save(&vcpu->arch.guest_fx_image);
3180 fx_restore(&vcpu->arch.host_fx_image);
3181 ++vcpu->stat.fpu_reload;
3183 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3185 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3187 kvm_x86_ops->vcpu_free(vcpu);
3190 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3191 unsigned int id)
3193 return kvm_x86_ops->vcpu_create(kvm, id);
3196 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3198 int r;
3200 /* We do fxsave: this must be aligned. */
3201 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3203 vcpu_load(vcpu);
3204 r = kvm_arch_vcpu_reset(vcpu);
3205 if (r == 0)
3206 r = kvm_mmu_setup(vcpu);
3207 vcpu_put(vcpu);
3208 if (r < 0)
3209 goto free_vcpu;
3211 return 0;
3212 free_vcpu:
3213 kvm_x86_ops->vcpu_free(vcpu);
3214 return r;
3217 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3219 vcpu_load(vcpu);
3220 kvm_mmu_unload(vcpu);
3221 vcpu_put(vcpu);
3223 kvm_x86_ops->vcpu_free(vcpu);
3226 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3228 return kvm_x86_ops->vcpu_reset(vcpu);
3231 void kvm_arch_hardware_enable(void *garbage)
3233 kvm_x86_ops->hardware_enable(garbage);
3236 void kvm_arch_hardware_disable(void *garbage)
3238 kvm_x86_ops->hardware_disable(garbage);
3241 int kvm_arch_hardware_setup(void)
3243 return kvm_x86_ops->hardware_setup();
3246 void kvm_arch_hardware_unsetup(void)
3248 kvm_x86_ops->hardware_unsetup();
3251 void kvm_arch_check_processor_compat(void *rtn)
3253 kvm_x86_ops->check_processor_compatibility(rtn);
3256 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3258 struct page *page;
3259 struct kvm *kvm;
3260 int r;
3262 BUG_ON(vcpu->kvm == NULL);
3263 kvm = vcpu->kvm;
3265 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3266 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3267 vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3268 else
3269 vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3271 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3272 if (!page) {
3273 r = -ENOMEM;
3274 goto fail;
3276 vcpu->arch.pio_data = page_address(page);
3278 r = kvm_mmu_create(vcpu);
3279 if (r < 0)
3280 goto fail_free_pio_data;
3282 if (irqchip_in_kernel(kvm)) {
3283 r = kvm_create_lapic(vcpu);
3284 if (r < 0)
3285 goto fail_mmu_destroy;
3288 return 0;
3290 fail_mmu_destroy:
3291 kvm_mmu_destroy(vcpu);
3292 fail_free_pio_data:
3293 free_page((unsigned long)vcpu->arch.pio_data);
3294 fail:
3295 return r;
3298 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3300 kvm_free_lapic(vcpu);
3301 kvm_mmu_destroy(vcpu);
3302 free_page((unsigned long)vcpu->arch.pio_data);
3305 struct kvm *kvm_arch_create_vm(void)
3307 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3309 if (!kvm)
3310 return ERR_PTR(-ENOMEM);
3312 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3314 return kvm;
3317 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3319 vcpu_load(vcpu);
3320 kvm_mmu_unload(vcpu);
3321 vcpu_put(vcpu);
3324 static void kvm_free_vcpus(struct kvm *kvm)
3326 unsigned int i;
3329 * Unpin any mmu pages first.
3331 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3332 if (kvm->vcpus[i])
3333 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3334 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3335 if (kvm->vcpus[i]) {
3336 kvm_arch_vcpu_free(kvm->vcpus[i]);
3337 kvm->vcpus[i] = NULL;
3343 void kvm_arch_destroy_vm(struct kvm *kvm)
3345 kfree(kvm->arch.vpic);
3346 kfree(kvm->arch.vioapic);
3347 kvm_free_vcpus(kvm);
3348 kvm_free_physmem(kvm);
3349 kfree(kvm);
3352 int kvm_arch_set_memory_region(struct kvm *kvm,
3353 struct kvm_userspace_memory_region *mem,
3354 struct kvm_memory_slot old,
3355 int user_alloc)
3357 int npages = mem->memory_size >> PAGE_SHIFT;
3358 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3360 /*To keep backward compatibility with older userspace,
3361 *x86 needs to hanlde !user_alloc case.
3363 if (!user_alloc) {
3364 if (npages && !old.rmap) {
3365 down_write(&current->mm->mmap_sem);
3366 memslot->userspace_addr = do_mmap(NULL, 0,
3367 npages * PAGE_SIZE,
3368 PROT_READ | PROT_WRITE,
3369 MAP_SHARED | MAP_ANONYMOUS,
3371 up_write(&current->mm->mmap_sem);
3373 if (IS_ERR((void *)memslot->userspace_addr))
3374 return PTR_ERR((void *)memslot->userspace_addr);
3375 } else {
3376 if (!old.user_alloc && old.rmap) {
3377 int ret;
3379 down_write(&current->mm->mmap_sem);
3380 ret = do_munmap(current->mm, old.userspace_addr,
3381 old.npages * PAGE_SIZE);
3382 up_write(&current->mm->mmap_sem);
3383 if (ret < 0)
3384 printk(KERN_WARNING
3385 "kvm_vm_ioctl_set_memory_region: "
3386 "failed to munmap memory\n");
3391 if (!kvm->arch.n_requested_mmu_pages) {
3392 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
3393 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
3396 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
3397 kvm_flush_remote_tlbs(kvm);
3399 return 0;
3402 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3404 return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
3405 || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
3408 static void vcpu_kick_intr(void *info)
3410 #ifdef DEBUG
3411 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
3412 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
3413 #endif
3416 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3418 int ipi_pcpu = vcpu->cpu;
3420 if (waitqueue_active(&vcpu->wq)) {
3421 wake_up_interruptible(&vcpu->wq);
3422 ++vcpu->stat.halt_wakeup;
3424 if (vcpu->guest_mode)
3425 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);