4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 #include <linux/delay.h>
32 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw
*ah
,
35 const struct ath5k_rf_reg
*rf_regs
,
36 u32 val
, u8 reg_id
, bool set
)
38 const struct ath5k_rf_reg
*rfreg
= NULL
;
39 u8 offset
, bank
, num_bits
, col
, position
;
41 u32 mask
, data
, last_bit
, bits_shifted
, first_bit
;
47 rfb
= ah
->ah_rf_banks
;
49 for (i
= 0; i
< ah
->ah_rf_regs_count
; i
++) {
50 if (rf_regs
[i
].index
== reg_id
) {
56 if (rfb
== NULL
|| rfreg
== NULL
) {
57 ATH5K_PRINTF("Rf register not found!\n");
58 /* should not happen */
63 num_bits
= rfreg
->field
.len
;
64 first_bit
= rfreg
->field
.pos
;
65 col
= rfreg
->field
.col
;
67 /* first_bit is an offset from bank's
68 * start. Since we have all banks on
69 * the same array, we use this offset
70 * to mark each bank's start */
71 offset
= ah
->ah_offset
[bank
];
74 if (!(col
<= 3 && num_bits
<= 32 && first_bit
+ num_bits
<= 319)) {
75 ATH5K_PRINTF("invalid values at offset %u\n", offset
);
79 entry
= ((first_bit
- 1) / 8) + offset
;
80 position
= (first_bit
- 1) % 8;
83 data
= ath5k_hw_bitswap(val
, num_bits
);
85 for (bits_shifted
= 0, bits_left
= num_bits
; bits_left
> 0;
86 position
= 0, entry
++) {
88 last_bit
= (position
+ bits_left
> 8) ? 8 :
91 mask
= (((1 << last_bit
) - 1) ^ ((1 << position
) - 1)) <<
96 rfb
[entry
] |= ((data
<< position
) << (col
* 8)) & mask
;
97 data
>>= (8 - position
);
99 data
|= (((rfb
[entry
] & mask
) >> (col
* 8)) >> position
)
101 bits_shifted
+= last_bit
- position
;
104 bits_left
-= 8 - position
;
107 data
= set
? 1 : ath5k_hw_bitswap(data
, num_bits
);
112 /**********************\
113 * RF Gain optimization *
114 \**********************/
117 * This code is used to optimize rf gain on different environments
118 * (temperature mostly) based on feedback from a power detector.
120 * It's only used on RF5111 and RF5112, later RF chips seem to have
121 * auto adjustment on hw -notice they have a much smaller BANK 7 and
122 * no gain optimization ladder-.
124 * For more infos check out this patent doc
125 * http://www.freepatentsonline.com/7400691.html
127 * This paper describes power drops as seen on the receiver due to
129 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130 * %20of%20Power%20Control.pdf
132 * And this is the MadWiFi bug entry related to the above
133 * http://madwifi-project.org/ticket/1659
134 * with various measurements and diagrams
136 * TODO: Deal with power drops due to probes by setting an apropriate
137 * tx power on the probe packets ! Make this part of the calibration process.
140 /* Initialize ah_gain durring attach */
141 int ath5k_hw_rfgain_opt_init(struct ath5k_hw
*ah
)
143 /* Initialize the gain optimization values */
144 switch (ah
->ah_radio
) {
146 ah
->ah_gain
.g_step_idx
= rfgain_opt_5111
.go_default
;
147 ah
->ah_gain
.g_low
= 20;
148 ah
->ah_gain
.g_high
= 35;
149 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
152 ah
->ah_gain
.g_step_idx
= rfgain_opt_5112
.go_default
;
153 ah
->ah_gain
.g_low
= 20;
154 ah
->ah_gain
.g_high
= 85;
155 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
164 /* Schedule a gain probe check on the next transmited packet.
165 * That means our next packet is going to be sent with lower
166 * tx power and a Peak to Average Power Detector (PAPD) will try
167 * to measure the gain.
169 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
170 * just after we enable the probe so that we don't mess with
171 * standard traffic ? Maybe it's time to use sw interrupts and
172 * a probe tasklet !!!
174 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw
*ah
)
177 /* Skip if gain calibration is inactive or
178 * we already handle a probe request */
179 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_ACTIVE
)
182 /* Send the packet with 2dB below max power as
183 * patent doc suggest */
184 ath5k_hw_reg_write(ah
, AR5K_REG_SM(ah
->ah_txpower
.txp_ofdm
- 4,
185 AR5K_PHY_PAPD_PROBE_TXPOWER
) |
186 AR5K_PHY_PAPD_PROBE_TX_NEXT
, AR5K_PHY_PAPD_PROBE
);
188 ah
->ah_gain
.g_state
= AR5K_RFGAIN_READ_REQUESTED
;
192 /* Calculate gain_F measurement correction
193 * based on the current step for RF5112 rev. 2 */
194 static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw
*ah
)
198 const struct ath5k_gain_opt
*go
;
199 const struct ath5k_gain_opt_step
*g_step
;
200 const struct ath5k_rf_reg
*rf_regs
;
202 /* Only RF5112 Rev. 2 supports it */
203 if ((ah
->ah_radio
!= AR5K_RF5112
) ||
204 (ah
->ah_radio_5ghz_revision
<= AR5K_SREV_RAD_5112A
))
207 go
= &rfgain_opt_5112
;
208 rf_regs
= rf_regs_5112a
;
209 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
211 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
213 if (ah
->ah_rf_banks
== NULL
)
216 rf
= ah
->ah_rf_banks
;
217 ah
->ah_gain
.g_f_corr
= 0;
219 /* No VGA (Variable Gain Amplifier) override, skip */
220 if (ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
, false) != 1)
223 /* Mix gain stepping */
224 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXGAIN_STEP
, false);
226 /* Mix gain override */
227 mix
= g_step
->gos_param
[0];
231 ah
->ah_gain
.g_f_corr
= step
* 2;
234 ah
->ah_gain
.g_f_corr
= (step
- 5) * 2;
237 ah
->ah_gain
.g_f_corr
= step
;
240 ah
->ah_gain
.g_f_corr
= 0;
244 return ah
->ah_gain
.g_f_corr
;
247 /* Check if current gain_F measurement is in the range of our
248 * power detector windows. If we get a measurement outside range
249 * we know it's not accurate (detectors can't measure anything outside
250 * their detection window) so we must ignore it */
251 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw
*ah
)
253 const struct ath5k_rf_reg
*rf_regs
;
254 u32 step
, mix_ovr
, level
[4];
257 if (ah
->ah_rf_banks
== NULL
)
260 rf
= ah
->ah_rf_banks
;
262 if (ah
->ah_radio
== AR5K_RF5111
) {
264 rf_regs
= rf_regs_5111
;
265 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
267 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_RFGAIN_STEP
,
271 level
[1] = (step
== 63) ? 50 : step
+ 4;
272 level
[2] = (step
!= 63) ? 64 : level
[0];
273 level
[3] = level
[2] + 50 ;
275 ah
->ah_gain
.g_high
= level
[3] -
276 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN
: -5);
277 ah
->ah_gain
.g_low
= level
[0] +
278 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN
: 0);
281 rf_regs
= rf_regs_5112
;
282 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
284 mix_ovr
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
,
287 level
[0] = level
[2] = 0;
290 level
[1] = level
[3] = 83;
292 level
[1] = level
[3] = 107;
293 ah
->ah_gain
.g_high
= 55;
297 return (ah
->ah_gain
.g_current
>= level
[0] &&
298 ah
->ah_gain
.g_current
<= level
[1]) ||
299 (ah
->ah_gain
.g_current
>= level
[2] &&
300 ah
->ah_gain
.g_current
<= level
[3]);
303 /* Perform gain_F adjustment by choosing the right set
304 * of parameters from rf gain optimization ladder */
305 static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw
*ah
)
307 const struct ath5k_gain_opt
*go
;
308 const struct ath5k_gain_opt_step
*g_step
;
311 switch (ah
->ah_radio
) {
313 go
= &rfgain_opt_5111
;
316 go
= &rfgain_opt_5112
;
322 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
324 if (ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_high
) {
326 /* Reached maximum */
327 if (ah
->ah_gain
.g_step_idx
== 0)
330 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
331 ah
->ah_gain
.g_target
>= ah
->ah_gain
.g_high
&&
332 ah
->ah_gain
.g_step_idx
> 0;
333 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
334 ah
->ah_gain
.g_target
-= 2 *
335 (go
->go_step
[--(ah
->ah_gain
.g_step_idx
)].gos_gain
-
342 if (ah
->ah_gain
.g_current
<= ah
->ah_gain
.g_low
) {
344 /* Reached minimum */
345 if (ah
->ah_gain
.g_step_idx
== (go
->go_steps_count
- 1))
348 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
349 ah
->ah_gain
.g_target
<= ah
->ah_gain
.g_low
&&
350 ah
->ah_gain
.g_step_idx
< go
->go_steps_count
-1;
351 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
352 ah
->ah_gain
.g_target
-= 2 *
353 (go
->go_step
[++ah
->ah_gain
.g_step_idx
].gos_gain
-
361 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_CALIBRATE
,
362 "ret %d, gain step %u, current gain %u, target gain %u\n",
363 ret
, ah
->ah_gain
.g_step_idx
, ah
->ah_gain
.g_current
,
364 ah
->ah_gain
.g_target
);
369 /* Main callback for thermal rf gain calibration engine
370 * Check for a new gain reading and schedule an adjustment
373 * TODO: Use sw interrupt to schedule reset if gain_F needs
375 enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw
*ah
)
378 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
380 ATH5K_TRACE(ah
->ah_sc
);
382 if (ah
->ah_rf_banks
== NULL
||
383 ah
->ah_gain
.g_state
== AR5K_RFGAIN_INACTIVE
)
384 return AR5K_RFGAIN_INACTIVE
;
386 /* No check requested, either engine is inactive
387 * or an adjustment is already requested */
388 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_READ_REQUESTED
)
391 /* Read the PAPD (Peak to Average Power Detector)
393 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_PAPD_PROBE
);
395 /* No probe is scheduled, read gain_F measurement */
396 if (!(data
& AR5K_PHY_PAPD_PROBE_TX_NEXT
)) {
397 ah
->ah_gain
.g_current
= data
>> AR5K_PHY_PAPD_PROBE_GAINF_S
;
398 type
= AR5K_REG_MS(data
, AR5K_PHY_PAPD_PROBE_TYPE
);
400 /* If tx packet is CCK correct the gain_F measurement
401 * by cck ofdm gain delta */
402 if (type
== AR5K_PHY_PAPD_PROBE_TYPE_CCK
) {
403 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
)
404 ah
->ah_gain
.g_current
+=
405 ee
->ee_cck_ofdm_gain_delta
;
407 ah
->ah_gain
.g_current
+=
408 AR5K_GAIN_CCK_PROBE_CORR
;
411 /* Further correct gain_F measurement for
413 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
414 ath5k_hw_rf_gainf_corr(ah
);
415 ah
->ah_gain
.g_current
=
416 ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_f_corr
?
417 (ah
->ah_gain
.g_current
-ah
->ah_gain
.g_f_corr
) :
421 /* Check if measurement is ok and if we need
422 * to adjust gain, schedule a gain adjustment,
423 * else switch back to the acive state */
424 if (ath5k_hw_rf_check_gainf_readback(ah
) &&
425 AR5K_GAIN_CHECK_ADJUST(&ah
->ah_gain
) &&
426 ath5k_hw_rf_gainf_adjust(ah
)) {
427 ah
->ah_gain
.g_state
= AR5K_RFGAIN_NEED_CHANGE
;
429 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
434 return ah
->ah_gain
.g_state
;
437 /* Write initial rf gain table to set the RF sensitivity
438 * this one works on all RF chips and has nothing to do
439 * with gain_F calibration */
440 int ath5k_hw_rfgain_init(struct ath5k_hw
*ah
, unsigned int freq
)
442 const struct ath5k_ini_rfgain
*ath5k_rfg
;
443 unsigned int i
, size
;
445 switch (ah
->ah_radio
) {
447 ath5k_rfg
= rfgain_5111
;
448 size
= ARRAY_SIZE(rfgain_5111
);
451 ath5k_rfg
= rfgain_5112
;
452 size
= ARRAY_SIZE(rfgain_5112
);
455 ath5k_rfg
= rfgain_2413
;
456 size
= ARRAY_SIZE(rfgain_2413
);
459 ath5k_rfg
= rfgain_2316
;
460 size
= ARRAY_SIZE(rfgain_2316
);
463 ath5k_rfg
= rfgain_5413
;
464 size
= ARRAY_SIZE(rfgain_5413
);
468 ath5k_rfg
= rfgain_2425
;
469 size
= ARRAY_SIZE(rfgain_2425
);
476 case AR5K_INI_RFGAIN_2GHZ
:
477 case AR5K_INI_RFGAIN_5GHZ
:
483 for (i
= 0; i
< size
; i
++) {
485 ath5k_hw_reg_write(ah
, ath5k_rfg
[i
].rfg_value
[freq
],
486 (u32
)ath5k_rfg
[i
].rfg_register
);
494 /********************\
495 * RF Registers setup *
496 \********************/
500 * Setup RF registers by writing rf buffer on hw
502 int ath5k_hw_rfregs_init(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
505 const struct ath5k_rf_reg
*rf_regs
;
506 const struct ath5k_ini_rfbuffer
*ini_rfb
;
507 const struct ath5k_gain_opt
*go
= NULL
;
508 const struct ath5k_gain_opt_step
*g_step
;
509 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
512 int i
, obdb
= -1, bank
= -1;
514 switch (ah
->ah_radio
) {
516 rf_regs
= rf_regs_5111
;
517 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
519 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5111
);
520 go
= &rfgain_opt_5111
;
523 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
524 rf_regs
= rf_regs_5112a
;
525 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
527 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112a
);
529 rf_regs
= rf_regs_5112
;
530 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
532 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112
);
534 go
= &rfgain_opt_5112
;
537 rf_regs
= rf_regs_2413
;
538 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2413
);
540 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2413
);
543 rf_regs
= rf_regs_2316
;
544 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2316
);
546 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2316
);
549 rf_regs
= rf_regs_5413
;
550 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5413
);
552 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5413
);
555 rf_regs
= rf_regs_2425
;
556 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
558 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2317
);
561 rf_regs
= rf_regs_2425
;
562 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
563 if (ah
->ah_mac_srev
< AR5K_SREV_AR2417
) {
565 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2425
);
568 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2417
);
575 /* If it's the first time we set rf buffer, allocate
576 * ah->ah_rf_banks based on ah->ah_rf_banks_size
578 if (ah
->ah_rf_banks
== NULL
) {
579 ah
->ah_rf_banks
= kmalloc(sizeof(u32
) * ah
->ah_rf_banks_size
,
581 if (ah
->ah_rf_banks
== NULL
) {
582 ATH5K_ERR(ah
->ah_sc
, "out of memory\n");
587 /* Copy values to modify them */
588 rfb
= ah
->ah_rf_banks
;
590 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
591 if (ini_rfb
[i
].rfb_bank
>= AR5K_MAX_RF_BANKS
) {
592 ATH5K_ERR(ah
->ah_sc
, "invalid bank\n");
596 /* Bank changed, write down the offset */
597 if (bank
!= ini_rfb
[i
].rfb_bank
) {
598 bank
= ini_rfb
[i
].rfb_bank
;
599 ah
->ah_offset
[bank
] = i
;
602 rfb
[i
] = ini_rfb
[i
].rfb_mode_data
[mode
];
605 /* Set Output and Driver bias current (OB/DB) */
606 if (channel
->hw_value
& CHANNEL_2GHZ
) {
608 if (channel
->hw_value
& CHANNEL_CCK
)
609 ee_mode
= AR5K_EEPROM_MODE_11B
;
611 ee_mode
= AR5K_EEPROM_MODE_11G
;
613 /* For RF511X/RF211X combination we
614 * use b_OB and b_DB parameters stored
615 * in eeprom on ee->ee_ob[ee_mode][0]
617 * For all other chips we use OB/DB for 2Ghz
618 * stored in the b/g modal section just like
619 * 802.11a on ee->ee_ob[ee_mode][1] */
620 if ((ah
->ah_radio
== AR5K_RF5111
) ||
621 (ah
->ah_radio
== AR5K_RF5112
))
626 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
627 AR5K_RF_OB_2GHZ
, true);
629 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
630 AR5K_RF_DB_2GHZ
, true);
632 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633 } else if ((channel
->hw_value
& CHANNEL_5GHZ
) ||
634 (ah
->ah_radio
== AR5K_RF5111
)) {
636 /* For 11a, Turbo and XR we need to choose
637 * OB/DB based on frequency range */
638 ee_mode
= AR5K_EEPROM_MODE_11A
;
639 obdb
= channel
->center_freq
>= 5725 ? 3 :
640 (channel
->center_freq
>= 5500 ? 2 :
641 (channel
->center_freq
>= 5260 ? 1 :
642 (channel
->center_freq
> 4000 ? 0 : -1)));
647 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
648 AR5K_RF_OB_5GHZ
, true);
650 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
651 AR5K_RF_DB_5GHZ
, true);
654 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
656 /* Bank Modifications (chip-specific) */
657 if (ah
->ah_radio
== AR5K_RF5111
) {
659 /* Set gain_F settings according to current step */
660 if (channel
->hw_value
& CHANNEL_OFDM
) {
662 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL
,
663 AR5K_PHY_FRAME_CTL_TX_CLIP
,
664 g_step
->gos_param
[0]);
666 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
667 AR5K_RF_PWD_90
, true);
669 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
670 AR5K_RF_PWD_84
, true);
672 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
673 AR5K_RF_RFGAIN_SEL
, true);
675 /* We programmed gain_F parameters, switch back
677 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
683 ath5k_hw_rfb_op(ah
, rf_regs
, !ee
->ee_xpd
[ee_mode
],
684 AR5K_RF_PWD_XPD
, true);
686 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_x_gain
[ee_mode
],
687 AR5K_RF_XPD_GAIN
, true);
689 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
690 AR5K_RF_GAIN_I
, true);
692 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
693 AR5K_RF_PLO_SEL
, true);
695 /* TODO: Half/quarter channel support */
698 if (ah
->ah_radio
== AR5K_RF5112
) {
700 /* Set gain_F settings according to current step */
701 if (channel
->hw_value
& CHANNEL_OFDM
) {
703 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[0],
704 AR5K_RF_MIXGAIN_OVR
, true);
706 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
707 AR5K_RF_PWD_138
, true);
709 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
710 AR5K_RF_PWD_137
, true);
712 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
713 AR5K_RF_PWD_136
, true);
715 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[4],
716 AR5K_RF_PWD_132
, true);
718 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[5],
719 AR5K_RF_PWD_131
, true);
721 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[6],
722 AR5K_RF_PWD_130
, true);
724 /* We programmed gain_F parameters, switch back
726 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
731 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
732 AR5K_RF_XPD_SEL
, true);
734 if (ah
->ah_radio_5ghz_revision
< AR5K_SREV_RAD_5112A
) {
735 /* Rev. 1 supports only one xpd */
736 ath5k_hw_rfb_op(ah
, rf_regs
,
737 ee
->ee_x_gain
[ee_mode
],
738 AR5K_RF_XPD_GAIN
, true);
741 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
742 if (ee
->ee_pd_gains
[ee_mode
] > 1) {
743 ath5k_hw_rfb_op(ah
, rf_regs
,
745 AR5K_RF_PD_GAIN_LO
, true);
746 ath5k_hw_rfb_op(ah
, rf_regs
,
748 AR5K_RF_PD_GAIN_HI
, true);
750 ath5k_hw_rfb_op(ah
, rf_regs
,
752 AR5K_RF_PD_GAIN_LO
, true);
753 ath5k_hw_rfb_op(ah
, rf_regs
,
755 AR5K_RF_PD_GAIN_HI
, true);
758 /* Lower synth voltage on Rev 2 */
759 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
760 AR5K_RF_HIGH_VC_CP
, true);
762 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
763 AR5K_RF_MID_VC_CP
, true);
765 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
766 AR5K_RF_LOW_VC_CP
, true);
768 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
769 AR5K_RF_PUSH_UP
, true);
771 /* Decrease power consumption on 5213+ BaseBand */
772 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
773 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
774 AR5K_RF_PAD2GND
, true);
776 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
777 AR5K_RF_XB2_LVL
, true);
779 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
780 AR5K_RF_XB5_LVL
, true);
782 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
783 AR5K_RF_PWD_167
, true);
785 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
786 AR5K_RF_PWD_166
, true);
790 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
791 AR5K_RF_GAIN_I
, true);
793 /* TODO: Half/quarter channel support */
797 if (ah
->ah_radio
== AR5K_RF5413
&&
798 channel
->hw_value
& CHANNEL_2GHZ
) {
800 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_DERBY_CHAN_SEL_MODE
,
803 /* Set optimum value for early revisions (on pci-e chips) */
804 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
805 ah
->ah_mac_srev
< AR5K_SREV_AR5413
)
806 ath5k_hw_rfb_op(ah
, rf_regs
, ath5k_hw_bitswap(6, 3),
807 AR5K_RF_PWD_ICLOBUF_2G
, true);
811 /* Write RF banks on hw */
812 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
814 ath5k_hw_reg_write(ah
, rfb
[i
], ini_rfb
[i
].rfb_ctrl_register
);
821 /**************************\
822 PHY/RF channel functions
823 \**************************/
826 * Check if a channel is supported
828 bool ath5k_channel_ok(struct ath5k_hw
*ah
, u16 freq
, unsigned int flags
)
830 /* Check if the channel is in our supported range */
831 if (flags
& CHANNEL_2GHZ
) {
832 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_2ghz_min
) &&
833 (freq
<= ah
->ah_capabilities
.cap_range
.range_2ghz_max
))
835 } else if (flags
& CHANNEL_5GHZ
)
836 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_5ghz_min
) &&
837 (freq
<= ah
->ah_capabilities
.cap_range
.range_5ghz_max
))
844 * Convertion needed for RF5110
846 static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel
*channel
)
851 * Convert IEEE channel/MHz to an internal channel value used
852 * by the AR5210 chipset. This has not been verified with
853 * newer chipsets like the AR5212A who have a completely
854 * different RF/PHY part.
856 athchan
= (ath5k_hw_bitswap(
857 (ieee80211_frequency_to_channel(
858 channel
->center_freq
) - 24) / 2, 5)
859 << 1) | (1 << 6) | 0x1;
864 * Set channel on RF5110
866 static int ath5k_hw_rf5110_channel(struct ath5k_hw
*ah
,
867 struct ieee80211_channel
*channel
)
872 * Set the channel and wait
874 data
= ath5k_hw_rf5110_chan2athchan(channel
);
875 ath5k_hw_reg_write(ah
, data
, AR5K_RF_BUFFER
);
876 ath5k_hw_reg_write(ah
, 0, AR5K_RF_BUFFER_CONTROL_0
);
883 * Convertion needed for 5111
885 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee
,
886 struct ath5k_athchan_2ghz
*athchan
)
890 /* Cast this value to catch negative channel numbers (>= -19) */
894 * Map 2GHz IEEE channel to 5GHz Atheros channel
897 athchan
->a2_athchan
= 115 + channel
;
898 athchan
->a2_flags
= 0x46;
899 } else if (channel
== 14) {
900 athchan
->a2_athchan
= 124;
901 athchan
->a2_flags
= 0x44;
902 } else if (channel
>= 15 && channel
<= 26) {
903 athchan
->a2_athchan
= ((channel
- 14) * 4) + 132;
904 athchan
->a2_flags
= 0x46;
912 * Set channel on 5111
914 static int ath5k_hw_rf5111_channel(struct ath5k_hw
*ah
,
915 struct ieee80211_channel
*channel
)
917 struct ath5k_athchan_2ghz ath5k_channel_2ghz
;
918 unsigned int ath5k_channel
=
919 ieee80211_frequency_to_channel(channel
->center_freq
);
920 u32 data0
, data1
, clock
;
924 * Set the channel on the RF5111 radio
928 if (channel
->hw_value
& CHANNEL_2GHZ
) {
929 /* Map 2GHz channel to 5GHz Atheros channel ID */
930 ret
= ath5k_hw_rf5111_chan2athchan(
931 ieee80211_frequency_to_channel(channel
->center_freq
),
932 &ath5k_channel_2ghz
);
936 ath5k_channel
= ath5k_channel_2ghz
.a2_athchan
;
937 data0
= ((ath5k_hw_bitswap(ath5k_channel_2ghz
.a2_flags
, 8) & 0xff)
941 if (ath5k_channel
< 145 || !(ath5k_channel
& 1)) {
943 data1
= ((ath5k_hw_bitswap(ath5k_channel
- 24, 8) & 0xff) << 2) |
944 (clock
<< 1) | (1 << 10) | 1;
947 data1
= ((ath5k_hw_bitswap((ath5k_channel
- 24) / 2, 8) & 0xff)
948 << 2) | (clock
<< 1) | (1 << 10) | 1;
951 ath5k_hw_reg_write(ah
, (data1
& 0xff) | ((data0
& 0xff) << 8),
953 ath5k_hw_reg_write(ah
, ((data1
>> 8) & 0xff) | (data0
& 0xff00),
954 AR5K_RF_BUFFER_CONTROL_3
);
960 * Set channel on 5112 and newer
962 static int ath5k_hw_rf5112_channel(struct ath5k_hw
*ah
,
963 struct ieee80211_channel
*channel
)
965 u32 data
, data0
, data1
, data2
;
968 data
= data0
= data1
= data2
= 0;
969 c
= channel
->center_freq
;
972 if (!((c
- 2224) % 5)) {
973 data0
= ((2 * (c
- 704)) - 3040) / 10;
975 } else if (!((c
- 2192) % 5)) {
976 data0
= ((2 * (c
- 672)) - 3040) / 10;
981 data0
= ath5k_hw_bitswap((data0
<< 2) & 0xff, 8);
982 } else if ((c
- (c
% 5)) != 2 || c
> 5435) {
983 if (!(c
% 20) && c
>= 5120) {
984 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
985 data2
= ath5k_hw_bitswap(3, 2);
986 } else if (!(c
% 10)) {
987 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
988 data2
= ath5k_hw_bitswap(2, 2);
989 } else if (!(c
% 5)) {
990 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
991 data2
= ath5k_hw_bitswap(1, 2);
995 data0
= ath5k_hw_bitswap((10 * (c
- 2) - 4800) / 25 + 1, 8);
996 data2
= ath5k_hw_bitswap(0, 2);
999 data
= (data0
<< 4) | (data1
<< 1) | (data2
<< 2) | 0x1001;
1001 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1002 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1008 * Set the channel on the RF2425
1010 static int ath5k_hw_rf2425_channel(struct ath5k_hw
*ah
,
1011 struct ieee80211_channel
*channel
)
1013 u32 data
, data0
, data2
;
1016 data
= data0
= data2
= 0;
1017 c
= channel
->center_freq
;
1020 data0
= ath5k_hw_bitswap((c
- 2272), 8);
1023 } else if ((c
- (c
% 5)) != 2 || c
> 5435) {
1024 if (!(c
% 20) && c
< 5120)
1025 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1027 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1029 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1032 data2
= ath5k_hw_bitswap(1, 2);
1034 data0
= ath5k_hw_bitswap((10 * (c
- 2) - 4800) / 25 + 1, 8);
1035 data2
= ath5k_hw_bitswap(0, 2);
1038 data
= (data0
<< 4) | data2
<< 2 | 0x1001;
1040 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1041 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1047 * Set a channel on the radio chip
1049 int ath5k_hw_channel(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
)
1053 * Check bounds supported by the PHY (we don't care about regultory
1054 * restrictions at this point). Note: hw_value already has the band
1055 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056 * of the band by that */
1057 if (!ath5k_channel_ok(ah
, channel
->center_freq
, channel
->hw_value
)) {
1058 ATH5K_ERR(ah
->ah_sc
,
1059 "channel frequency (%u MHz) out of supported "
1061 channel
->center_freq
);
1066 * Set the channel and wait
1068 switch (ah
->ah_radio
) {
1070 ret
= ath5k_hw_rf5110_channel(ah
, channel
);
1073 ret
= ath5k_hw_rf5111_channel(ah
, channel
);
1076 ret
= ath5k_hw_rf2425_channel(ah
, channel
);
1079 ret
= ath5k_hw_rf5112_channel(ah
, channel
);
1086 /* Set JAPAN setting for channel 14 */
1087 if (channel
->center_freq
== 2484) {
1088 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1089 AR5K_PHY_CCKTXCTL_JAPAN
);
1091 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1092 AR5K_PHY_CCKTXCTL_WORLD
);
1095 ah
->ah_current_channel
= channel
;
1096 ah
->ah_turbo
= channel
->hw_value
== CHANNEL_T
? true : false;
1106 ath5k_hw_calibration_poll(struct ath5k_hw
*ah
)
1108 /* Calibration interval in jiffies */
1109 unsigned long cal_intval
;
1111 cal_intval
= msecs_to_jiffies(ah
->ah_cal_intval
* 1000);
1113 /* Initialize timestamp if needed */
1114 if (!ah
->ah_cal_tstamp
)
1115 ah
->ah_cal_tstamp
= jiffies
;
1117 /* For now we always do full calibration
1118 * Mark software interrupt mask and fire software
1119 * interrupt (bit gets auto-cleared) */
1120 if (time_is_before_eq_jiffies(ah
->ah_cal_tstamp
+ cal_intval
)) {
1121 ah
->ah_cal_tstamp
= jiffies
;
1122 ah
->ah_swi_mask
= AR5K_SWI_FULL_CALIBRATION
;
1123 AR5K_REG_ENABLE_BITS(ah
, AR5K_CR
, AR5K_CR_SWI
);
1127 static int sign_extend(int val
, const int nbits
)
1129 int order
= BIT(nbits
-1);
1130 return (val
^ order
) - order
;
1133 static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw
*ah
)
1137 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
);
1138 return sign_extend(AR5K_REG_MS(val
, AR5K_PHY_NF_MINCCA_PWR
), 9);
1141 void ath5k_hw_init_nfcal_hist(struct ath5k_hw
*ah
)
1145 ah
->ah_nfcal_hist
.index
= 0;
1146 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++)
1147 ah
->ah_nfcal_hist
.nfval
[i
] = AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1150 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw
*ah
, s16 noise_floor
)
1152 struct ath5k_nfcal_hist
*hist
= &ah
->ah_nfcal_hist
;
1153 hist
->index
= (hist
->index
+ 1) & (ATH5K_NF_CAL_HIST_MAX
-1);
1154 hist
->nfval
[hist
->index
] = noise_floor
;
1157 static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw
*ah
)
1159 s16 sort
[ATH5K_NF_CAL_HIST_MAX
];
1163 memcpy(sort
, ah
->ah_nfcal_hist
.nfval
, sizeof(sort
));
1164 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
- 1; i
++) {
1165 for (j
= 1; j
< ATH5K_NF_CAL_HIST_MAX
- i
; j
++) {
1166 if (sort
[j
] > sort
[j
-1]) {
1168 sort
[j
] = sort
[j
-1];
1173 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++) {
1174 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_CALIBRATE
,
1175 "cal %d:%d\n", i
, sort
[i
]);
1177 return sort
[(ATH5K_NF_CAL_HIST_MAX
-1) / 2];
1181 * When we tell the hardware to perform a noise floor calibration
1182 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1183 * sample-and-hold the minimum noise level seen at the antennas.
1184 * This value is then stored in a ring buffer of recently measured
1185 * noise floor values so we have a moving window of the last few
1188 * The median of the values in the history is then loaded into the
1189 * hardware for its own use for RSSI and CCA measurements.
1191 static void ath5k_hw_update_noise_floor(struct ath5k_hw
*ah
)
1193 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1198 /* keep last value if calibration hasn't completed */
1199 if (ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCTL
) & AR5K_PHY_AGCCTL_NF
) {
1200 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_CALIBRATE
,
1201 "NF did not complete in calibration window\n");
1206 switch (ah
->ah_current_channel
->hw_value
& CHANNEL_MODES
) {
1210 ee_mode
= AR5K_EEPROM_MODE_11A
;
1214 ee_mode
= AR5K_EEPROM_MODE_11G
;
1218 ee_mode
= AR5K_EEPROM_MODE_11B
;
1223 /* completed NF calibration, test threshold */
1224 nf
= ath5k_hw_read_measured_noise_floor(ah
);
1225 threshold
= ee
->ee_noise_floor_thr
[ee_mode
];
1227 if (nf
> threshold
) {
1228 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_CALIBRATE
,
1229 "noise floor failure detected; "
1230 "read %d, threshold %d\n",
1233 nf
= AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1236 ath5k_hw_update_nfcal_hist(ah
, nf
);
1237 nf
= ath5k_hw_get_median_noise_floor(ah
);
1239 /* load noise floor (in .5 dBm) so the hardware will use it */
1240 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
) & ~AR5K_PHY_NF_M
;
1241 val
|= (nf
* 2) & AR5K_PHY_NF_M
;
1242 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1244 AR5K_REG_MASKED_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1245 ~(AR5K_PHY_AGCCTL_NF_EN
| AR5K_PHY_AGCCTL_NF_NOUPDATE
));
1247 ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1251 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1252 * so that we're not capped by the median we just loaded.
1253 * This will be used as the initial value for the next noise
1254 * floor calibration.
1256 val
= (val
& ~AR5K_PHY_NF_M
) | ((-50 * 2) & AR5K_PHY_NF_M
);
1257 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1258 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1259 AR5K_PHY_AGCCTL_NF_EN
|
1260 AR5K_PHY_AGCCTL_NF_NOUPDATE
|
1261 AR5K_PHY_AGCCTL_NF
);
1263 ah
->ah_noise_floor
= nf
;
1265 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_CALIBRATE
,
1266 "noise floor calibrated: %d\n", nf
);
1270 * Perform a PHY calibration on RF5110
1271 * -Fix BPSK/QAM Constellation (I/Q correction)
1272 * -Calculate Noise Floor
1274 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw
*ah
,
1275 struct ieee80211_channel
*channel
)
1277 u32 phy_sig
, phy_agc
, phy_sat
, beacon
;
1281 * Disable beacons and RX/TX queues, wait
1283 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1284 AR5K_DIAG_SW_DIS_TX
| AR5K_DIAG_SW_DIS_RX_5210
);
1285 beacon
= ath5k_hw_reg_read(ah
, AR5K_BEACON_5210
);
1286 ath5k_hw_reg_write(ah
, beacon
& ~AR5K_BEACON_ENABLE
, AR5K_BEACON_5210
);
1291 * Set the channel (with AGC turned off)
1293 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1295 ret
= ath5k_hw_channel(ah
, channel
);
1298 * Activate PHY and wait
1300 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1303 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1309 * Calibrate the radio chip
1312 /* Remember normal state */
1313 phy_sig
= ath5k_hw_reg_read(ah
, AR5K_PHY_SIG
);
1314 phy_agc
= ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCOARSE
);
1315 phy_sat
= ath5k_hw_reg_read(ah
, AR5K_PHY_ADCSAT
);
1317 /* Update radio registers */
1318 ath5k_hw_reg_write(ah
, (phy_sig
& ~(AR5K_PHY_SIG_FIRPWR
)) |
1319 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR
), AR5K_PHY_SIG
);
1321 ath5k_hw_reg_write(ah
, (phy_agc
& ~(AR5K_PHY_AGCCOARSE_HI
|
1322 AR5K_PHY_AGCCOARSE_LO
)) |
1323 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI
) |
1324 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO
), AR5K_PHY_AGCCOARSE
);
1326 ath5k_hw_reg_write(ah
, (phy_sat
& ~(AR5K_PHY_ADCSAT_ICNT
|
1327 AR5K_PHY_ADCSAT_THR
)) |
1328 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT
) |
1329 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR
), AR5K_PHY_ADCSAT
);
1333 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1335 ath5k_hw_reg_write(ah
, AR5K_PHY_RFSTG_DISABLE
, AR5K_PHY_RFSTG
);
1336 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1341 * Enable calibration and wait until completion
1343 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_CAL
);
1345 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1346 AR5K_PHY_AGCCTL_CAL
, 0, false);
1348 /* Reset to normal state */
1349 ath5k_hw_reg_write(ah
, phy_sig
, AR5K_PHY_SIG
);
1350 ath5k_hw_reg_write(ah
, phy_agc
, AR5K_PHY_AGCCOARSE
);
1351 ath5k_hw_reg_write(ah
, phy_sat
, AR5K_PHY_ADCSAT
);
1354 ATH5K_ERR(ah
->ah_sc
, "calibration timeout (%uMHz)\n",
1355 channel
->center_freq
);
1359 ath5k_hw_update_noise_floor(ah
);
1362 * Re-enable RX/TX and beacons
1364 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1365 AR5K_DIAG_SW_DIS_TX
| AR5K_DIAG_SW_DIS_RX_5210
);
1366 ath5k_hw_reg_write(ah
, beacon
, AR5K_BEACON_5210
);
1372 * Perform a PHY calibration on RF5111/5112 and newer chips
1374 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw
*ah
,
1375 struct ieee80211_channel
*channel
)
1378 s32 iq_corr
, i_coff
, i_coffd
, q_coff
, q_coffd
;
1380 ATH5K_TRACE(ah
->ah_sc
);
1382 if (!ah
->ah_calibration
||
1383 ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) & AR5K_PHY_IQ_RUN
)
1386 /* Calibration has finished, get the results and re-run */
1387 for (i
= 0; i
<= 10; i
++) {
1388 iq_corr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_CORR
);
1389 i_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_I
);
1390 q_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_Q
);
1393 i_coffd
= ((i_pwr
>> 1) + (q_pwr
>> 1)) >> 7;
1395 if (ah
->ah_version
== AR5K_AR5211
)
1396 q_coffd
= q_pwr
>> 6;
1398 q_coffd
= q_pwr
>> 7;
1401 if (i_coffd
== 0 || q_coffd
== 0)
1404 i_coff
= ((-iq_corr
) / i_coffd
);
1406 /* Boundary check */
1412 if (ah
->ah_version
== AR5K_AR5211
)
1413 q_coff
= (i_pwr
/ q_coffd
) - 64;
1415 q_coff
= (i_pwr
/ q_coffd
) - 128;
1417 /* Boundary check */
1423 /* Commit new I/Q value */
1424 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
|
1425 ((u32
)q_coff
) | ((u32
)i_coff
<< AR5K_PHY_IQ_CORR_Q_I_COFF_S
));
1427 /* Re-enable calibration -if we don't we'll commit
1428 * the same values again and again */
1429 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1430 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1431 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_RUN
);
1435 /* TODO: Separate noise floor calibration from I/Q calibration
1436 * since noise floor calibration interrupts rx path while I/Q
1437 * calibration doesn't. We don't need to run noise floor calibration
1438 * as often as I/Q calibration.*/
1439 ath5k_hw_update_noise_floor(ah
);
1441 /* Initiate a gain_F calibration */
1442 ath5k_hw_request_rfgain_probe(ah
);
1448 * Perform a PHY calibration
1450 int ath5k_hw_phy_calibrate(struct ath5k_hw
*ah
,
1451 struct ieee80211_channel
*channel
)
1455 if (ah
->ah_radio
== AR5K_RF5110
)
1456 ret
= ath5k_hw_rf5110_calibrate(ah
, channel
);
1458 ret
= ath5k_hw_rf511x_calibrate(ah
, channel
);
1463 /***************************\
1464 * Spur mitigation functions *
1465 \***************************/
1467 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw
*ah
,
1468 struct ieee80211_channel
*channel
)
1472 if ((ah
->ah_radio
== AR5K_RF5112
) ||
1473 (ah
->ah_radio
== AR5K_RF5413
) ||
1474 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
1479 if ((channel
->center_freq
% refclk_freq
!= 0) &&
1480 ((channel
->center_freq
% refclk_freq
< 10) ||
1481 (channel
->center_freq
% refclk_freq
> 22)))
1488 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw
*ah
,
1489 struct ieee80211_channel
*channel
)
1491 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1492 u32 mag_mask
[4] = {0, 0, 0, 0};
1493 u32 pilot_mask
[2] = {0, 0};
1494 /* Note: fbin values are scaled up by 2 */
1495 u16 spur_chan_fbin
, chan_fbin
, symbol_width
, spur_detection_window
;
1496 s32 spur_delta_phase
, spur_freq_sigma_delta
;
1497 s32 spur_offset
, num_symbols_x16
;
1498 u8 num_symbol_offsets
, i
, freq_band
;
1500 /* Convert current frequency to fbin value (the same way channels
1501 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1502 * up by 2 so we can compare it later */
1503 if (channel
->hw_value
& CHANNEL_2GHZ
) {
1504 chan_fbin
= (channel
->center_freq
- 2300) * 10;
1505 freq_band
= AR5K_EEPROM_BAND_2GHZ
;
1507 chan_fbin
= (channel
->center_freq
- 4900) * 10;
1508 freq_band
= AR5K_EEPROM_BAND_5GHZ
;
1511 /* Check if any spur_chan_fbin from EEPROM is
1512 * within our current channel's spur detection range */
1513 spur_chan_fbin
= AR5K_EEPROM_NO_SPUR
;
1514 spur_detection_window
= AR5K_SPUR_CHAN_WIDTH
;
1515 /* XXX: Half/Quarter channels ?*/
1516 if (channel
->hw_value
& CHANNEL_TURBO
)
1517 spur_detection_window
*= 2;
1519 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1520 spur_chan_fbin
= ee
->ee_spur_chans
[i
][freq_band
];
1522 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1523 * so it's zero if we got nothing from EEPROM */
1524 if (spur_chan_fbin
== AR5K_EEPROM_NO_SPUR
) {
1525 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1529 if ((chan_fbin
- spur_detection_window
<=
1530 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
)) &&
1531 (chan_fbin
+ spur_detection_window
>=
1532 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
))) {
1533 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1538 /* We need to enable spur filter for this channel */
1539 if (spur_chan_fbin
) {
1540 spur_offset
= spur_chan_fbin
- chan_fbin
;
1543 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1544 * spur_delta_phase -> spur_offset / chip_freq << 11
1545 * Note: Both values have 100KHz resolution
1547 /* XXX: Half/Quarter rate channels ? */
1548 switch (channel
->hw_value
) {
1550 /* Both sample_freq and chip_freq are 40MHz */
1551 spur_delta_phase
= (spur_offset
<< 17) / 25;
1552 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1553 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1556 /* sample_freq -> 40MHz chip_freq -> 44MHz
1557 * (for b compatibility) */
1558 spur_freq_sigma_delta
= (spur_offset
<< 8) / 55;
1559 spur_delta_phase
= (spur_offset
<< 17) / 25;
1560 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1564 /* Both sample_freq and chip_freq are 80MHz */
1565 spur_delta_phase
= (spur_offset
<< 16) / 25;
1566 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1567 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz
;
1573 /* Calculate pilot and magnitude masks */
1575 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1576 * and divide by symbol_width to find how many symbols we have
1577 * Note: number of symbols is scaled up by 16 */
1578 num_symbols_x16
= ((spur_offset
* 1000) << 4) / symbol_width
;
1580 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1581 if (!(num_symbols_x16
& 0xF))
1583 num_symbol_offsets
= 3;
1586 num_symbol_offsets
= 4;
1588 for (i
= 0; i
< num_symbol_offsets
; i
++) {
1590 /* Calculate pilot mask */
1592 (num_symbols_x16
/ 16) + i
+ 25;
1594 /* Pilot magnitude mask seems to be a way to
1595 * declare the boundaries for our detection
1596 * window or something, it's 2 for the middle
1597 * value(s) where the symbol is expected to be
1598 * and 1 on the boundary values */
1600 (i
== 0 || i
== (num_symbol_offsets
- 1))
1603 if (curr_sym_off
>= 0 && curr_sym_off
<= 32) {
1604 if (curr_sym_off
<= 25)
1605 pilot_mask
[0] |= 1 << curr_sym_off
;
1606 else if (curr_sym_off
>= 27)
1607 pilot_mask
[0] |= 1 << (curr_sym_off
- 1);
1608 } else if (curr_sym_off
>= 33 && curr_sym_off
<= 52)
1609 pilot_mask
[1] |= 1 << (curr_sym_off
- 33);
1611 /* Calculate magnitude mask (for viterbi decoder) */
1612 if (curr_sym_off
>= -1 && curr_sym_off
<= 14)
1614 plt_mag_map
<< (curr_sym_off
+ 1) * 2;
1615 else if (curr_sym_off
>= 15 && curr_sym_off
<= 30)
1617 plt_mag_map
<< (curr_sym_off
- 15) * 2;
1618 else if (curr_sym_off
>= 31 && curr_sym_off
<= 46)
1620 plt_mag_map
<< (curr_sym_off
- 31) * 2;
1621 else if (curr_sym_off
>= 46 && curr_sym_off
<= 53)
1623 plt_mag_map
<< (curr_sym_off
- 47) * 2;
1627 /* Write settings on hw to enable spur filter */
1628 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
1629 AR5K_PHY_BIN_MASK_CTL_RATE
, 0xff);
1630 /* XXX: Self correlator also ? */
1631 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
1632 AR5K_PHY_IQ_PILOT_MASK_EN
|
1633 AR5K_PHY_IQ_CHAN_MASK_EN
|
1634 AR5K_PHY_IQ_SPUR_FILT_EN
);
1636 /* Set delta phase and freq sigma delta */
1637 ath5k_hw_reg_write(ah
,
1638 AR5K_REG_SM(spur_delta_phase
,
1639 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE
) |
1640 AR5K_REG_SM(spur_freq_sigma_delta
,
1641 AR5K_PHY_TIMING_11_SPUR_FREQ_SD
) |
1642 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC
,
1643 AR5K_PHY_TIMING_11
);
1645 /* Write pilot masks */
1646 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_7
);
1647 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
1648 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
1651 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_9
);
1652 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
1653 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
1656 /* Write magnitude masks */
1657 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK_1
);
1658 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK_2
);
1659 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK_3
);
1660 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
1661 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
1664 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK2_1
);
1665 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK2_2
);
1666 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK2_3
);
1667 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
1668 AR5K_PHY_BIN_MASK2_4_MASK_4
,
1671 } else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) &
1672 AR5K_PHY_IQ_SPUR_FILT_EN
) {
1673 /* Clean up spur mitigation settings and disable fliter */
1674 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
1675 AR5K_PHY_BIN_MASK_CTL_RATE
, 0);
1676 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_IQ
,
1677 AR5K_PHY_IQ_PILOT_MASK_EN
|
1678 AR5K_PHY_IQ_CHAN_MASK_EN
|
1679 AR5K_PHY_IQ_SPUR_FILT_EN
);
1680 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_11
);
1682 /* Clear pilot masks */
1683 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_7
);
1684 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
1685 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
1688 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_9
);
1689 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
1690 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
1693 /* Clear magnitude masks */
1694 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_1
);
1695 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_2
);
1696 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_3
);
1697 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
1698 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
1701 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_1
);
1702 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_2
);
1703 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_3
);
1704 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
1705 AR5K_PHY_BIN_MASK2_4_MASK_4
,
1710 /********************\
1712 \********************/
1714 int ath5k_hw_phy_disable(struct ath5k_hw
*ah
)
1716 ATH5K_TRACE(ah
->ah_sc
);
1718 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
1724 * Get the PHY Chip revision
1726 u16
ath5k_hw_radio_revision(struct ath5k_hw
*ah
, unsigned int chan
)
1732 ATH5K_TRACE(ah
->ah_sc
);
1735 * Set the radio chip access register
1739 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_2GHZ
, AR5K_PHY(0));
1742 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1750 /* ...wait until PHY is ready and read the selected radio revision */
1751 ath5k_hw_reg_write(ah
, 0x00001c16, AR5K_PHY(0x34));
1753 for (i
= 0; i
< 8; i
++)
1754 ath5k_hw_reg_write(ah
, 0x00010000, AR5K_PHY(0x20));
1756 if (ah
->ah_version
== AR5K_AR5210
) {
1757 srev
= ath5k_hw_reg_read(ah
, AR5K_PHY(256) >> 28) & 0xf;
1758 ret
= (u16
)ath5k_hw_bitswap(srev
, 4) + 1;
1760 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(0x100)) >> 24) & 0xff;
1761 ret
= (u16
)ath5k_hw_bitswap(((srev
& 0xf0) >> 4) |
1762 ((srev
& 0x0f) << 4), 8);
1765 /* Reset to the 5GHz mode */
1766 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
1775 static void /*TODO:Boundary check*/
1776 ath5k_hw_set_def_antenna(struct ath5k_hw
*ah
, u8 ant
)
1778 ATH5K_TRACE(ah
->ah_sc
);
1780 if (ah
->ah_version
!= AR5K_AR5210
)
1781 ath5k_hw_reg_write(ah
, ant
& 0x7, AR5K_DEFAULT_ANTENNA
);
1785 * Enable/disable fast rx antenna diversity
1788 ath5k_hw_set_fast_div(struct ath5k_hw
*ah
, u8 ee_mode
, bool enable
)
1791 case AR5K_EEPROM_MODE_11G
:
1792 /* XXX: This is set to
1793 * disabled on initvals !!! */
1794 case AR5K_EEPROM_MODE_11A
:
1796 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1797 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
1799 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1800 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
1802 case AR5K_EEPROM_MODE_11B
:
1803 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1804 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
1811 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
1812 AR5K_PHY_RESTART_DIV_GC
, 0xc);
1814 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
1815 AR5K_PHY_FAST_ANT_DIV_EN
);
1817 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
1818 AR5K_PHY_RESTART_DIV_GC
, 0x8);
1820 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
1821 AR5K_PHY_FAST_ANT_DIV_EN
);
1826 * Set antenna operating mode
1829 ath5k_hw_set_antenna_mode(struct ath5k_hw
*ah
, u8 ant_mode
)
1831 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
1832 bool use_def_for_tx
, update_def_on_tx
, use_def_for_rts
, fast_div
;
1833 bool use_def_for_sg
;
1834 u8 def_ant
, tx_ant
, ee_mode
;
1837 def_ant
= ah
->ah_def_ant
;
1839 ATH5K_TRACE(ah
->ah_sc
);
1841 switch (channel
->hw_value
& CHANNEL_MODES
) {
1845 ee_mode
= AR5K_EEPROM_MODE_11A
;
1849 ee_mode
= AR5K_EEPROM_MODE_11G
;
1852 ee_mode
= AR5K_EEPROM_MODE_11B
;
1855 ATH5K_ERR(ah
->ah_sc
,
1856 "invalid channel: %d\n", channel
->center_freq
);
1861 case AR5K_ANTMODE_DEFAULT
:
1863 use_def_for_tx
= false;
1864 update_def_on_tx
= false;
1865 use_def_for_rts
= false;
1866 use_def_for_sg
= false;
1869 case AR5K_ANTMODE_FIXED_A
:
1872 use_def_for_tx
= true;
1873 update_def_on_tx
= false;
1874 use_def_for_rts
= true;
1875 use_def_for_sg
= true;
1878 case AR5K_ANTMODE_FIXED_B
:
1881 use_def_for_tx
= true;
1882 update_def_on_tx
= false;
1883 use_def_for_rts
= true;
1884 use_def_for_sg
= true;
1887 case AR5K_ANTMODE_SINGLE_AP
:
1888 def_ant
= 1; /* updated on tx */
1890 use_def_for_tx
= true;
1891 update_def_on_tx
= true;
1892 use_def_for_rts
= true;
1893 use_def_for_sg
= true;
1896 case AR5K_ANTMODE_SECTOR_AP
:
1897 tx_ant
= 1; /* variable */
1898 use_def_for_tx
= false;
1899 update_def_on_tx
= false;
1900 use_def_for_rts
= true;
1901 use_def_for_sg
= false;
1904 case AR5K_ANTMODE_SECTOR_STA
:
1905 tx_ant
= 1; /* variable */
1906 use_def_for_tx
= true;
1907 update_def_on_tx
= false;
1908 use_def_for_rts
= true;
1909 use_def_for_sg
= false;
1912 case AR5K_ANTMODE_DEBUG
:
1915 use_def_for_tx
= false;
1916 update_def_on_tx
= false;
1917 use_def_for_rts
= false;
1918 use_def_for_sg
= false;
1925 ah
->ah_tx_ant
= tx_ant
;
1926 ah
->ah_ant_mode
= ant_mode
;
1927 ah
->ah_def_ant
= def_ant
;
1929 sta_id1
|= use_def_for_tx
? AR5K_STA_ID1_DEFAULT_ANTENNA
: 0;
1930 sta_id1
|= update_def_on_tx
? AR5K_STA_ID1_DESC_ANTENNA
: 0;
1931 sta_id1
|= use_def_for_rts
? AR5K_STA_ID1_RTS_DEF_ANTENNA
: 0;
1932 sta_id1
|= use_def_for_sg
? AR5K_STA_ID1_SELFGEN_DEF_ANT
: 0;
1934 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_ANTENNA_SETTINGS
);
1937 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, sta_id1
);
1939 /* Note: set diversity before default antenna
1940 * because it won't work correctly */
1941 ath5k_hw_set_fast_div(ah
, ee_mode
, fast_div
);
1942 ath5k_hw_set_def_antenna(ah
, def_ant
);
1955 * Do linear interpolation between two given (x, y) points
1958 ath5k_get_interpolated_value(s16 target
, s16 x_left
, s16 x_right
,
1959 s16 y_left
, s16 y_right
)
1963 /* Avoid divide by zero and skip interpolation
1964 * if we have the same point */
1965 if ((x_left
== x_right
) || (y_left
== y_right
))
1969 * Since we use ints and not fps, we need to scale up in
1970 * order to get a sane ratio value (or else we 'll eg. get
1971 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1972 * to have some accuracy both for 0.5 and 0.25 steps.
1974 ratio
= ((100 * y_right
- 100 * y_left
)/(x_right
- x_left
));
1976 /* Now scale down to be in range */
1977 result
= y_left
+ (ratio
* (target
- x_left
) / 100);
1983 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1985 * Since we have the top of the curve and we draw the line below
1986 * until we reach 1 (1 pcdac step) we need to know which point
1987 * (x value) that is so that we don't go below y axis and have negative
1988 * pcdac values when creating the curve, or fill the table with zeroes.
1991 ath5k_get_linear_pcdac_min(const u8
*stepL
, const u8
*stepR
,
1992 const s16
*pwrL
, const s16
*pwrR
)
1995 s16 min_pwrL
, min_pwrR
;
1998 /* Some vendors write the same pcdac value twice !!! */
1999 if (stepL
[0] == stepL
[1] || stepR
[0] == stepR
[1])
2000 return max(pwrL
[0], pwrR
[0]);
2002 if (pwrL
[0] == pwrL
[1])
2008 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2010 stepL
[0], stepL
[1]);
2016 if (pwrR
[0] == pwrR
[1])
2022 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2024 stepR
[0], stepR
[1]);
2030 /* Keep the right boundary so that it works for both curves */
2031 return max(min_pwrL
, min_pwrR
);
2035 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2036 * Power to PCDAC curve.
2038 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2039 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2040 * PCDAC/PDADC step for each curve is 64 but we can write more than
2041 * one curves on hw so we can go up to 128 (which is the max step we
2042 * can write on the final table).
2044 * We write y values (PCDAC/PDADC steps) on hw.
2047 ath5k_create_power_curve(s16 pmin
, s16 pmax
,
2048 const s16
*pwr
, const u8
*vpd
,
2050 u8
*vpd_table
, u8 type
)
2052 u8 idx
[2] = { 0, 1 };
2059 /* We want the whole line, so adjust boundaries
2060 * to cover the entire power range. Note that
2061 * power values are already 0.25dB so no need
2062 * to multiply pwr_i by 2 */
2063 if (type
== AR5K_PWRTABLE_LINEAR_PCDAC
) {
2069 /* Find surrounding turning points (TPs)
2070 * and interpolate between them */
2071 for (i
= 0; (i
<= (u16
) (pmax
- pmin
)) &&
2072 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2074 /* We passed the right TP, move to the next set of TPs
2075 * if we pass the last TP, extrapolate above using the last
2076 * two TPs for ratio */
2077 if ((pwr_i
> pwr
[idx
[1]]) && (idx
[1] < num_points
- 1)) {
2082 vpd_table
[i
] = (u8
) ath5k_get_interpolated_value(pwr_i
,
2083 pwr
[idx
[0]], pwr
[idx
[1]],
2084 vpd
[idx
[0]], vpd
[idx
[1]]);
2086 /* Increase by 0.5dB
2087 * (0.25 dB units) */
2093 * Get the surrounding per-channel power calibration piers
2094 * for a given frequency so that we can interpolate between
2095 * them and come up with an apropriate dataset for our current
2099 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw
*ah
,
2100 struct ieee80211_channel
*channel
,
2101 struct ath5k_chan_pcal_info
**pcinfo_l
,
2102 struct ath5k_chan_pcal_info
**pcinfo_r
)
2104 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2105 struct ath5k_chan_pcal_info
*pcinfo
;
2108 u32 target
= channel
->center_freq
;
2113 if (!(channel
->hw_value
& CHANNEL_OFDM
)) {
2114 pcinfo
= ee
->ee_pwr_cal_b
;
2115 mode
= AR5K_EEPROM_MODE_11B
;
2116 } else if (channel
->hw_value
& CHANNEL_2GHZ
) {
2117 pcinfo
= ee
->ee_pwr_cal_g
;
2118 mode
= AR5K_EEPROM_MODE_11G
;
2120 pcinfo
= ee
->ee_pwr_cal_a
;
2121 mode
= AR5K_EEPROM_MODE_11A
;
2123 max
= ee
->ee_n_piers
[mode
] - 1;
2125 /* Frequency is below our calibrated
2126 * range. Use the lowest power curve
2128 if (target
< pcinfo
[0].freq
) {
2133 /* Frequency is above our calibrated
2134 * range. Use the highest power curve
2136 if (target
> pcinfo
[max
].freq
) {
2137 idx_l
= idx_r
= max
;
2141 /* Frequency is inside our calibrated
2142 * channel range. Pick the surrounding
2143 * calibration piers so that we can
2145 for (i
= 0; i
<= max
; i
++) {
2147 /* Frequency matches one of our calibration
2148 * piers, no need to interpolate, just use
2149 * that calibration pier */
2150 if (pcinfo
[i
].freq
== target
) {
2155 /* We found a calibration pier that's above
2156 * frequency, use this pier and the previous
2157 * one to interpolate */
2158 if (target
< pcinfo
[i
].freq
) {
2166 *pcinfo_l
= &pcinfo
[idx_l
];
2167 *pcinfo_r
= &pcinfo
[idx_r
];
2173 * Get the surrounding per-rate power calibration data
2174 * for a given frequency and interpolate between power
2175 * values to set max target power supported by hw for
2179 ath5k_get_rate_pcal_data(struct ath5k_hw
*ah
,
2180 struct ieee80211_channel
*channel
,
2181 struct ath5k_rate_pcal_info
*rates
)
2183 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2184 struct ath5k_rate_pcal_info
*rpinfo
;
2187 u32 target
= channel
->center_freq
;
2192 if (!(channel
->hw_value
& CHANNEL_OFDM
)) {
2193 rpinfo
= ee
->ee_rate_tpwr_b
;
2194 mode
= AR5K_EEPROM_MODE_11B
;
2195 } else if (channel
->hw_value
& CHANNEL_2GHZ
) {
2196 rpinfo
= ee
->ee_rate_tpwr_g
;
2197 mode
= AR5K_EEPROM_MODE_11G
;
2199 rpinfo
= ee
->ee_rate_tpwr_a
;
2200 mode
= AR5K_EEPROM_MODE_11A
;
2202 max
= ee
->ee_rate_target_pwr_num
[mode
] - 1;
2204 /* Get the surrounding calibration
2205 * piers - same as above */
2206 if (target
< rpinfo
[0].freq
) {
2211 if (target
> rpinfo
[max
].freq
) {
2212 idx_l
= idx_r
= max
;
2216 for (i
= 0; i
<= max
; i
++) {
2218 if (rpinfo
[i
].freq
== target
) {
2223 if (target
< rpinfo
[i
].freq
) {
2231 /* Now interpolate power value, based on the frequency */
2232 rates
->freq
= target
;
2234 rates
->target_power_6to24
=
2235 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2237 rpinfo
[idx_l
].target_power_6to24
,
2238 rpinfo
[idx_r
].target_power_6to24
);
2240 rates
->target_power_36
=
2241 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2243 rpinfo
[idx_l
].target_power_36
,
2244 rpinfo
[idx_r
].target_power_36
);
2246 rates
->target_power_48
=
2247 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2249 rpinfo
[idx_l
].target_power_48
,
2250 rpinfo
[idx_r
].target_power_48
);
2252 rates
->target_power_54
=
2253 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2255 rpinfo
[idx_l
].target_power_54
,
2256 rpinfo
[idx_r
].target_power_54
);
2260 * Get the max edge power for this channel if
2261 * we have such data from EEPROM's Conformance Test
2262 * Limits (CTL), and limit max power if needed.
2265 ath5k_get_max_ctl_power(struct ath5k_hw
*ah
,
2266 struct ieee80211_channel
*channel
)
2268 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2269 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2270 struct ath5k_edge_power
*rep
= ee
->ee_ctl_pwr
;
2271 u8
*ctl_val
= ee
->ee_ctl
;
2272 s16 max_chan_pwr
= ah
->ah_txpower
.txp_max_pwr
/ 4;
2277 u32 target
= channel
->center_freq
;
2279 ctl_mode
= ath_regd_get_band_ctl(regulatory
, channel
->band
);
2281 switch (channel
->hw_value
& CHANNEL_MODES
) {
2283 ctl_mode
|= AR5K_CTL_11A
;
2286 ctl_mode
|= AR5K_CTL_11G
;
2289 ctl_mode
|= AR5K_CTL_11B
;
2292 ctl_mode
|= AR5K_CTL_TURBO
;
2295 ctl_mode
|= AR5K_CTL_TURBOG
;
2303 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
2304 if (ctl_val
[i
] == ctl_mode
) {
2310 /* If we have a CTL dataset available grab it and find the
2311 * edge power for our frequency */
2312 if (ctl_idx
== 0xFF)
2315 /* Edge powers are sorted by frequency from lower
2316 * to higher. Each CTL corresponds to 8 edge power
2318 rep_idx
= ctl_idx
* AR5K_EEPROM_N_EDGES
;
2320 /* Don't do boundaries check because we
2321 * might have more that one bands defined
2324 /* Get the edge power that's closer to our
2326 for (i
= 0; i
< AR5K_EEPROM_N_EDGES
; i
++) {
2328 if (target
<= rep
[rep_idx
].freq
)
2329 edge_pwr
= (s16
) rep
[rep_idx
].edge
;
2333 ah
->ah_txpower
.txp_max_pwr
= 4*min(edge_pwr
, max_chan_pwr
);
2338 * Power to PCDAC table functions
2342 * Fill Power to PCDAC table on RF5111
2344 * No further processing is needed for RF5111, the only thing we have to
2345 * do is fill the values below and above calibration range since eeprom data
2346 * may not cover the entire PCDAC table.
2349 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw
*ah
, s16
* table_min
,
2352 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2353 u8
*pcdac_tmp
= ah
->ah_txpower
.tmpL
[0];
2354 u8 pcdac_0
, pcdac_n
, pcdac_i
, pwr_idx
, i
;
2355 s16 min_pwr
, max_pwr
;
2357 /* Get table boundaries */
2358 min_pwr
= table_min
[0];
2359 pcdac_0
= pcdac_tmp
[0];
2361 max_pwr
= table_max
[0];
2362 pcdac_n
= pcdac_tmp
[table_max
[0] - table_min
[0]];
2364 /* Extrapolate below minimum using pcdac_0 */
2366 for (i
= 0; i
< min_pwr
; i
++)
2367 pcdac_out
[pcdac_i
++] = pcdac_0
;
2369 /* Copy values from pcdac_tmp */
2371 for (i
= 0 ; pwr_idx
<= max_pwr
&&
2372 pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
; i
++) {
2373 pcdac_out
[pcdac_i
++] = pcdac_tmp
[i
];
2377 /* Extrapolate above maximum */
2378 while (pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
)
2379 pcdac_out
[pcdac_i
++] = pcdac_n
;
2384 * Combine available XPD Curves and fill Linear Power to PCDAC table
2387 * RFX112 can have up to 2 curves (one for low txpower range and one for
2388 * higher txpower range). We need to put them both on pcdac_out and place
2389 * them in the correct location. In case we only have one curve available
2390 * just fit it on pcdac_out (it's supposed to cover the entire range of
2391 * available pwr levels since it's always the higher power curve). Extrapolate
2392 * below and above final table if needed.
2395 ath5k_combine_linear_pcdac_curves(struct ath5k_hw
*ah
, s16
* table_min
,
2396 s16
*table_max
, u8 pdcurves
)
2398 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2405 s16 mid_pwr_idx
= 0;
2406 /* Edge flag turs on the 7nth bit on the PCDAC
2407 * to delcare the higher power curve (force values
2408 * to be greater than 64). If we only have one curve
2409 * we don't need to set this, if we have 2 curves and
2410 * fill the table backwards this can also be used to
2411 * switch from higher power curve to lower power curve */
2415 /* When we have only one curve available
2416 * that's the higher power curve. If we have
2417 * two curves the first is the high power curve
2418 * and the next is the low power curve. */
2420 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1];
2421 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2422 mid_pwr_idx
= table_max
[1] - table_min
[1] - 1;
2423 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2425 /* If table size goes beyond 31.5dB, keep the
2426 * upper 31.5dB range when setting tx power.
2427 * Note: 126 = 31.5 dB in quarter dB steps */
2428 if (table_max
[0] - table_min
[1] > 126)
2429 min_pwr_idx
= table_max
[0] - 126;
2431 min_pwr_idx
= table_min
[1];
2433 /* Since we fill table backwards
2434 * start from high power curve */
2435 pcdac_tmp
= pcdac_high_pwr
;
2439 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1]; /* Zeroed */
2440 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2441 min_pwr_idx
= table_min
[0];
2442 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2443 pcdac_tmp
= pcdac_high_pwr
;
2447 /* This is used when setting tx power*/
2448 ah
->ah_txpower
.txp_min_idx
= min_pwr_idx
/2;
2450 /* Fill Power to PCDAC table backwards */
2452 for (i
= 63; i
>= 0; i
--) {
2453 /* Entering lower power range, reset
2454 * edge flag and set pcdac_tmp to lower
2456 if (edge_flag
== 0x40 &&
2457 (2*pwr
<= (table_max
[1] - table_min
[0]) || pwr
== 0)) {
2459 pcdac_tmp
= pcdac_low_pwr
;
2460 pwr
= mid_pwr_idx
/2;
2463 /* Don't go below 1, extrapolate below if we have
2464 * already swithced to the lower power curve -or
2465 * we only have one curve and edge_flag is zero
2467 if (pcdac_tmp
[pwr
] < 1 && (edge_flag
== 0x00)) {
2469 pcdac_out
[i
] = pcdac_out
[i
+ 1];
2475 pcdac_out
[i
] = pcdac_tmp
[pwr
] | edge_flag
;
2477 /* Extrapolate above if pcdac is greater than
2478 * 126 -this can happen because we OR pcdac_out
2479 * value with edge_flag on high power curve */
2480 if (pcdac_out
[i
] > 126)
2483 /* Decrease by a 0.5dB step */
2488 /* Write PCDAC values on hw */
2490 ath5k_setup_pcdac_table(struct ath5k_hw
*ah
)
2492 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2496 * Write TX power values
2498 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
2499 ath5k_hw_reg_write(ah
,
2500 (((pcdac_out
[2*i
+ 0] << 8 | 0xff) & 0xffff) << 0) |
2501 (((pcdac_out
[2*i
+ 1] << 8 | 0xff) & 0xffff) << 16),
2502 AR5K_PHY_PCDAC_TXPOWER(i
));
2508 * Power to PDADC table functions
2512 * Set the gain boundaries and create final Power to PDADC table
2514 * We can have up to 4 pd curves, we need to do a simmilar process
2515 * as we do for RF5112. This time we don't have an edge_flag but we
2516 * set the gain boundaries on a separate register.
2519 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw
*ah
,
2520 s16
*pwr_min
, s16
*pwr_max
, u8 pdcurves
)
2522 u8 gain_boundaries
[AR5K_EEPROM_N_PD_GAINS
];
2523 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
2526 u8 pdadc_i
, pdadc_n
, pwr_step
, pdg
, max_idx
, table_size
;
2529 /* Note: Register value is initialized on initvals
2530 * there is no feedback from hw.
2531 * XXX: What about pd_gain_overlap from EEPROM ? */
2532 pd_gain_overlap
= (u8
) ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG5
) &
2533 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
;
2535 /* Create final PDADC table */
2536 for (pdg
= 0, pdadc_i
= 0; pdg
< pdcurves
; pdg
++) {
2537 pdadc_tmp
= ah
->ah_txpower
.tmpL
[pdg
];
2539 if (pdg
== pdcurves
- 1)
2540 /* 2 dB boundary stretch for last
2541 * (higher power) curve */
2542 gain_boundaries
[pdg
] = pwr_max
[pdg
] + 4;
2544 /* Set gain boundary in the middle
2545 * between this curve and the next one */
2546 gain_boundaries
[pdg
] =
2547 (pwr_max
[pdg
] + pwr_min
[pdg
+ 1]) / 2;
2549 /* Sanity check in case our 2 db stretch got out of
2551 if (gain_boundaries
[pdg
] > AR5K_TUNE_MAX_TXPOWER
)
2552 gain_boundaries
[pdg
] = AR5K_TUNE_MAX_TXPOWER
;
2554 /* For the first curve (lower power)
2555 * start from 0 dB */
2559 /* For the other curves use the gain overlap */
2560 pdadc_0
= (gain_boundaries
[pdg
- 1] - pwr_min
[pdg
]) -
2563 /* Force each power step to be at least 0.5 dB */
2564 if ((pdadc_tmp
[1] - pdadc_tmp
[0]) > 1)
2565 pwr_step
= pdadc_tmp
[1] - pdadc_tmp
[0];
2569 /* If pdadc_0 is negative, we need to extrapolate
2570 * below this pdgain by a number of pwr_steps */
2571 while ((pdadc_0
< 0) && (pdadc_i
< 128)) {
2572 s16 tmp
= pdadc_tmp
[0] + pdadc_0
* pwr_step
;
2573 pdadc_out
[pdadc_i
++] = (tmp
< 0) ? 0 : (u8
) tmp
;
2577 /* Set last pwr level, using gain boundaries */
2578 pdadc_n
= gain_boundaries
[pdg
] + pd_gain_overlap
- pwr_min
[pdg
];
2579 /* Limit it to be inside pwr range */
2580 table_size
= pwr_max
[pdg
] - pwr_min
[pdg
];
2581 max_idx
= (pdadc_n
< table_size
) ? pdadc_n
: table_size
;
2583 /* Fill pdadc_out table */
2584 while (pdadc_0
< max_idx
)
2585 pdadc_out
[pdadc_i
++] = pdadc_tmp
[pdadc_0
++];
2587 /* Need to extrapolate above this pdgain? */
2588 if (pdadc_n
<= max_idx
)
2591 /* Force each power step to be at least 0.5 dB */
2592 if ((pdadc_tmp
[table_size
- 1] - pdadc_tmp
[table_size
- 2]) > 1)
2593 pwr_step
= pdadc_tmp
[table_size
- 1] -
2594 pdadc_tmp
[table_size
- 2];
2598 /* Extrapolate above */
2599 while ((pdadc_0
< (s16
) pdadc_n
) &&
2600 (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2)) {
2601 s16 tmp
= pdadc_tmp
[table_size
- 1] +
2602 (pdadc_0
- max_idx
) * pwr_step
;
2603 pdadc_out
[pdadc_i
++] = (tmp
> 127) ? 127 : (u8
) tmp
;
2608 while (pdg
< AR5K_EEPROM_N_PD_GAINS
) {
2609 gain_boundaries
[pdg
] = gain_boundaries
[pdg
- 1];
2613 while (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2) {
2614 pdadc_out
[pdadc_i
] = pdadc_out
[pdadc_i
- 1];
2618 /* Set gain boundaries */
2619 ath5k_hw_reg_write(ah
,
2620 AR5K_REG_SM(pd_gain_overlap
,
2621 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
) |
2622 AR5K_REG_SM(gain_boundaries
[0],
2623 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
) |
2624 AR5K_REG_SM(gain_boundaries
[1],
2625 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
) |
2626 AR5K_REG_SM(gain_boundaries
[2],
2627 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
) |
2628 AR5K_REG_SM(gain_boundaries
[3],
2629 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
),
2632 /* Used for setting rate power table */
2633 ah
->ah_txpower
.txp_min_idx
= pwr_min
[0];
2637 /* Write PDADC values on hw */
2639 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw
*ah
,
2640 u8 pdcurves
, u8
*pdg_to_idx
)
2642 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
2646 /* Select the right pdgain curves */
2648 /* Clear current settings */
2649 reg
= ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG1
);
2650 reg
&= ~(AR5K_PHY_TPC_RG1_PDGAIN_1
|
2651 AR5K_PHY_TPC_RG1_PDGAIN_2
|
2652 AR5K_PHY_TPC_RG1_PDGAIN_3
|
2653 AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
2656 * Use pd_gains curve from eeprom
2658 * This overrides the default setting from initvals
2659 * in case some vendors (e.g. Zcomax) don't use the default
2660 * curves. If we don't honor their settings we 'll get a
2661 * 5dB (1 * gain overlap ?) drop.
2663 reg
|= AR5K_REG_SM(pdcurves
, AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
2667 reg
|= AR5K_REG_SM(pdg_to_idx
[2], AR5K_PHY_TPC_RG1_PDGAIN_3
);
2670 reg
|= AR5K_REG_SM(pdg_to_idx
[1], AR5K_PHY_TPC_RG1_PDGAIN_2
);
2673 reg
|= AR5K_REG_SM(pdg_to_idx
[0], AR5K_PHY_TPC_RG1_PDGAIN_1
);
2676 ath5k_hw_reg_write(ah
, reg
, AR5K_PHY_TPC_RG1
);
2679 * Write TX power values
2681 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
2682 ath5k_hw_reg_write(ah
,
2683 ((pdadc_out
[4*i
+ 0] & 0xff) << 0) |
2684 ((pdadc_out
[4*i
+ 1] & 0xff) << 8) |
2685 ((pdadc_out
[4*i
+ 2] & 0xff) << 16) |
2686 ((pdadc_out
[4*i
+ 3] & 0xff) << 24),
2687 AR5K_PHY_PDADC_TXPOWER(i
));
2693 * Common code for PCDAC/PDADC tables
2697 * This is the main function that uses all of the above
2698 * to set PCDAC/PDADC table on hw for the current channel.
2699 * This table is used for tx power calibration on the basband,
2700 * without it we get weird tx power levels and in some cases
2701 * distorted spectral mask
2704 ath5k_setup_channel_powertable(struct ath5k_hw
*ah
,
2705 struct ieee80211_channel
*channel
,
2706 u8 ee_mode
, u8 type
)
2708 struct ath5k_pdgain_info
*pdg_L
, *pdg_R
;
2709 struct ath5k_chan_pcal_info
*pcinfo_L
;
2710 struct ath5k_chan_pcal_info
*pcinfo_R
;
2711 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2712 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
2713 s16 table_min
[AR5K_EEPROM_N_PD_GAINS
];
2714 s16 table_max
[AR5K_EEPROM_N_PD_GAINS
];
2717 u32 target
= channel
->center_freq
;
2720 /* Get surounding freq piers for this channel */
2721 ath5k_get_chan_pcal_surrounding_piers(ah
, channel
,
2725 /* Loop over pd gain curves on
2726 * surounding freq piers by index */
2727 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[ee_mode
]; pdg
++) {
2729 /* Fill curves in reverse order
2730 * from lower power (max gain)
2731 * to higher power. Use curve -> idx
2732 * backmapping we did on eeprom init */
2733 u8 idx
= pdg_curve_to_idx
[pdg
];
2735 /* Grab the needed curves by index */
2736 pdg_L
= &pcinfo_L
->pd_curves
[idx
];
2737 pdg_R
= &pcinfo_R
->pd_curves
[idx
];
2739 /* Initialize the temp tables */
2740 tmpL
= ah
->ah_txpower
.tmpL
[pdg
];
2741 tmpR
= ah
->ah_txpower
.tmpR
[pdg
];
2743 /* Set curve's x boundaries and create
2744 * curves so that they cover the same
2745 * range (if we don't do that one table
2746 * will have values on some range and the
2747 * other one won't have any so interpolation
2749 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
2750 pdg_R
->pd_pwr
[0]) / 2;
2752 table_max
[pdg
] = max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
2753 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]) / 2;
2755 /* Now create the curves on surrounding channels
2756 * and interpolate if needed to get the final
2757 * curve for this gain on this channel */
2759 case AR5K_PWRTABLE_LINEAR_PCDAC
:
2760 /* Override min/max so that we don't loose
2761 * accuracy (don't divide by 2) */
2762 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
2766 max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
2767 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]);
2769 /* Override minimum so that we don't get
2770 * out of bounds while extrapolating
2771 * below. Don't do this when we have 2
2772 * curves and we are on the high power curve
2773 * because table_min is ok in this case */
2774 if (!(ee
->ee_pd_gains
[ee_mode
] > 1 && pdg
== 0)) {
2777 ath5k_get_linear_pcdac_min(pdg_L
->pd_step
,
2782 /* Don't go too low because we will
2783 * miss the upper part of the curve.
2784 * Note: 126 = 31.5dB (max power supported)
2785 * in 0.25dB units */
2786 if (table_max
[pdg
] - table_min
[pdg
] > 126)
2787 table_min
[pdg
] = table_max
[pdg
] - 126;
2791 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
2792 case AR5K_PWRTABLE_PWR_TO_PDADC
:
2794 ath5k_create_power_curve(table_min
[pdg
],
2798 pdg_L
->pd_points
, tmpL
, type
);
2800 /* We are in a calibration
2801 * pier, no need to interpolate
2802 * between freq piers */
2803 if (pcinfo_L
== pcinfo_R
)
2806 ath5k_create_power_curve(table_min
[pdg
],
2810 pdg_R
->pd_points
, tmpR
, type
);
2816 /* Interpolate between curves
2817 * of surounding freq piers to
2818 * get the final curve for this
2819 * pd gain. Re-use tmpL for interpolation
2821 for (i
= 0; (i
< (u16
) (table_max
[pdg
] - table_min
[pdg
])) &&
2822 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2823 tmpL
[i
] = (u8
) ath5k_get_interpolated_value(target
,
2824 (s16
) pcinfo_L
->freq
,
2825 (s16
) pcinfo_R
->freq
,
2831 /* Now we have a set of curves for this
2832 * channel on tmpL (x range is table_max - table_min
2833 * and y values are tmpL[pdg][]) sorted in the same
2834 * order as EEPROM (because we've used the backmapping).
2835 * So for RF5112 it's from higher power to lower power
2836 * and for RF2413 it's from lower power to higher power.
2837 * For RF5111 we only have one curve. */
2839 /* Fill min and max power levels for this
2840 * channel by interpolating the values on
2841 * surounding channels to complete the dataset */
2842 ah
->ah_txpower
.txp_min_pwr
= ath5k_get_interpolated_value(target
,
2843 (s16
) pcinfo_L
->freq
,
2844 (s16
) pcinfo_R
->freq
,
2845 pcinfo_L
->min_pwr
, pcinfo_R
->min_pwr
);
2847 ah
->ah_txpower
.txp_max_pwr
= ath5k_get_interpolated_value(target
,
2848 (s16
) pcinfo_L
->freq
,
2849 (s16
) pcinfo_R
->freq
,
2850 pcinfo_L
->max_pwr
, pcinfo_R
->max_pwr
);
2852 /* We are ready to go, fill PCDAC/PDADC
2853 * table and write settings on hardware */
2855 case AR5K_PWRTABLE_LINEAR_PCDAC
:
2856 /* For RF5112 we can have one or two curves
2857 * and each curve covers a certain power lvl
2858 * range so we need to do some more processing */
2859 ath5k_combine_linear_pcdac_curves(ah
, table_min
, table_max
,
2860 ee
->ee_pd_gains
[ee_mode
]);
2862 /* Set txp.offset so that we can
2863 * match max power value with max
2865 ah
->ah_txpower
.txp_offset
= 64 - (table_max
[0] / 2);
2867 /* Write settings on hw */
2868 ath5k_setup_pcdac_table(ah
);
2870 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
2871 /* We are done for RF5111 since it has only
2872 * one curve, just fit the curve on the table */
2873 ath5k_fill_pwr_to_pcdac_table(ah
, table_min
, table_max
);
2875 /* No rate powertable adjustment for RF5111 */
2876 ah
->ah_txpower
.txp_min_idx
= 0;
2877 ah
->ah_txpower
.txp_offset
= 0;
2879 /* Write settings on hw */
2880 ath5k_setup_pcdac_table(ah
);
2882 case AR5K_PWRTABLE_PWR_TO_PDADC
:
2883 /* Set PDADC boundaries and fill
2884 * final PDADC table */
2885 ath5k_combine_pwr_to_pdadc_curves(ah
, table_min
, table_max
,
2886 ee
->ee_pd_gains
[ee_mode
]);
2888 /* Write settings on hw */
2889 ath5k_setup_pwr_to_pdadc_table(ah
, pdg
, pdg_curve_to_idx
);
2891 /* Set txp.offset, note that table_min
2892 * can be negative */
2893 ah
->ah_txpower
.txp_offset
= table_min
[0];
2904 * Per-rate tx power setting
2906 * This is the code that sets the desired tx power (below
2907 * maximum) on hw for each rate (we also have TPC that sets
2908 * power per packet). We do that by providing an index on the
2909 * PCDAC/PDADC table we set up.
2913 * Set rate power table
2915 * For now we only limit txpower based on maximum tx power
2916 * supported by hw (what's inside rate_info). We need to limit
2917 * this even more, based on regulatory domain etc.
2919 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2920 * and is indexed as follows:
2921 * rates[0] - rates[7] -> OFDM rates
2922 * rates[8] - rates[14] -> CCK rates
2923 * rates[15] -> XR rates (they all have the same power)
2926 ath5k_setup_rate_powertable(struct ath5k_hw
*ah
, u16 max_pwr
,
2927 struct ath5k_rate_pcal_info
*rate_info
,
2933 /* max_pwr is power level we got from driver/user in 0.5dB
2934 * units, switch to 0.25dB units so we can compare */
2936 max_pwr
= min(max_pwr
, (u16
) ah
->ah_txpower
.txp_max_pwr
) / 2;
2938 /* apply rate limits */
2939 rates
= ah
->ah_txpower
.txp_rates_power_table
;
2941 /* OFDM rates 6 to 24Mb/s */
2942 for (i
= 0; i
< 5; i
++)
2943 rates
[i
] = min(max_pwr
, rate_info
->target_power_6to24
);
2945 /* Rest OFDM rates */
2946 rates
[5] = min(rates
[0], rate_info
->target_power_36
);
2947 rates
[6] = min(rates
[0], rate_info
->target_power_48
);
2948 rates
[7] = min(rates
[0], rate_info
->target_power_54
);
2952 rates
[8] = min(rates
[0], rate_info
->target_power_6to24
);
2954 rates
[9] = min(rates
[0], rate_info
->target_power_36
);
2956 rates
[10] = min(rates
[0], rate_info
->target_power_36
);
2958 rates
[11] = min(rates
[0], rate_info
->target_power_48
);
2960 rates
[12] = min(rates
[0], rate_info
->target_power_48
);
2962 rates
[13] = min(rates
[0], rate_info
->target_power_54
);
2964 rates
[14] = min(rates
[0], rate_info
->target_power_54
);
2967 rates
[15] = min(rates
[0], rate_info
->target_power_6to24
);
2969 /* CCK rates have different peak to average ratio
2970 * so we have to tweak their power so that gainf
2971 * correction works ok. For this we use OFDM to
2972 * CCK delta from eeprom */
2973 if ((ee_mode
== AR5K_EEPROM_MODE_11G
) &&
2974 (ah
->ah_phy_revision
< AR5K_SREV_PHY_5212A
))
2975 for (i
= 8; i
<= 15; i
++)
2976 rates
[i
] -= ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
;
2978 /* Now that we have all rates setup use table offset to
2979 * match the power range set by user with the power indices
2980 * on PCDAC/PDADC table */
2981 for (i
= 0; i
< 16; i
++) {
2982 rates
[i
] += ah
->ah_txpower
.txp_offset
;
2983 /* Don't get out of bounds */
2988 /* Min/max in 0.25dB units */
2989 ah
->ah_txpower
.txp_min_pwr
= 2 * rates
[7];
2990 ah
->ah_txpower
.txp_max_pwr
= 2 * rates
[0];
2991 ah
->ah_txpower
.txp_ofdm
= rates
[7];
2996 * Set transmition power
2999 ath5k_hw_txpower(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3000 u8 ee_mode
, u8 txpower
)
3002 struct ath5k_rate_pcal_info rate_info
;
3006 ATH5K_TRACE(ah
->ah_sc
);
3007 if (txpower
> AR5K_TUNE_MAX_TXPOWER
) {
3008 ATH5K_ERR(ah
->ah_sc
, "invalid tx power: %u\n", txpower
);
3012 /* Reset TX power values */
3013 memset(&ah
->ah_txpower
, 0, sizeof(ah
->ah_txpower
));
3014 ah
->ah_txpower
.txp_tpc
= AR5K_TUNE_TPC_TXPOWER
;
3015 ah
->ah_txpower
.txp_min_pwr
= 0;
3016 ah
->ah_txpower
.txp_max_pwr
= AR5K_TUNE_MAX_TXPOWER
;
3018 /* Initialize TX power table */
3019 switch (ah
->ah_radio
) {
3021 type
= AR5K_PWRTABLE_PWR_TO_PCDAC
;
3024 type
= AR5K_PWRTABLE_LINEAR_PCDAC
;
3031 type
= AR5K_PWRTABLE_PWR_TO_PDADC
;
3037 /* FIXME: Only on channel/mode change */
3038 ret
= ath5k_setup_channel_powertable(ah
, channel
, ee_mode
, type
);
3042 /* Limit max power if we have a CTL available */
3043 ath5k_get_max_ctl_power(ah
, channel
);
3045 /* FIXME: Tx power limit for this regdomain
3046 * XXX: Mac80211/CRDA will do that anyway ? */
3048 /* FIXME: Antenna reduction stuff */
3050 /* FIXME: Limit power on turbo modes */
3052 /* FIXME: TPC scale reduction */
3054 /* Get surounding channels for per-rate power table
3056 ath5k_get_rate_pcal_data(ah
, channel
, &rate_info
);
3058 /* Setup rate power table */
3059 ath5k_setup_rate_powertable(ah
, txpower
, &rate_info
, ee_mode
);
3061 /* Write rate power table on hw */
3062 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(3, 24) |
3063 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3064 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1
);
3066 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(7, 24) |
3067 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3068 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2
);
3070 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(10, 24) |
3071 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3072 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3
);
3074 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(14, 24) |
3075 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3076 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4
);
3078 /* FIXME: TPC support */
3079 if (ah
->ah_txpower
.txp_tpc
) {
3080 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
|
3081 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
3083 ath5k_hw_reg_write(ah
,
3084 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_ACK
) |
3085 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CTS
) |
3086 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CHIRP
),
3089 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX
|
3090 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
3096 int ath5k_hw_set_txpower_limit(struct ath5k_hw
*ah
, u8 txpower
)
3099 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
3102 ATH5K_TRACE(ah
->ah_sc
);
3104 switch (channel
->hw_value
& CHANNEL_MODES
) {
3108 ee_mode
= AR5K_EEPROM_MODE_11A
;
3112 ee_mode
= AR5K_EEPROM_MODE_11G
;
3115 ee_mode
= AR5K_EEPROM_MODE_11B
;
3118 ATH5K_ERR(ah
->ah_sc
,
3119 "invalid channel: %d\n", channel
->center_freq
);
3123 ATH5K_DBG(ah
->ah_sc
, ATH5K_DEBUG_TXPOWER
,
3124 "changing txpower to %d\n", txpower
);
3126 return ath5k_hw_txpower(ah
, channel
, ee_mode
, txpower
);