[XFS] Remove unused parameter from di2xflags routine.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blob926d372ae0f96243285a3cd456b7d805961ad238
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir.h"
30 #include "xfs_dir2.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir_sf.h"
37 #include "xfs_dir2_sf.h"
38 #include "xfs_attr_sf.h"
39 #include "xfs_dinode.h"
40 #include "xfs_inode.h"
41 #include "xfs_buf_item.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_btree.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
46 #include "xfs_bmap.h"
47 #include "xfs_rw.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_mac.h"
53 #include "xfs_acl.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
58 kmem_zone_t *xfs_chashlist_zone;
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
64 #define XFS_ITRUNC_MAX_EXTENTS 2
66 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 #ifdef DEBUG
74 * Make sure that the extents in the given memory buffer
75 * are valid.
77 STATIC void
78 xfs_validate_extents(
79 xfs_ifork_t *ifp,
80 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
84 xfs_bmbt_rec_t *ep;
85 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
89 for (i = 0; i < nrecs; i++) {
90 ep = xfs_iext_get_ext(ifp, i);
91 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
101 #else /* DEBUG */
102 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
103 #endif /* DEBUG */
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
109 #if defined(DEBUG)
110 void
111 xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
115 int i;
116 int j;
117 xfs_dinode_t *dip;
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
132 #endif
135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
147 STATIC int
148 xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
163 * Call the space management code to find the location of the
164 * inode on disk.
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
184 "of the file system %s. Returning EINVAL.",
185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
187 return XFS_ERROR(EINVAL);
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
217 xfs_inobp_check(mp, bp);
220 * Set *dipp to point to the on-disk inode in the buffer.
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
250 xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
256 xfs_daddr_t bno,
257 uint imap_flags)
259 xfs_buf_t *bp;
260 int error;
261 xfs_imap_t imap;
262 #ifdef __KERNEL__
263 int i;
264 int ni;
265 #endif
267 if (ip->i_blkno == (xfs_daddr_t)0) {
269 * Call the space management code to find the location of the
270 * inode on disk.
272 imap.im_blkno = bno;
273 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
274 XFS_IMAP_LOOKUP | imap_flags)))
275 return error;
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285 #ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294 #endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
314 ASSERT(bno == 0 || bno == imap.im_blkno);
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
323 if (error) {
324 #ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330 #endif /* DEBUG */
331 return error;
333 #ifdef __KERNEL__
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
338 #ifdef DEBUG
339 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
340 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
341 #else
342 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
343 #endif
344 for (i = 0; i < ni; i++) {
345 int di_ok;
346 xfs_dinode_t *dip;
348 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
349 (i << mp->m_sb.sb_inodelog));
350 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
351 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
352 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354 #ifdef DEBUG
355 cmn_err(CE_ALERT, "Device %s - bad inode magic/vsn "
356 "daddr %lld #%d (magic=%x)",
357 XFS_BUFTARG_NAME(mp->m_ddev_targp),
358 (unsigned long long)imap.im_blkno, i,
359 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
360 #endif
361 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
362 mp, dip);
363 xfs_trans_brelse(tp, bp);
364 return XFS_ERROR(EFSCORRUPTED);
367 #endif /* __KERNEL__ */
369 xfs_inobp_check(mp, bp);
372 * Mark the buffer as an inode buffer now that it looks good
374 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
377 * Set *dipp to point to the on-disk inode in the buffer.
379 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
380 *bpp = bp;
381 return 0;
385 * Move inode type and inode format specific information from the
386 * on-disk inode to the in-core inode. For fifos, devs, and sockets
387 * this means set if_rdev to the proper value. For files, directories,
388 * and symlinks this means to bring in the in-line data or extent
389 * pointers. For a file in B-tree format, only the root is immediately
390 * brought in-core. The rest will be in-lined in if_extents when it
391 * is first referenced (see xfs_iread_extents()).
393 STATIC int
394 xfs_iformat(
395 xfs_inode_t *ip,
396 xfs_dinode_t *dip)
398 xfs_attr_shortform_t *atp;
399 int size;
400 int error;
401 xfs_fsize_t di_size;
402 ip->i_df.if_ext_max =
403 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
404 error = 0;
406 if (unlikely(
407 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
408 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
409 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
410 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
411 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
412 (unsigned long long)ip->i_ino,
413 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
414 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
415 (unsigned long long)
416 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
417 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
418 ip->i_mount, dip);
419 return XFS_ERROR(EFSCORRUPTED);
422 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
423 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
424 "corrupt dinode %Lu, forkoff = 0x%x.",
425 (unsigned long long)ip->i_ino,
426 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
427 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
428 ip->i_mount, dip);
429 return XFS_ERROR(EFSCORRUPTED);
432 switch (ip->i_d.di_mode & S_IFMT) {
433 case S_IFIFO:
434 case S_IFCHR:
435 case S_IFBLK:
436 case S_IFSOCK:
437 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
438 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
439 ip->i_mount, dip);
440 return XFS_ERROR(EFSCORRUPTED);
442 ip->i_d.di_size = 0;
443 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
444 break;
446 case S_IFREG:
447 case S_IFLNK:
448 case S_IFDIR:
449 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
450 case XFS_DINODE_FMT_LOCAL:
452 * no local regular files yet
454 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
455 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
456 "corrupt inode %Lu "
457 "(local format for regular file).",
458 (unsigned long long) ip->i_ino);
459 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
460 XFS_ERRLEVEL_LOW,
461 ip->i_mount, dip);
462 return XFS_ERROR(EFSCORRUPTED);
465 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
466 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
467 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
468 "corrupt inode %Lu "
469 "(bad size %Ld for local inode).",
470 (unsigned long long) ip->i_ino,
471 (long long) di_size);
472 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
473 XFS_ERRLEVEL_LOW,
474 ip->i_mount, dip);
475 return XFS_ERROR(EFSCORRUPTED);
478 size = (int)di_size;
479 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
480 break;
481 case XFS_DINODE_FMT_EXTENTS:
482 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
483 break;
484 case XFS_DINODE_FMT_BTREE:
485 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
486 break;
487 default:
488 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
489 ip->i_mount);
490 return XFS_ERROR(EFSCORRUPTED);
492 break;
494 default:
495 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
496 return XFS_ERROR(EFSCORRUPTED);
498 if (error) {
499 return error;
501 if (!XFS_DFORK_Q(dip))
502 return 0;
503 ASSERT(ip->i_afp == NULL);
504 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
505 ip->i_afp->if_ext_max =
506 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
507 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
508 case XFS_DINODE_FMT_LOCAL:
509 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
510 size = be16_to_cpu(atp->hdr.totsize);
511 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
512 break;
513 case XFS_DINODE_FMT_EXTENTS:
514 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
515 break;
516 case XFS_DINODE_FMT_BTREE:
517 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
518 break;
519 default:
520 error = XFS_ERROR(EFSCORRUPTED);
521 break;
523 if (error) {
524 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
525 ip->i_afp = NULL;
526 xfs_idestroy_fork(ip, XFS_DATA_FORK);
528 return error;
532 * The file is in-lined in the on-disk inode.
533 * If it fits into if_inline_data, then copy
534 * it there, otherwise allocate a buffer for it
535 * and copy the data there. Either way, set
536 * if_data to point at the data.
537 * If we allocate a buffer for the data, make
538 * sure that its size is a multiple of 4 and
539 * record the real size in i_real_bytes.
541 STATIC int
542 xfs_iformat_local(
543 xfs_inode_t *ip,
544 xfs_dinode_t *dip,
545 int whichfork,
546 int size)
548 xfs_ifork_t *ifp;
549 int real_size;
552 * If the size is unreasonable, then something
553 * is wrong and we just bail out rather than crash in
554 * kmem_alloc() or memcpy() below.
556 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
557 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
558 "corrupt inode %Lu "
559 "(bad size %d for local fork, size = %d).",
560 (unsigned long long) ip->i_ino, size,
561 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
562 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
563 ip->i_mount, dip);
564 return XFS_ERROR(EFSCORRUPTED);
566 ifp = XFS_IFORK_PTR(ip, whichfork);
567 real_size = 0;
568 if (size == 0)
569 ifp->if_u1.if_data = NULL;
570 else if (size <= sizeof(ifp->if_u2.if_inline_data))
571 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
572 else {
573 real_size = roundup(size, 4);
574 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
576 ifp->if_bytes = size;
577 ifp->if_real_bytes = real_size;
578 if (size)
579 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
580 ifp->if_flags &= ~XFS_IFEXTENTS;
581 ifp->if_flags |= XFS_IFINLINE;
582 return 0;
586 * The file consists of a set of extents all
587 * of which fit into the on-disk inode.
588 * If there are few enough extents to fit into
589 * the if_inline_ext, then copy them there.
590 * Otherwise allocate a buffer for them and copy
591 * them into it. Either way, set if_extents
592 * to point at the extents.
594 STATIC int
595 xfs_iformat_extents(
596 xfs_inode_t *ip,
597 xfs_dinode_t *dip,
598 int whichfork)
600 xfs_bmbt_rec_t *ep, *dp;
601 xfs_ifork_t *ifp;
602 int nex;
603 int size;
604 int i;
606 ifp = XFS_IFORK_PTR(ip, whichfork);
607 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
608 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
611 * If the number of extents is unreasonable, then something
612 * is wrong and we just bail out rather than crash in
613 * kmem_alloc() or memcpy() below.
615 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
616 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
617 "corrupt inode %Lu ((a)extents = %d).",
618 (unsigned long long) ip->i_ino, nex);
619 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
621 return XFS_ERROR(EFSCORRUPTED);
624 ifp->if_real_bytes = 0;
625 if (nex == 0)
626 ifp->if_u1.if_extents = NULL;
627 else if (nex <= XFS_INLINE_EXTS)
628 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
629 else
630 xfs_iext_add(ifp, 0, nex);
632 ifp->if_bytes = size;
633 if (size) {
634 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
635 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
636 for (i = 0; i < nex; i++, dp++) {
637 ep = xfs_iext_get_ext(ifp, i);
638 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ARCH_CONVERT);
640 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
641 ARCH_CONVERT);
643 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
644 whichfork);
645 if (whichfork != XFS_DATA_FORK ||
646 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
647 if (unlikely(xfs_check_nostate_extents(
648 ifp, 0, nex))) {
649 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 XFS_ERRLEVEL_LOW,
651 ip->i_mount);
652 return XFS_ERROR(EFSCORRUPTED);
655 ifp->if_flags |= XFS_IFEXTENTS;
656 return 0;
660 * The file has too many extents to fit into
661 * the inode, so they are in B-tree format.
662 * Allocate a buffer for the root of the B-tree
663 * and copy the root into it. The i_extents
664 * field will remain NULL until all of the
665 * extents are read in (when they are needed).
667 STATIC int
668 xfs_iformat_btree(
669 xfs_inode_t *ip,
670 xfs_dinode_t *dip,
671 int whichfork)
673 xfs_bmdr_block_t *dfp;
674 xfs_ifork_t *ifp;
675 /* REFERENCED */
676 int nrecs;
677 int size;
679 ifp = XFS_IFORK_PTR(ip, whichfork);
680 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
681 size = XFS_BMAP_BROOT_SPACE(dfp);
682 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
685 * blow out if -- fork has less extents than can fit in
686 * fork (fork shouldn't be a btree format), root btree
687 * block has more records than can fit into the fork,
688 * or the number of extents is greater than the number of
689 * blocks.
691 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
692 || XFS_BMDR_SPACE_CALC(nrecs) >
693 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
694 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
695 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
696 "corrupt inode %Lu (btree).",
697 (unsigned long long) ip->i_ino);
698 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
699 ip->i_mount);
700 return XFS_ERROR(EFSCORRUPTED);
703 ifp->if_broot_bytes = size;
704 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
705 ASSERT(ifp->if_broot != NULL);
707 * Copy and convert from the on-disk structure
708 * to the in-memory structure.
710 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
711 ifp->if_broot, size);
712 ifp->if_flags &= ~XFS_IFEXTENTS;
713 ifp->if_flags |= XFS_IFBROOT;
715 return 0;
719 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * and native format
722 * buf = on-disk representation
723 * dip = native representation
724 * dir = direction - +ve -> disk to native
725 * -ve -> native to disk
727 void
728 xfs_xlate_dinode_core(
729 xfs_caddr_t buf,
730 xfs_dinode_core_t *dip,
731 int dir)
733 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
734 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
735 xfs_arch_t arch = ARCH_CONVERT;
737 ASSERT(dir);
739 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
740 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
741 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
742 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
743 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
744 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
745 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
746 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
747 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
749 if (dir > 0) {
750 memcpy(mem_core->di_pad, buf_core->di_pad,
751 sizeof(buf_core->di_pad));
752 } else {
753 memcpy(buf_core->di_pad, mem_core->di_pad,
754 sizeof(buf_core->di_pad));
757 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
759 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
760 dir, arch);
761 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
762 dir, arch);
763 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
764 dir, arch);
765 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
766 dir, arch);
767 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
768 dir, arch);
769 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
770 dir, arch);
771 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
772 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
773 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
774 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
775 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
776 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
777 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
778 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
779 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
780 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
781 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
784 STATIC uint
785 _xfs_dic2xflags(
786 __uint16_t di_flags)
788 uint flags = 0;
790 if (di_flags & XFS_DIFLAG_ANY) {
791 if (di_flags & XFS_DIFLAG_REALTIME)
792 flags |= XFS_XFLAG_REALTIME;
793 if (di_flags & XFS_DIFLAG_PREALLOC)
794 flags |= XFS_XFLAG_PREALLOC;
795 if (di_flags & XFS_DIFLAG_IMMUTABLE)
796 flags |= XFS_XFLAG_IMMUTABLE;
797 if (di_flags & XFS_DIFLAG_APPEND)
798 flags |= XFS_XFLAG_APPEND;
799 if (di_flags & XFS_DIFLAG_SYNC)
800 flags |= XFS_XFLAG_SYNC;
801 if (di_flags & XFS_DIFLAG_NOATIME)
802 flags |= XFS_XFLAG_NOATIME;
803 if (di_flags & XFS_DIFLAG_NODUMP)
804 flags |= XFS_XFLAG_NODUMP;
805 if (di_flags & XFS_DIFLAG_RTINHERIT)
806 flags |= XFS_XFLAG_RTINHERIT;
807 if (di_flags & XFS_DIFLAG_PROJINHERIT)
808 flags |= XFS_XFLAG_PROJINHERIT;
809 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
810 flags |= XFS_XFLAG_NOSYMLINKS;
811 if (di_flags & XFS_DIFLAG_EXTSIZE)
812 flags |= XFS_XFLAG_EXTSIZE;
813 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
814 flags |= XFS_XFLAG_EXTSZINHERIT;
815 if (di_flags & XFS_DIFLAG_NODEFRAG)
816 flags |= XFS_XFLAG_NODEFRAG;
819 return flags;
822 uint
823 xfs_ip2xflags(
824 xfs_inode_t *ip)
826 xfs_dinode_core_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
832 uint
833 xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
843 * inode number.
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
849 xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno)
856 xfs_buf_t *bp;
857 xfs_dinode_t *dip;
858 xfs_inode_t *ip;
859 int error;
861 ASSERT(xfs_inode_zone != NULL);
863 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
864 ip->i_ino = ino;
865 ip->i_mount = mp;
868 * Get pointer's to the on-disk inode and the buffer containing it.
869 * If the inode number refers to a block outside the file system
870 * then xfs_itobp() will return NULL. In this case we should
871 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
872 * know that this is a new incore inode.
874 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
875 if (error) {
876 kmem_zone_free(xfs_inode_zone, ip);
877 return error;
881 * Initialize inode's trace buffers.
882 * Do this before xfs_iformat in case it adds entries.
884 #ifdef XFS_BMAP_TRACE
885 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
886 #endif
887 #ifdef XFS_BMBT_TRACE
888 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_RW_TRACE
891 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_ILOCK_TRACE
894 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_DIR2_TRACE
897 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
898 #endif
901 * If we got something that isn't an inode it means someone
902 * (nfs or dmi) has a stale handle.
904 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
905 kmem_zone_free(xfs_inode_zone, ip);
906 xfs_trans_brelse(tp, bp);
907 #ifdef DEBUG
908 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
909 "dip->di_core.di_magic (0x%x) != "
910 "XFS_DINODE_MAGIC (0x%x)",
911 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
912 XFS_DINODE_MAGIC);
913 #endif /* DEBUG */
914 return XFS_ERROR(EINVAL);
918 * If the on-disk inode is already linked to a directory
919 * entry, copy all of the inode into the in-core inode.
920 * xfs_iformat() handles copying in the inode format
921 * specific information.
922 * Otherwise, just get the truly permanent information.
924 if (dip->di_core.di_mode) {
925 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
926 &(ip->i_d), 1);
927 error = xfs_iformat(ip, dip);
928 if (error) {
929 kmem_zone_free(xfs_inode_zone, ip);
930 xfs_trans_brelse(tp, bp);
931 #ifdef DEBUG
932 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
933 "xfs_iformat() returned error %d",
934 error);
935 #endif /* DEBUG */
936 return error;
938 } else {
939 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
940 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
941 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
942 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
944 * Make sure to pull in the mode here as well in
945 * case the inode is released without being used.
946 * This ensures that xfs_inactive() will see that
947 * the inode is already free and not try to mess
948 * with the uninitialized part of it.
950 ip->i_d.di_mode = 0;
952 * Initialize the per-fork minima and maxima for a new
953 * inode here. xfs_iformat will do it for old inodes.
955 ip->i_df.if_ext_max =
956 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
959 INIT_LIST_HEAD(&ip->i_reclaim);
962 * The inode format changed when we moved the link count and
963 * made it 32 bits long. If this is an old format inode,
964 * convert it in memory to look like a new one. If it gets
965 * flushed to disk we will convert back before flushing or
966 * logging it. We zero out the new projid field and the old link
967 * count field. We'll handle clearing the pad field (the remains
968 * of the old uuid field) when we actually convert the inode to
969 * the new format. We don't change the version number so that we
970 * can distinguish this from a real new format inode.
972 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
973 ip->i_d.di_nlink = ip->i_d.di_onlink;
974 ip->i_d.di_onlink = 0;
975 ip->i_d.di_projid = 0;
978 ip->i_delayed_blks = 0;
981 * Mark the buffer containing the inode as something to keep
982 * around for a while. This helps to keep recently accessed
983 * meta-data in-core longer.
985 XFS_BUF_SET_REF(bp, XFS_INO_REF);
988 * Use xfs_trans_brelse() to release the buffer containing the
989 * on-disk inode, because it was acquired with xfs_trans_read_buf()
990 * in xfs_itobp() above. If tp is NULL, this is just a normal
991 * brelse(). If we're within a transaction, then xfs_trans_brelse()
992 * will only release the buffer if it is not dirty within the
993 * transaction. It will be OK to release the buffer in this case,
994 * because inodes on disk are never destroyed and we will be
995 * locking the new in-core inode before putting it in the hash
996 * table where other processes can find it. Thus we don't have
997 * to worry about the inode being changed just because we released
998 * the buffer.
1000 xfs_trans_brelse(tp, bp);
1001 *ipp = ip;
1002 return 0;
1006 * Read in extents from a btree-format inode.
1007 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1010 xfs_iread_extents(
1011 xfs_trans_t *tp,
1012 xfs_inode_t *ip,
1013 int whichfork)
1015 int error;
1016 xfs_ifork_t *ifp;
1017 xfs_extnum_t nextents;
1018 size_t size;
1020 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1021 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1022 ip->i_mount);
1023 return XFS_ERROR(EFSCORRUPTED);
1025 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1026 size = nextents * sizeof(xfs_bmbt_rec_t);
1027 ifp = XFS_IFORK_PTR(ip, whichfork);
1030 * We know that the size is valid (it's checked in iformat_btree)
1032 ifp->if_lastex = NULLEXTNUM;
1033 ifp->if_bytes = ifp->if_real_bytes = 0;
1034 ifp->if_flags |= XFS_IFEXTENTS;
1035 xfs_iext_add(ifp, 0, nextents);
1036 error = xfs_bmap_read_extents(tp, ip, whichfork);
1037 if (error) {
1038 xfs_iext_destroy(ifp);
1039 ifp->if_flags &= ~XFS_IFEXTENTS;
1040 return error;
1042 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1043 return 0;
1047 * Allocate an inode on disk and return a copy of its in-core version.
1048 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1049 * appropriately within the inode. The uid and gid for the inode are
1050 * set according to the contents of the given cred structure.
1052 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1053 * has a free inode available, call xfs_iget()
1054 * to obtain the in-core version of the allocated inode. Finally,
1055 * fill in the inode and log its initial contents. In this case,
1056 * ialloc_context would be set to NULL and call_again set to false.
1058 * If xfs_dialloc() does not have an available inode,
1059 * it will replenish its supply by doing an allocation. Since we can
1060 * only do one allocation within a transaction without deadlocks, we
1061 * must commit the current transaction before returning the inode itself.
1062 * In this case, therefore, we will set call_again to true and return.
1063 * The caller should then commit the current transaction, start a new
1064 * transaction, and call xfs_ialloc() again to actually get the inode.
1066 * To ensure that some other process does not grab the inode that
1067 * was allocated during the first call to xfs_ialloc(), this routine
1068 * also returns the [locked] bp pointing to the head of the freelist
1069 * as ialloc_context. The caller should hold this buffer across
1070 * the commit and pass it back into this routine on the second call.
1073 xfs_ialloc(
1074 xfs_trans_t *tp,
1075 xfs_inode_t *pip,
1076 mode_t mode,
1077 xfs_nlink_t nlink,
1078 xfs_dev_t rdev,
1079 cred_t *cr,
1080 xfs_prid_t prid,
1081 int okalloc,
1082 xfs_buf_t **ialloc_context,
1083 boolean_t *call_again,
1084 xfs_inode_t **ipp)
1086 xfs_ino_t ino;
1087 xfs_inode_t *ip;
1088 bhv_vnode_t *vp;
1089 uint flags;
1090 int error;
1093 * Call the space management code to pick
1094 * the on-disk inode to be allocated.
1096 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1097 ialloc_context, call_again, &ino);
1098 if (error != 0) {
1099 return error;
1101 if (*call_again || ino == NULLFSINO) {
1102 *ipp = NULL;
1103 return 0;
1105 ASSERT(*ialloc_context == NULL);
1108 * Get the in-core inode with the lock held exclusively.
1109 * This is because we're setting fields here we need
1110 * to prevent others from looking at until we're done.
1112 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1113 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1114 if (error != 0) {
1115 return error;
1117 ASSERT(ip != NULL);
1119 vp = XFS_ITOV(ip);
1120 ip->i_d.di_mode = (__uint16_t)mode;
1121 ip->i_d.di_onlink = 0;
1122 ip->i_d.di_nlink = nlink;
1123 ASSERT(ip->i_d.di_nlink == nlink);
1124 ip->i_d.di_uid = current_fsuid(cr);
1125 ip->i_d.di_gid = current_fsgid(cr);
1126 ip->i_d.di_projid = prid;
1127 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1130 * If the superblock version is up to where we support new format
1131 * inodes and this is currently an old format inode, then change
1132 * the inode version number now. This way we only do the conversion
1133 * here rather than here and in the flush/logging code.
1135 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1136 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1137 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1139 * We've already zeroed the old link count, the projid field,
1140 * and the pad field.
1145 * Project ids won't be stored on disk if we are using a version 1 inode.
1147 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1148 xfs_bump_ino_vers2(tp, ip);
1150 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1151 ip->i_d.di_gid = pip->i_d.di_gid;
1152 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1153 ip->i_d.di_mode |= S_ISGID;
1158 * If the group ID of the new file does not match the effective group
1159 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1160 * (and only if the irix_sgid_inherit compatibility variable is set).
1162 if ((irix_sgid_inherit) &&
1163 (ip->i_d.di_mode & S_ISGID) &&
1164 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1165 ip->i_d.di_mode &= ~S_ISGID;
1168 ip->i_d.di_size = 0;
1169 ip->i_d.di_nextents = 0;
1170 ASSERT(ip->i_d.di_nblocks == 0);
1171 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1173 * di_gen will have been taken care of in xfs_iread.
1175 ip->i_d.di_extsize = 0;
1176 ip->i_d.di_dmevmask = 0;
1177 ip->i_d.di_dmstate = 0;
1178 ip->i_d.di_flags = 0;
1179 flags = XFS_ILOG_CORE;
1180 switch (mode & S_IFMT) {
1181 case S_IFIFO:
1182 case S_IFCHR:
1183 case S_IFBLK:
1184 case S_IFSOCK:
1185 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1186 ip->i_df.if_u2.if_rdev = rdev;
1187 ip->i_df.if_flags = 0;
1188 flags |= XFS_ILOG_DEV;
1189 break;
1190 case S_IFREG:
1191 case S_IFDIR:
1192 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1193 uint di_flags = 0;
1195 if ((mode & S_IFMT) == S_IFDIR) {
1196 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1197 di_flags |= XFS_DIFLAG_RTINHERIT;
1198 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1199 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1200 ip->i_d.di_extsize = pip->i_d.di_extsize;
1202 } else if ((mode & S_IFMT) == S_IFREG) {
1203 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1204 di_flags |= XFS_DIFLAG_REALTIME;
1205 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1207 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1208 di_flags |= XFS_DIFLAG_EXTSIZE;
1209 ip->i_d.di_extsize = pip->i_d.di_extsize;
1212 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1213 xfs_inherit_noatime)
1214 di_flags |= XFS_DIFLAG_NOATIME;
1215 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1216 xfs_inherit_nodump)
1217 di_flags |= XFS_DIFLAG_NODUMP;
1218 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1219 xfs_inherit_sync)
1220 di_flags |= XFS_DIFLAG_SYNC;
1221 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1222 xfs_inherit_nosymlinks)
1223 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1224 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1225 di_flags |= XFS_DIFLAG_PROJINHERIT;
1226 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1227 xfs_inherit_nodefrag)
1228 di_flags |= XFS_DIFLAG_NODEFRAG;
1229 ip->i_d.di_flags |= di_flags;
1231 /* FALLTHROUGH */
1232 case S_IFLNK:
1233 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1234 ip->i_df.if_flags = XFS_IFEXTENTS;
1235 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1236 ip->i_df.if_u1.if_extents = NULL;
1237 break;
1238 default:
1239 ASSERT(0);
1242 * Attribute fork settings for new inode.
1244 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1245 ip->i_d.di_anextents = 0;
1248 * Log the new values stuffed into the inode.
1250 xfs_trans_log_inode(tp, ip, flags);
1252 /* now that we have an i_mode we can setup inode ops and unlock */
1253 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1255 *ipp = ip;
1256 return 0;
1260 * Check to make sure that there are no blocks allocated to the
1261 * file beyond the size of the file. We don't check this for
1262 * files with fixed size extents or real time extents, but we
1263 * at least do it for regular files.
1265 #ifdef DEBUG
1266 void
1267 xfs_isize_check(
1268 xfs_mount_t *mp,
1269 xfs_inode_t *ip,
1270 xfs_fsize_t isize)
1272 xfs_fileoff_t map_first;
1273 int nimaps;
1274 xfs_bmbt_irec_t imaps[2];
1276 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1277 return;
1279 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1280 return;
1282 nimaps = 2;
1283 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1285 * The filesystem could be shutting down, so bmapi may return
1286 * an error.
1288 if (xfs_bmapi(NULL, ip, map_first,
1289 (XFS_B_TO_FSB(mp,
1290 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1291 map_first),
1292 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1293 NULL, NULL))
1294 return;
1295 ASSERT(nimaps == 1);
1296 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1298 #endif /* DEBUG */
1301 * Calculate the last possible buffered byte in a file. This must
1302 * include data that was buffered beyond the EOF by the write code.
1303 * This also needs to deal with overflowing the xfs_fsize_t type
1304 * which can happen for sizes near the limit.
1306 * We also need to take into account any blocks beyond the EOF. It
1307 * may be the case that they were buffered by a write which failed.
1308 * In that case the pages will still be in memory, but the inode size
1309 * will never have been updated.
1311 xfs_fsize_t
1312 xfs_file_last_byte(
1313 xfs_inode_t *ip)
1315 xfs_mount_t *mp;
1316 xfs_fsize_t last_byte;
1317 xfs_fileoff_t last_block;
1318 xfs_fileoff_t size_last_block;
1319 int error;
1321 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1323 mp = ip->i_mount;
1325 * Only check for blocks beyond the EOF if the extents have
1326 * been read in. This eliminates the need for the inode lock,
1327 * and it also saves us from looking when it really isn't
1328 * necessary.
1330 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1331 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1332 XFS_DATA_FORK);
1333 if (error) {
1334 last_block = 0;
1336 } else {
1337 last_block = 0;
1339 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1340 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1342 last_byte = XFS_FSB_TO_B(mp, last_block);
1343 if (last_byte < 0) {
1344 return XFS_MAXIOFFSET(mp);
1346 last_byte += (1 << mp->m_writeio_log);
1347 if (last_byte < 0) {
1348 return XFS_MAXIOFFSET(mp);
1350 return last_byte;
1353 #if defined(XFS_RW_TRACE)
1354 STATIC void
1355 xfs_itrunc_trace(
1356 int tag,
1357 xfs_inode_t *ip,
1358 int flag,
1359 xfs_fsize_t new_size,
1360 xfs_off_t toss_start,
1361 xfs_off_t toss_finish)
1363 if (ip->i_rwtrace == NULL) {
1364 return;
1367 ktrace_enter(ip->i_rwtrace,
1368 (void*)((long)tag),
1369 (void*)ip,
1370 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1372 (void*)((long)flag),
1373 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1374 (void*)(unsigned long)(new_size & 0xffffffff),
1375 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(toss_start & 0xffffffff),
1377 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1378 (void*)(unsigned long)(toss_finish & 0xffffffff),
1379 (void*)(unsigned long)current_cpu(),
1380 (void*)(unsigned long)current_pid(),
1381 (void*)NULL,
1382 (void*)NULL,
1383 (void*)NULL);
1385 #else
1386 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1387 #endif
1390 * Start the truncation of the file to new_size. The new size
1391 * must be smaller than the current size. This routine will
1392 * clear the buffer and page caches of file data in the removed
1393 * range, and xfs_itruncate_finish() will remove the underlying
1394 * disk blocks.
1396 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1397 * must NOT have the inode lock held at all. This is because we're
1398 * calling into the buffer/page cache code and we can't hold the
1399 * inode lock when we do so.
1401 * We need to wait for any direct I/Os in flight to complete before we
1402 * proceed with the truncate. This is needed to prevent the extents
1403 * being read or written by the direct I/Os from being removed while the
1404 * I/O is in flight as there is no other method of synchronising
1405 * direct I/O with the truncate operation. Also, because we hold
1406 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1407 * started until the truncate completes and drops the lock. Essentially,
1408 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1409 * between direct I/Os and the truncate operation.
1411 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1412 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1413 * in the case that the caller is locking things out of order and
1414 * may not be able to call xfs_itruncate_finish() with the inode lock
1415 * held without dropping the I/O lock. If the caller must drop the
1416 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1417 * must be called again with all the same restrictions as the initial
1418 * call.
1420 void
1421 xfs_itruncate_start(
1422 xfs_inode_t *ip,
1423 uint flags,
1424 xfs_fsize_t new_size)
1426 xfs_fsize_t last_byte;
1427 xfs_off_t toss_start;
1428 xfs_mount_t *mp;
1429 bhv_vnode_t *vp;
1431 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1432 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1433 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1434 (flags == XFS_ITRUNC_MAYBE));
1436 mp = ip->i_mount;
1437 vp = XFS_ITOV(ip);
1439 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1442 * Call toss_pages or flushinval_pages to get rid of pages
1443 * overlapping the region being removed. We have to use
1444 * the less efficient flushinval_pages in the case that the
1445 * caller may not be able to finish the truncate without
1446 * dropping the inode's I/O lock. Make sure
1447 * to catch any pages brought in by buffers overlapping
1448 * the EOF by searching out beyond the isize by our
1449 * block size. We round new_size up to a block boundary
1450 * so that we don't toss things on the same block as
1451 * new_size but before it.
1453 * Before calling toss_page or flushinval_pages, make sure to
1454 * call remapf() over the same region if the file is mapped.
1455 * This frees up mapped file references to the pages in the
1456 * given range and for the flushinval_pages case it ensures
1457 * that we get the latest mapped changes flushed out.
1459 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1460 toss_start = XFS_FSB_TO_B(mp, toss_start);
1461 if (toss_start < 0) {
1463 * The place to start tossing is beyond our maximum
1464 * file size, so there is no way that the data extended
1465 * out there.
1467 return;
1469 last_byte = xfs_file_last_byte(ip);
1470 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1471 last_byte);
1472 if (last_byte > toss_start) {
1473 if (flags & XFS_ITRUNC_DEFINITE) {
1474 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1475 } else {
1476 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1480 #ifdef DEBUG
1481 if (new_size == 0) {
1482 ASSERT(VN_CACHED(vp) == 0);
1484 #endif
1488 * Shrink the file to the given new_size. The new
1489 * size must be smaller than the current size.
1490 * This will free up the underlying blocks
1491 * in the removed range after a call to xfs_itruncate_start()
1492 * or xfs_atruncate_start().
1494 * The transaction passed to this routine must have made
1495 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1496 * This routine may commit the given transaction and
1497 * start new ones, so make sure everything involved in
1498 * the transaction is tidy before calling here.
1499 * Some transaction will be returned to the caller to be
1500 * committed. The incoming transaction must already include
1501 * the inode, and both inode locks must be held exclusively.
1502 * The inode must also be "held" within the transaction. On
1503 * return the inode will be "held" within the returned transaction.
1504 * This routine does NOT require any disk space to be reserved
1505 * for it within the transaction.
1507 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1508 * and it indicates the fork which is to be truncated. For the
1509 * attribute fork we only support truncation to size 0.
1511 * We use the sync parameter to indicate whether or not the first
1512 * transaction we perform might have to be synchronous. For the attr fork,
1513 * it needs to be so if the unlink of the inode is not yet known to be
1514 * permanent in the log. This keeps us from freeing and reusing the
1515 * blocks of the attribute fork before the unlink of the inode becomes
1516 * permanent.
1518 * For the data fork, we normally have to run synchronously if we're
1519 * being called out of the inactive path or we're being called
1520 * out of the create path where we're truncating an existing file.
1521 * Either way, the truncate needs to be sync so blocks don't reappear
1522 * in the file with altered data in case of a crash. wsync filesystems
1523 * can run the first case async because anything that shrinks the inode
1524 * has to run sync so by the time we're called here from inactive, the
1525 * inode size is permanently set to 0.
1527 * Calls from the truncate path always need to be sync unless we're
1528 * in a wsync filesystem and the file has already been unlinked.
1530 * The caller is responsible for correctly setting the sync parameter.
1531 * It gets too hard for us to guess here which path we're being called
1532 * out of just based on inode state.
1535 xfs_itruncate_finish(
1536 xfs_trans_t **tp,
1537 xfs_inode_t *ip,
1538 xfs_fsize_t new_size,
1539 int fork,
1540 int sync)
1542 xfs_fsblock_t first_block;
1543 xfs_fileoff_t first_unmap_block;
1544 xfs_fileoff_t last_block;
1545 xfs_filblks_t unmap_len=0;
1546 xfs_mount_t *mp;
1547 xfs_trans_t *ntp;
1548 int done;
1549 int committed;
1550 xfs_bmap_free_t free_list;
1551 int error;
1553 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1554 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1555 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1556 ASSERT(*tp != NULL);
1557 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1558 ASSERT(ip->i_transp == *tp);
1559 ASSERT(ip->i_itemp != NULL);
1560 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1563 ntp = *tp;
1564 mp = (ntp)->t_mountp;
1565 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1568 * We only support truncating the entire attribute fork.
1570 if (fork == XFS_ATTR_FORK) {
1571 new_size = 0LL;
1573 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1576 * The first thing we do is set the size to new_size permanently
1577 * on disk. This way we don't have to worry about anyone ever
1578 * being able to look at the data being freed even in the face
1579 * of a crash. What we're getting around here is the case where
1580 * we free a block, it is allocated to another file, it is written
1581 * to, and then we crash. If the new data gets written to the
1582 * file but the log buffers containing the free and reallocation
1583 * don't, then we'd end up with garbage in the blocks being freed.
1584 * As long as we make the new_size permanent before actually
1585 * freeing any blocks it doesn't matter if they get writtten to.
1587 * The callers must signal into us whether or not the size
1588 * setting here must be synchronous. There are a few cases
1589 * where it doesn't have to be synchronous. Those cases
1590 * occur if the file is unlinked and we know the unlink is
1591 * permanent or if the blocks being truncated are guaranteed
1592 * to be beyond the inode eof (regardless of the link count)
1593 * and the eof value is permanent. Both of these cases occur
1594 * only on wsync-mounted filesystems. In those cases, we're
1595 * guaranteed that no user will ever see the data in the blocks
1596 * that are being truncated so the truncate can run async.
1597 * In the free beyond eof case, the file may wind up with
1598 * more blocks allocated to it than it needs if we crash
1599 * and that won't get fixed until the next time the file
1600 * is re-opened and closed but that's ok as that shouldn't
1601 * be too many blocks.
1603 * However, we can't just make all wsync xactions run async
1604 * because there's one call out of the create path that needs
1605 * to run sync where it's truncating an existing file to size
1606 * 0 whose size is > 0.
1608 * It's probably possible to come up with a test in this
1609 * routine that would correctly distinguish all the above
1610 * cases from the values of the function parameters and the
1611 * inode state but for sanity's sake, I've decided to let the
1612 * layers above just tell us. It's simpler to correctly figure
1613 * out in the layer above exactly under what conditions we
1614 * can run async and I think it's easier for others read and
1615 * follow the logic in case something has to be changed.
1616 * cscope is your friend -- rcc.
1618 * The attribute fork is much simpler.
1620 * For the attribute fork we allow the caller to tell us whether
1621 * the unlink of the inode that led to this call is yet permanent
1622 * in the on disk log. If it is not and we will be freeing extents
1623 * in this inode then we make the first transaction synchronous
1624 * to make sure that the unlink is permanent by the time we free
1625 * the blocks.
1627 if (fork == XFS_DATA_FORK) {
1628 if (ip->i_d.di_nextents > 0) {
1629 ip->i_d.di_size = new_size;
1630 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1632 } else if (sync) {
1633 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1634 if (ip->i_d.di_anextents > 0)
1635 xfs_trans_set_sync(ntp);
1637 ASSERT(fork == XFS_DATA_FORK ||
1638 (fork == XFS_ATTR_FORK &&
1639 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1640 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1643 * Since it is possible for space to become allocated beyond
1644 * the end of the file (in a crash where the space is allocated
1645 * but the inode size is not yet updated), simply remove any
1646 * blocks which show up between the new EOF and the maximum
1647 * possible file size. If the first block to be removed is
1648 * beyond the maximum file size (ie it is the same as last_block),
1649 * then there is nothing to do.
1651 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1652 ASSERT(first_unmap_block <= last_block);
1653 done = 0;
1654 if (last_block == first_unmap_block) {
1655 done = 1;
1656 } else {
1657 unmap_len = last_block - first_unmap_block + 1;
1659 while (!done) {
1661 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1662 * will tell us whether it freed the entire range or
1663 * not. If this is a synchronous mount (wsync),
1664 * then we can tell bunmapi to keep all the
1665 * transactions asynchronous since the unlink
1666 * transaction that made this inode inactive has
1667 * already hit the disk. There's no danger of
1668 * the freed blocks being reused, there being a
1669 * crash, and the reused blocks suddenly reappearing
1670 * in this file with garbage in them once recovery
1671 * runs.
1673 XFS_BMAP_INIT(&free_list, &first_block);
1674 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1675 first_unmap_block, unmap_len,
1676 XFS_BMAPI_AFLAG(fork) |
1677 (sync ? 0 : XFS_BMAPI_ASYNC),
1678 XFS_ITRUNC_MAX_EXTENTS,
1679 &first_block, &free_list,
1680 NULL, &done);
1681 if (error) {
1683 * If the bunmapi call encounters an error,
1684 * return to the caller where the transaction
1685 * can be properly aborted. We just need to
1686 * make sure we're not holding any resources
1687 * that we were not when we came in.
1689 xfs_bmap_cancel(&free_list);
1690 return error;
1694 * Duplicate the transaction that has the permanent
1695 * reservation and commit the old transaction.
1697 error = xfs_bmap_finish(tp, &free_list, first_block,
1698 &committed);
1699 ntp = *tp;
1700 if (error) {
1702 * If the bmap finish call encounters an error,
1703 * return to the caller where the transaction
1704 * can be properly aborted. We just need to
1705 * make sure we're not holding any resources
1706 * that we were not when we came in.
1708 * Aborting from this point might lose some
1709 * blocks in the file system, but oh well.
1711 xfs_bmap_cancel(&free_list);
1712 if (committed) {
1714 * If the passed in transaction committed
1715 * in xfs_bmap_finish(), then we want to
1716 * add the inode to this one before returning.
1717 * This keeps things simple for the higher
1718 * level code, because it always knows that
1719 * the inode is locked and held in the
1720 * transaction that returns to it whether
1721 * errors occur or not. We don't mark the
1722 * inode dirty so that this transaction can
1723 * be easily aborted if possible.
1725 xfs_trans_ijoin(ntp, ip,
1726 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1727 xfs_trans_ihold(ntp, ip);
1729 return error;
1732 if (committed) {
1734 * The first xact was committed,
1735 * so add the inode to the new one.
1736 * Mark it dirty so it will be logged
1737 * and moved forward in the log as
1738 * part of every commit.
1740 xfs_trans_ijoin(ntp, ip,
1741 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1742 xfs_trans_ihold(ntp, ip);
1743 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1745 ntp = xfs_trans_dup(ntp);
1746 (void) xfs_trans_commit(*tp, 0, NULL);
1747 *tp = ntp;
1748 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1749 XFS_TRANS_PERM_LOG_RES,
1750 XFS_ITRUNCATE_LOG_COUNT);
1752 * Add the inode being truncated to the next chained
1753 * transaction.
1755 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1756 xfs_trans_ihold(ntp, ip);
1757 if (error)
1758 return (error);
1761 * Only update the size in the case of the data fork, but
1762 * always re-log the inode so that our permanent transaction
1763 * can keep on rolling it forward in the log.
1765 if (fork == XFS_DATA_FORK) {
1766 xfs_isize_check(mp, ip, new_size);
1767 ip->i_d.di_size = new_size;
1769 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1770 ASSERT((new_size != 0) ||
1771 (fork == XFS_ATTR_FORK) ||
1772 (ip->i_delayed_blks == 0));
1773 ASSERT((new_size != 0) ||
1774 (fork == XFS_ATTR_FORK) ||
1775 (ip->i_d.di_nextents == 0));
1776 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1777 return 0;
1782 * xfs_igrow_start
1784 * Do the first part of growing a file: zero any data in the last
1785 * block that is beyond the old EOF. We need to do this before
1786 * the inode is joined to the transaction to modify the i_size.
1787 * That way we can drop the inode lock and call into the buffer
1788 * cache to get the buffer mapping the EOF.
1791 xfs_igrow_start(
1792 xfs_inode_t *ip,
1793 xfs_fsize_t new_size,
1794 cred_t *credp)
1796 int error;
1798 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1799 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1800 ASSERT(new_size > ip->i_d.di_size);
1803 * Zero any pages that may have been created by
1804 * xfs_write_file() beyond the end of the file
1805 * and any blocks between the old and new file sizes.
1807 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1808 ip->i_d.di_size, new_size);
1809 return error;
1813 * xfs_igrow_finish
1815 * This routine is called to extend the size of a file.
1816 * The inode must have both the iolock and the ilock locked
1817 * for update and it must be a part of the current transaction.
1818 * The xfs_igrow_start() function must have been called previously.
1819 * If the change_flag is not zero, the inode change timestamp will
1820 * be updated.
1822 void
1823 xfs_igrow_finish(
1824 xfs_trans_t *tp,
1825 xfs_inode_t *ip,
1826 xfs_fsize_t new_size,
1827 int change_flag)
1829 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1830 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1831 ASSERT(ip->i_transp == tp);
1832 ASSERT(new_size > ip->i_d.di_size);
1835 * Update the file size. Update the inode change timestamp
1836 * if change_flag set.
1838 ip->i_d.di_size = new_size;
1839 if (change_flag)
1840 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1841 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1847 * This is called when the inode's link count goes to 0.
1848 * We place the on-disk inode on a list in the AGI. It
1849 * will be pulled from this list when the inode is freed.
1852 xfs_iunlink(
1853 xfs_trans_t *tp,
1854 xfs_inode_t *ip)
1856 xfs_mount_t *mp;
1857 xfs_agi_t *agi;
1858 xfs_dinode_t *dip;
1859 xfs_buf_t *agibp;
1860 xfs_buf_t *ibp;
1861 xfs_agnumber_t agno;
1862 xfs_daddr_t agdaddr;
1863 xfs_agino_t agino;
1864 short bucket_index;
1865 int offset;
1866 int error;
1867 int agi_ok;
1869 ASSERT(ip->i_d.di_nlink == 0);
1870 ASSERT(ip->i_d.di_mode != 0);
1871 ASSERT(ip->i_transp == tp);
1873 mp = tp->t_mountp;
1875 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1876 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1879 * Get the agi buffer first. It ensures lock ordering
1880 * on the list.
1882 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1883 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1884 if (error) {
1885 return error;
1888 * Validate the magic number of the agi block.
1890 agi = XFS_BUF_TO_AGI(agibp);
1891 agi_ok =
1892 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1893 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1894 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1895 XFS_RANDOM_IUNLINK))) {
1896 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1897 xfs_trans_brelse(tp, agibp);
1898 return XFS_ERROR(EFSCORRUPTED);
1901 * Get the index into the agi hash table for the
1902 * list this inode will go on.
1904 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1905 ASSERT(agino != 0);
1906 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1907 ASSERT(agi->agi_unlinked[bucket_index]);
1908 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1910 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1912 * There is already another inode in the bucket we need
1913 * to add ourselves to. Add us at the front of the list.
1914 * Here we put the head pointer into our next pointer,
1915 * and then we fall through to point the head at us.
1917 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1918 if (error) {
1919 return error;
1921 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1922 ASSERT(dip->di_next_unlinked);
1923 /* both on-disk, don't endian flip twice */
1924 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1925 offset = ip->i_boffset +
1926 offsetof(xfs_dinode_t, di_next_unlinked);
1927 xfs_trans_inode_buf(tp, ibp);
1928 xfs_trans_log_buf(tp, ibp, offset,
1929 (offset + sizeof(xfs_agino_t) - 1));
1930 xfs_inobp_check(mp, ibp);
1934 * Point the bucket head pointer at the inode being inserted.
1936 ASSERT(agino != 0);
1937 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1938 offset = offsetof(xfs_agi_t, agi_unlinked) +
1939 (sizeof(xfs_agino_t) * bucket_index);
1940 xfs_trans_log_buf(tp, agibp, offset,
1941 (offset + sizeof(xfs_agino_t) - 1));
1942 return 0;
1946 * Pull the on-disk inode from the AGI unlinked list.
1948 STATIC int
1949 xfs_iunlink_remove(
1950 xfs_trans_t *tp,
1951 xfs_inode_t *ip)
1953 xfs_ino_t next_ino;
1954 xfs_mount_t *mp;
1955 xfs_agi_t *agi;
1956 xfs_dinode_t *dip;
1957 xfs_buf_t *agibp;
1958 xfs_buf_t *ibp;
1959 xfs_agnumber_t agno;
1960 xfs_daddr_t agdaddr;
1961 xfs_agino_t agino;
1962 xfs_agino_t next_agino;
1963 xfs_buf_t *last_ibp;
1964 xfs_dinode_t *last_dip;
1965 short bucket_index;
1966 int offset, last_offset;
1967 int error;
1968 int agi_ok;
1971 * First pull the on-disk inode from the AGI unlinked list.
1973 mp = tp->t_mountp;
1975 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1976 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1979 * Get the agi buffer first. It ensures lock ordering
1980 * on the list.
1982 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1983 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1984 if (error) {
1985 cmn_err(CE_WARN,
1986 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1987 error, mp->m_fsname);
1988 return error;
1991 * Validate the magic number of the agi block.
1993 agi = XFS_BUF_TO_AGI(agibp);
1994 agi_ok =
1995 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1996 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1997 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1998 XFS_RANDOM_IUNLINK_REMOVE))) {
1999 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2000 mp, agi);
2001 xfs_trans_brelse(tp, agibp);
2002 cmn_err(CE_WARN,
2003 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2004 mp->m_fsname);
2005 return XFS_ERROR(EFSCORRUPTED);
2008 * Get the index into the agi hash table for the
2009 * list this inode will go on.
2011 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2012 ASSERT(agino != 0);
2013 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2014 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2015 ASSERT(agi->agi_unlinked[bucket_index]);
2017 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2019 * We're at the head of the list. Get the inode's
2020 * on-disk buffer to see if there is anyone after us
2021 * on the list. Only modify our next pointer if it
2022 * is not already NULLAGINO. This saves us the overhead
2023 * of dealing with the buffer when there is no need to
2024 * change it.
2026 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2027 if (error) {
2028 cmn_err(CE_WARN,
2029 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2030 error, mp->m_fsname);
2031 return error;
2033 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2034 ASSERT(next_agino != 0);
2035 if (next_agino != NULLAGINO) {
2036 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2037 offset = ip->i_boffset +
2038 offsetof(xfs_dinode_t, di_next_unlinked);
2039 xfs_trans_inode_buf(tp, ibp);
2040 xfs_trans_log_buf(tp, ibp, offset,
2041 (offset + sizeof(xfs_agino_t) - 1));
2042 xfs_inobp_check(mp, ibp);
2043 } else {
2044 xfs_trans_brelse(tp, ibp);
2047 * Point the bucket head pointer at the next inode.
2049 ASSERT(next_agino != 0);
2050 ASSERT(next_agino != agino);
2051 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2052 offset = offsetof(xfs_agi_t, agi_unlinked) +
2053 (sizeof(xfs_agino_t) * bucket_index);
2054 xfs_trans_log_buf(tp, agibp, offset,
2055 (offset + sizeof(xfs_agino_t) - 1));
2056 } else {
2058 * We need to search the list for the inode being freed.
2060 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2061 last_ibp = NULL;
2062 while (next_agino != agino) {
2064 * If the last inode wasn't the one pointing to
2065 * us, then release its buffer since we're not
2066 * going to do anything with it.
2068 if (last_ibp != NULL) {
2069 xfs_trans_brelse(tp, last_ibp);
2071 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2072 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2073 &last_ibp, &last_offset);
2074 if (error) {
2075 cmn_err(CE_WARN,
2076 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2077 error, mp->m_fsname);
2078 return error;
2080 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2081 ASSERT(next_agino != NULLAGINO);
2082 ASSERT(next_agino != 0);
2085 * Now last_ibp points to the buffer previous to us on
2086 * the unlinked list. Pull us from the list.
2088 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2089 if (error) {
2090 cmn_err(CE_WARN,
2091 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2092 error, mp->m_fsname);
2093 return error;
2095 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
2098 if (next_agino != NULLAGINO) {
2099 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2100 offset = ip->i_boffset +
2101 offsetof(xfs_dinode_t, di_next_unlinked);
2102 xfs_trans_inode_buf(tp, ibp);
2103 xfs_trans_log_buf(tp, ibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 xfs_inobp_check(mp, ibp);
2106 } else {
2107 xfs_trans_brelse(tp, ibp);
2110 * Point the previous inode on the list to the next inode.
2112 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2113 ASSERT(next_agino != 0);
2114 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2115 xfs_trans_inode_buf(tp, last_ibp);
2116 xfs_trans_log_buf(tp, last_ibp, offset,
2117 (offset + sizeof(xfs_agino_t) - 1));
2118 xfs_inobp_check(mp, last_ibp);
2120 return 0;
2123 static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2125 return (((ip->i_itemp == NULL) ||
2126 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2127 (ip->i_update_core == 0));
2130 STATIC void
2131 xfs_ifree_cluster(
2132 xfs_inode_t *free_ip,
2133 xfs_trans_t *tp,
2134 xfs_ino_t inum)
2136 xfs_mount_t *mp = free_ip->i_mount;
2137 int blks_per_cluster;
2138 int nbufs;
2139 int ninodes;
2140 int i, j, found, pre_flushed;
2141 xfs_daddr_t blkno;
2142 xfs_buf_t *bp;
2143 xfs_ihash_t *ih;
2144 xfs_inode_t *ip, **ip_found;
2145 xfs_inode_log_item_t *iip;
2146 xfs_log_item_t *lip;
2147 SPLDECL(s);
2149 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2150 blks_per_cluster = 1;
2151 ninodes = mp->m_sb.sb_inopblock;
2152 nbufs = XFS_IALLOC_BLOCKS(mp);
2153 } else {
2154 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2155 mp->m_sb.sb_blocksize;
2156 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2157 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2160 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2162 for (j = 0; j < nbufs; j++, inum += ninodes) {
2163 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2164 XFS_INO_TO_AGBNO(mp, inum));
2168 * Look for each inode in memory and attempt to lock it,
2169 * we can be racing with flush and tail pushing here.
2170 * any inode we get the locks on, add to an array of
2171 * inode items to process later.
2173 * The get the buffer lock, we could beat a flush
2174 * or tail pushing thread to the lock here, in which
2175 * case they will go looking for the inode buffer
2176 * and fail, we need some other form of interlock
2177 * here.
2179 found = 0;
2180 for (i = 0; i < ninodes; i++) {
2181 ih = XFS_IHASH(mp, inum + i);
2182 read_lock(&ih->ih_lock);
2183 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2184 if (ip->i_ino == inum + i)
2185 break;
2188 /* Inode not in memory or we found it already,
2189 * nothing to do
2191 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2192 read_unlock(&ih->ih_lock);
2193 continue;
2196 if (xfs_inode_clean(ip)) {
2197 read_unlock(&ih->ih_lock);
2198 continue;
2201 /* If we can get the locks then add it to the
2202 * list, otherwise by the time we get the bp lock
2203 * below it will already be attached to the
2204 * inode buffer.
2207 /* This inode will already be locked - by us, lets
2208 * keep it that way.
2211 if (ip == free_ip) {
2212 if (xfs_iflock_nowait(ip)) {
2213 ip->i_flags |= XFS_ISTALE;
2215 if (xfs_inode_clean(ip)) {
2216 xfs_ifunlock(ip);
2217 } else {
2218 ip_found[found++] = ip;
2221 read_unlock(&ih->ih_lock);
2222 continue;
2225 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2226 if (xfs_iflock_nowait(ip)) {
2227 ip->i_flags |= XFS_ISTALE;
2229 if (xfs_inode_clean(ip)) {
2230 xfs_ifunlock(ip);
2231 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 } else {
2233 ip_found[found++] = ip;
2235 } else {
2236 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2240 read_unlock(&ih->ih_lock);
2243 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2244 mp->m_bsize * blks_per_cluster,
2245 XFS_BUF_LOCK);
2247 pre_flushed = 0;
2248 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2249 while (lip) {
2250 if (lip->li_type == XFS_LI_INODE) {
2251 iip = (xfs_inode_log_item_t *)lip;
2252 ASSERT(iip->ili_logged == 1);
2253 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2254 AIL_LOCK(mp,s);
2255 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2256 AIL_UNLOCK(mp, s);
2257 iip->ili_inode->i_flags |= XFS_ISTALE;
2258 pre_flushed++;
2260 lip = lip->li_bio_list;
2263 for (i = 0; i < found; i++) {
2264 ip = ip_found[i];
2265 iip = ip->i_itemp;
2267 if (!iip) {
2268 ip->i_update_core = 0;
2269 xfs_ifunlock(ip);
2270 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2271 continue;
2274 iip->ili_last_fields = iip->ili_format.ilf_fields;
2275 iip->ili_format.ilf_fields = 0;
2276 iip->ili_logged = 1;
2277 AIL_LOCK(mp,s);
2278 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2279 AIL_UNLOCK(mp, s);
2281 xfs_buf_attach_iodone(bp,
2282 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2283 xfs_istale_done, (xfs_log_item_t *)iip);
2284 if (ip != free_ip) {
2285 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2289 if (found || pre_flushed)
2290 xfs_trans_stale_inode_buf(tp, bp);
2291 xfs_trans_binval(tp, bp);
2294 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2298 * This is called to return an inode to the inode free list.
2299 * The inode should already be truncated to 0 length and have
2300 * no pages associated with it. This routine also assumes that
2301 * the inode is already a part of the transaction.
2303 * The on-disk copy of the inode will have been added to the list
2304 * of unlinked inodes in the AGI. We need to remove the inode from
2305 * that list atomically with respect to freeing it here.
2308 xfs_ifree(
2309 xfs_trans_t *tp,
2310 xfs_inode_t *ip,
2311 xfs_bmap_free_t *flist)
2313 int error;
2314 int delete;
2315 xfs_ino_t first_ino;
2317 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2318 ASSERT(ip->i_transp == tp);
2319 ASSERT(ip->i_d.di_nlink == 0);
2320 ASSERT(ip->i_d.di_nextents == 0);
2321 ASSERT(ip->i_d.di_anextents == 0);
2322 ASSERT((ip->i_d.di_size == 0) ||
2323 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2324 ASSERT(ip->i_d.di_nblocks == 0);
2327 * Pull the on-disk inode from the AGI unlinked list.
2329 error = xfs_iunlink_remove(tp, ip);
2330 if (error != 0) {
2331 return error;
2334 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2335 if (error != 0) {
2336 return error;
2338 ip->i_d.di_mode = 0; /* mark incore inode as free */
2339 ip->i_d.di_flags = 0;
2340 ip->i_d.di_dmevmask = 0;
2341 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2342 ip->i_df.if_ext_max =
2343 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2344 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2345 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2347 * Bump the generation count so no one will be confused
2348 * by reincarnations of this inode.
2350 ip->i_d.di_gen++;
2351 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2353 if (delete) {
2354 xfs_ifree_cluster(ip, tp, first_ino);
2357 return 0;
2361 * Reallocate the space for if_broot based on the number of records
2362 * being added or deleted as indicated in rec_diff. Move the records
2363 * and pointers in if_broot to fit the new size. When shrinking this
2364 * will eliminate holes between the records and pointers created by
2365 * the caller. When growing this will create holes to be filled in
2366 * by the caller.
2368 * The caller must not request to add more records than would fit in
2369 * the on-disk inode root. If the if_broot is currently NULL, then
2370 * if we adding records one will be allocated. The caller must also
2371 * not request that the number of records go below zero, although
2372 * it can go to zero.
2374 * ip -- the inode whose if_broot area is changing
2375 * ext_diff -- the change in the number of records, positive or negative,
2376 * requested for the if_broot array.
2378 void
2379 xfs_iroot_realloc(
2380 xfs_inode_t *ip,
2381 int rec_diff,
2382 int whichfork)
2384 int cur_max;
2385 xfs_ifork_t *ifp;
2386 xfs_bmbt_block_t *new_broot;
2387 int new_max;
2388 size_t new_size;
2389 char *np;
2390 char *op;
2393 * Handle the degenerate case quietly.
2395 if (rec_diff == 0) {
2396 return;
2399 ifp = XFS_IFORK_PTR(ip, whichfork);
2400 if (rec_diff > 0) {
2402 * If there wasn't any memory allocated before, just
2403 * allocate it now and get out.
2405 if (ifp->if_broot_bytes == 0) {
2406 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2407 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2408 KM_SLEEP);
2409 ifp->if_broot_bytes = (int)new_size;
2410 return;
2414 * If there is already an existing if_broot, then we need
2415 * to realloc() it and shift the pointers to their new
2416 * location. The records don't change location because
2417 * they are kept butted up against the btree block header.
2419 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2420 new_max = cur_max + rec_diff;
2421 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2422 ifp->if_broot = (xfs_bmbt_block_t *)
2423 kmem_realloc(ifp->if_broot,
2424 new_size,
2425 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2426 KM_SLEEP);
2427 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2428 ifp->if_broot_bytes);
2429 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2430 (int)new_size);
2431 ifp->if_broot_bytes = (int)new_size;
2432 ASSERT(ifp->if_broot_bytes <=
2433 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2434 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2435 return;
2439 * rec_diff is less than 0. In this case, we are shrinking the
2440 * if_broot buffer. It must already exist. If we go to zero
2441 * records, just get rid of the root and clear the status bit.
2443 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2444 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2445 new_max = cur_max + rec_diff;
2446 ASSERT(new_max >= 0);
2447 if (new_max > 0)
2448 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2449 else
2450 new_size = 0;
2451 if (new_size > 0) {
2452 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2454 * First copy over the btree block header.
2456 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2457 } else {
2458 new_broot = NULL;
2459 ifp->if_flags &= ~XFS_IFBROOT;
2463 * Only copy the records and pointers if there are any.
2465 if (new_max > 0) {
2467 * First copy the records.
2469 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2470 ifp->if_broot_bytes);
2471 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2472 (int)new_size);
2473 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2476 * Then copy the pointers.
2478 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2479 ifp->if_broot_bytes);
2480 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2481 (int)new_size);
2482 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2484 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2485 ifp->if_broot = new_broot;
2486 ifp->if_broot_bytes = (int)new_size;
2487 ASSERT(ifp->if_broot_bytes <=
2488 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2489 return;
2494 * This is called when the amount of space needed for if_data
2495 * is increased or decreased. The change in size is indicated by
2496 * the number of bytes that need to be added or deleted in the
2497 * byte_diff parameter.
2499 * If the amount of space needed has decreased below the size of the
2500 * inline buffer, then switch to using the inline buffer. Otherwise,
2501 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2502 * to what is needed.
2504 * ip -- the inode whose if_data area is changing
2505 * byte_diff -- the change in the number of bytes, positive or negative,
2506 * requested for the if_data array.
2508 void
2509 xfs_idata_realloc(
2510 xfs_inode_t *ip,
2511 int byte_diff,
2512 int whichfork)
2514 xfs_ifork_t *ifp;
2515 int new_size;
2516 int real_size;
2518 if (byte_diff == 0) {
2519 return;
2522 ifp = XFS_IFORK_PTR(ip, whichfork);
2523 new_size = (int)ifp->if_bytes + byte_diff;
2524 ASSERT(new_size >= 0);
2526 if (new_size == 0) {
2527 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2528 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2530 ifp->if_u1.if_data = NULL;
2531 real_size = 0;
2532 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2534 * If the valid extents/data can fit in if_inline_ext/data,
2535 * copy them from the malloc'd vector and free it.
2537 if (ifp->if_u1.if_data == NULL) {
2538 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2539 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2540 ASSERT(ifp->if_real_bytes != 0);
2541 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2542 new_size);
2543 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2544 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2546 real_size = 0;
2547 } else {
2549 * Stuck with malloc/realloc.
2550 * For inline data, the underlying buffer must be
2551 * a multiple of 4 bytes in size so that it can be
2552 * logged and stay on word boundaries. We enforce
2553 * that here.
2555 real_size = roundup(new_size, 4);
2556 if (ifp->if_u1.if_data == NULL) {
2557 ASSERT(ifp->if_real_bytes == 0);
2558 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2559 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2561 * Only do the realloc if the underlying size
2562 * is really changing.
2564 if (ifp->if_real_bytes != real_size) {
2565 ifp->if_u1.if_data =
2566 kmem_realloc(ifp->if_u1.if_data,
2567 real_size,
2568 ifp->if_real_bytes,
2569 KM_SLEEP);
2571 } else {
2572 ASSERT(ifp->if_real_bytes == 0);
2573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2574 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2575 ifp->if_bytes);
2578 ifp->if_real_bytes = real_size;
2579 ifp->if_bytes = new_size;
2580 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2587 * Map inode to disk block and offset.
2589 * mp -- the mount point structure for the current file system
2590 * tp -- the current transaction
2591 * ino -- the inode number of the inode to be located
2592 * imap -- this structure is filled in with the information necessary
2593 * to retrieve the given inode from disk
2594 * flags -- flags to pass to xfs_dilocate indicating whether or not
2595 * lookups in the inode btree were OK or not
2598 xfs_imap(
2599 xfs_mount_t *mp,
2600 xfs_trans_t *tp,
2601 xfs_ino_t ino,
2602 xfs_imap_t *imap,
2603 uint flags)
2605 xfs_fsblock_t fsbno;
2606 int len;
2607 int off;
2608 int error;
2610 fsbno = imap->im_blkno ?
2611 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2612 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2613 if (error != 0) {
2614 return error;
2616 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2617 imap->im_len = XFS_FSB_TO_BB(mp, len);
2618 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2619 imap->im_ioffset = (ushort)off;
2620 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2621 return 0;
2624 void
2625 xfs_idestroy_fork(
2626 xfs_inode_t *ip,
2627 int whichfork)
2629 xfs_ifork_t *ifp;
2631 ifp = XFS_IFORK_PTR(ip, whichfork);
2632 if (ifp->if_broot != NULL) {
2633 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2634 ifp->if_broot = NULL;
2638 * If the format is local, then we can't have an extents
2639 * array so just look for an inline data array. If we're
2640 * not local then we may or may not have an extents list,
2641 * so check and free it up if we do.
2643 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2644 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2645 (ifp->if_u1.if_data != NULL)) {
2646 ASSERT(ifp->if_real_bytes != 0);
2647 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2648 ifp->if_u1.if_data = NULL;
2649 ifp->if_real_bytes = 0;
2651 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2652 ((ifp->if_flags & XFS_IFEXTIREC) ||
2653 ((ifp->if_u1.if_extents != NULL) &&
2654 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2655 ASSERT(ifp->if_real_bytes != 0);
2656 xfs_iext_destroy(ifp);
2658 ASSERT(ifp->if_u1.if_extents == NULL ||
2659 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2660 ASSERT(ifp->if_real_bytes == 0);
2661 if (whichfork == XFS_ATTR_FORK) {
2662 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2663 ip->i_afp = NULL;
2668 * This is called free all the memory associated with an inode.
2669 * It must free the inode itself and any buffers allocated for
2670 * if_extents/if_data and if_broot. It must also free the lock
2671 * associated with the inode.
2673 void
2674 xfs_idestroy(
2675 xfs_inode_t *ip)
2678 switch (ip->i_d.di_mode & S_IFMT) {
2679 case S_IFREG:
2680 case S_IFDIR:
2681 case S_IFLNK:
2682 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2683 break;
2685 if (ip->i_afp)
2686 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2687 mrfree(&ip->i_lock);
2688 mrfree(&ip->i_iolock);
2689 freesema(&ip->i_flock);
2690 #ifdef XFS_BMAP_TRACE
2691 ktrace_free(ip->i_xtrace);
2692 #endif
2693 #ifdef XFS_BMBT_TRACE
2694 ktrace_free(ip->i_btrace);
2695 #endif
2696 #ifdef XFS_RW_TRACE
2697 ktrace_free(ip->i_rwtrace);
2698 #endif
2699 #ifdef XFS_ILOCK_TRACE
2700 ktrace_free(ip->i_lock_trace);
2701 #endif
2702 #ifdef XFS_DIR2_TRACE
2703 ktrace_free(ip->i_dir_trace);
2704 #endif
2705 if (ip->i_itemp) {
2706 /* XXXdpd should be able to assert this but shutdown
2707 * is leaving the AIL behind. */
2708 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2709 XFS_FORCED_SHUTDOWN(ip->i_mount));
2710 xfs_inode_item_destroy(ip);
2712 kmem_zone_free(xfs_inode_zone, ip);
2717 * Increment the pin count of the given buffer.
2718 * This value is protected by ipinlock spinlock in the mount structure.
2720 void
2721 xfs_ipin(
2722 xfs_inode_t *ip)
2724 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2726 atomic_inc(&ip->i_pincount);
2730 * Decrement the pin count of the given inode, and wake up
2731 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2732 * inode must have been previously pinned with a call to xfs_ipin().
2734 void
2735 xfs_iunpin(
2736 xfs_inode_t *ip)
2738 ASSERT(atomic_read(&ip->i_pincount) > 0);
2740 if (atomic_dec_and_test(&ip->i_pincount)) {
2742 * If the inode is currently being reclaimed, the
2743 * linux inode _and_ the xfs vnode may have been
2744 * freed so we cannot reference either of them safely.
2745 * Hence we should not try to do anything to them
2746 * if the xfs inode is currently in the reclaim
2747 * path.
2749 * However, we still need to issue the unpin wakeup
2750 * call as the inode reclaim may be blocked waiting for
2751 * the inode to become unpinned.
2753 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
2754 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2756 /* make sync come back and flush this inode */
2757 if (vp) {
2758 struct inode *inode = vn_to_inode(vp);
2760 if (!(inode->i_state &
2761 (I_NEW|I_FREEING|I_CLEAR)))
2762 mark_inode_dirty_sync(inode);
2765 wake_up(&ip->i_ipin_wait);
2770 * This is called to wait for the given inode to be unpinned.
2771 * It will sleep until this happens. The caller must have the
2772 * inode locked in at least shared mode so that the buffer cannot
2773 * be subsequently pinned once someone is waiting for it to be
2774 * unpinned.
2776 STATIC void
2777 xfs_iunpin_wait(
2778 xfs_inode_t *ip)
2780 xfs_inode_log_item_t *iip;
2781 xfs_lsn_t lsn;
2783 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2785 if (atomic_read(&ip->i_pincount) == 0) {
2786 return;
2789 iip = ip->i_itemp;
2790 if (iip && iip->ili_last_lsn) {
2791 lsn = iip->ili_last_lsn;
2792 } else {
2793 lsn = (xfs_lsn_t)0;
2797 * Give the log a push so we don't wait here too long.
2799 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2801 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2806 * xfs_iextents_copy()
2808 * This is called to copy the REAL extents (as opposed to the delayed
2809 * allocation extents) from the inode into the given buffer. It
2810 * returns the number of bytes copied into the buffer.
2812 * If there are no delayed allocation extents, then we can just
2813 * memcpy() the extents into the buffer. Otherwise, we need to
2814 * examine each extent in turn and skip those which are delayed.
2817 xfs_iextents_copy(
2818 xfs_inode_t *ip,
2819 xfs_bmbt_rec_t *buffer,
2820 int whichfork)
2822 int copied;
2823 xfs_bmbt_rec_t *dest_ep;
2824 xfs_bmbt_rec_t *ep;
2825 #ifdef XFS_BMAP_TRACE
2826 static char fname[] = "xfs_iextents_copy";
2827 #endif
2828 int i;
2829 xfs_ifork_t *ifp;
2830 int nrecs;
2831 xfs_fsblock_t start_block;
2833 ifp = XFS_IFORK_PTR(ip, whichfork);
2834 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2835 ASSERT(ifp->if_bytes > 0);
2837 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2838 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2839 ASSERT(nrecs > 0);
2842 * There are some delayed allocation extents in the
2843 * inode, so copy the extents one at a time and skip
2844 * the delayed ones. There must be at least one
2845 * non-delayed extent.
2847 dest_ep = buffer;
2848 copied = 0;
2849 for (i = 0; i < nrecs; i++) {
2850 ep = xfs_iext_get_ext(ifp, i);
2851 start_block = xfs_bmbt_get_startblock(ep);
2852 if (ISNULLSTARTBLOCK(start_block)) {
2854 * It's a delayed allocation extent, so skip it.
2856 continue;
2859 /* Translate to on disk format */
2860 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2861 (__uint64_t*)&dest_ep->l0);
2862 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2863 (__uint64_t*)&dest_ep->l1);
2864 dest_ep++;
2865 copied++;
2867 ASSERT(copied != 0);
2868 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
2870 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2874 * Each of the following cases stores data into the same region
2875 * of the on-disk inode, so only one of them can be valid at
2876 * any given time. While it is possible to have conflicting formats
2877 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2878 * in EXTENTS format, this can only happen when the fork has
2879 * changed formats after being modified but before being flushed.
2880 * In these cases, the format always takes precedence, because the
2881 * format indicates the current state of the fork.
2883 /*ARGSUSED*/
2884 STATIC int
2885 xfs_iflush_fork(
2886 xfs_inode_t *ip,
2887 xfs_dinode_t *dip,
2888 xfs_inode_log_item_t *iip,
2889 int whichfork,
2890 xfs_buf_t *bp)
2892 char *cp;
2893 xfs_ifork_t *ifp;
2894 xfs_mount_t *mp;
2895 #ifdef XFS_TRANS_DEBUG
2896 int first;
2897 #endif
2898 static const short brootflag[2] =
2899 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2900 static const short dataflag[2] =
2901 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2902 static const short extflag[2] =
2903 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2905 if (iip == NULL)
2906 return 0;
2907 ifp = XFS_IFORK_PTR(ip, whichfork);
2909 * This can happen if we gave up in iformat in an error path,
2910 * for the attribute fork.
2912 if (ifp == NULL) {
2913 ASSERT(whichfork == XFS_ATTR_FORK);
2914 return 0;
2916 cp = XFS_DFORK_PTR(dip, whichfork);
2917 mp = ip->i_mount;
2918 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2919 case XFS_DINODE_FMT_LOCAL:
2920 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2921 (ifp->if_bytes > 0)) {
2922 ASSERT(ifp->if_u1.if_data != NULL);
2923 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2924 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2926 if (whichfork == XFS_DATA_FORK) {
2927 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2928 XFS_ERROR_REPORT("xfs_iflush_fork",
2929 XFS_ERRLEVEL_LOW, mp);
2930 return XFS_ERROR(EFSCORRUPTED);
2933 break;
2935 case XFS_DINODE_FMT_EXTENTS:
2936 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2937 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2938 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2939 (ifp->if_bytes == 0));
2940 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2941 (ifp->if_bytes > 0));
2942 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2943 (ifp->if_bytes > 0)) {
2944 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2945 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2946 whichfork);
2948 break;
2950 case XFS_DINODE_FMT_BTREE:
2951 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2952 (ifp->if_broot_bytes > 0)) {
2953 ASSERT(ifp->if_broot != NULL);
2954 ASSERT(ifp->if_broot_bytes <=
2955 (XFS_IFORK_SIZE(ip, whichfork) +
2956 XFS_BROOT_SIZE_ADJ));
2957 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2958 (xfs_bmdr_block_t *)cp,
2959 XFS_DFORK_SIZE(dip, mp, whichfork));
2961 break;
2963 case XFS_DINODE_FMT_DEV:
2964 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2965 ASSERT(whichfork == XFS_DATA_FORK);
2966 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2968 break;
2970 case XFS_DINODE_FMT_UUID:
2971 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2972 ASSERT(whichfork == XFS_DATA_FORK);
2973 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2974 sizeof(uuid_t));
2976 break;
2978 default:
2979 ASSERT(0);
2980 break;
2983 return 0;
2987 * xfs_iflush() will write a modified inode's changes out to the
2988 * inode's on disk home. The caller must have the inode lock held
2989 * in at least shared mode and the inode flush semaphore must be
2990 * held as well. The inode lock will still be held upon return from
2991 * the call and the caller is free to unlock it.
2992 * The inode flush lock will be unlocked when the inode reaches the disk.
2993 * The flags indicate how the inode's buffer should be written out.
2996 xfs_iflush(
2997 xfs_inode_t *ip,
2998 uint flags)
3000 xfs_inode_log_item_t *iip;
3001 xfs_buf_t *bp;
3002 xfs_dinode_t *dip;
3003 xfs_mount_t *mp;
3004 int error;
3005 /* REFERENCED */
3006 xfs_chash_t *ch;
3007 xfs_inode_t *iq;
3008 int clcount; /* count of inodes clustered */
3009 int bufwasdelwri;
3010 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3011 SPLDECL(s);
3013 XFS_STATS_INC(xs_iflush_count);
3015 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3016 ASSERT(valusema(&ip->i_flock) <= 0);
3017 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3018 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3020 iip = ip->i_itemp;
3021 mp = ip->i_mount;
3024 * If the inode isn't dirty, then just release the inode
3025 * flush lock and do nothing.
3027 if ((ip->i_update_core == 0) &&
3028 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3029 ASSERT((iip != NULL) ?
3030 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3031 xfs_ifunlock(ip);
3032 return 0;
3036 * We can't flush the inode until it is unpinned, so
3037 * wait for it. We know noone new can pin it, because
3038 * we are holding the inode lock shared and you need
3039 * to hold it exclusively to pin the inode.
3041 xfs_iunpin_wait(ip);
3044 * This may have been unpinned because the filesystem is shutting
3045 * down forcibly. If that's the case we must not write this inode
3046 * to disk, because the log record didn't make it to disk!
3048 if (XFS_FORCED_SHUTDOWN(mp)) {
3049 ip->i_update_core = 0;
3050 if (iip)
3051 iip->ili_format.ilf_fields = 0;
3052 xfs_ifunlock(ip);
3053 return XFS_ERROR(EIO);
3057 * Get the buffer containing the on-disk inode.
3059 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3060 if (error) {
3061 xfs_ifunlock(ip);
3062 return error;
3066 * Decide how buffer will be flushed out. This is done before
3067 * the call to xfs_iflush_int because this field is zeroed by it.
3069 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3071 * Flush out the inode buffer according to the directions
3072 * of the caller. In the cases where the caller has given
3073 * us a choice choose the non-delwri case. This is because
3074 * the inode is in the AIL and we need to get it out soon.
3076 switch (flags) {
3077 case XFS_IFLUSH_SYNC:
3078 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3079 flags = 0;
3080 break;
3081 case XFS_IFLUSH_ASYNC:
3082 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3083 flags = INT_ASYNC;
3084 break;
3085 case XFS_IFLUSH_DELWRI:
3086 flags = INT_DELWRI;
3087 break;
3088 default:
3089 ASSERT(0);
3090 flags = 0;
3091 break;
3093 } else {
3094 switch (flags) {
3095 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3096 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3097 case XFS_IFLUSH_DELWRI:
3098 flags = INT_DELWRI;
3099 break;
3100 case XFS_IFLUSH_ASYNC:
3101 flags = INT_ASYNC;
3102 break;
3103 case XFS_IFLUSH_SYNC:
3104 flags = 0;
3105 break;
3106 default:
3107 ASSERT(0);
3108 flags = 0;
3109 break;
3114 * First flush out the inode that xfs_iflush was called with.
3116 error = xfs_iflush_int(ip, bp);
3117 if (error) {
3118 goto corrupt_out;
3122 * inode clustering:
3123 * see if other inodes can be gathered into this write
3126 ip->i_chash->chl_buf = bp;
3128 ch = XFS_CHASH(mp, ip->i_blkno);
3129 s = mutex_spinlock(&ch->ch_lock);
3131 clcount = 0;
3132 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3134 * Do an un-protected check to see if the inode is dirty and
3135 * is a candidate for flushing. These checks will be repeated
3136 * later after the appropriate locks are acquired.
3138 iip = iq->i_itemp;
3139 if ((iq->i_update_core == 0) &&
3140 ((iip == NULL) ||
3141 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3142 xfs_ipincount(iq) == 0) {
3143 continue;
3147 * Try to get locks. If any are unavailable,
3148 * then this inode cannot be flushed and is skipped.
3151 /* get inode locks (just i_lock) */
3152 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3153 /* get inode flush lock */
3154 if (xfs_iflock_nowait(iq)) {
3155 /* check if pinned */
3156 if (xfs_ipincount(iq) == 0) {
3157 /* arriving here means that
3158 * this inode can be flushed.
3159 * first re-check that it's
3160 * dirty
3162 iip = iq->i_itemp;
3163 if ((iq->i_update_core != 0)||
3164 ((iip != NULL) &&
3165 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3166 clcount++;
3167 error = xfs_iflush_int(iq, bp);
3168 if (error) {
3169 xfs_iunlock(iq,
3170 XFS_ILOCK_SHARED);
3171 goto cluster_corrupt_out;
3173 } else {
3174 xfs_ifunlock(iq);
3176 } else {
3177 xfs_ifunlock(iq);
3180 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3183 mutex_spinunlock(&ch->ch_lock, s);
3185 if (clcount) {
3186 XFS_STATS_INC(xs_icluster_flushcnt);
3187 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3191 * If the buffer is pinned then push on the log so we won't
3192 * get stuck waiting in the write for too long.
3194 if (XFS_BUF_ISPINNED(bp)){
3195 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3198 if (flags & INT_DELWRI) {
3199 xfs_bdwrite(mp, bp);
3200 } else if (flags & INT_ASYNC) {
3201 xfs_bawrite(mp, bp);
3202 } else {
3203 error = xfs_bwrite(mp, bp);
3205 return error;
3207 corrupt_out:
3208 xfs_buf_relse(bp);
3209 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3210 xfs_iflush_abort(ip);
3212 * Unlocks the flush lock
3214 return XFS_ERROR(EFSCORRUPTED);
3216 cluster_corrupt_out:
3217 /* Corruption detected in the clustering loop. Invalidate the
3218 * inode buffer and shut down the filesystem.
3220 mutex_spinunlock(&ch->ch_lock, s);
3223 * Clean up the buffer. If it was B_DELWRI, just release it --
3224 * brelse can handle it with no problems. If not, shut down the
3225 * filesystem before releasing the buffer.
3227 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3228 xfs_buf_relse(bp);
3231 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3233 if(!bufwasdelwri) {
3235 * Just like incore_relse: if we have b_iodone functions,
3236 * mark the buffer as an error and call them. Otherwise
3237 * mark it as stale and brelse.
3239 if (XFS_BUF_IODONE_FUNC(bp)) {
3240 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3241 XFS_BUF_UNDONE(bp);
3242 XFS_BUF_STALE(bp);
3243 XFS_BUF_SHUT(bp);
3244 XFS_BUF_ERROR(bp,EIO);
3245 xfs_biodone(bp);
3246 } else {
3247 XFS_BUF_STALE(bp);
3248 xfs_buf_relse(bp);
3252 xfs_iflush_abort(iq);
3254 * Unlocks the flush lock
3256 return XFS_ERROR(EFSCORRUPTED);
3260 STATIC int
3261 xfs_iflush_int(
3262 xfs_inode_t *ip,
3263 xfs_buf_t *bp)
3265 xfs_inode_log_item_t *iip;
3266 xfs_dinode_t *dip;
3267 xfs_mount_t *mp;
3268 #ifdef XFS_TRANS_DEBUG
3269 int first;
3270 #endif
3271 SPLDECL(s);
3273 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3274 ASSERT(valusema(&ip->i_flock) <= 0);
3275 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3276 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3278 iip = ip->i_itemp;
3279 mp = ip->i_mount;
3283 * If the inode isn't dirty, then just release the inode
3284 * flush lock and do nothing.
3286 if ((ip->i_update_core == 0) &&
3287 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3288 xfs_ifunlock(ip);
3289 return 0;
3292 /* set *dip = inode's place in the buffer */
3293 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3296 * Clear i_update_core before copying out the data.
3297 * This is for coordination with our timestamp updates
3298 * that don't hold the inode lock. They will always
3299 * update the timestamps BEFORE setting i_update_core,
3300 * so if we clear i_update_core after they set it we
3301 * are guaranteed to see their updates to the timestamps.
3302 * I believe that this depends on strongly ordered memory
3303 * semantics, but we have that. We use the SYNCHRONIZE
3304 * macro to make sure that the compiler does not reorder
3305 * the i_update_core access below the data copy below.
3307 ip->i_update_core = 0;
3308 SYNCHRONIZE();
3311 * Make sure to get the latest atime from the Linux inode.
3313 xfs_synchronize_atime(ip);
3315 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3316 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3317 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3318 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3319 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3320 goto corrupt_out;
3322 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3323 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3324 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3325 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3326 ip->i_ino, ip, ip->i_d.di_magic);
3327 goto corrupt_out;
3329 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3330 if (XFS_TEST_ERROR(
3331 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3332 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3333 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3334 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3335 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3336 ip->i_ino, ip);
3337 goto corrupt_out;
3339 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3340 if (XFS_TEST_ERROR(
3341 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3342 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3343 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3344 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3345 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3346 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3347 ip->i_ino, ip);
3348 goto corrupt_out;
3351 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3352 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3353 XFS_RANDOM_IFLUSH_5)) {
3354 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3355 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3356 ip->i_ino,
3357 ip->i_d.di_nextents + ip->i_d.di_anextents,
3358 ip->i_d.di_nblocks,
3359 ip);
3360 goto corrupt_out;
3362 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3363 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3364 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3365 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3366 ip->i_ino, ip->i_d.di_forkoff, ip);
3367 goto corrupt_out;
3370 * bump the flush iteration count, used to detect flushes which
3371 * postdate a log record during recovery.
3374 ip->i_d.di_flushiter++;
3377 * Copy the dirty parts of the inode into the on-disk
3378 * inode. We always copy out the core of the inode,
3379 * because if the inode is dirty at all the core must
3380 * be.
3382 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3384 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3385 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3386 ip->i_d.di_flushiter = 0;
3389 * If this is really an old format inode and the superblock version
3390 * has not been updated to support only new format inodes, then
3391 * convert back to the old inode format. If the superblock version
3392 * has been updated, then make the conversion permanent.
3394 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3395 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3396 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3397 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3399 * Convert it back.
3401 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3402 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3403 } else {
3405 * The superblock version has already been bumped,
3406 * so just make the conversion to the new inode
3407 * format permanent.
3409 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3410 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3411 ip->i_d.di_onlink = 0;
3412 dip->di_core.di_onlink = 0;
3413 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3414 memset(&(dip->di_core.di_pad[0]), 0,
3415 sizeof(dip->di_core.di_pad));
3416 ASSERT(ip->i_d.di_projid == 0);
3420 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3421 goto corrupt_out;
3424 if (XFS_IFORK_Q(ip)) {
3426 * The only error from xfs_iflush_fork is on the data fork.
3428 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3430 xfs_inobp_check(mp, bp);
3433 * We've recorded everything logged in the inode, so we'd
3434 * like to clear the ilf_fields bits so we don't log and
3435 * flush things unnecessarily. However, we can't stop
3436 * logging all this information until the data we've copied
3437 * into the disk buffer is written to disk. If we did we might
3438 * overwrite the copy of the inode in the log with all the
3439 * data after re-logging only part of it, and in the face of
3440 * a crash we wouldn't have all the data we need to recover.
3442 * What we do is move the bits to the ili_last_fields field.
3443 * When logging the inode, these bits are moved back to the
3444 * ilf_fields field. In the xfs_iflush_done() routine we
3445 * clear ili_last_fields, since we know that the information
3446 * those bits represent is permanently on disk. As long as
3447 * the flush completes before the inode is logged again, then
3448 * both ilf_fields and ili_last_fields will be cleared.
3450 * We can play with the ilf_fields bits here, because the inode
3451 * lock must be held exclusively in order to set bits there
3452 * and the flush lock protects the ili_last_fields bits.
3453 * Set ili_logged so the flush done
3454 * routine can tell whether or not to look in the AIL.
3455 * Also, store the current LSN of the inode so that we can tell
3456 * whether the item has moved in the AIL from xfs_iflush_done().
3457 * In order to read the lsn we need the AIL lock, because
3458 * it is a 64 bit value that cannot be read atomically.
3460 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3461 iip->ili_last_fields = iip->ili_format.ilf_fields;
3462 iip->ili_format.ilf_fields = 0;
3463 iip->ili_logged = 1;
3465 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3466 AIL_LOCK(mp,s);
3467 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3468 AIL_UNLOCK(mp, s);
3471 * Attach the function xfs_iflush_done to the inode's
3472 * buffer. This will remove the inode from the AIL
3473 * and unlock the inode's flush lock when the inode is
3474 * completely written to disk.
3476 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3477 xfs_iflush_done, (xfs_log_item_t *)iip);
3479 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3480 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3481 } else {
3483 * We're flushing an inode which is not in the AIL and has
3484 * not been logged but has i_update_core set. For this
3485 * case we can use a B_DELWRI flush and immediately drop
3486 * the inode flush lock because we can avoid the whole
3487 * AIL state thing. It's OK to drop the flush lock now,
3488 * because we've already locked the buffer and to do anything
3489 * you really need both.
3491 if (iip != NULL) {
3492 ASSERT(iip->ili_logged == 0);
3493 ASSERT(iip->ili_last_fields == 0);
3494 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3496 xfs_ifunlock(ip);
3499 return 0;
3501 corrupt_out:
3502 return XFS_ERROR(EFSCORRUPTED);
3507 * Flush all inactive inodes in mp.
3509 void
3510 xfs_iflush_all(
3511 xfs_mount_t *mp)
3513 xfs_inode_t *ip;
3514 bhv_vnode_t *vp;
3516 again:
3517 XFS_MOUNT_ILOCK(mp);
3518 ip = mp->m_inodes;
3519 if (ip == NULL)
3520 goto out;
3522 do {
3523 /* Make sure we skip markers inserted by sync */
3524 if (ip->i_mount == NULL) {
3525 ip = ip->i_mnext;
3526 continue;
3529 vp = XFS_ITOV_NULL(ip);
3530 if (!vp) {
3531 XFS_MOUNT_IUNLOCK(mp);
3532 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3533 goto again;
3536 ASSERT(vn_count(vp) == 0);
3538 ip = ip->i_mnext;
3539 } while (ip != mp->m_inodes);
3540 out:
3541 XFS_MOUNT_IUNLOCK(mp);
3545 * xfs_iaccess: check accessibility of inode for mode.
3548 xfs_iaccess(
3549 xfs_inode_t *ip,
3550 mode_t mode,
3551 cred_t *cr)
3553 int error;
3554 mode_t orgmode = mode;
3555 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3557 if (mode & S_IWUSR) {
3558 umode_t imode = inode->i_mode;
3560 if (IS_RDONLY(inode) &&
3561 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3562 return XFS_ERROR(EROFS);
3564 if (IS_IMMUTABLE(inode))
3565 return XFS_ERROR(EACCES);
3569 * If there's an Access Control List it's used instead of
3570 * the mode bits.
3572 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3573 return error ? XFS_ERROR(error) : 0;
3575 if (current_fsuid(cr) != ip->i_d.di_uid) {
3576 mode >>= 3;
3577 if (!in_group_p((gid_t)ip->i_d.di_gid))
3578 mode >>= 3;
3582 * If the DACs are ok we don't need any capability check.
3584 if ((ip->i_d.di_mode & mode) == mode)
3585 return 0;
3587 * Read/write DACs are always overridable.
3588 * Executable DACs are overridable if at least one exec bit is set.
3590 if (!(orgmode & S_IXUSR) ||
3591 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3592 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3593 return 0;
3595 if ((orgmode == S_IRUSR) ||
3596 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3597 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3598 return 0;
3599 #ifdef NOISE
3600 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3601 #endif /* NOISE */
3602 return XFS_ERROR(EACCES);
3604 return XFS_ERROR(EACCES);
3608 * xfs_iroundup: round up argument to next power of two
3610 uint
3611 xfs_iroundup(
3612 uint v)
3614 int i;
3615 uint m;
3617 if ((v & (v - 1)) == 0)
3618 return v;
3619 ASSERT((v & 0x80000000) == 0);
3620 if ((v & (v + 1)) == 0)
3621 return v + 1;
3622 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3623 if (v & m)
3624 continue;
3625 v |= m;
3626 if ((v & (v + 1)) == 0)
3627 return v + 1;
3629 ASSERT(0);
3630 return( 0 );
3633 #ifdef XFS_ILOCK_TRACE
3634 ktrace_t *xfs_ilock_trace_buf;
3636 void
3637 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3639 ktrace_enter(ip->i_lock_trace,
3640 (void *)ip,
3641 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3642 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3643 (void *)ra, /* caller of ilock */
3644 (void *)(unsigned long)current_cpu(),
3645 (void *)(unsigned long)current_pid(),
3646 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3648 #endif
3651 * Return a pointer to the extent record at file index idx.
3653 xfs_bmbt_rec_t *
3654 xfs_iext_get_ext(
3655 xfs_ifork_t *ifp, /* inode fork pointer */
3656 xfs_extnum_t idx) /* index of target extent */
3658 ASSERT(idx >= 0);
3659 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3660 return ifp->if_u1.if_ext_irec->er_extbuf;
3661 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3662 xfs_ext_irec_t *erp; /* irec pointer */
3663 int erp_idx = 0; /* irec index */
3664 xfs_extnum_t page_idx = idx; /* ext index in target list */
3666 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3667 return &erp->er_extbuf[page_idx];
3668 } else if (ifp->if_bytes) {
3669 return &ifp->if_u1.if_extents[idx];
3670 } else {
3671 return NULL;
3676 * Insert new item(s) into the extent records for incore inode
3677 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3679 void
3680 xfs_iext_insert(
3681 xfs_ifork_t *ifp, /* inode fork pointer */
3682 xfs_extnum_t idx, /* starting index of new items */
3683 xfs_extnum_t count, /* number of inserted items */
3684 xfs_bmbt_irec_t *new) /* items to insert */
3686 xfs_bmbt_rec_t *ep; /* extent record pointer */
3687 xfs_extnum_t i; /* extent record index */
3689 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3690 xfs_iext_add(ifp, idx, count);
3691 for (i = idx; i < idx + count; i++, new++) {
3692 ep = xfs_iext_get_ext(ifp, i);
3693 xfs_bmbt_set_all(ep, new);
3698 * This is called when the amount of space required for incore file
3699 * extents needs to be increased. The ext_diff parameter stores the
3700 * number of new extents being added and the idx parameter contains
3701 * the extent index where the new extents will be added. If the new
3702 * extents are being appended, then we just need to (re)allocate and
3703 * initialize the space. Otherwise, if the new extents are being
3704 * inserted into the middle of the existing entries, a bit more work
3705 * is required to make room for the new extents to be inserted. The
3706 * caller is responsible for filling in the new extent entries upon
3707 * return.
3709 void
3710 xfs_iext_add(
3711 xfs_ifork_t *ifp, /* inode fork pointer */
3712 xfs_extnum_t idx, /* index to begin adding exts */
3713 int ext_diff) /* number of extents to add */
3715 int byte_diff; /* new bytes being added */
3716 int new_size; /* size of extents after adding */
3717 xfs_extnum_t nextents; /* number of extents in file */
3719 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3720 ASSERT((idx >= 0) && (idx <= nextents));
3721 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3722 new_size = ifp->if_bytes + byte_diff;
3724 * If the new number of extents (nextents + ext_diff)
3725 * fits inside the inode, then continue to use the inline
3726 * extent buffer.
3728 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3729 if (idx < nextents) {
3730 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3731 &ifp->if_u2.if_inline_ext[idx],
3732 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3733 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3735 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3736 ifp->if_real_bytes = 0;
3737 ifp->if_lastex = nextents + ext_diff;
3740 * Otherwise use a linear (direct) extent list.
3741 * If the extents are currently inside the inode,
3742 * xfs_iext_realloc_direct will switch us from
3743 * inline to direct extent allocation mode.
3745 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3746 xfs_iext_realloc_direct(ifp, new_size);
3747 if (idx < nextents) {
3748 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3749 &ifp->if_u1.if_extents[idx],
3750 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3751 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3754 /* Indirection array */
3755 else {
3756 xfs_ext_irec_t *erp;
3757 int erp_idx = 0;
3758 int page_idx = idx;
3760 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3761 if (ifp->if_flags & XFS_IFEXTIREC) {
3762 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3763 } else {
3764 xfs_iext_irec_init(ifp);
3765 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3766 erp = ifp->if_u1.if_ext_irec;
3768 /* Extents fit in target extent page */
3769 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3770 if (page_idx < erp->er_extcount) {
3771 memmove(&erp->er_extbuf[page_idx + ext_diff],
3772 &erp->er_extbuf[page_idx],
3773 (erp->er_extcount - page_idx) *
3774 sizeof(xfs_bmbt_rec_t));
3775 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3777 erp->er_extcount += ext_diff;
3778 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3780 /* Insert a new extent page */
3781 else if (erp) {
3782 xfs_iext_add_indirect_multi(ifp,
3783 erp_idx, page_idx, ext_diff);
3786 * If extent(s) are being appended to the last page in
3787 * the indirection array and the new extent(s) don't fit
3788 * in the page, then erp is NULL and erp_idx is set to
3789 * the next index needed in the indirection array.
3791 else {
3792 int count = ext_diff;
3794 while (count) {
3795 erp = xfs_iext_irec_new(ifp, erp_idx);
3796 erp->er_extcount = count;
3797 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3798 if (count) {
3799 erp_idx++;
3804 ifp->if_bytes = new_size;
3808 * This is called when incore extents are being added to the indirection
3809 * array and the new extents do not fit in the target extent list. The
3810 * erp_idx parameter contains the irec index for the target extent list
3811 * in the indirection array, and the idx parameter contains the extent
3812 * index within the list. The number of extents being added is stored
3813 * in the count parameter.
3815 * |-------| |-------|
3816 * | | | | idx - number of extents before idx
3817 * | idx | | count |
3818 * | | | | count - number of extents being inserted at idx
3819 * |-------| |-------|
3820 * | count | | nex2 | nex2 - number of extents after idx + count
3821 * |-------| |-------|
3823 void
3824 xfs_iext_add_indirect_multi(
3825 xfs_ifork_t *ifp, /* inode fork pointer */
3826 int erp_idx, /* target extent irec index */
3827 xfs_extnum_t idx, /* index within target list */
3828 int count) /* new extents being added */
3830 int byte_diff; /* new bytes being added */
3831 xfs_ext_irec_t *erp; /* pointer to irec entry */
3832 xfs_extnum_t ext_diff; /* number of extents to add */
3833 xfs_extnum_t ext_cnt; /* new extents still needed */
3834 xfs_extnum_t nex2; /* extents after idx + count */
3835 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3836 int nlists; /* number of irec's (lists) */
3838 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3839 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3840 nex2 = erp->er_extcount - idx;
3841 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3844 * Save second part of target extent list
3845 * (all extents past */
3846 if (nex2) {
3847 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3848 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3849 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3850 erp->er_extcount -= nex2;
3851 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3852 memset(&erp->er_extbuf[idx], 0, byte_diff);
3856 * Add the new extents to the end of the target
3857 * list, then allocate new irec record(s) and
3858 * extent buffer(s) as needed to store the rest
3859 * of the new extents.
3861 ext_cnt = count;
3862 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3863 if (ext_diff) {
3864 erp->er_extcount += ext_diff;
3865 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3866 ext_cnt -= ext_diff;
3868 while (ext_cnt) {
3869 erp_idx++;
3870 erp = xfs_iext_irec_new(ifp, erp_idx);
3871 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3872 erp->er_extcount = ext_diff;
3873 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3874 ext_cnt -= ext_diff;
3877 /* Add nex2 extents back to indirection array */
3878 if (nex2) {
3879 xfs_extnum_t ext_avail;
3880 int i;
3882 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3883 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3884 i = 0;
3886 * If nex2 extents fit in the current page, append
3887 * nex2_ep after the new extents.
3889 if (nex2 <= ext_avail) {
3890 i = erp->er_extcount;
3893 * Otherwise, check if space is available in the
3894 * next page.
3896 else if ((erp_idx < nlists - 1) &&
3897 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3898 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3899 erp_idx++;
3900 erp++;
3901 /* Create a hole for nex2 extents */
3902 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3903 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3906 * Final choice, create a new extent page for
3907 * nex2 extents.
3909 else {
3910 erp_idx++;
3911 erp = xfs_iext_irec_new(ifp, erp_idx);
3913 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3914 kmem_free(nex2_ep, byte_diff);
3915 erp->er_extcount += nex2;
3916 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3921 * This is called when the amount of space required for incore file
3922 * extents needs to be decreased. The ext_diff parameter stores the
3923 * number of extents to be removed and the idx parameter contains
3924 * the extent index where the extents will be removed from.
3926 * If the amount of space needed has decreased below the linear
3927 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3928 * extent array. Otherwise, use kmem_realloc() to adjust the
3929 * size to what is needed.
3931 void
3932 xfs_iext_remove(
3933 xfs_ifork_t *ifp, /* inode fork pointer */
3934 xfs_extnum_t idx, /* index to begin removing exts */
3935 int ext_diff) /* number of extents to remove */
3937 xfs_extnum_t nextents; /* number of extents in file */
3938 int new_size; /* size of extents after removal */
3940 ASSERT(ext_diff > 0);
3941 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3942 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3944 if (new_size == 0) {
3945 xfs_iext_destroy(ifp);
3946 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3947 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3948 } else if (ifp->if_real_bytes) {
3949 xfs_iext_remove_direct(ifp, idx, ext_diff);
3950 } else {
3951 xfs_iext_remove_inline(ifp, idx, ext_diff);
3953 ifp->if_bytes = new_size;
3957 * This removes ext_diff extents from the inline buffer, beginning
3958 * at extent index idx.
3960 void
3961 xfs_iext_remove_inline(
3962 xfs_ifork_t *ifp, /* inode fork pointer */
3963 xfs_extnum_t idx, /* index to begin removing exts */
3964 int ext_diff) /* number of extents to remove */
3966 int nextents; /* number of extents in file */
3968 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3969 ASSERT(idx < XFS_INLINE_EXTS);
3970 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3971 ASSERT(((nextents - ext_diff) > 0) &&
3972 (nextents - ext_diff) < XFS_INLINE_EXTS);
3974 if (idx + ext_diff < nextents) {
3975 memmove(&ifp->if_u2.if_inline_ext[idx],
3976 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3977 (nextents - (idx + ext_diff)) *
3978 sizeof(xfs_bmbt_rec_t));
3979 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3980 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3981 } else {
3982 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3983 ext_diff * sizeof(xfs_bmbt_rec_t));
3988 * This removes ext_diff extents from a linear (direct) extent list,
3989 * beginning at extent index idx. If the extents are being removed
3990 * from the end of the list (ie. truncate) then we just need to re-
3991 * allocate the list to remove the extra space. Otherwise, if the
3992 * extents are being removed from the middle of the existing extent
3993 * entries, then we first need to move the extent records beginning
3994 * at idx + ext_diff up in the list to overwrite the records being
3995 * removed, then remove the extra space via kmem_realloc.
3997 void
3998 xfs_iext_remove_direct(
3999 xfs_ifork_t *ifp, /* inode fork pointer */
4000 xfs_extnum_t idx, /* index to begin removing exts */
4001 int ext_diff) /* number of extents to remove */
4003 xfs_extnum_t nextents; /* number of extents in file */
4004 int new_size; /* size of extents after removal */
4006 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4007 new_size = ifp->if_bytes -
4008 (ext_diff * sizeof(xfs_bmbt_rec_t));
4009 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4011 if (new_size == 0) {
4012 xfs_iext_destroy(ifp);
4013 return;
4015 /* Move extents up in the list (if needed) */
4016 if (idx + ext_diff < nextents) {
4017 memmove(&ifp->if_u1.if_extents[idx],
4018 &ifp->if_u1.if_extents[idx + ext_diff],
4019 (nextents - (idx + ext_diff)) *
4020 sizeof(xfs_bmbt_rec_t));
4022 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4023 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4025 * Reallocate the direct extent list. If the extents
4026 * will fit inside the inode then xfs_iext_realloc_direct
4027 * will switch from direct to inline extent allocation
4028 * mode for us.
4030 xfs_iext_realloc_direct(ifp, new_size);
4031 ifp->if_bytes = new_size;
4035 * This is called when incore extents are being removed from the
4036 * indirection array and the extents being removed span multiple extent
4037 * buffers. The idx parameter contains the file extent index where we
4038 * want to begin removing extents, and the count parameter contains
4039 * how many extents need to be removed.
4041 * |-------| |-------|
4042 * | nex1 | | | nex1 - number of extents before idx
4043 * |-------| | count |
4044 * | | | | count - number of extents being removed at idx
4045 * | count | |-------|
4046 * | | | nex2 | nex2 - number of extents after idx + count
4047 * |-------| |-------|
4049 void
4050 xfs_iext_remove_indirect(
4051 xfs_ifork_t *ifp, /* inode fork pointer */
4052 xfs_extnum_t idx, /* index to begin removing extents */
4053 int count) /* number of extents to remove */
4055 xfs_ext_irec_t *erp; /* indirection array pointer */
4056 int erp_idx = 0; /* indirection array index */
4057 xfs_extnum_t ext_cnt; /* extents left to remove */
4058 xfs_extnum_t ext_diff; /* extents to remove in current list */
4059 xfs_extnum_t nex1; /* number of extents before idx */
4060 xfs_extnum_t nex2; /* extents after idx + count */
4061 int nlists; /* entries in indirection array */
4062 int page_idx = idx; /* index in target extent list */
4064 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4065 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4066 ASSERT(erp != NULL);
4067 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4068 nex1 = page_idx;
4069 ext_cnt = count;
4070 while (ext_cnt) {
4071 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4072 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4074 * Check for deletion of entire list;
4075 * xfs_iext_irec_remove() updates extent offsets.
4077 if (ext_diff == erp->er_extcount) {
4078 xfs_iext_irec_remove(ifp, erp_idx);
4079 ext_cnt -= ext_diff;
4080 nex1 = 0;
4081 if (ext_cnt) {
4082 ASSERT(erp_idx < ifp->if_real_bytes /
4083 XFS_IEXT_BUFSZ);
4084 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4085 nex1 = 0;
4086 continue;
4087 } else {
4088 break;
4091 /* Move extents up (if needed) */
4092 if (nex2) {
4093 memmove(&erp->er_extbuf[nex1],
4094 &erp->er_extbuf[nex1 + ext_diff],
4095 nex2 * sizeof(xfs_bmbt_rec_t));
4097 /* Zero out rest of page */
4098 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4099 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4100 /* Update remaining counters */
4101 erp->er_extcount -= ext_diff;
4102 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4103 ext_cnt -= ext_diff;
4104 nex1 = 0;
4105 erp_idx++;
4106 erp++;
4108 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4109 xfs_iext_irec_compact(ifp);
4113 * Create, destroy, or resize a linear (direct) block of extents.
4115 void
4116 xfs_iext_realloc_direct(
4117 xfs_ifork_t *ifp, /* inode fork pointer */
4118 int new_size) /* new size of extents */
4120 int rnew_size; /* real new size of extents */
4122 rnew_size = new_size;
4124 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4125 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4126 (new_size != ifp->if_real_bytes)));
4128 /* Free extent records */
4129 if (new_size == 0) {
4130 xfs_iext_destroy(ifp);
4132 /* Resize direct extent list and zero any new bytes */
4133 else if (ifp->if_real_bytes) {
4134 /* Check if extents will fit inside the inode */
4135 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4136 xfs_iext_direct_to_inline(ifp, new_size /
4137 (uint)sizeof(xfs_bmbt_rec_t));
4138 ifp->if_bytes = new_size;
4139 return;
4141 if ((new_size & (new_size - 1)) != 0) {
4142 rnew_size = xfs_iroundup(new_size);
4144 if (rnew_size != ifp->if_real_bytes) {
4145 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4146 kmem_realloc(ifp->if_u1.if_extents,
4147 rnew_size,
4148 ifp->if_real_bytes,
4149 KM_SLEEP);
4151 if (rnew_size > ifp->if_real_bytes) {
4152 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4153 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4154 rnew_size - ifp->if_real_bytes);
4158 * Switch from the inline extent buffer to a direct
4159 * extent list. Be sure to include the inline extent
4160 * bytes in new_size.
4162 else {
4163 new_size += ifp->if_bytes;
4164 if ((new_size & (new_size - 1)) != 0) {
4165 rnew_size = xfs_iroundup(new_size);
4167 xfs_iext_inline_to_direct(ifp, rnew_size);
4169 ifp->if_real_bytes = rnew_size;
4170 ifp->if_bytes = new_size;
4174 * Switch from linear (direct) extent records to inline buffer.
4176 void
4177 xfs_iext_direct_to_inline(
4178 xfs_ifork_t *ifp, /* inode fork pointer */
4179 xfs_extnum_t nextents) /* number of extents in file */
4181 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4182 ASSERT(nextents <= XFS_INLINE_EXTS);
4184 * The inline buffer was zeroed when we switched
4185 * from inline to direct extent allocation mode,
4186 * so we don't need to clear it here.
4188 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4189 nextents * sizeof(xfs_bmbt_rec_t));
4190 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4191 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4192 ifp->if_real_bytes = 0;
4196 * Switch from inline buffer to linear (direct) extent records.
4197 * new_size should already be rounded up to the next power of 2
4198 * by the caller (when appropriate), so use new_size as it is.
4199 * However, since new_size may be rounded up, we can't update
4200 * if_bytes here. It is the caller's responsibility to update
4201 * if_bytes upon return.
4203 void
4204 xfs_iext_inline_to_direct(
4205 xfs_ifork_t *ifp, /* inode fork pointer */
4206 int new_size) /* number of extents in file */
4208 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4209 kmem_alloc(new_size, KM_SLEEP);
4210 memset(ifp->if_u1.if_extents, 0, new_size);
4211 if (ifp->if_bytes) {
4212 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4213 ifp->if_bytes);
4214 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4215 sizeof(xfs_bmbt_rec_t));
4217 ifp->if_real_bytes = new_size;
4221 * Resize an extent indirection array to new_size bytes.
4223 void
4224 xfs_iext_realloc_indirect(
4225 xfs_ifork_t *ifp, /* inode fork pointer */
4226 int new_size) /* new indirection array size */
4228 int nlists; /* number of irec's (ex lists) */
4229 int size; /* current indirection array size */
4231 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4232 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4233 size = nlists * sizeof(xfs_ext_irec_t);
4234 ASSERT(ifp->if_real_bytes);
4235 ASSERT((new_size >= 0) && (new_size != size));
4236 if (new_size == 0) {
4237 xfs_iext_destroy(ifp);
4238 } else {
4239 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4240 kmem_realloc(ifp->if_u1.if_ext_irec,
4241 new_size, size, KM_SLEEP);
4246 * Switch from indirection array to linear (direct) extent allocations.
4248 void
4249 xfs_iext_indirect_to_direct(
4250 xfs_ifork_t *ifp) /* inode fork pointer */
4252 xfs_bmbt_rec_t *ep; /* extent record pointer */
4253 xfs_extnum_t nextents; /* number of extents in file */
4254 int size; /* size of file extents */
4256 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4257 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4258 ASSERT(nextents <= XFS_LINEAR_EXTS);
4259 size = nextents * sizeof(xfs_bmbt_rec_t);
4261 xfs_iext_irec_compact_full(ifp);
4262 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4264 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4265 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4266 ifp->if_flags &= ~XFS_IFEXTIREC;
4267 ifp->if_u1.if_extents = ep;
4268 ifp->if_bytes = size;
4269 if (nextents < XFS_LINEAR_EXTS) {
4270 xfs_iext_realloc_direct(ifp, size);
4275 * Free incore file extents.
4277 void
4278 xfs_iext_destroy(
4279 xfs_ifork_t *ifp) /* inode fork pointer */
4281 if (ifp->if_flags & XFS_IFEXTIREC) {
4282 int erp_idx;
4283 int nlists;
4285 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4286 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4287 xfs_iext_irec_remove(ifp, erp_idx);
4289 ifp->if_flags &= ~XFS_IFEXTIREC;
4290 } else if (ifp->if_real_bytes) {
4291 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4292 } else if (ifp->if_bytes) {
4293 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4294 sizeof(xfs_bmbt_rec_t));
4296 ifp->if_u1.if_extents = NULL;
4297 ifp->if_real_bytes = 0;
4298 ifp->if_bytes = 0;
4302 * Return a pointer to the extent record for file system block bno.
4304 xfs_bmbt_rec_t * /* pointer to found extent record */
4305 xfs_iext_bno_to_ext(
4306 xfs_ifork_t *ifp, /* inode fork pointer */
4307 xfs_fileoff_t bno, /* block number to search for */
4308 xfs_extnum_t *idxp) /* index of target extent */
4310 xfs_bmbt_rec_t *base; /* pointer to first extent */
4311 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4312 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4313 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4314 int high; /* upper boundary in search */
4315 xfs_extnum_t idx = 0; /* index of target extent */
4316 int low; /* lower boundary in search */
4317 xfs_extnum_t nextents; /* number of file extents */
4318 xfs_fileoff_t startoff = 0; /* start offset of extent */
4320 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4321 if (nextents == 0) {
4322 *idxp = 0;
4323 return NULL;
4325 low = 0;
4326 if (ifp->if_flags & XFS_IFEXTIREC) {
4327 /* Find target extent list */
4328 int erp_idx = 0;
4329 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4330 base = erp->er_extbuf;
4331 high = erp->er_extcount - 1;
4332 } else {
4333 base = ifp->if_u1.if_extents;
4334 high = nextents - 1;
4336 /* Binary search extent records */
4337 while (low <= high) {
4338 idx = (low + high) >> 1;
4339 ep = base + idx;
4340 startoff = xfs_bmbt_get_startoff(ep);
4341 blockcount = xfs_bmbt_get_blockcount(ep);
4342 if (bno < startoff) {
4343 high = idx - 1;
4344 } else if (bno >= startoff + blockcount) {
4345 low = idx + 1;
4346 } else {
4347 /* Convert back to file-based extent index */
4348 if (ifp->if_flags & XFS_IFEXTIREC) {
4349 idx += erp->er_extoff;
4351 *idxp = idx;
4352 return ep;
4355 /* Convert back to file-based extent index */
4356 if (ifp->if_flags & XFS_IFEXTIREC) {
4357 idx += erp->er_extoff;
4359 if (bno >= startoff + blockcount) {
4360 if (++idx == nextents) {
4361 ep = NULL;
4362 } else {
4363 ep = xfs_iext_get_ext(ifp, idx);
4366 *idxp = idx;
4367 return ep;
4371 * Return a pointer to the indirection array entry containing the
4372 * extent record for filesystem block bno. Store the index of the
4373 * target irec in *erp_idxp.
4375 xfs_ext_irec_t * /* pointer to found extent record */
4376 xfs_iext_bno_to_irec(
4377 xfs_ifork_t *ifp, /* inode fork pointer */
4378 xfs_fileoff_t bno, /* block number to search for */
4379 int *erp_idxp) /* irec index of target ext list */
4381 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4382 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4383 int erp_idx; /* indirection array index */
4384 int nlists; /* number of extent irec's (lists) */
4385 int high; /* binary search upper limit */
4386 int low; /* binary search lower limit */
4388 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4389 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4390 erp_idx = 0;
4391 low = 0;
4392 high = nlists - 1;
4393 while (low <= high) {
4394 erp_idx = (low + high) >> 1;
4395 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4396 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4397 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4398 high = erp_idx - 1;
4399 } else if (erp_next && bno >=
4400 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4401 low = erp_idx + 1;
4402 } else {
4403 break;
4406 *erp_idxp = erp_idx;
4407 return erp;
4411 * Return a pointer to the indirection array entry containing the
4412 * extent record at file extent index *idxp. Store the index of the
4413 * target irec in *erp_idxp and store the page index of the target
4414 * extent record in *idxp.
4416 xfs_ext_irec_t *
4417 xfs_iext_idx_to_irec(
4418 xfs_ifork_t *ifp, /* inode fork pointer */
4419 xfs_extnum_t *idxp, /* extent index (file -> page) */
4420 int *erp_idxp, /* pointer to target irec */
4421 int realloc) /* new bytes were just added */
4423 xfs_ext_irec_t *prev; /* pointer to previous irec */
4424 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4425 int erp_idx; /* indirection array index */
4426 int nlists; /* number of irec's (ex lists) */
4427 int high; /* binary search upper limit */
4428 int low; /* binary search lower limit */
4429 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4431 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4432 ASSERT(page_idx >= 0 && page_idx <=
4433 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4434 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4435 erp_idx = 0;
4436 low = 0;
4437 high = nlists - 1;
4439 /* Binary search extent irec's */
4440 while (low <= high) {
4441 erp_idx = (low + high) >> 1;
4442 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4443 prev = erp_idx > 0 ? erp - 1 : NULL;
4444 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4445 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4446 high = erp_idx - 1;
4447 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4448 (page_idx == erp->er_extoff + erp->er_extcount &&
4449 !realloc)) {
4450 low = erp_idx + 1;
4451 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4452 erp->er_extcount == XFS_LINEAR_EXTS) {
4453 ASSERT(realloc);
4454 page_idx = 0;
4455 erp_idx++;
4456 erp = erp_idx < nlists ? erp + 1 : NULL;
4457 break;
4458 } else {
4459 page_idx -= erp->er_extoff;
4460 break;
4463 *idxp = page_idx;
4464 *erp_idxp = erp_idx;
4465 return(erp);
4469 * Allocate and initialize an indirection array once the space needed
4470 * for incore extents increases above XFS_IEXT_BUFSZ.
4472 void
4473 xfs_iext_irec_init(
4474 xfs_ifork_t *ifp) /* inode fork pointer */
4476 xfs_ext_irec_t *erp; /* indirection array pointer */
4477 xfs_extnum_t nextents; /* number of extents in file */
4479 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4480 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4481 ASSERT(nextents <= XFS_LINEAR_EXTS);
4483 erp = (xfs_ext_irec_t *)
4484 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4486 if (nextents == 0) {
4487 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4488 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4489 } else if (!ifp->if_real_bytes) {
4490 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4491 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4492 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4494 erp->er_extbuf = ifp->if_u1.if_extents;
4495 erp->er_extcount = nextents;
4496 erp->er_extoff = 0;
4498 ifp->if_flags |= XFS_IFEXTIREC;
4499 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4500 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4501 ifp->if_u1.if_ext_irec = erp;
4503 return;
4507 * Allocate and initialize a new entry in the indirection array.
4509 xfs_ext_irec_t *
4510 xfs_iext_irec_new(
4511 xfs_ifork_t *ifp, /* inode fork pointer */
4512 int erp_idx) /* index for new irec */
4514 xfs_ext_irec_t *erp; /* indirection array pointer */
4515 int i; /* loop counter */
4516 int nlists; /* number of irec's (ex lists) */
4518 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4519 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4521 /* Resize indirection array */
4522 xfs_iext_realloc_indirect(ifp, ++nlists *
4523 sizeof(xfs_ext_irec_t));
4525 * Move records down in the array so the
4526 * new page can use erp_idx.
4528 erp = ifp->if_u1.if_ext_irec;
4529 for (i = nlists - 1; i > erp_idx; i--) {
4530 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4532 ASSERT(i == erp_idx);
4534 /* Initialize new extent record */
4535 erp = ifp->if_u1.if_ext_irec;
4536 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4537 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4538 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4539 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4540 erp[erp_idx].er_extcount = 0;
4541 erp[erp_idx].er_extoff = erp_idx > 0 ?
4542 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4543 return (&erp[erp_idx]);
4547 * Remove a record from the indirection array.
4549 void
4550 xfs_iext_irec_remove(
4551 xfs_ifork_t *ifp, /* inode fork pointer */
4552 int erp_idx) /* irec index to remove */
4554 xfs_ext_irec_t *erp; /* indirection array pointer */
4555 int i; /* loop counter */
4556 int nlists; /* number of irec's (ex lists) */
4558 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4559 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4560 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4561 if (erp->er_extbuf) {
4562 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4563 -erp->er_extcount);
4564 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4566 /* Compact extent records */
4567 erp = ifp->if_u1.if_ext_irec;
4568 for (i = erp_idx; i < nlists - 1; i++) {
4569 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4572 * Manually free the last extent record from the indirection
4573 * array. A call to xfs_iext_realloc_indirect() with a size
4574 * of zero would result in a call to xfs_iext_destroy() which
4575 * would in turn call this function again, creating a nasty
4576 * infinite loop.
4578 if (--nlists) {
4579 xfs_iext_realloc_indirect(ifp,
4580 nlists * sizeof(xfs_ext_irec_t));
4581 } else {
4582 kmem_free(ifp->if_u1.if_ext_irec,
4583 sizeof(xfs_ext_irec_t));
4585 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4589 * This is called to clean up large amounts of unused memory allocated
4590 * by the indirection array. Before compacting anything though, verify
4591 * that the indirection array is still needed and switch back to the
4592 * linear extent list (or even the inline buffer) if possible. The
4593 * compaction policy is as follows:
4595 * Full Compaction: Extents fit into a single page (or inline buffer)
4596 * Full Compaction: Extents occupy less than 10% of allocated space
4597 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4598 * No Compaction: Extents occupy at least 50% of allocated space
4600 void
4601 xfs_iext_irec_compact(
4602 xfs_ifork_t *ifp) /* inode fork pointer */
4604 xfs_extnum_t nextents; /* number of extents in file */
4605 int nlists; /* number of irec's (ex lists) */
4607 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4608 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4609 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4611 if (nextents == 0) {
4612 xfs_iext_destroy(ifp);
4613 } else if (nextents <= XFS_INLINE_EXTS) {
4614 xfs_iext_indirect_to_direct(ifp);
4615 xfs_iext_direct_to_inline(ifp, nextents);
4616 } else if (nextents <= XFS_LINEAR_EXTS) {
4617 xfs_iext_indirect_to_direct(ifp);
4618 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4619 xfs_iext_irec_compact_full(ifp);
4620 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4621 xfs_iext_irec_compact_pages(ifp);
4626 * Combine extents from neighboring extent pages.
4628 void
4629 xfs_iext_irec_compact_pages(
4630 xfs_ifork_t *ifp) /* inode fork pointer */
4632 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4633 int erp_idx = 0; /* indirection array index */
4634 int nlists; /* number of irec's (ex lists) */
4636 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4637 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4638 while (erp_idx < nlists - 1) {
4639 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4640 erp_next = erp + 1;
4641 if (erp_next->er_extcount <=
4642 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4643 memmove(&erp->er_extbuf[erp->er_extcount],
4644 erp_next->er_extbuf, erp_next->er_extcount *
4645 sizeof(xfs_bmbt_rec_t));
4646 erp->er_extcount += erp_next->er_extcount;
4648 * Free page before removing extent record
4649 * so er_extoffs don't get modified in
4650 * xfs_iext_irec_remove.
4652 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4653 erp_next->er_extbuf = NULL;
4654 xfs_iext_irec_remove(ifp, erp_idx + 1);
4655 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4656 } else {
4657 erp_idx++;
4663 * Fully compact the extent records managed by the indirection array.
4665 void
4666 xfs_iext_irec_compact_full(
4667 xfs_ifork_t *ifp) /* inode fork pointer */
4669 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4670 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4671 int erp_idx = 0; /* extent irec index */
4672 int ext_avail; /* empty entries in ex list */
4673 int ext_diff; /* number of exts to add */
4674 int nlists; /* number of irec's (ex lists) */
4676 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4677 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4678 erp = ifp->if_u1.if_ext_irec;
4679 ep = &erp->er_extbuf[erp->er_extcount];
4680 erp_next = erp + 1;
4681 ep_next = erp_next->er_extbuf;
4682 while (erp_idx < nlists - 1) {
4683 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4684 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4685 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4686 erp->er_extcount += ext_diff;
4687 erp_next->er_extcount -= ext_diff;
4688 /* Remove next page */
4689 if (erp_next->er_extcount == 0) {
4691 * Free page before removing extent record
4692 * so er_extoffs don't get modified in
4693 * xfs_iext_irec_remove.
4695 kmem_free(erp_next->er_extbuf,
4696 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4697 erp_next->er_extbuf = NULL;
4698 xfs_iext_irec_remove(ifp, erp_idx + 1);
4699 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4700 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4701 /* Update next page */
4702 } else {
4703 /* Move rest of page up to become next new page */
4704 memmove(erp_next->er_extbuf, ep_next,
4705 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4706 ep_next = erp_next->er_extbuf;
4707 memset(&ep_next[erp_next->er_extcount], 0,
4708 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4709 sizeof(xfs_bmbt_rec_t));
4711 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4712 erp_idx++;
4713 if (erp_idx < nlists)
4714 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4715 else
4716 break;
4718 ep = &erp->er_extbuf[erp->er_extcount];
4719 erp_next = erp + 1;
4720 ep_next = erp_next->er_extbuf;
4725 * This is called to update the er_extoff field in the indirection
4726 * array when extents have been added or removed from one of the
4727 * extent lists. erp_idx contains the irec index to begin updating
4728 * at and ext_diff contains the number of extents that were added
4729 * or removed.
4731 void
4732 xfs_iext_irec_update_extoffs(
4733 xfs_ifork_t *ifp, /* inode fork pointer */
4734 int erp_idx, /* irec index to update */
4735 int ext_diff) /* number of new extents */
4737 int i; /* loop counter */
4738 int nlists; /* number of irec's (ex lists */
4740 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4741 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4742 for (i = erp_idx; i < nlists; i++) {
4743 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;