4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
35 /*** Page table manipulation functions ***/
37 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
41 pte
= pte_offset_kernel(pmd
, addr
);
43 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
44 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
45 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
48 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
53 pmd
= pmd_offset(pud
, addr
);
55 next
= pmd_addr_end(addr
, end
);
56 if (pmd_none_or_clear_bad(pmd
))
58 vunmap_pte_range(pmd
, addr
, next
);
59 } while (pmd
++, addr
= next
, addr
!= end
);
62 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
67 pud
= pud_offset(pgd
, addr
);
69 next
= pud_addr_end(addr
, end
);
70 if (pud_none_or_clear_bad(pud
))
72 vunmap_pmd_range(pud
, addr
, next
);
73 } while (pud
++, addr
= next
, addr
!= end
);
76 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
82 pgd
= pgd_offset_k(addr
);
84 next
= pgd_addr_end(addr
, end
);
85 if (pgd_none_or_clear_bad(pgd
))
87 vunmap_pud_range(pgd
, addr
, next
);
88 } while (pgd
++, addr
= next
, addr
!= end
);
91 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
92 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
97 * nr is a running index into the array which helps higher level
98 * callers keep track of where we're up to.
101 pte
= pte_alloc_kernel(pmd
, addr
);
105 struct page
*page
= pages
[*nr
];
107 if (WARN_ON(!pte_none(*pte
)))
111 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
113 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
117 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
118 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
123 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
127 next
= pmd_addr_end(addr
, end
);
128 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
130 } while (pmd
++, addr
= next
, addr
!= end
);
134 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
135 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
140 pud
= pud_alloc(&init_mm
, pgd
, addr
);
144 next
= pud_addr_end(addr
, end
);
145 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
147 } while (pud
++, addr
= next
, addr
!= end
);
152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153 * will have pfns corresponding to the "pages" array.
155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
158 pgprot_t prot
, struct page
**pages
)
162 unsigned long addr
= start
;
167 pgd
= pgd_offset_k(addr
);
169 next
= pgd_addr_end(addr
, end
);
170 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
173 } while (pgd
++, addr
= next
, addr
!= end
);
178 static int vmap_page_range(unsigned long start
, unsigned long end
,
179 pgprot_t prot
, struct page
**pages
)
183 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
184 flush_cache_vmap(start
, end
);
188 int is_vmalloc_or_module_addr(const void *x
)
191 * ARM, x86-64 and sparc64 put modules in a special place,
192 * and fall back on vmalloc() if that fails. Others
193 * just put it in the vmalloc space.
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 unsigned long addr
= (unsigned long)x
;
197 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
200 return is_vmalloc_addr(x
);
204 * Walk a vmap address to the struct page it maps.
206 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
208 unsigned long addr
= (unsigned long) vmalloc_addr
;
209 struct page
*page
= NULL
;
210 pgd_t
*pgd
= pgd_offset_k(addr
);
213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 * architectures that do not vmalloc module space
216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
218 if (!pgd_none(*pgd
)) {
219 pud_t
*pud
= pud_offset(pgd
, addr
);
220 if (!pud_none(*pud
)) {
221 pmd_t
*pmd
= pmd_offset(pud
, addr
);
222 if (!pmd_none(*pmd
)) {
225 ptep
= pte_offset_map(pmd
, addr
);
227 if (pte_present(pte
))
228 page
= pte_page(pte
);
235 EXPORT_SYMBOL(vmalloc_to_page
);
238 * Map a vmalloc()-space virtual address to the physical page frame number.
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
242 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
244 EXPORT_SYMBOL(vmalloc_to_pfn
);
247 /*** Global kva allocator ***/
249 #define VM_LAZY_FREE 0x01
250 #define VM_LAZY_FREEING 0x02
251 #define VM_VM_AREA 0x04
254 unsigned long va_start
;
255 unsigned long va_end
;
257 struct rb_node rb_node
; /* address sorted rbtree */
258 struct list_head list
; /* address sorted list */
259 struct list_head purge_list
; /* "lazy purge" list */
261 struct rcu_head rcu_head
;
264 static DEFINE_SPINLOCK(vmap_area_lock
);
265 static struct rb_root vmap_area_root
= RB_ROOT
;
266 static LIST_HEAD(vmap_area_list
);
267 static unsigned long vmap_area_pcpu_hole
;
269 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
271 struct rb_node
*n
= vmap_area_root
.rb_node
;
274 struct vmap_area
*va
;
276 va
= rb_entry(n
, struct vmap_area
, rb_node
);
277 if (addr
< va
->va_start
)
279 else if (addr
> va
->va_start
)
288 static void __insert_vmap_area(struct vmap_area
*va
)
290 struct rb_node
**p
= &vmap_area_root
.rb_node
;
291 struct rb_node
*parent
= NULL
;
295 struct vmap_area
*tmp
;
298 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
299 if (va
->va_start
< tmp
->va_end
)
301 else if (va
->va_end
> tmp
->va_start
)
307 rb_link_node(&va
->rb_node
, parent
, p
);
308 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp
= rb_prev(&va
->rb_node
);
313 struct vmap_area
*prev
;
314 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
315 list_add_rcu(&va
->list
, &prev
->list
);
317 list_add_rcu(&va
->list
, &vmap_area_list
);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
326 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
328 unsigned long vstart
, unsigned long vend
,
329 int node
, gfp_t gfp_mask
)
331 struct vmap_area
*va
;
337 BUG_ON(size
& ~PAGE_MASK
);
339 va
= kmalloc_node(sizeof(struct vmap_area
),
340 gfp_mask
& GFP_RECLAIM_MASK
, node
);
342 return ERR_PTR(-ENOMEM
);
345 addr
= ALIGN(vstart
, align
);
347 spin_lock(&vmap_area_lock
);
348 if (addr
+ size
- 1 < addr
)
351 /* XXX: could have a last_hole cache */
352 n
= vmap_area_root
.rb_node
;
354 struct vmap_area
*first
= NULL
;
357 struct vmap_area
*tmp
;
358 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
359 if (tmp
->va_end
>= addr
) {
360 if (!first
&& tmp
->va_start
< addr
+ size
)
372 if (first
->va_end
< addr
) {
373 n
= rb_next(&first
->rb_node
);
375 first
= rb_entry(n
, struct vmap_area
, rb_node
);
380 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
381 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
382 if (addr
+ size
- 1 < addr
)
385 n
= rb_next(&first
->rb_node
);
387 first
= rb_entry(n
, struct vmap_area
, rb_node
);
393 if (addr
+ size
> vend
) {
395 spin_unlock(&vmap_area_lock
);
397 purge_vmap_area_lazy();
401 if (printk_ratelimit())
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size
);
406 return ERR_PTR(-EBUSY
);
409 BUG_ON(addr
& (align
-1));
412 va
->va_end
= addr
+ size
;
414 __insert_vmap_area(va
);
415 spin_unlock(&vmap_area_lock
);
420 static void rcu_free_va(struct rcu_head
*head
)
422 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
427 static void __free_vmap_area(struct vmap_area
*va
)
429 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
430 rb_erase(&va
->rb_node
, &vmap_area_root
);
431 RB_CLEAR_NODE(&va
->rb_node
);
432 list_del_rcu(&va
->list
);
435 * Track the highest possible candidate for pcpu area
436 * allocation. Areas outside of vmalloc area can be returned
437 * here too, consider only end addresses which fall inside
438 * vmalloc area proper.
440 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
441 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
443 call_rcu(&va
->rcu_head
, rcu_free_va
);
447 * Free a region of KVA allocated by alloc_vmap_area
449 static void free_vmap_area(struct vmap_area
*va
)
451 spin_lock(&vmap_area_lock
);
452 __free_vmap_area(va
);
453 spin_unlock(&vmap_area_lock
);
457 * Clear the pagetable entries of a given vmap_area
459 static void unmap_vmap_area(struct vmap_area
*va
)
461 vunmap_page_range(va
->va_start
, va
->va_end
);
464 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
467 * Unmap page tables and force a TLB flush immediately if
468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 * bugs similarly to those in linear kernel virtual address
470 * space after a page has been freed.
472 * All the lazy freeing logic is still retained, in order to
473 * minimise intrusiveness of this debugging feature.
475 * This is going to be *slow* (linear kernel virtual address
476 * debugging doesn't do a broadcast TLB flush so it is a lot
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 vunmap_page_range(start
, end
);
481 flush_tlb_kernel_range(start
, end
);
486 * lazy_max_pages is the maximum amount of virtual address space we gather up
487 * before attempting to purge with a TLB flush.
489 * There is a tradeoff here: a larger number will cover more kernel page tables
490 * and take slightly longer to purge, but it will linearly reduce the number of
491 * global TLB flushes that must be performed. It would seem natural to scale
492 * this number up linearly with the number of CPUs (because vmapping activity
493 * could also scale linearly with the number of CPUs), however it is likely
494 * that in practice, workloads might be constrained in other ways that mean
495 * vmap activity will not scale linearly with CPUs. Also, I want to be
496 * conservative and not introduce a big latency on huge systems, so go with
497 * a less aggressive log scale. It will still be an improvement over the old
498 * code, and it will be simple to change the scale factor if we find that it
499 * becomes a problem on bigger systems.
501 static unsigned long lazy_max_pages(void)
505 log
= fls(num_online_cpus());
507 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
510 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
512 /* for per-CPU blocks */
513 static void purge_fragmented_blocks_allcpus(void);
516 * Purges all lazily-freed vmap areas.
518 * If sync is 0 then don't purge if there is already a purge in progress.
519 * If force_flush is 1, then flush kernel TLBs between *start and *end even
520 * if we found no lazy vmap areas to unmap (callers can use this to optimise
521 * their own TLB flushing).
522 * Returns with *start = min(*start, lowest purged address)
523 * *end = max(*end, highest purged address)
525 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
526 int sync
, int force_flush
)
528 static DEFINE_SPINLOCK(purge_lock
);
530 struct vmap_area
*va
;
531 struct vmap_area
*n_va
;
535 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
536 * should not expect such behaviour. This just simplifies locking for
537 * the case that isn't actually used at the moment anyway.
539 if (!sync
&& !force_flush
) {
540 if (!spin_trylock(&purge_lock
))
543 spin_lock(&purge_lock
);
546 purge_fragmented_blocks_allcpus();
549 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
550 if (va
->flags
& VM_LAZY_FREE
) {
551 if (va
->va_start
< *start
)
552 *start
= va
->va_start
;
553 if (va
->va_end
> *end
)
555 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
557 list_add_tail(&va
->purge_list
, &valist
);
558 va
->flags
|= VM_LAZY_FREEING
;
559 va
->flags
&= ~VM_LAZY_FREE
;
565 atomic_sub(nr
, &vmap_lazy_nr
);
567 if (nr
|| force_flush
)
568 flush_tlb_kernel_range(*start
, *end
);
571 spin_lock(&vmap_area_lock
);
572 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
573 __free_vmap_area(va
);
574 spin_unlock(&vmap_area_lock
);
576 spin_unlock(&purge_lock
);
580 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
581 * is already purging.
583 static void try_purge_vmap_area_lazy(void)
585 unsigned long start
= ULONG_MAX
, end
= 0;
587 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
591 * Kick off a purge of the outstanding lazy areas.
593 static void purge_vmap_area_lazy(void)
595 unsigned long start
= ULONG_MAX
, end
= 0;
597 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
601 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
602 * called for the correct range previously.
604 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
606 va
->flags
|= VM_LAZY_FREE
;
607 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
608 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
609 try_purge_vmap_area_lazy();
613 * Free and unmap a vmap area
615 static void free_unmap_vmap_area(struct vmap_area
*va
)
617 flush_cache_vunmap(va
->va_start
, va
->va_end
);
618 free_unmap_vmap_area_noflush(va
);
621 static struct vmap_area
*find_vmap_area(unsigned long addr
)
623 struct vmap_area
*va
;
625 spin_lock(&vmap_area_lock
);
626 va
= __find_vmap_area(addr
);
627 spin_unlock(&vmap_area_lock
);
632 static void free_unmap_vmap_area_addr(unsigned long addr
)
634 struct vmap_area
*va
;
636 va
= find_vmap_area(addr
);
638 free_unmap_vmap_area(va
);
642 /*** Per cpu kva allocator ***/
645 * vmap space is limited especially on 32 bit architectures. Ensure there is
646 * room for at least 16 percpu vmap blocks per CPU.
649 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
650 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
651 * instead (we just need a rough idea)
653 #if BITS_PER_LONG == 32
654 #define VMALLOC_SPACE (128UL*1024*1024)
656 #define VMALLOC_SPACE (128UL*1024*1024*1024)
659 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
660 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
661 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
662 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
663 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
664 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
665 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
666 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
667 VMALLOC_PAGES / NR_CPUS / 16))
669 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
671 static bool vmap_initialized __read_mostly
= false;
673 struct vmap_block_queue
{
675 struct list_head free
;
680 struct vmap_area
*va
;
681 struct vmap_block_queue
*vbq
;
682 unsigned long free
, dirty
;
683 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
684 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
685 struct list_head free_list
;
686 struct rcu_head rcu_head
;
687 struct list_head purge
;
690 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
691 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
694 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
695 * in the free path. Could get rid of this if we change the API to return a
696 * "cookie" from alloc, to be passed to free. But no big deal yet.
698 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
699 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
702 * We should probably have a fallback mechanism to allocate virtual memory
703 * out of partially filled vmap blocks. However vmap block sizing should be
704 * fairly reasonable according to the vmalloc size, so it shouldn't be a
708 static unsigned long addr_to_vb_idx(unsigned long addr
)
710 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
711 addr
/= VMAP_BLOCK_SIZE
;
715 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
717 struct vmap_block_queue
*vbq
;
718 struct vmap_block
*vb
;
719 struct vmap_area
*va
;
720 unsigned long vb_idx
;
723 node
= numa_node_id();
725 vb
= kmalloc_node(sizeof(struct vmap_block
),
726 gfp_mask
& GFP_RECLAIM_MASK
, node
);
728 return ERR_PTR(-ENOMEM
);
730 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
731 VMALLOC_START
, VMALLOC_END
,
733 if (unlikely(IS_ERR(va
))) {
735 return ERR_PTR(PTR_ERR(va
));
738 err
= radix_tree_preload(gfp_mask
);
745 spin_lock_init(&vb
->lock
);
747 vb
->free
= VMAP_BBMAP_BITS
;
749 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
750 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
751 INIT_LIST_HEAD(&vb
->free_list
);
753 vb_idx
= addr_to_vb_idx(va
->va_start
);
754 spin_lock(&vmap_block_tree_lock
);
755 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
756 spin_unlock(&vmap_block_tree_lock
);
758 radix_tree_preload_end();
760 vbq
= &get_cpu_var(vmap_block_queue
);
762 spin_lock(&vbq
->lock
);
763 list_add_rcu(&vb
->free_list
, &vbq
->free
);
764 spin_unlock(&vbq
->lock
);
765 put_cpu_var(vmap_block_queue
);
770 static void rcu_free_vb(struct rcu_head
*head
)
772 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
777 static void free_vmap_block(struct vmap_block
*vb
)
779 struct vmap_block
*tmp
;
780 unsigned long vb_idx
;
782 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
783 spin_lock(&vmap_block_tree_lock
);
784 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
785 spin_unlock(&vmap_block_tree_lock
);
788 free_unmap_vmap_area_noflush(vb
->va
);
789 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
792 static void purge_fragmented_blocks(int cpu
)
795 struct vmap_block
*vb
;
796 struct vmap_block
*n_vb
;
797 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
800 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
802 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
805 spin_lock(&vb
->lock
);
806 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
807 vb
->free
= 0; /* prevent further allocs after releasing lock */
808 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
809 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
810 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
811 spin_lock(&vbq
->lock
);
812 list_del_rcu(&vb
->free_list
);
813 spin_unlock(&vbq
->lock
);
814 spin_unlock(&vb
->lock
);
815 list_add_tail(&vb
->purge
, &purge
);
817 spin_unlock(&vb
->lock
);
821 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
822 list_del(&vb
->purge
);
827 static void purge_fragmented_blocks_thiscpu(void)
829 purge_fragmented_blocks(smp_processor_id());
832 static void purge_fragmented_blocks_allcpus(void)
836 for_each_possible_cpu(cpu
)
837 purge_fragmented_blocks(cpu
);
840 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
842 struct vmap_block_queue
*vbq
;
843 struct vmap_block
*vb
;
844 unsigned long addr
= 0;
848 BUG_ON(size
& ~PAGE_MASK
);
849 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
850 order
= get_order(size
);
854 vbq
= &get_cpu_var(vmap_block_queue
);
855 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
858 spin_lock(&vb
->lock
);
859 if (vb
->free
< 1UL << order
)
862 i
= bitmap_find_free_region(vb
->alloc_map
,
863 VMAP_BBMAP_BITS
, order
);
866 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
867 /* fragmented and no outstanding allocations */
868 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
873 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
874 BUG_ON(addr_to_vb_idx(addr
) !=
875 addr_to_vb_idx(vb
->va
->va_start
));
876 vb
->free
-= 1UL << order
;
878 spin_lock(&vbq
->lock
);
879 list_del_rcu(&vb
->free_list
);
880 spin_unlock(&vbq
->lock
);
882 spin_unlock(&vb
->lock
);
885 spin_unlock(&vb
->lock
);
889 purge_fragmented_blocks_thiscpu();
891 put_cpu_var(vmap_block_queue
);
895 vb
= new_vmap_block(gfp_mask
);
904 static void vb_free(const void *addr
, unsigned long size
)
906 unsigned long offset
;
907 unsigned long vb_idx
;
909 struct vmap_block
*vb
;
911 BUG_ON(size
& ~PAGE_MASK
);
912 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
914 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
916 order
= get_order(size
);
918 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
920 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
922 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
926 spin_lock(&vb
->lock
);
927 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
929 vb
->dirty
+= 1UL << order
;
930 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
932 spin_unlock(&vb
->lock
);
935 spin_unlock(&vb
->lock
);
939 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
941 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
942 * to amortize TLB flushing overheads. What this means is that any page you
943 * have now, may, in a former life, have been mapped into kernel virtual
944 * address by the vmap layer and so there might be some CPUs with TLB entries
945 * still referencing that page (additional to the regular 1:1 kernel mapping).
947 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
948 * be sure that none of the pages we have control over will have any aliases
949 * from the vmap layer.
951 void vm_unmap_aliases(void)
953 unsigned long start
= ULONG_MAX
, end
= 0;
957 if (unlikely(!vmap_initialized
))
960 for_each_possible_cpu(cpu
) {
961 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
962 struct vmap_block
*vb
;
965 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
968 spin_lock(&vb
->lock
);
969 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
970 while (i
< VMAP_BBMAP_BITS
) {
973 j
= find_next_zero_bit(vb
->dirty_map
,
976 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
977 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
978 vunmap_page_range(s
, e
);
987 i
= find_next_bit(vb
->dirty_map
,
990 spin_unlock(&vb
->lock
);
995 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
997 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1000 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1001 * @mem: the pointer returned by vm_map_ram
1002 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1004 void vm_unmap_ram(const void *mem
, unsigned int count
)
1006 unsigned long size
= count
<< PAGE_SHIFT
;
1007 unsigned long addr
= (unsigned long)mem
;
1010 BUG_ON(addr
< VMALLOC_START
);
1011 BUG_ON(addr
> VMALLOC_END
);
1012 BUG_ON(addr
& (PAGE_SIZE
-1));
1014 debug_check_no_locks_freed(mem
, size
);
1015 vmap_debug_free_range(addr
, addr
+size
);
1017 if (likely(count
<= VMAP_MAX_ALLOC
))
1020 free_unmap_vmap_area_addr(addr
);
1022 EXPORT_SYMBOL(vm_unmap_ram
);
1025 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1026 * @pages: an array of pointers to the pages to be mapped
1027 * @count: number of pages
1028 * @node: prefer to allocate data structures on this node
1029 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1031 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1033 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1035 unsigned long size
= count
<< PAGE_SHIFT
;
1039 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1040 mem
= vb_alloc(size
, GFP_KERNEL
);
1043 addr
= (unsigned long)mem
;
1045 struct vmap_area
*va
;
1046 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1047 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1051 addr
= va
->va_start
;
1054 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1055 vm_unmap_ram(mem
, count
);
1060 EXPORT_SYMBOL(vm_map_ram
);
1063 * vm_area_register_early - register vmap area early during boot
1064 * @vm: vm_struct to register
1065 * @align: requested alignment
1067 * This function is used to register kernel vm area before
1068 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1069 * proper values on entry and other fields should be zero. On return,
1070 * vm->addr contains the allocated address.
1072 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1074 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1076 static size_t vm_init_off __initdata
;
1079 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1080 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1082 vm
->addr
= (void *)addr
;
1088 void __init
vmalloc_init(void)
1090 struct vmap_area
*va
;
1091 struct vm_struct
*tmp
;
1094 for_each_possible_cpu(i
) {
1095 struct vmap_block_queue
*vbq
;
1097 vbq
= &per_cpu(vmap_block_queue
, i
);
1098 spin_lock_init(&vbq
->lock
);
1099 INIT_LIST_HEAD(&vbq
->free
);
1102 /* Import existing vmlist entries. */
1103 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1104 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1105 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1106 va
->va_start
= (unsigned long)tmp
->addr
;
1107 va
->va_end
= va
->va_start
+ tmp
->size
;
1108 __insert_vmap_area(va
);
1111 vmap_area_pcpu_hole
= VMALLOC_END
;
1113 vmap_initialized
= true;
1117 * map_kernel_range_noflush - map kernel VM area with the specified pages
1118 * @addr: start of the VM area to map
1119 * @size: size of the VM area to map
1120 * @prot: page protection flags to use
1121 * @pages: pages to map
1123 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1124 * specify should have been allocated using get_vm_area() and its
1128 * This function does NOT do any cache flushing. The caller is
1129 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1130 * before calling this function.
1133 * The number of pages mapped on success, -errno on failure.
1135 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1136 pgprot_t prot
, struct page
**pages
)
1138 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1142 * unmap_kernel_range_noflush - unmap kernel VM area
1143 * @addr: start of the VM area to unmap
1144 * @size: size of the VM area to unmap
1146 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1147 * specify should have been allocated using get_vm_area() and its
1151 * This function does NOT do any cache flushing. The caller is
1152 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1153 * before calling this function and flush_tlb_kernel_range() after.
1155 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1157 vunmap_page_range(addr
, addr
+ size
);
1161 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1162 * @addr: start of the VM area to unmap
1163 * @size: size of the VM area to unmap
1165 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1166 * the unmapping and tlb after.
1168 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1170 unsigned long end
= addr
+ size
;
1172 flush_cache_vunmap(addr
, end
);
1173 vunmap_page_range(addr
, end
);
1174 flush_tlb_kernel_range(addr
, end
);
1177 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1179 unsigned long addr
= (unsigned long)area
->addr
;
1180 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1183 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1191 EXPORT_SYMBOL_GPL(map_vm_area
);
1193 /*** Old vmalloc interfaces ***/
1194 DEFINE_RWLOCK(vmlist_lock
);
1195 struct vm_struct
*vmlist
;
1197 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1198 unsigned long flags
, void *caller
)
1200 struct vm_struct
*tmp
, **p
;
1203 vm
->addr
= (void *)va
->va_start
;
1204 vm
->size
= va
->va_end
- va
->va_start
;
1205 vm
->caller
= caller
;
1207 va
->flags
|= VM_VM_AREA
;
1209 write_lock(&vmlist_lock
);
1210 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1211 if (tmp
->addr
>= vm
->addr
)
1216 write_unlock(&vmlist_lock
);
1219 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1220 unsigned long align
, unsigned long flags
, unsigned long start
,
1221 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1223 static struct vmap_area
*va
;
1224 struct vm_struct
*area
;
1226 BUG_ON(in_interrupt());
1227 if (flags
& VM_IOREMAP
) {
1228 int bit
= fls(size
);
1230 if (bit
> IOREMAP_MAX_ORDER
)
1231 bit
= IOREMAP_MAX_ORDER
;
1232 else if (bit
< PAGE_SHIFT
)
1238 size
= PAGE_ALIGN(size
);
1239 if (unlikely(!size
))
1242 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1243 if (unlikely(!area
))
1247 * We always allocate a guard page.
1251 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1257 insert_vmalloc_vm(area
, va
, flags
, caller
);
1261 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1262 unsigned long start
, unsigned long end
)
1264 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1265 __builtin_return_address(0));
1267 EXPORT_SYMBOL_GPL(__get_vm_area
);
1269 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1270 unsigned long start
, unsigned long end
,
1273 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1278 * get_vm_area - reserve a contiguous kernel virtual area
1279 * @size: size of the area
1280 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1282 * Search an area of @size in the kernel virtual mapping area,
1283 * and reserved it for out purposes. Returns the area descriptor
1284 * on success or %NULL on failure.
1286 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1288 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1289 -1, GFP_KERNEL
, __builtin_return_address(0));
1292 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1295 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1296 -1, GFP_KERNEL
, caller
);
1299 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1300 int node
, gfp_t gfp_mask
)
1302 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1303 node
, gfp_mask
, __builtin_return_address(0));
1306 static struct vm_struct
*find_vm_area(const void *addr
)
1308 struct vmap_area
*va
;
1310 va
= find_vmap_area((unsigned long)addr
);
1311 if (va
&& va
->flags
& VM_VM_AREA
)
1318 * remove_vm_area - find and remove a continuous kernel virtual area
1319 * @addr: base address
1321 * Search for the kernel VM area starting at @addr, and remove it.
1322 * This function returns the found VM area, but using it is NOT safe
1323 * on SMP machines, except for its size or flags.
1325 struct vm_struct
*remove_vm_area(const void *addr
)
1327 struct vmap_area
*va
;
1329 va
= find_vmap_area((unsigned long)addr
);
1330 if (va
&& va
->flags
& VM_VM_AREA
) {
1331 struct vm_struct
*vm
= va
->private;
1332 struct vm_struct
*tmp
, **p
;
1334 * remove from list and disallow access to this vm_struct
1335 * before unmap. (address range confliction is maintained by
1338 write_lock(&vmlist_lock
);
1339 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1342 write_unlock(&vmlist_lock
);
1344 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1345 free_unmap_vmap_area(va
);
1346 vm
->size
-= PAGE_SIZE
;
1353 static void __vunmap(const void *addr
, int deallocate_pages
)
1355 struct vm_struct
*area
;
1360 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1361 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1365 area
= remove_vm_area(addr
);
1366 if (unlikely(!area
)) {
1367 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1372 debug_check_no_locks_freed(addr
, area
->size
);
1373 debug_check_no_obj_freed(addr
, area
->size
);
1375 if (deallocate_pages
) {
1378 for (i
= 0; i
< area
->nr_pages
; i
++) {
1379 struct page
*page
= area
->pages
[i
];
1385 if (area
->flags
& VM_VPAGES
)
1396 * vfree - release memory allocated by vmalloc()
1397 * @addr: memory base address
1399 * Free the virtually continuous memory area starting at @addr, as
1400 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1401 * NULL, no operation is performed.
1403 * Must not be called in interrupt context.
1405 void vfree(const void *addr
)
1407 BUG_ON(in_interrupt());
1409 kmemleak_free(addr
);
1413 EXPORT_SYMBOL(vfree
);
1416 * vunmap - release virtual mapping obtained by vmap()
1417 * @addr: memory base address
1419 * Free the virtually contiguous memory area starting at @addr,
1420 * which was created from the page array passed to vmap().
1422 * Must not be called in interrupt context.
1424 void vunmap(const void *addr
)
1426 BUG_ON(in_interrupt());
1430 EXPORT_SYMBOL(vunmap
);
1433 * vmap - map an array of pages into virtually contiguous space
1434 * @pages: array of page pointers
1435 * @count: number of pages to map
1436 * @flags: vm_area->flags
1437 * @prot: page protection for the mapping
1439 * Maps @count pages from @pages into contiguous kernel virtual
1442 void *vmap(struct page
**pages
, unsigned int count
,
1443 unsigned long flags
, pgprot_t prot
)
1445 struct vm_struct
*area
;
1449 if (count
> totalram_pages
)
1452 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1453 __builtin_return_address(0));
1457 if (map_vm_area(area
, prot
, &pages
)) {
1464 EXPORT_SYMBOL(vmap
);
1466 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1467 gfp_t gfp_mask
, pgprot_t prot
,
1468 int node
, void *caller
);
1469 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1470 pgprot_t prot
, int node
, void *caller
)
1472 struct page
**pages
;
1473 unsigned int nr_pages
, array_size
, i
;
1474 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1476 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1477 array_size
= (nr_pages
* sizeof(struct page
*));
1479 area
->nr_pages
= nr_pages
;
1480 /* Please note that the recursion is strictly bounded. */
1481 if (array_size
> PAGE_SIZE
) {
1482 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1483 PAGE_KERNEL
, node
, caller
);
1484 area
->flags
|= VM_VPAGES
;
1486 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1488 area
->pages
= pages
;
1489 area
->caller
= caller
;
1491 remove_vm_area(area
->addr
);
1496 for (i
= 0; i
< area
->nr_pages
; i
++) {
1500 page
= alloc_page(gfp_mask
);
1502 page
= alloc_pages_node(node
, gfp_mask
, 0);
1504 if (unlikely(!page
)) {
1505 /* Successfully allocated i pages, free them in __vunmap() */
1509 area
->pages
[i
] = page
;
1512 if (map_vm_area(area
, prot
, &pages
))
1521 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1523 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1524 __builtin_return_address(0));
1527 * A ref_count = 3 is needed because the vm_struct and vmap_area
1528 * structures allocated in the __get_vm_area_node() function contain
1529 * references to the virtual address of the vmalloc'ed block.
1531 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1537 * __vmalloc_node - allocate virtually contiguous memory
1538 * @size: allocation size
1539 * @align: desired alignment
1540 * @gfp_mask: flags for the page level allocator
1541 * @prot: protection mask for the allocated pages
1542 * @node: node to use for allocation or -1
1543 * @caller: caller's return address
1545 * Allocate enough pages to cover @size from the page level
1546 * allocator with @gfp_mask flags. Map them into contiguous
1547 * kernel virtual space, using a pagetable protection of @prot.
1549 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1550 gfp_t gfp_mask
, pgprot_t prot
,
1551 int node
, void *caller
)
1553 struct vm_struct
*area
;
1555 unsigned long real_size
= size
;
1557 size
= PAGE_ALIGN(size
);
1558 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1561 area
= __get_vm_area_node(size
, align
, VM_ALLOC
, VMALLOC_START
,
1562 VMALLOC_END
, node
, gfp_mask
, caller
);
1567 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1570 * A ref_count = 3 is needed because the vm_struct and vmap_area
1571 * structures allocated in the __get_vm_area_node() function contain
1572 * references to the virtual address of the vmalloc'ed block.
1574 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1579 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1581 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1582 __builtin_return_address(0));
1584 EXPORT_SYMBOL(__vmalloc
);
1587 * vmalloc - allocate virtually contiguous memory
1588 * @size: allocation size
1589 * Allocate enough pages to cover @size from the page level
1590 * allocator and map them into contiguous kernel virtual space.
1592 * For tight control over page level allocator and protection flags
1593 * use __vmalloc() instead.
1595 void *vmalloc(unsigned long size
)
1597 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1598 -1, __builtin_return_address(0));
1600 EXPORT_SYMBOL(vmalloc
);
1603 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1604 * @size: allocation size
1606 * The resulting memory area is zeroed so it can be mapped to userspace
1607 * without leaking data.
1609 void *vmalloc_user(unsigned long size
)
1611 struct vm_struct
*area
;
1614 ret
= __vmalloc_node(size
, SHMLBA
,
1615 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1616 PAGE_KERNEL
, -1, __builtin_return_address(0));
1618 area
= find_vm_area(ret
);
1619 area
->flags
|= VM_USERMAP
;
1623 EXPORT_SYMBOL(vmalloc_user
);
1626 * vmalloc_node - allocate memory on a specific node
1627 * @size: allocation size
1630 * Allocate enough pages to cover @size from the page level
1631 * allocator and map them into contiguous kernel virtual space.
1633 * For tight control over page level allocator and protection flags
1634 * use __vmalloc() instead.
1636 void *vmalloc_node(unsigned long size
, int node
)
1638 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1639 node
, __builtin_return_address(0));
1641 EXPORT_SYMBOL(vmalloc_node
);
1643 #ifndef PAGE_KERNEL_EXEC
1644 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1648 * vmalloc_exec - allocate virtually contiguous, executable memory
1649 * @size: allocation size
1651 * Kernel-internal function to allocate enough pages to cover @size
1652 * the page level allocator and map them into contiguous and
1653 * executable kernel virtual space.
1655 * For tight control over page level allocator and protection flags
1656 * use __vmalloc() instead.
1659 void *vmalloc_exec(unsigned long size
)
1661 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1662 -1, __builtin_return_address(0));
1665 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1666 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1667 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1668 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1670 #define GFP_VMALLOC32 GFP_KERNEL
1674 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1675 * @size: allocation size
1677 * Allocate enough 32bit PA addressable pages to cover @size from the
1678 * page level allocator and map them into contiguous kernel virtual space.
1680 void *vmalloc_32(unsigned long size
)
1682 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1683 -1, __builtin_return_address(0));
1685 EXPORT_SYMBOL(vmalloc_32
);
1688 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1689 * @size: allocation size
1691 * The resulting memory area is 32bit addressable and zeroed so it can be
1692 * mapped to userspace without leaking data.
1694 void *vmalloc_32_user(unsigned long size
)
1696 struct vm_struct
*area
;
1699 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1700 -1, __builtin_return_address(0));
1702 area
= find_vm_area(ret
);
1703 area
->flags
|= VM_USERMAP
;
1707 EXPORT_SYMBOL(vmalloc_32_user
);
1710 * small helper routine , copy contents to buf from addr.
1711 * If the page is not present, fill zero.
1714 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1720 unsigned long offset
, length
;
1722 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1723 length
= PAGE_SIZE
- offset
;
1726 p
= vmalloc_to_page(addr
);
1728 * To do safe access to this _mapped_ area, we need
1729 * lock. But adding lock here means that we need to add
1730 * overhead of vmalloc()/vfree() calles for this _debug_
1731 * interface, rarely used. Instead of that, we'll use
1732 * kmap() and get small overhead in this access function.
1736 * we can expect USER0 is not used (see vread/vwrite's
1737 * function description)
1739 void *map
= kmap_atomic(p
, KM_USER0
);
1740 memcpy(buf
, map
+ offset
, length
);
1741 kunmap_atomic(map
, KM_USER0
);
1743 memset(buf
, 0, length
);
1753 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1759 unsigned long offset
, length
;
1761 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1762 length
= PAGE_SIZE
- offset
;
1765 p
= vmalloc_to_page(addr
);
1767 * To do safe access to this _mapped_ area, we need
1768 * lock. But adding lock here means that we need to add
1769 * overhead of vmalloc()/vfree() calles for this _debug_
1770 * interface, rarely used. Instead of that, we'll use
1771 * kmap() and get small overhead in this access function.
1775 * we can expect USER0 is not used (see vread/vwrite's
1776 * function description)
1778 void *map
= kmap_atomic(p
, KM_USER0
);
1779 memcpy(map
+ offset
, buf
, length
);
1780 kunmap_atomic(map
, KM_USER0
);
1791 * vread() - read vmalloc area in a safe way.
1792 * @buf: buffer for reading data
1793 * @addr: vm address.
1794 * @count: number of bytes to be read.
1796 * Returns # of bytes which addr and buf should be increased.
1797 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1798 * includes any intersect with alive vmalloc area.
1800 * This function checks that addr is a valid vmalloc'ed area, and
1801 * copy data from that area to a given buffer. If the given memory range
1802 * of [addr...addr+count) includes some valid address, data is copied to
1803 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1804 * IOREMAP area is treated as memory hole and no copy is done.
1806 * If [addr...addr+count) doesn't includes any intersects with alive
1807 * vm_struct area, returns 0.
1808 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1809 * the caller should guarantee KM_USER0 is not used.
1811 * Note: In usual ops, vread() is never necessary because the caller
1812 * should know vmalloc() area is valid and can use memcpy().
1813 * This is for routines which have to access vmalloc area without
1814 * any informaion, as /dev/kmem.
1818 long vread(char *buf
, char *addr
, unsigned long count
)
1820 struct vm_struct
*tmp
;
1821 char *vaddr
, *buf_start
= buf
;
1822 unsigned long buflen
= count
;
1825 /* Don't allow overflow */
1826 if ((unsigned long) addr
+ count
< count
)
1827 count
= -(unsigned long) addr
;
1829 read_lock(&vmlist_lock
);
1830 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1831 vaddr
= (char *) tmp
->addr
;
1832 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1834 while (addr
< vaddr
) {
1842 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1845 if (!(tmp
->flags
& VM_IOREMAP
))
1846 aligned_vread(buf
, addr
, n
);
1847 else /* IOREMAP area is treated as memory hole */
1854 read_unlock(&vmlist_lock
);
1856 if (buf
== buf_start
)
1858 /* zero-fill memory holes */
1859 if (buf
!= buf_start
+ buflen
)
1860 memset(buf
, 0, buflen
- (buf
- buf_start
));
1866 * vwrite() - write vmalloc area in a safe way.
1867 * @buf: buffer for source data
1868 * @addr: vm address.
1869 * @count: number of bytes to be read.
1871 * Returns # of bytes which addr and buf should be incresed.
1872 * (same number to @count).
1873 * If [addr...addr+count) doesn't includes any intersect with valid
1874 * vmalloc area, returns 0.
1876 * This function checks that addr is a valid vmalloc'ed area, and
1877 * copy data from a buffer to the given addr. If specified range of
1878 * [addr...addr+count) includes some valid address, data is copied from
1879 * proper area of @buf. If there are memory holes, no copy to hole.
1880 * IOREMAP area is treated as memory hole and no copy is done.
1882 * If [addr...addr+count) doesn't includes any intersects with alive
1883 * vm_struct area, returns 0.
1884 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1885 * the caller should guarantee KM_USER0 is not used.
1887 * Note: In usual ops, vwrite() is never necessary because the caller
1888 * should know vmalloc() area is valid and can use memcpy().
1889 * This is for routines which have to access vmalloc area without
1890 * any informaion, as /dev/kmem.
1892 * The caller should guarantee KM_USER1 is not used.
1895 long vwrite(char *buf
, char *addr
, unsigned long count
)
1897 struct vm_struct
*tmp
;
1899 unsigned long n
, buflen
;
1902 /* Don't allow overflow */
1903 if ((unsigned long) addr
+ count
< count
)
1904 count
= -(unsigned long) addr
;
1907 read_lock(&vmlist_lock
);
1908 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1909 vaddr
= (char *) tmp
->addr
;
1910 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1912 while (addr
< vaddr
) {
1919 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1922 if (!(tmp
->flags
& VM_IOREMAP
)) {
1923 aligned_vwrite(buf
, addr
, n
);
1931 read_unlock(&vmlist_lock
);
1938 * remap_vmalloc_range - map vmalloc pages to userspace
1939 * @vma: vma to cover (map full range of vma)
1940 * @addr: vmalloc memory
1941 * @pgoff: number of pages into addr before first page to map
1943 * Returns: 0 for success, -Exxx on failure
1945 * This function checks that addr is a valid vmalloc'ed area, and
1946 * that it is big enough to cover the vma. Will return failure if
1947 * that criteria isn't met.
1949 * Similar to remap_pfn_range() (see mm/memory.c)
1951 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1952 unsigned long pgoff
)
1954 struct vm_struct
*area
;
1955 unsigned long uaddr
= vma
->vm_start
;
1956 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1958 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1961 area
= find_vm_area(addr
);
1965 if (!(area
->flags
& VM_USERMAP
))
1968 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1971 addr
+= pgoff
<< PAGE_SHIFT
;
1973 struct page
*page
= vmalloc_to_page(addr
);
1976 ret
= vm_insert_page(vma
, uaddr
, page
);
1983 } while (usize
> 0);
1985 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1986 vma
->vm_flags
|= VM_RESERVED
;
1990 EXPORT_SYMBOL(remap_vmalloc_range
);
1993 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1996 void __attribute__((weak
)) vmalloc_sync_all(void)
2001 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2003 /* apply_to_page_range() does all the hard work. */
2008 * alloc_vm_area - allocate a range of kernel address space
2009 * @size: size of the area
2011 * Returns: NULL on failure, vm_struct on success
2013 * This function reserves a range of kernel address space, and
2014 * allocates pagetables to map that range. No actual mappings
2015 * are created. If the kernel address space is not shared
2016 * between processes, it syncs the pagetable across all
2019 struct vm_struct
*alloc_vm_area(size_t size
)
2021 struct vm_struct
*area
;
2023 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2024 __builtin_return_address(0));
2029 * This ensures that page tables are constructed for this region
2030 * of kernel virtual address space and mapped into init_mm.
2032 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2033 area
->size
, f
, NULL
)) {
2038 /* Make sure the pagetables are constructed in process kernel
2044 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2046 void free_vm_area(struct vm_struct
*area
)
2048 struct vm_struct
*ret
;
2049 ret
= remove_vm_area(area
->addr
);
2050 BUG_ON(ret
!= area
);
2053 EXPORT_SYMBOL_GPL(free_vm_area
);
2055 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2057 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2061 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2062 * @end: target address
2063 * @pnext: out arg for the next vmap_area
2064 * @pprev: out arg for the previous vmap_area
2066 * Returns: %true if either or both of next and prev are found,
2067 * %false if no vmap_area exists
2069 * Find vmap_areas end addresses of which enclose @end. ie. if not
2070 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2072 static bool pvm_find_next_prev(unsigned long end
,
2073 struct vmap_area
**pnext
,
2074 struct vmap_area
**pprev
)
2076 struct rb_node
*n
= vmap_area_root
.rb_node
;
2077 struct vmap_area
*va
= NULL
;
2080 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2081 if (end
< va
->va_end
)
2083 else if (end
> va
->va_end
)
2092 if (va
->va_end
> end
) {
2094 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2097 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2103 * pvm_determine_end - find the highest aligned address between two vmap_areas
2104 * @pnext: in/out arg for the next vmap_area
2105 * @pprev: in/out arg for the previous vmap_area
2108 * Returns: determined end address
2110 * Find the highest aligned address between *@pnext and *@pprev below
2111 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2112 * down address is between the end addresses of the two vmap_areas.
2114 * Please note that the address returned by this function may fall
2115 * inside *@pnext vmap_area. The caller is responsible for checking
2118 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2119 struct vmap_area
**pprev
,
2120 unsigned long align
)
2122 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2126 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2130 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2132 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2139 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2140 * @offsets: array containing offset of each area
2141 * @sizes: array containing size of each area
2142 * @nr_vms: the number of areas to allocate
2143 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2144 * @gfp_mask: allocation mask
2146 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2147 * vm_structs on success, %NULL on failure
2149 * Percpu allocator wants to use congruent vm areas so that it can
2150 * maintain the offsets among percpu areas. This function allocates
2151 * congruent vmalloc areas for it. These areas tend to be scattered
2152 * pretty far, distance between two areas easily going up to
2153 * gigabytes. To avoid interacting with regular vmallocs, these areas
2154 * are allocated from top.
2156 * Despite its complicated look, this allocator is rather simple. It
2157 * does everything top-down and scans areas from the end looking for
2158 * matching slot. While scanning, if any of the areas overlaps with
2159 * existing vmap_area, the base address is pulled down to fit the
2160 * area. Scanning is repeated till all the areas fit and then all
2161 * necessary data structres are inserted and the result is returned.
2163 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2164 const size_t *sizes
, int nr_vms
,
2165 size_t align
, gfp_t gfp_mask
)
2167 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2168 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2169 struct vmap_area
**vas
, *prev
, *next
;
2170 struct vm_struct
**vms
;
2171 int area
, area2
, last_area
, term_area
;
2172 unsigned long base
, start
, end
, last_end
;
2173 bool purged
= false;
2175 gfp_mask
&= GFP_RECLAIM_MASK
;
2177 /* verify parameters and allocate data structures */
2178 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2179 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2180 start
= offsets
[area
];
2181 end
= start
+ sizes
[area
];
2183 /* is everything aligned properly? */
2184 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2185 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2187 /* detect the area with the highest address */
2188 if (start
> offsets
[last_area
])
2191 for (area2
= 0; area2
< nr_vms
; area2
++) {
2192 unsigned long start2
= offsets
[area2
];
2193 unsigned long end2
= start2
+ sizes
[area2
];
2198 BUG_ON(start2
>= start
&& start2
< end
);
2199 BUG_ON(end2
<= end
&& end2
> start
);
2202 last_end
= offsets
[last_area
] + sizes
[last_area
];
2204 if (vmalloc_end
- vmalloc_start
< last_end
) {
2209 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
2210 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
2214 for (area
= 0; area
< nr_vms
; area
++) {
2215 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
2216 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
2217 if (!vas
[area
] || !vms
[area
])
2221 spin_lock(&vmap_area_lock
);
2223 /* start scanning - we scan from the top, begin with the last area */
2224 area
= term_area
= last_area
;
2225 start
= offsets
[area
];
2226 end
= start
+ sizes
[area
];
2228 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2229 base
= vmalloc_end
- last_end
;
2232 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2235 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2236 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2239 * base might have underflowed, add last_end before
2242 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2243 spin_unlock(&vmap_area_lock
);
2245 purge_vmap_area_lazy();
2253 * If next overlaps, move base downwards so that it's
2254 * right below next and then recheck.
2256 if (next
&& next
->va_start
< base
+ end
) {
2257 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2263 * If prev overlaps, shift down next and prev and move
2264 * base so that it's right below new next and then
2267 if (prev
&& prev
->va_end
> base
+ start
) {
2269 prev
= node_to_va(rb_prev(&next
->rb_node
));
2270 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2276 * This area fits, move on to the previous one. If
2277 * the previous one is the terminal one, we're done.
2279 area
= (area
+ nr_vms
- 1) % nr_vms
;
2280 if (area
== term_area
)
2282 start
= offsets
[area
];
2283 end
= start
+ sizes
[area
];
2284 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2287 /* we've found a fitting base, insert all va's */
2288 for (area
= 0; area
< nr_vms
; area
++) {
2289 struct vmap_area
*va
= vas
[area
];
2291 va
->va_start
= base
+ offsets
[area
];
2292 va
->va_end
= va
->va_start
+ sizes
[area
];
2293 __insert_vmap_area(va
);
2296 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2298 spin_unlock(&vmap_area_lock
);
2300 /* insert all vm's */
2301 for (area
= 0; area
< nr_vms
; area
++)
2302 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2309 for (area
= 0; area
< nr_vms
; area
++) {
2321 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2322 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2323 * @nr_vms: the number of allocated areas
2325 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2327 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2331 for (i
= 0; i
< nr_vms
; i
++)
2332 free_vm_area(vms
[i
]);
2336 #ifdef CONFIG_PROC_FS
2337 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2340 struct vm_struct
*v
;
2342 read_lock(&vmlist_lock
);
2344 while (n
> 0 && v
) {
2355 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2357 struct vm_struct
*v
= p
;
2363 static void s_stop(struct seq_file
*m
, void *p
)
2365 read_unlock(&vmlist_lock
);
2368 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2371 unsigned int nr
, *counters
= m
->private;
2376 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2378 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2379 counters
[page_to_nid(v
->pages
[nr
])]++;
2381 for_each_node_state(nr
, N_HIGH_MEMORY
)
2383 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2387 static int s_show(struct seq_file
*m
, void *p
)
2389 struct vm_struct
*v
= p
;
2391 seq_printf(m
, "0x%p-0x%p %7ld",
2392 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2395 char buff
[KSYM_SYMBOL_LEN
];
2398 sprint_symbol(buff
, (unsigned long)v
->caller
);
2403 seq_printf(m
, " pages=%d", v
->nr_pages
);
2406 seq_printf(m
, " phys=%lx", v
->phys_addr
);
2408 if (v
->flags
& VM_IOREMAP
)
2409 seq_printf(m
, " ioremap");
2411 if (v
->flags
& VM_ALLOC
)
2412 seq_printf(m
, " vmalloc");
2414 if (v
->flags
& VM_MAP
)
2415 seq_printf(m
, " vmap");
2417 if (v
->flags
& VM_USERMAP
)
2418 seq_printf(m
, " user");
2420 if (v
->flags
& VM_VPAGES
)
2421 seq_printf(m
, " vpages");
2423 show_numa_info(m
, v
);
2428 static const struct seq_operations vmalloc_op
= {
2435 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2437 unsigned int *ptr
= NULL
;
2441 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2442 ret
= seq_open(file
, &vmalloc_op
);
2444 struct seq_file
*m
= file
->private_data
;
2451 static const struct file_operations proc_vmalloc_operations
= {
2452 .open
= vmalloc_open
,
2454 .llseek
= seq_lseek
,
2455 .release
= seq_release_private
,
2458 static int __init
proc_vmalloc_init(void)
2460 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2463 module_init(proc_vmalloc_init
);