2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node
);
62 EXPORT_PER_CPU_SYMBOL(numa_node
);
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
77 * Array of node states.
79 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
80 [N_POSSIBLE
] = NODE_MASK_ALL
,
81 [N_ONLINE
] = { { [0] = 1UL } },
83 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
85 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
87 [N_CPU
] = { { [0] = 1UL } },
90 EXPORT_SYMBOL(node_states
);
92 unsigned long totalram_pages __read_mostly
;
93 unsigned long totalreserve_pages __read_mostly
;
94 int percpu_pagelist_fraction
;
95 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
106 void set_gfp_allowed_mask(gfp_t mask
)
108 WARN_ON(!mutex_is_locked(&pm_mutex
));
109 gfp_allowed_mask
= mask
;
112 gfp_t
clear_gfp_allowed_mask(gfp_t mask
)
114 gfp_t ret
= gfp_allowed_mask
;
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 gfp_allowed_mask
&= ~mask
;
120 #endif /* CONFIG_PM_SLEEP */
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly
;
126 static void __free_pages_ok(struct page
*page
, unsigned int order
);
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
139 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
140 #ifdef CONFIG_ZONE_DMA
143 #ifdef CONFIG_ZONE_DMA32
146 #ifdef CONFIG_HIGHMEM
152 EXPORT_SYMBOL(totalram_pages
);
154 static char * const zone_names
[MAX_NR_ZONES
] = {
155 #ifdef CONFIG_ZONE_DMA
158 #ifdef CONFIG_ZONE_DMA32
162 #ifdef CONFIG_HIGHMEM
168 int min_free_kbytes
= 1024;
170 static unsigned long __meminitdata nr_kernel_pages
;
171 static unsigned long __meminitdata nr_all_pages
;
172 static unsigned long __meminitdata dma_reserve
;
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
195 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
196 static int __meminitdata nr_nodemap_entries
;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
199 static unsigned long __initdata required_kernelcore
;
200 static unsigned long __initdata required_movablecore
;
201 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
205 EXPORT_SYMBOL(movable_zone
);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
209 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
210 int nr_online_nodes __read_mostly
= 1;
211 EXPORT_SYMBOL(nr_node_ids
);
212 EXPORT_SYMBOL(nr_online_nodes
);
215 int page_group_by_mobility_disabled __read_mostly
;
217 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
220 if (unlikely(page_group_by_mobility_disabled
))
221 migratetype
= MIGRATE_UNMOVABLE
;
223 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
224 PB_migrate
, PB_migrate_end
);
227 bool oom_killer_disabled __read_mostly
;
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
234 unsigned long pfn
= page_to_pfn(page
);
237 seq
= zone_span_seqbegin(zone
);
238 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
240 else if (pfn
< zone
->zone_start_pfn
)
242 } while (zone_span_seqretry(zone
, seq
));
247 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
249 if (!pfn_valid_within(page_to_pfn(page
)))
251 if (zone
!= page_zone(page
))
257 * Temporary debugging check for pages not lying within a given zone.
259 static int bad_range(struct zone
*zone
, struct page
*page
)
261 if (page_outside_zone_boundaries(zone
, page
))
263 if (!page_is_consistent(zone
, page
))
269 static inline int bad_range(struct zone
*zone
, struct page
*page
)
275 static void bad_page(struct page
*page
)
277 static unsigned long resume
;
278 static unsigned long nr_shown
;
279 static unsigned long nr_unshown
;
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page
)) {
283 __ClearPageBuddy(page
);
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
291 if (nr_shown
== 60) {
292 if (time_before(jiffies
, resume
)) {
298 "BUG: Bad page state: %lu messages suppressed\n",
305 resume
= jiffies
+ 60 * HZ
;
307 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
308 current
->comm
, page_to_pfn(page
));
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page
);
315 add_taint(TAINT_BAD_PAGE
);
319 * Higher-order pages are called "compound pages". They are structured thusly:
321 * The first PAGE_SIZE page is called the "head page".
323 * The remaining PAGE_SIZE pages are called "tail pages".
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
333 static void free_compound_page(struct page
*page
)
335 __free_pages_ok(page
, compound_order(page
));
338 void prep_compound_page(struct page
*page
, unsigned long order
)
341 int nr_pages
= 1 << order
;
343 set_compound_page_dtor(page
, free_compound_page
);
344 set_compound_order(page
, order
);
346 for (i
= 1; i
< nr_pages
; i
++) {
347 struct page
*p
= page
+ i
;
350 p
->first_page
= page
;
354 static int destroy_compound_page(struct page
*page
, unsigned long order
)
357 int nr_pages
= 1 << order
;
360 if (unlikely(compound_order(page
) != order
) ||
361 unlikely(!PageHead(page
))) {
366 __ClearPageHead(page
);
368 for (i
= 1; i
< nr_pages
; i
++) {
369 struct page
*p
= page
+ i
;
371 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
381 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
390 for (i
= 0; i
< (1 << order
); i
++)
391 clear_highpage(page
+ i
);
394 static inline void set_page_order(struct page
*page
, int order
)
396 set_page_private(page
, order
);
397 __SetPageBuddy(page
);
400 static inline void rmv_page_order(struct page
*page
)
402 __ClearPageBuddy(page
);
403 set_page_private(page
, 0);
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
413 * For example, if the starting buddy (buddy2) is #8 its order
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423 static inline struct page
*
424 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
426 unsigned long buddy_idx
= page_idx
^ (1 << order
);
428 return page
+ (buddy_idx
- page_idx
);
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx
, unsigned int order
)
434 return (page_idx
& ~(1 << order
));
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
453 if (!pfn_valid_within(page_to_pfn(buddy
)))
456 if (page_zone_id(page
) != page_zone_id(buddy
))
459 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
460 VM_BUG_ON(page_count(buddy
) != 0);
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
490 static inline void __free_one_page(struct page
*page
,
491 struct zone
*zone
, unsigned int order
,
494 unsigned long page_idx
;
495 unsigned long combined_idx
;
498 if (unlikely(PageCompound(page
)))
499 if (unlikely(destroy_compound_page(page
, order
)))
502 VM_BUG_ON(migratetype
== -1);
504 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
506 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
507 VM_BUG_ON(bad_range(zone
, page
));
509 while (order
< MAX_ORDER
-1) {
510 buddy
= __page_find_buddy(page
, page_idx
, order
);
511 if (!page_is_buddy(page
, buddy
, order
))
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy
->lru
);
516 zone
->free_area
[order
].nr_free
--;
517 rmv_page_order(buddy
);
518 combined_idx
= __find_combined_index(page_idx
, order
);
519 page
= page
+ (combined_idx
- page_idx
);
520 page_idx
= combined_idx
;
523 set_page_order(page
, order
);
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
533 if ((order
< MAX_ORDER
-1) && pfn_valid_within(page_to_pfn(buddy
))) {
534 struct page
*higher_page
, *higher_buddy
;
535 combined_idx
= __find_combined_index(page_idx
, order
);
536 higher_page
= page
+ combined_idx
- page_idx
;
537 higher_buddy
= __page_find_buddy(higher_page
, combined_idx
, order
+ 1);
538 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
539 list_add_tail(&page
->lru
,
540 &zone
->free_area
[order
].free_list
[migratetype
]);
545 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
547 zone
->free_area
[order
].nr_free
++;
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
555 static inline void free_page_mlock(struct page
*page
)
557 __dec_zone_page_state(page
, NR_MLOCK
);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
561 static inline int free_pages_check(struct page
*page
)
563 if (unlikely(page_mapcount(page
) |
564 (page
->mapping
!= NULL
) |
565 (atomic_read(&page
->_count
) != 0) |
566 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
570 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
571 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
586 static void free_pcppages_bulk(struct zone
*zone
, int count
,
587 struct per_cpu_pages
*pcp
)
592 spin_lock(&zone
->lock
);
593 zone
->all_unreclaimable
= 0;
594 zone
->pages_scanned
= 0;
596 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
599 struct list_head
*list
;
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
610 if (++migratetype
== MIGRATE_PCPTYPES
)
612 list
= &pcp
->lists
[migratetype
];
613 } while (list_empty(list
));
616 page
= list_entry(list
->prev
, struct page
, lru
);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page
->lru
);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page
, zone
, 0, page_private(page
));
621 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
622 } while (--count
&& --batch_free
&& !list_empty(list
));
624 spin_unlock(&zone
->lock
);
627 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
630 spin_lock(&zone
->lock
);
631 zone
->all_unreclaimable
= 0;
632 zone
->pages_scanned
= 0;
634 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
635 __free_one_page(page
, zone
, order
, migratetype
);
636 spin_unlock(&zone
->lock
);
639 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
644 trace_mm_page_free_direct(page
, order
);
645 kmemcheck_free_shadow(page
, order
);
647 for (i
= 0; i
< (1 << order
); i
++) {
648 struct page
*pg
= page
+ i
;
652 bad
+= free_pages_check(pg
);
657 if (!PageHighMem(page
)) {
658 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
659 debug_check_no_obj_freed(page_address(page
),
662 arch_free_page(page
, order
);
663 kernel_map_pages(page
, 1 << order
, 0);
668 static void __free_pages_ok(struct page
*page
, unsigned int order
)
671 int wasMlocked
= __TestClearPageMlocked(page
);
673 if (!free_pages_prepare(page
, order
))
676 local_irq_save(flags
);
677 if (unlikely(wasMlocked
))
678 free_page_mlock(page
);
679 __count_vm_events(PGFREE
, 1 << order
);
680 free_one_page(page_zone(page
), page
, order
,
681 get_pageblock_migratetype(page
));
682 local_irq_restore(flags
);
686 * permit the bootmem allocator to evade page validation on high-order frees
688 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
691 __ClearPageReserved(page
);
692 set_page_count(page
, 0);
693 set_page_refcounted(page
);
699 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
700 struct page
*p
= &page
[loop
];
702 if (loop
+ 1 < BITS_PER_LONG
)
704 __ClearPageReserved(p
);
705 set_page_count(p
, 0);
708 set_page_refcounted(page
);
709 __free_pages(page
, order
);
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
728 static inline void expand(struct zone
*zone
, struct page
*page
,
729 int low
, int high
, struct free_area
*area
,
732 unsigned long size
= 1 << high
;
738 VM_BUG_ON(bad_range(zone
, &page
[size
]));
739 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
741 set_page_order(&page
[size
], high
);
746 * This page is about to be returned from the page allocator
748 static inline int check_new_page(struct page
*page
)
750 if (unlikely(page_mapcount(page
) |
751 (page
->mapping
!= NULL
) |
752 (atomic_read(&page
->_count
) != 0) |
753 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
760 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
764 for (i
= 0; i
< (1 << order
); i
++) {
765 struct page
*p
= page
+ i
;
766 if (unlikely(check_new_page(p
)))
770 set_page_private(page
, 0);
771 set_page_refcounted(page
);
773 arch_alloc_page(page
, order
);
774 kernel_map_pages(page
, 1 << order
, 1);
776 if (gfp_flags
& __GFP_ZERO
)
777 prep_zero_page(page
, order
, gfp_flags
);
779 if (order
&& (gfp_flags
& __GFP_COMP
))
780 prep_compound_page(page
, order
);
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
790 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
793 unsigned int current_order
;
794 struct free_area
* area
;
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
799 area
= &(zone
->free_area
[current_order
]);
800 if (list_empty(&area
->free_list
[migratetype
]))
803 page
= list_entry(area
->free_list
[migratetype
].next
,
805 list_del(&page
->lru
);
806 rmv_page_order(page
);
808 expand(zone
, page
, order
, current_order
, area
, migratetype
);
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
820 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
821 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
822 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
823 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
824 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
828 * Move the free pages in a range to the free lists of the requested type.
829 * Note that start_page and end_pages are not aligned on a pageblock
830 * boundary. If alignment is required, use move_freepages_block()
832 static int move_freepages(struct zone
*zone
,
833 struct page
*start_page
, struct page
*end_page
,
840 #ifndef CONFIG_HOLES_IN_ZONE
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
846 * grouping pages by mobility
848 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
851 for (page
= start_page
; page
<= end_page
;) {
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
855 if (!pfn_valid_within(page_to_pfn(page
))) {
860 if (!PageBuddy(page
)) {
865 order
= page_order(page
);
866 list_del(&page
->lru
);
868 &zone
->free_area
[order
].free_list
[migratetype
]);
870 pages_moved
+= 1 << order
;
876 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
879 unsigned long start_pfn
, end_pfn
;
880 struct page
*start_page
, *end_page
;
882 start_pfn
= page_to_pfn(page
);
883 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
884 start_page
= pfn_to_page(start_pfn
);
885 end_page
= start_page
+ pageblock_nr_pages
- 1;
886 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
888 /* Do not cross zone boundaries */
889 if (start_pfn
< zone
->zone_start_pfn
)
891 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
894 return move_freepages(zone
, start_page
, end_page
, migratetype
);
897 static void change_pageblock_range(struct page
*pageblock_page
,
898 int start_order
, int migratetype
)
900 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
902 while (nr_pageblocks
--) {
903 set_pageblock_migratetype(pageblock_page
, migratetype
);
904 pageblock_page
+= pageblock_nr_pages
;
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page
*
910 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
912 struct free_area
* area
;
917 /* Find the largest possible block of pages in the other list */
918 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
920 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
921 migratetype
= fallbacks
[start_migratetype
][i
];
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype
== MIGRATE_RESERVE
)
927 area
= &(zone
->free_area
[current_order
]);
928 if (list_empty(&area
->free_list
[migratetype
]))
931 page
= list_entry(area
->free_list
[migratetype
].next
,
936 * If breaking a large block of pages, move all free
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
941 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
942 start_migratetype
== MIGRATE_RECLAIMABLE
||
943 page_group_by_mobility_disabled
) {
945 pages
= move_freepages_block(zone
, page
,
948 /* Claim the whole block if over half of it is free */
949 if (pages
>= (1 << (pageblock_order
-1)) ||
950 page_group_by_mobility_disabled
)
951 set_pageblock_migratetype(page
,
954 migratetype
= start_migratetype
;
957 /* Remove the page from the freelists */
958 list_del(&page
->lru
);
959 rmv_page_order(page
);
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order
>= pageblock_order
)
963 change_pageblock_range(page
, current_order
,
966 expand(zone
, page
, order
, current_order
, area
, migratetype
);
968 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
969 start_migratetype
, migratetype
);
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
982 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
988 page
= __rmqueue_smallest(zone
, order
, migratetype
);
990 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
991 page
= __rmqueue_fallback(zone
, order
, migratetype
);
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
999 migratetype
= MIGRATE_RESERVE
;
1004 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1013 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1014 unsigned long count
, struct list_head
*list
,
1015 int migratetype
, int cold
)
1019 spin_lock(&zone
->lock
);
1020 for (i
= 0; i
< count
; ++i
) {
1021 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1022 if (unlikely(page
== NULL
))
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1034 if (likely(cold
== 0))
1035 list_add(&page
->lru
, list
);
1037 list_add_tail(&page
->lru
, list
);
1038 set_page_private(page
, migratetype
);
1041 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1042 spin_unlock(&zone
->lock
);
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
1055 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1057 unsigned long flags
;
1060 local_irq_save(flags
);
1061 if (pcp
->count
>= pcp
->batch
)
1062 to_drain
= pcp
->batch
;
1064 to_drain
= pcp
->count
;
1065 free_pcppages_bulk(zone
, to_drain
, pcp
);
1066 pcp
->count
-= to_drain
;
1067 local_irq_restore(flags
);
1072 * Drain pages of the indicated processor.
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1078 static void drain_pages(unsigned int cpu
)
1080 unsigned long flags
;
1083 for_each_populated_zone(zone
) {
1084 struct per_cpu_pageset
*pset
;
1085 struct per_cpu_pages
*pcp
;
1087 local_irq_save(flags
);
1088 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1091 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1093 local_irq_restore(flags
);
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 void drain_local_pages(void *arg
)
1102 drain_pages(smp_processor_id());
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 void drain_all_pages(void)
1110 on_each_cpu(drain_local_pages
, NULL
, 1);
1113 #ifdef CONFIG_HIBERNATION
1115 void mark_free_pages(struct zone
*zone
)
1117 unsigned long pfn
, max_zone_pfn
;
1118 unsigned long flags
;
1120 struct list_head
*curr
;
1122 if (!zone
->spanned_pages
)
1125 spin_lock_irqsave(&zone
->lock
, flags
);
1127 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1128 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1129 if (pfn_valid(pfn
)) {
1130 struct page
*page
= pfn_to_page(pfn
);
1132 if (!swsusp_page_is_forbidden(page
))
1133 swsusp_unset_page_free(page
);
1136 for_each_migratetype_order(order
, t
) {
1137 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1140 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1141 for (i
= 0; i
< (1UL << order
); i
++)
1142 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1145 spin_unlock_irqrestore(&zone
->lock
, flags
);
1147 #endif /* CONFIG_PM */
1150 * Free a 0-order page
1151 * cold == 1 ? free a cold page : free a hot page
1153 void free_hot_cold_page(struct page
*page
, int cold
)
1155 struct zone
*zone
= page_zone(page
);
1156 struct per_cpu_pages
*pcp
;
1157 unsigned long flags
;
1159 int wasMlocked
= __TestClearPageMlocked(page
);
1161 if (!free_pages_prepare(page
, 0))
1164 migratetype
= get_pageblock_migratetype(page
);
1165 set_page_private(page
, migratetype
);
1166 local_irq_save(flags
);
1167 if (unlikely(wasMlocked
))
1168 free_page_mlock(page
);
1169 __count_vm_event(PGFREE
);
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1178 if (migratetype
>= MIGRATE_PCPTYPES
) {
1179 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1180 free_one_page(zone
, page
, 0, migratetype
);
1183 migratetype
= MIGRATE_MOVABLE
;
1186 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1188 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1190 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1192 if (pcp
->count
>= pcp
->high
) {
1193 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1194 pcp
->count
-= pcp
->batch
;
1198 local_irq_restore(flags
);
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1209 void split_page(struct page
*page
, unsigned int order
)
1213 VM_BUG_ON(PageCompound(page
));
1214 VM_BUG_ON(!page_count(page
));
1216 #ifdef CONFIG_KMEMCHECK
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1221 if (kmemcheck_page_is_tracked(page
))
1222 split_page(virt_to_page(page
[0].shadow
), order
);
1225 for (i
= 1; i
< (1 << order
); i
++)
1226 set_page_refcounted(page
+ i
);
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1239 int split_free_page(struct page
*page
)
1242 unsigned long watermark
;
1245 BUG_ON(!PageBuddy(page
));
1247 zone
= page_zone(page
);
1248 order
= page_order(page
);
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark
= low_wmark_pages(zone
) + (1 << order
);
1252 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1255 /* Remove page from free list */
1256 list_del(&page
->lru
);
1257 zone
->free_area
[order
].nr_free
--;
1258 rmv_page_order(page
);
1259 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1261 /* Split into individual pages */
1262 set_page_refcounted(page
);
1263 split_page(page
, order
);
1265 if (order
>= pageblock_order
- 1) {
1266 struct page
*endpage
= page
+ (1 << order
) - 1;
1267 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1268 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1280 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1281 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1284 unsigned long flags
;
1286 int cold
= !!(gfp_flags
& __GFP_COLD
);
1289 if (likely(order
== 0)) {
1290 struct per_cpu_pages
*pcp
;
1291 struct list_head
*list
;
1293 local_irq_save(flags
);
1294 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1295 list
= &pcp
->lists
[migratetype
];
1296 if (list_empty(list
)) {
1297 pcp
->count
+= rmqueue_bulk(zone
, 0,
1300 if (unlikely(list_empty(list
)))
1305 page
= list_entry(list
->prev
, struct page
, lru
);
1307 page
= list_entry(list
->next
, struct page
, lru
);
1309 list_del(&page
->lru
);
1312 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1314 * __GFP_NOFAIL is not to be used in new code.
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1319 * We most definitely don't want callers attempting to
1320 * allocate greater than order-1 page units with
1323 WARN_ON_ONCE(order
> 1);
1325 spin_lock_irqsave(&zone
->lock
, flags
);
1326 page
= __rmqueue(zone
, order
, migratetype
);
1327 spin_unlock(&zone
->lock
);
1330 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1333 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1334 zone_statistics(preferred_zone
, zone
);
1335 local_irq_restore(flags
);
1337 VM_BUG_ON(bad_range(zone
, page
));
1338 if (prep_new_page(page
, order
, gfp_flags
))
1343 local_irq_restore(flags
);
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN WMARK_MIN
1349 #define ALLOC_WMARK_LOW WMARK_LOW
1350 #define ALLOC_WMARK_HIGH WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1362 static struct fail_page_alloc_attr
{
1363 struct fault_attr attr
;
1365 u32 ignore_gfp_highmem
;
1366 u32 ignore_gfp_wait
;
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371 struct dentry
*ignore_gfp_highmem_file
;
1372 struct dentry
*ignore_gfp_wait_file
;
1373 struct dentry
*min_order_file
;
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377 } fail_page_alloc
= {
1378 .attr
= FAULT_ATTR_INITIALIZER
,
1379 .ignore_gfp_wait
= 1,
1380 .ignore_gfp_highmem
= 1,
1384 static int __init
setup_fail_page_alloc(char *str
)
1386 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1388 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1390 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1392 if (order
< fail_page_alloc
.min_order
)
1394 if (gfp_mask
& __GFP_NOFAIL
)
1396 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1398 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1401 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406 static int __init
fail_page_alloc_debugfs(void)
1408 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1412 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1416 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1418 fail_page_alloc
.ignore_gfp_wait_file
=
1419 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1420 &fail_page_alloc
.ignore_gfp_wait
);
1422 fail_page_alloc
.ignore_gfp_highmem_file
=
1423 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1424 &fail_page_alloc
.ignore_gfp_highmem
);
1425 fail_page_alloc
.min_order_file
=
1426 debugfs_create_u32("min-order", mode
, dir
,
1427 &fail_page_alloc
.min_order
);
1429 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1430 !fail_page_alloc
.ignore_gfp_highmem_file
||
1431 !fail_page_alloc
.min_order_file
) {
1433 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1434 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1435 debugfs_remove(fail_page_alloc
.min_order_file
);
1436 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1442 late_initcall(fail_page_alloc_debugfs
);
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1459 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1460 int classzone_idx
, int alloc_flags
)
1462 /* free_pages my go negative - that's OK */
1464 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1467 if (alloc_flags
& ALLOC_HIGH
)
1469 if (alloc_flags
& ALLOC_HARDER
)
1472 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1474 for (o
= 0; o
< order
; o
++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1478 /* Require fewer higher order pages to be free */
1481 if (free_pages
<= min
)
1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full. See further
1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1493 * that have to skip over a lot of full or unallowed zones.
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1510 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1512 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1513 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1515 zlc
= zonelist
->zlcache_ptr
;
1519 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1520 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1521 zlc
->last_full_zap
= jiffies
;
1524 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1525 &cpuset_current_mems_allowed
:
1526 &node_states
[N_HIGH_MEMORY
];
1527 return allowednodes
;
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 * 1) Check that the zone isn't thought to be full (doesn't have its
1534 * bit set in the zonelist_cache fullzones BITMAP).
1535 * 2) Check that the zones node (obtained from the zonelist_cache
1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1552 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1553 nodemask_t
*allowednodes
)
1555 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1556 int i
; /* index of *z in zonelist zones */
1557 int n
; /* node that zone *z is on */
1559 zlc
= zonelist
->zlcache_ptr
;
1563 i
= z
- zonelist
->_zonerefs
;
1566 /* This zone is worth trying if it is allowed but not full */
1567 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1575 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1577 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1578 int i
; /* index of *z in zonelist zones */
1580 zlc
= zonelist
->zlcache_ptr
;
1584 i
= z
- zonelist
->_zonerefs
;
1586 set_bit(i
, zlc
->fullzones
);
1589 #else /* CONFIG_NUMA */
1591 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1596 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1597 nodemask_t
*allowednodes
)
1602 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1605 #endif /* CONFIG_NUMA */
1608 * get_page_from_freelist goes through the zonelist trying to allocate
1611 static struct page
*
1612 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1613 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1614 struct zone
*preferred_zone
, int migratetype
)
1617 struct page
*page
= NULL
;
1620 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1621 int zlc_active
= 0; /* set if using zonelist_cache */
1622 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1624 classzone_idx
= zone_idx(preferred_zone
);
1627 * Scan zonelist, looking for a zone with enough free.
1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1631 high_zoneidx
, nodemask
) {
1632 if (NUMA_BUILD
&& zlc_active
&&
1633 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1635 if ((alloc_flags
& ALLOC_CPUSET
) &&
1636 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1640 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1644 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1645 if (zone_watermark_ok(zone
, order
, mark
,
1646 classzone_idx
, alloc_flags
))
1649 if (zone_reclaim_mode
== 0)
1650 goto this_zone_full
;
1652 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1654 case ZONE_RECLAIM_NOSCAN
:
1657 case ZONE_RECLAIM_FULL
:
1658 /* scanned but unreclaimable */
1659 goto this_zone_full
;
1661 /* did we reclaim enough */
1662 if (!zone_watermark_ok(zone
, order
, mark
,
1663 classzone_idx
, alloc_flags
))
1664 goto this_zone_full
;
1669 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1670 gfp_mask
, migratetype
);
1675 zlc_mark_zone_full(zonelist
, z
);
1677 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1679 * we do zlc_setup after the first zone is tried but only
1680 * if there are multiple nodes make it worthwhile
1682 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1688 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1689 /* Disable zlc cache for second zonelist scan */
1697 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1698 unsigned long pages_reclaimed
)
1700 /* Do not loop if specifically requested */
1701 if (gfp_mask
& __GFP_NORETRY
)
1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 * means __GFP_NOFAIL, but that may not be true in other
1709 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 * specified, then we retry until we no longer reclaim any pages
1715 * (above), or we've reclaimed an order of pages at least as
1716 * large as the allocation's order. In both cases, if the
1717 * allocation still fails, we stop retrying.
1719 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1723 * Don't let big-order allocations loop unless the caller
1724 * explicitly requests that.
1726 if (gfp_mask
& __GFP_NOFAIL
)
1732 static inline struct page
*
1733 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1734 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1735 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1740 /* Acquire the OOM killer lock for the zones in zonelist */
1741 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1742 schedule_timeout_uninterruptible(1);
1747 * Go through the zonelist yet one more time, keep very high watermark
1748 * here, this is only to catch a parallel oom killing, we must fail if
1749 * we're still under heavy pressure.
1751 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1752 order
, zonelist
, high_zoneidx
,
1753 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1754 preferred_zone
, migratetype
);
1758 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1759 /* The OOM killer will not help higher order allocs */
1760 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1763 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765 * The caller should handle page allocation failure by itself if
1766 * it specifies __GFP_THISNODE.
1767 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1769 if (gfp_mask
& __GFP_THISNODE
)
1772 /* Exhausted what can be done so it's blamo time */
1773 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1776 clear_zonelist_oom(zonelist
, gfp_mask
);
1780 #ifdef CONFIG_COMPACTION
1781 /* Try memory compaction for high-order allocations before reclaim */
1782 static struct page
*
1783 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1784 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1785 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1786 int migratetype
, unsigned long *did_some_progress
)
1790 if (!order
|| compaction_deferred(preferred_zone
))
1793 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1795 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1797 /* Page migration frees to the PCP lists but we want merging */
1798 drain_pages(get_cpu());
1801 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1802 order
, zonelist
, high_zoneidx
,
1803 alloc_flags
, preferred_zone
,
1806 preferred_zone
->compact_considered
= 0;
1807 preferred_zone
->compact_defer_shift
= 0;
1808 count_vm_event(COMPACTSUCCESS
);
1813 * It's bad if compaction run occurs and fails.
1814 * The most likely reason is that pages exist,
1815 * but not enough to satisfy watermarks.
1817 count_vm_event(COMPACTFAIL
);
1818 defer_compaction(preferred_zone
);
1826 static inline struct page
*
1827 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1828 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1829 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1830 int migratetype
, unsigned long *did_some_progress
)
1834 #endif /* CONFIG_COMPACTION */
1836 /* The really slow allocator path where we enter direct reclaim */
1837 static inline struct page
*
1838 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1839 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1840 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1841 int migratetype
, unsigned long *did_some_progress
)
1843 struct page
*page
= NULL
;
1844 struct reclaim_state reclaim_state
;
1845 struct task_struct
*p
= current
;
1849 /* We now go into synchronous reclaim */
1850 cpuset_memory_pressure_bump();
1851 p
->flags
|= PF_MEMALLOC
;
1852 lockdep_set_current_reclaim_state(gfp_mask
);
1853 reclaim_state
.reclaimed_slab
= 0;
1854 p
->reclaim_state
= &reclaim_state
;
1856 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1858 p
->reclaim_state
= NULL
;
1859 lockdep_clear_current_reclaim_state();
1860 p
->flags
&= ~PF_MEMALLOC
;
1867 if (likely(*did_some_progress
))
1868 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1869 zonelist
, high_zoneidx
,
1870 alloc_flags
, preferred_zone
,
1876 * This is called in the allocator slow-path if the allocation request is of
1877 * sufficient urgency to ignore watermarks and take other desperate measures
1879 static inline struct page
*
1880 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1881 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1882 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1888 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1889 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1890 preferred_zone
, migratetype
);
1892 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1893 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1894 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1900 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1901 enum zone_type high_zoneidx
)
1906 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1907 wakeup_kswapd(zone
, order
);
1911 gfp_to_alloc_flags(gfp_t gfp_mask
)
1913 struct task_struct
*p
= current
;
1914 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1915 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1921 * The caller may dip into page reserves a bit more if the caller
1922 * cannot run direct reclaim, or if the caller has realtime scheduling
1923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1924 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1926 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1929 alloc_flags
|= ALLOC_HARDER
;
1931 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1934 alloc_flags
&= ~ALLOC_CPUSET
;
1935 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1936 alloc_flags
|= ALLOC_HARDER
;
1938 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1939 if (!in_interrupt() &&
1940 ((p
->flags
& PF_MEMALLOC
) ||
1941 unlikely(test_thread_flag(TIF_MEMDIE
))))
1942 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1948 static inline struct page
*
1949 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1950 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1951 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1954 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1955 struct page
*page
= NULL
;
1957 unsigned long pages_reclaimed
= 0;
1958 unsigned long did_some_progress
;
1959 struct task_struct
*p
= current
;
1962 * In the slowpath, we sanity check order to avoid ever trying to
1963 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964 * be using allocators in order of preference for an area that is
1967 if (order
>= MAX_ORDER
) {
1968 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1973 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976 * using a larger set of nodes after it has established that the
1977 * allowed per node queues are empty and that nodes are
1980 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1984 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1987 * OK, we're below the kswapd watermark and have kicked background
1988 * reclaim. Now things get more complex, so set up alloc_flags according
1989 * to how we want to proceed.
1991 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1993 /* This is the last chance, in general, before the goto nopage. */
1994 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1995 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1996 preferred_zone
, migratetype
);
2001 /* Allocate without watermarks if the context allows */
2002 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2003 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2004 zonelist
, high_zoneidx
, nodemask
,
2005 preferred_zone
, migratetype
);
2010 /* Atomic allocations - we can't balance anything */
2014 /* Avoid recursion of direct reclaim */
2015 if (p
->flags
& PF_MEMALLOC
)
2018 /* Avoid allocations with no watermarks from looping endlessly */
2019 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2022 /* Try direct compaction */
2023 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2024 zonelist
, high_zoneidx
,
2026 alloc_flags
, preferred_zone
,
2027 migratetype
, &did_some_progress
);
2031 /* Try direct reclaim and then allocating */
2032 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2033 zonelist
, high_zoneidx
,
2035 alloc_flags
, preferred_zone
,
2036 migratetype
, &did_some_progress
);
2041 * If we failed to make any progress reclaiming, then we are
2042 * running out of options and have to consider going OOM
2044 if (!did_some_progress
) {
2045 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2046 if (oom_killer_disabled
)
2048 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2049 zonelist
, high_zoneidx
,
2050 nodemask
, preferred_zone
,
2056 * The OOM killer does not trigger for high-order
2057 * ~__GFP_NOFAIL allocations so if no progress is being
2058 * made, there are no other options and retrying is
2061 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
2062 !(gfp_mask
& __GFP_NOFAIL
))
2069 /* Check if we should retry the allocation */
2070 pages_reclaimed
+= did_some_progress
;
2071 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2072 /* Wait for some write requests to complete then retry */
2073 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2078 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2079 printk(KERN_WARNING
"%s: page allocation failure."
2080 " order:%d, mode:0x%x\n",
2081 p
->comm
, order
, gfp_mask
);
2087 if (kmemcheck_enabled
)
2088 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2094 * This is the 'heart' of the zoned buddy allocator.
2097 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2098 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2100 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2101 struct zone
*preferred_zone
;
2103 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2105 gfp_mask
&= gfp_allowed_mask
;
2107 lockdep_trace_alloc(gfp_mask
);
2109 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2111 if (should_fail_alloc_page(gfp_mask
, order
))
2115 * Check the zones suitable for the gfp_mask contain at least one
2116 * valid zone. It's possible to have an empty zonelist as a result
2117 * of GFP_THISNODE and a memoryless node
2119 if (unlikely(!zonelist
->_zonerefs
->zone
))
2123 /* The preferred zone is used for statistics later */
2124 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
2125 if (!preferred_zone
) {
2130 /* First allocation attempt */
2131 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2132 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2133 preferred_zone
, migratetype
);
2134 if (unlikely(!page
))
2135 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2136 zonelist
, high_zoneidx
, nodemask
,
2137 preferred_zone
, migratetype
);
2140 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2143 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2146 * Common helper functions.
2148 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2153 * __get_free_pages() returns a 32-bit address, which cannot represent
2156 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2158 page
= alloc_pages(gfp_mask
, order
);
2161 return (unsigned long) page_address(page
);
2163 EXPORT_SYMBOL(__get_free_pages
);
2165 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2167 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2169 EXPORT_SYMBOL(get_zeroed_page
);
2171 void __pagevec_free(struct pagevec
*pvec
)
2173 int i
= pagevec_count(pvec
);
2176 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2177 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2181 void __free_pages(struct page
*page
, unsigned int order
)
2183 if (put_page_testzero(page
)) {
2185 free_hot_cold_page(page
, 0);
2187 __free_pages_ok(page
, order
);
2191 EXPORT_SYMBOL(__free_pages
);
2193 void free_pages(unsigned long addr
, unsigned int order
)
2196 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2197 __free_pages(virt_to_page((void *)addr
), order
);
2201 EXPORT_SYMBOL(free_pages
);
2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205 * @size: the number of bytes to allocate
2206 * @gfp_mask: GFP flags for the allocation
2208 * This function is similar to alloc_pages(), except that it allocates the
2209 * minimum number of pages to satisfy the request. alloc_pages() can only
2210 * allocate memory in power-of-two pages.
2212 * This function is also limited by MAX_ORDER.
2214 * Memory allocated by this function must be released by free_pages_exact().
2216 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2218 unsigned int order
= get_order(size
);
2221 addr
= __get_free_pages(gfp_mask
, order
);
2223 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2224 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2226 split_page(virt_to_page((void *)addr
), order
);
2227 while (used
< alloc_end
) {
2233 return (void *)addr
;
2235 EXPORT_SYMBOL(alloc_pages_exact
);
2238 * free_pages_exact - release memory allocated via alloc_pages_exact()
2239 * @virt: the value returned by alloc_pages_exact.
2240 * @size: size of allocation, same value as passed to alloc_pages_exact().
2242 * Release the memory allocated by a previous call to alloc_pages_exact.
2244 void free_pages_exact(void *virt
, size_t size
)
2246 unsigned long addr
= (unsigned long)virt
;
2247 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2249 while (addr
< end
) {
2254 EXPORT_SYMBOL(free_pages_exact
);
2256 static unsigned int nr_free_zone_pages(int offset
)
2261 /* Just pick one node, since fallback list is circular */
2262 unsigned int sum
= 0;
2264 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2266 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2267 unsigned long size
= zone
->present_pages
;
2268 unsigned long high
= high_wmark_pages(zone
);
2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2279 unsigned int nr_free_buffer_pages(void)
2281 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2286 * Amount of free RAM allocatable within all zones
2288 unsigned int nr_free_pagecache_pages(void)
2290 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2293 static inline void show_node(struct zone
*zone
)
2296 printk("Node %d ", zone_to_nid(zone
));
2299 void si_meminfo(struct sysinfo
*val
)
2301 val
->totalram
= totalram_pages
;
2303 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2304 val
->bufferram
= nr_blockdev_pages();
2305 val
->totalhigh
= totalhigh_pages
;
2306 val
->freehigh
= nr_free_highpages();
2307 val
->mem_unit
= PAGE_SIZE
;
2310 EXPORT_SYMBOL(si_meminfo
);
2313 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2315 pg_data_t
*pgdat
= NODE_DATA(nid
);
2317 val
->totalram
= pgdat
->node_present_pages
;
2318 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2319 #ifdef CONFIG_HIGHMEM
2320 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2321 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2327 val
->mem_unit
= PAGE_SIZE
;
2331 #define K(x) ((x) << (PAGE_SHIFT-10))
2334 * Show free area list (used inside shift_scroll-lock stuff)
2335 * We also calculate the percentage fragmentation. We do this by counting the
2336 * memory on each free list with the exception of the first item on the list.
2338 void show_free_areas(void)
2343 for_each_populated_zone(zone
) {
2345 printk("%s per-cpu:\n", zone
->name
);
2347 for_each_online_cpu(cpu
) {
2348 struct per_cpu_pageset
*pageset
;
2350 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2352 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353 cpu
, pageset
->pcp
.high
,
2354 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2358 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2361 " dirty:%lu writeback:%lu unstable:%lu\n"
2362 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2364 global_page_state(NR_ACTIVE_ANON
),
2365 global_page_state(NR_INACTIVE_ANON
),
2366 global_page_state(NR_ISOLATED_ANON
),
2367 global_page_state(NR_ACTIVE_FILE
),
2368 global_page_state(NR_INACTIVE_FILE
),
2369 global_page_state(NR_ISOLATED_FILE
),
2370 global_page_state(NR_UNEVICTABLE
),
2371 global_page_state(NR_FILE_DIRTY
),
2372 global_page_state(NR_WRITEBACK
),
2373 global_page_state(NR_UNSTABLE_NFS
),
2374 global_page_state(NR_FREE_PAGES
),
2375 global_page_state(NR_SLAB_RECLAIMABLE
),
2376 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2377 global_page_state(NR_FILE_MAPPED
),
2378 global_page_state(NR_SHMEM
),
2379 global_page_state(NR_PAGETABLE
),
2380 global_page_state(NR_BOUNCE
));
2382 for_each_populated_zone(zone
) {
2391 " active_anon:%lukB"
2392 " inactive_anon:%lukB"
2393 " active_file:%lukB"
2394 " inactive_file:%lukB"
2395 " unevictable:%lukB"
2396 " isolated(anon):%lukB"
2397 " isolated(file):%lukB"
2404 " slab_reclaimable:%lukB"
2405 " slab_unreclaimable:%lukB"
2406 " kernel_stack:%lukB"
2410 " writeback_tmp:%lukB"
2411 " pages_scanned:%lu"
2412 " all_unreclaimable? %s"
2415 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2416 K(min_wmark_pages(zone
)),
2417 K(low_wmark_pages(zone
)),
2418 K(high_wmark_pages(zone
)),
2419 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2420 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2421 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2422 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2423 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2424 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2425 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2426 K(zone
->present_pages
),
2427 K(zone_page_state(zone
, NR_MLOCK
)),
2428 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2429 K(zone_page_state(zone
, NR_WRITEBACK
)),
2430 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2431 K(zone_page_state(zone
, NR_SHMEM
)),
2432 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2433 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2434 zone_page_state(zone
, NR_KERNEL_STACK
) *
2436 K(zone_page_state(zone
, NR_PAGETABLE
)),
2437 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2438 K(zone_page_state(zone
, NR_BOUNCE
)),
2439 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2440 zone
->pages_scanned
,
2441 (zone
->all_unreclaimable
? "yes" : "no")
2443 printk("lowmem_reserve[]:");
2444 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2445 printk(" %lu", zone
->lowmem_reserve
[i
]);
2449 for_each_populated_zone(zone
) {
2450 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2453 printk("%s: ", zone
->name
);
2455 spin_lock_irqsave(&zone
->lock
, flags
);
2456 for (order
= 0; order
< MAX_ORDER
; order
++) {
2457 nr
[order
] = zone
->free_area
[order
].nr_free
;
2458 total
+= nr
[order
] << order
;
2460 spin_unlock_irqrestore(&zone
->lock
, flags
);
2461 for (order
= 0; order
< MAX_ORDER
; order
++)
2462 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2463 printk("= %lukB\n", K(total
));
2466 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2468 show_swap_cache_info();
2471 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2473 zoneref
->zone
= zone
;
2474 zoneref
->zone_idx
= zone_idx(zone
);
2478 * Builds allocation fallback zone lists.
2480 * Add all populated zones of a node to the zonelist.
2482 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2483 int nr_zones
, enum zone_type zone_type
)
2487 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2492 zone
= pgdat
->node_zones
+ zone_type
;
2493 if (populated_zone(zone
)) {
2494 zoneref_set_zone(zone
,
2495 &zonelist
->_zonerefs
[nr_zones
++]);
2496 check_highest_zone(zone_type
);
2499 } while (zone_type
);
2506 * 0 = automatic detection of better ordering.
2507 * 1 = order by ([node] distance, -zonetype)
2508 * 2 = order by (-zonetype, [node] distance)
2510 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511 * the same zonelist. So only NUMA can configure this param.
2513 #define ZONELIST_ORDER_DEFAULT 0
2514 #define ZONELIST_ORDER_NODE 1
2515 #define ZONELIST_ORDER_ZONE 2
2517 /* zonelist order in the kernel.
2518 * set_zonelist_order() will set this to NODE or ZONE.
2520 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2521 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2525 /* The value user specified ....changed by config */
2526 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2527 /* string for sysctl */
2528 #define NUMA_ZONELIST_ORDER_LEN 16
2529 char numa_zonelist_order
[16] = "default";
2532 * interface for configure zonelist ordering.
2533 * command line option "numa_zonelist_order"
2534 * = "[dD]efault - default, automatic configuration.
2535 * = "[nN]ode - order by node locality, then by zone within node
2536 * = "[zZ]one - order by zone, then by locality within zone
2539 static int __parse_numa_zonelist_order(char *s
)
2541 if (*s
== 'd' || *s
== 'D') {
2542 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2543 } else if (*s
== 'n' || *s
== 'N') {
2544 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2545 } else if (*s
== 'z' || *s
== 'Z') {
2546 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2549 "Ignoring invalid numa_zonelist_order value: "
2556 static __init
int setup_numa_zonelist_order(char *s
)
2559 return __parse_numa_zonelist_order(s
);
2562 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2565 * sysctl handler for numa_zonelist_order
2567 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2568 void __user
*buffer
, size_t *length
,
2571 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2573 static DEFINE_MUTEX(zl_order_mutex
);
2575 mutex_lock(&zl_order_mutex
);
2577 strcpy(saved_string
, (char*)table
->data
);
2578 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2582 int oldval
= user_zonelist_order
;
2583 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2585 * bogus value. restore saved string
2587 strncpy((char*)table
->data
, saved_string
,
2588 NUMA_ZONELIST_ORDER_LEN
);
2589 user_zonelist_order
= oldval
;
2590 } else if (oldval
!= user_zonelist_order
) {
2591 mutex_lock(&zonelists_mutex
);
2592 build_all_zonelists(NULL
);
2593 mutex_unlock(&zonelists_mutex
);
2597 mutex_unlock(&zl_order_mutex
);
2602 #define MAX_NODE_LOAD (nr_online_nodes)
2603 static int node_load
[MAX_NUMNODES
];
2606 * find_next_best_node - find the next node that should appear in a given node's fallback list
2607 * @node: node whose fallback list we're appending
2608 * @used_node_mask: nodemask_t of already used nodes
2610 * We use a number of factors to determine which is the next node that should
2611 * appear on a given node's fallback list. The node should not have appeared
2612 * already in @node's fallback list, and it should be the next closest node
2613 * according to the distance array (which contains arbitrary distance values
2614 * from each node to each node in the system), and should also prefer nodes
2615 * with no CPUs, since presumably they'll have very little allocation pressure
2616 * on them otherwise.
2617 * It returns -1 if no node is found.
2619 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2622 int min_val
= INT_MAX
;
2624 const struct cpumask
*tmp
= cpumask_of_node(0);
2626 /* Use the local node if we haven't already */
2627 if (!node_isset(node
, *used_node_mask
)) {
2628 node_set(node
, *used_node_mask
);
2632 for_each_node_state(n
, N_HIGH_MEMORY
) {
2634 /* Don't want a node to appear more than once */
2635 if (node_isset(n
, *used_node_mask
))
2638 /* Use the distance array to find the distance */
2639 val
= node_distance(node
, n
);
2641 /* Penalize nodes under us ("prefer the next node") */
2644 /* Give preference to headless and unused nodes */
2645 tmp
= cpumask_of_node(n
);
2646 if (!cpumask_empty(tmp
))
2647 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2649 /* Slight preference for less loaded node */
2650 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2651 val
+= node_load
[n
];
2653 if (val
< min_val
) {
2660 node_set(best_node
, *used_node_mask
);
2667 * Build zonelists ordered by node and zones within node.
2668 * This results in maximum locality--normal zone overflows into local
2669 * DMA zone, if any--but risks exhausting DMA zone.
2671 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2674 struct zonelist
*zonelist
;
2676 zonelist
= &pgdat
->node_zonelists
[0];
2677 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2679 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2681 zonelist
->_zonerefs
[j
].zone
= NULL
;
2682 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2686 * Build gfp_thisnode zonelists
2688 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2691 struct zonelist
*zonelist
;
2693 zonelist
= &pgdat
->node_zonelists
[1];
2694 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2695 zonelist
->_zonerefs
[j
].zone
= NULL
;
2696 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2700 * Build zonelists ordered by zone and nodes within zones.
2701 * This results in conserving DMA zone[s] until all Normal memory is
2702 * exhausted, but results in overflowing to remote node while memory
2703 * may still exist in local DMA zone.
2705 static int node_order
[MAX_NUMNODES
];
2707 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2710 int zone_type
; /* needs to be signed */
2712 struct zonelist
*zonelist
;
2714 zonelist
= &pgdat
->node_zonelists
[0];
2716 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2717 for (j
= 0; j
< nr_nodes
; j
++) {
2718 node
= node_order
[j
];
2719 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2720 if (populated_zone(z
)) {
2722 &zonelist
->_zonerefs
[pos
++]);
2723 check_highest_zone(zone_type
);
2727 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2728 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2731 static int default_zonelist_order(void)
2734 unsigned long low_kmem_size
,total_size
;
2738 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2739 * If they are really small and used heavily, the system can fall
2740 * into OOM very easily.
2741 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2743 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2746 for_each_online_node(nid
) {
2747 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2748 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2749 if (populated_zone(z
)) {
2750 if (zone_type
< ZONE_NORMAL
)
2751 low_kmem_size
+= z
->present_pages
;
2752 total_size
+= z
->present_pages
;
2753 } else if (zone_type
== ZONE_NORMAL
) {
2755 * If any node has only lowmem, then node order
2756 * is preferred to allow kernel allocations
2757 * locally; otherwise, they can easily infringe
2758 * on other nodes when there is an abundance of
2759 * lowmem available to allocate from.
2761 return ZONELIST_ORDER_NODE
;
2765 if (!low_kmem_size
|| /* there are no DMA area. */
2766 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2767 return ZONELIST_ORDER_NODE
;
2769 * look into each node's config.
2770 * If there is a node whose DMA/DMA32 memory is very big area on
2771 * local memory, NODE_ORDER may be suitable.
2773 average_size
= total_size
/
2774 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2775 for_each_online_node(nid
) {
2778 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2779 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2780 if (populated_zone(z
)) {
2781 if (zone_type
< ZONE_NORMAL
)
2782 low_kmem_size
+= z
->present_pages
;
2783 total_size
+= z
->present_pages
;
2786 if (low_kmem_size
&&
2787 total_size
> average_size
&& /* ignore small node */
2788 low_kmem_size
> total_size
* 70/100)
2789 return ZONELIST_ORDER_NODE
;
2791 return ZONELIST_ORDER_ZONE
;
2794 static void set_zonelist_order(void)
2796 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2797 current_zonelist_order
= default_zonelist_order();
2799 current_zonelist_order
= user_zonelist_order
;
2802 static void build_zonelists(pg_data_t
*pgdat
)
2806 nodemask_t used_mask
;
2807 int local_node
, prev_node
;
2808 struct zonelist
*zonelist
;
2809 int order
= current_zonelist_order
;
2811 /* initialize zonelists */
2812 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2813 zonelist
= pgdat
->node_zonelists
+ i
;
2814 zonelist
->_zonerefs
[0].zone
= NULL
;
2815 zonelist
->_zonerefs
[0].zone_idx
= 0;
2818 /* NUMA-aware ordering of nodes */
2819 local_node
= pgdat
->node_id
;
2820 load
= nr_online_nodes
;
2821 prev_node
= local_node
;
2822 nodes_clear(used_mask
);
2824 memset(node_order
, 0, sizeof(node_order
));
2827 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2828 int distance
= node_distance(local_node
, node
);
2831 * If another node is sufficiently far away then it is better
2832 * to reclaim pages in a zone before going off node.
2834 if (distance
> RECLAIM_DISTANCE
)
2835 zone_reclaim_mode
= 1;
2838 * We don't want to pressure a particular node.
2839 * So adding penalty to the first node in same
2840 * distance group to make it round-robin.
2842 if (distance
!= node_distance(local_node
, prev_node
))
2843 node_load
[node
] = load
;
2847 if (order
== ZONELIST_ORDER_NODE
)
2848 build_zonelists_in_node_order(pgdat
, node
);
2850 node_order
[j
++] = node
; /* remember order */
2853 if (order
== ZONELIST_ORDER_ZONE
) {
2854 /* calculate node order -- i.e., DMA last! */
2855 build_zonelists_in_zone_order(pgdat
, j
);
2858 build_thisnode_zonelists(pgdat
);
2861 /* Construct the zonelist performance cache - see further mmzone.h */
2862 static void build_zonelist_cache(pg_data_t
*pgdat
)
2864 struct zonelist
*zonelist
;
2865 struct zonelist_cache
*zlc
;
2868 zonelist
= &pgdat
->node_zonelists
[0];
2869 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2870 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2871 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2872 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2875 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2877 * Return node id of node used for "local" allocations.
2878 * I.e., first node id of first zone in arg node's generic zonelist.
2879 * Used for initializing percpu 'numa_mem', which is used primarily
2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2882 int local_memory_node(int node
)
2886 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2887 gfp_zone(GFP_KERNEL
),
2894 #else /* CONFIG_NUMA */
2896 static void set_zonelist_order(void)
2898 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2901 static void build_zonelists(pg_data_t
*pgdat
)
2903 int node
, local_node
;
2905 struct zonelist
*zonelist
;
2907 local_node
= pgdat
->node_id
;
2909 zonelist
= &pgdat
->node_zonelists
[0];
2910 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2913 * Now we build the zonelist so that it contains the zones
2914 * of all the other nodes.
2915 * We don't want to pressure a particular node, so when
2916 * building the zones for node N, we make sure that the
2917 * zones coming right after the local ones are those from
2918 * node N+1 (modulo N)
2920 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2921 if (!node_online(node
))
2923 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2926 for (node
= 0; node
< local_node
; node
++) {
2927 if (!node_online(node
))
2929 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2933 zonelist
->_zonerefs
[j
].zone
= NULL
;
2934 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2938 static void build_zonelist_cache(pg_data_t
*pgdat
)
2940 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2943 #endif /* CONFIG_NUMA */
2946 * Boot pageset table. One per cpu which is going to be used for all
2947 * zones and all nodes. The parameters will be set in such a way
2948 * that an item put on a list will immediately be handed over to
2949 * the buddy list. This is safe since pageset manipulation is done
2950 * with interrupts disabled.
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2960 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
2961 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
2962 static void setup_zone_pageset(struct zone
*zone
);
2965 * Global mutex to protect against size modification of zonelists
2966 * as well as to serialize pageset setup for the new populated zone.
2968 DEFINE_MUTEX(zonelists_mutex
);
2970 /* return values int ....just for stop_machine() */
2971 static __init_refok
int __build_all_zonelists(void *data
)
2977 memset(node_load
, 0, sizeof(node_load
));
2979 for_each_online_node(nid
) {
2980 pg_data_t
*pgdat
= NODE_DATA(nid
);
2982 build_zonelists(pgdat
);
2983 build_zonelist_cache(pgdat
);
2986 #ifdef CONFIG_MEMORY_HOTPLUG
2987 /* Setup real pagesets for the new zone */
2989 struct zone
*zone
= data
;
2990 setup_zone_pageset(zone
);
2995 * Initialize the boot_pagesets that are going to be used
2996 * for bootstrapping processors. The real pagesets for
2997 * each zone will be allocated later when the per cpu
2998 * allocator is available.
3000 * boot_pagesets are used also for bootstrapping offline
3001 * cpus if the system is already booted because the pagesets
3002 * are needed to initialize allocators on a specific cpu too.
3003 * F.e. the percpu allocator needs the page allocator which
3004 * needs the percpu allocator in order to allocate its pagesets
3005 * (a chicken-egg dilemma).
3007 for_each_possible_cpu(cpu
) {
3008 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3010 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3012 * We now know the "local memory node" for each node--
3013 * i.e., the node of the first zone in the generic zonelist.
3014 * Set up numa_mem percpu variable for on-line cpus. During
3015 * boot, only the boot cpu should be on-line; we'll init the
3016 * secondary cpus' numa_mem as they come on-line. During
3017 * node/memory hotplug, we'll fixup all on-line cpus.
3019 if (cpu_online(cpu
))
3020 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3028 * Called with zonelists_mutex held always
3029 * unless system_state == SYSTEM_BOOTING.
3031 void build_all_zonelists(void *data
)
3033 set_zonelist_order();
3035 if (system_state
== SYSTEM_BOOTING
) {
3036 __build_all_zonelists(NULL
);
3037 mminit_verify_zonelist();
3038 cpuset_init_current_mems_allowed();
3040 /* we have to stop all cpus to guarantee there is no user
3042 stop_machine(__build_all_zonelists
, data
, NULL
);
3043 /* cpuset refresh routine should be here */
3045 vm_total_pages
= nr_free_pagecache_pages();
3047 * Disable grouping by mobility if the number of pages in the
3048 * system is too low to allow the mechanism to work. It would be
3049 * more accurate, but expensive to check per-zone. This check is
3050 * made on memory-hotadd so a system can start with mobility
3051 * disabled and enable it later
3053 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3054 page_group_by_mobility_disabled
= 1;
3056 page_group_by_mobility_disabled
= 0;
3058 printk("Built %i zonelists in %s order, mobility grouping %s. "
3059 "Total pages: %ld\n",
3061 zonelist_order_name
[current_zonelist_order
],
3062 page_group_by_mobility_disabled
? "off" : "on",
3065 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3070 * Helper functions to size the waitqueue hash table.
3071 * Essentially these want to choose hash table sizes sufficiently
3072 * large so that collisions trying to wait on pages are rare.
3073 * But in fact, the number of active page waitqueues on typical
3074 * systems is ridiculously low, less than 200. So this is even
3075 * conservative, even though it seems large.
3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078 * waitqueues, i.e. the size of the waitq table given the number of pages.
3080 #define PAGES_PER_WAITQUEUE 256
3082 #ifndef CONFIG_MEMORY_HOTPLUG
3083 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3085 unsigned long size
= 1;
3087 pages
/= PAGES_PER_WAITQUEUE
;
3089 while (size
< pages
)
3093 * Once we have dozens or even hundreds of threads sleeping
3094 * on IO we've got bigger problems than wait queue collision.
3095 * Limit the size of the wait table to a reasonable size.
3097 size
= min(size
, 4096UL);
3099 return max(size
, 4UL);
3103 * A zone's size might be changed by hot-add, so it is not possible to determine
3104 * a suitable size for its wait_table. So we use the maximum size now.
3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3108 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113 * or more by the traditional way. (See above). It equals:
3115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3116 * ia64(16K page size) : = ( 8G + 4M)byte.
3117 * powerpc (64K page size) : = (32G +16M)byte.
3119 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3126 * This is an integer logarithm so that shifts can be used later
3127 * to extract the more random high bits from the multiplicative
3128 * hash function before the remainder is taken.
3130 static inline unsigned long wait_table_bits(unsigned long size
)
3135 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3141 * higher will lead to a bigger reserve which will get freed as contiguous
3142 * blocks as reclaim kicks in
3144 static void setup_zone_migrate_reserve(struct zone
*zone
)
3146 unsigned long start_pfn
, pfn
, end_pfn
;
3148 unsigned long block_migratetype
;
3151 /* Get the start pfn, end pfn and the number of blocks to reserve */
3152 start_pfn
= zone
->zone_start_pfn
;
3153 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3154 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3158 * Reserve blocks are generally in place to help high-order atomic
3159 * allocations that are short-lived. A min_free_kbytes value that
3160 * would result in more than 2 reserve blocks for atomic allocations
3161 * is assumed to be in place to help anti-fragmentation for the
3162 * future allocation of hugepages at runtime.
3164 reserve
= min(2, reserve
);
3166 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3167 if (!pfn_valid(pfn
))
3169 page
= pfn_to_page(pfn
);
3171 /* Watch out for overlapping nodes */
3172 if (page_to_nid(page
) != zone_to_nid(zone
))
3175 /* Blocks with reserved pages will never free, skip them. */
3176 if (PageReserved(page
))
3179 block_migratetype
= get_pageblock_migratetype(page
);
3181 /* If this block is reserved, account for it */
3182 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3187 /* Suitable for reserving if this block is movable */
3188 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3189 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3190 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3196 * If the reserve is met and this is a previous reserved block,
3199 if (block_migratetype
== MIGRATE_RESERVE
) {
3200 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3201 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3207 * Initially all pages are reserved - free ones are freed
3208 * up by free_all_bootmem() once the early boot process is
3209 * done. Non-atomic initialization, single-pass.
3211 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3212 unsigned long start_pfn
, enum memmap_context context
)
3215 unsigned long end_pfn
= start_pfn
+ size
;
3219 if (highest_memmap_pfn
< end_pfn
- 1)
3220 highest_memmap_pfn
= end_pfn
- 1;
3222 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3223 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3225 * There can be holes in boot-time mem_map[]s
3226 * handed to this function. They do not
3227 * exist on hotplugged memory.
3229 if (context
== MEMMAP_EARLY
) {
3230 if (!early_pfn_valid(pfn
))
3232 if (!early_pfn_in_nid(pfn
, nid
))
3235 page
= pfn_to_page(pfn
);
3236 set_page_links(page
, zone
, nid
, pfn
);
3237 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3238 init_page_count(page
);
3239 reset_page_mapcount(page
);
3240 SetPageReserved(page
);
3242 * Mark the block movable so that blocks are reserved for
3243 * movable at startup. This will force kernel allocations
3244 * to reserve their blocks rather than leaking throughout
3245 * the address space during boot when many long-lived
3246 * kernel allocations are made. Later some blocks near
3247 * the start are marked MIGRATE_RESERVE by
3248 * setup_zone_migrate_reserve()
3250 * bitmap is created for zone's valid pfn range. but memmap
3251 * can be created for invalid pages (for alignment)
3252 * check here not to call set_pageblock_migratetype() against
3255 if ((z
->zone_start_pfn
<= pfn
)
3256 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3257 && !(pfn
& (pageblock_nr_pages
- 1)))
3258 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3260 INIT_LIST_HEAD(&page
->lru
);
3261 #ifdef WANT_PAGE_VIRTUAL
3262 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263 if (!is_highmem_idx(zone
))
3264 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3269 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3272 for_each_migratetype_order(order
, t
) {
3273 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3274 zone
->free_area
[order
].nr_free
= 0;
3278 #ifndef __HAVE_ARCH_MEMMAP_INIT
3279 #define memmap_init(size, nid, zone, start_pfn) \
3280 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3283 static int zone_batchsize(struct zone
*zone
)
3289 * The per-cpu-pages pools are set to around 1000th of the
3290 * size of the zone. But no more than 1/2 of a meg.
3292 * OK, so we don't know how big the cache is. So guess.
3294 batch
= zone
->present_pages
/ 1024;
3295 if (batch
* PAGE_SIZE
> 512 * 1024)
3296 batch
= (512 * 1024) / PAGE_SIZE
;
3297 batch
/= 4; /* We effectively *= 4 below */
3302 * Clamp the batch to a 2^n - 1 value. Having a power
3303 * of 2 value was found to be more likely to have
3304 * suboptimal cache aliasing properties in some cases.
3306 * For example if 2 tasks are alternately allocating
3307 * batches of pages, one task can end up with a lot
3308 * of pages of one half of the possible page colors
3309 * and the other with pages of the other colors.
3311 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3316 /* The deferral and batching of frees should be suppressed under NOMMU
3319 * The problem is that NOMMU needs to be able to allocate large chunks
3320 * of contiguous memory as there's no hardware page translation to
3321 * assemble apparent contiguous memory from discontiguous pages.
3323 * Queueing large contiguous runs of pages for batching, however,
3324 * causes the pages to actually be freed in smaller chunks. As there
3325 * can be a significant delay between the individual batches being
3326 * recycled, this leads to the once large chunks of space being
3327 * fragmented and becoming unavailable for high-order allocations.
3333 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3335 struct per_cpu_pages
*pcp
;
3338 memset(p
, 0, sizeof(*p
));
3342 pcp
->high
= 6 * batch
;
3343 pcp
->batch
= max(1UL, 1 * batch
);
3344 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3345 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350 * to the value high for the pageset p.
3353 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3356 struct per_cpu_pages
*pcp
;
3360 pcp
->batch
= max(1UL, high
/4);
3361 if ((high
/4) > (PAGE_SHIFT
* 8))
3362 pcp
->batch
= PAGE_SHIFT
* 8;
3365 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3369 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3371 for_each_possible_cpu(cpu
) {
3372 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3374 setup_pageset(pcp
, zone_batchsize(zone
));
3376 if (percpu_pagelist_fraction
)
3377 setup_pagelist_highmark(pcp
,
3378 (zone
->present_pages
/
3379 percpu_pagelist_fraction
));
3384 * Allocate per cpu pagesets and initialize them.
3385 * Before this call only boot pagesets were available.
3387 void __init
setup_per_cpu_pageset(void)
3391 for_each_populated_zone(zone
)
3392 setup_zone_pageset(zone
);
3395 static noinline __init_refok
3396 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3399 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3403 * The per-page waitqueue mechanism uses hashed waitqueues
3406 zone
->wait_table_hash_nr_entries
=
3407 wait_table_hash_nr_entries(zone_size_pages
);
3408 zone
->wait_table_bits
=
3409 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3410 alloc_size
= zone
->wait_table_hash_nr_entries
3411 * sizeof(wait_queue_head_t
);
3413 if (!slab_is_available()) {
3414 zone
->wait_table
= (wait_queue_head_t
*)
3415 alloc_bootmem_node(pgdat
, alloc_size
);
3418 * This case means that a zone whose size was 0 gets new memory
3419 * via memory hot-add.
3420 * But it may be the case that a new node was hot-added. In
3421 * this case vmalloc() will not be able to use this new node's
3422 * memory - this wait_table must be initialized to use this new
3423 * node itself as well.
3424 * To use this new node's memory, further consideration will be
3427 zone
->wait_table
= vmalloc(alloc_size
);
3429 if (!zone
->wait_table
)
3432 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3433 init_waitqueue_head(zone
->wait_table
+ i
);
3438 static int __zone_pcp_update(void *data
)
3440 struct zone
*zone
= data
;
3442 unsigned long batch
= zone_batchsize(zone
), flags
;
3444 for_each_possible_cpu(cpu
) {
3445 struct per_cpu_pageset
*pset
;
3446 struct per_cpu_pages
*pcp
;
3448 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3451 local_irq_save(flags
);
3452 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3453 setup_pageset(pset
, batch
);
3454 local_irq_restore(flags
);
3459 void zone_pcp_update(struct zone
*zone
)
3461 stop_machine(__zone_pcp_update
, zone
, NULL
);
3464 static __meminit
void zone_pcp_init(struct zone
*zone
)
3467 * per cpu subsystem is not up at this point. The following code
3468 * relies on the ability of the linker to provide the
3469 * offset of a (static) per cpu variable into the per cpu area.
3471 zone
->pageset
= &boot_pageset
;
3473 if (zone
->present_pages
)
3474 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3475 zone
->name
, zone
->present_pages
,
3476 zone_batchsize(zone
));
3479 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3480 unsigned long zone_start_pfn
,
3482 enum memmap_context context
)
3484 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3486 ret
= zone_wait_table_init(zone
, size
);
3489 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3491 zone
->zone_start_pfn
= zone_start_pfn
;
3493 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3494 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3496 (unsigned long)zone_idx(zone
),
3497 zone_start_pfn
, (zone_start_pfn
+ size
));
3499 zone_init_free_lists(zone
);
3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3506 * Basic iterator support. Return the first range of PFNs for a node
3507 * Note: nid == MAX_NUMNODES returns first region regardless of node
3509 static int __meminit
first_active_region_index_in_nid(int nid
)
3513 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3514 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3521 * Basic iterator support. Return the next active range of PFNs for a node
3522 * Note: nid == MAX_NUMNODES returns next region regardless of node
3524 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3526 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3527 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536 * Architectures may implement their own version but if add_active_range()
3537 * was used and there are no special requirements, this is a convenient
3540 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3544 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3545 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3546 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3548 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3549 return early_node_map
[i
].nid
;
3551 /* This is a memory hole */
3554 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3556 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3560 nid
= __early_pfn_to_nid(pfn
);
3563 /* just returns 0 */
3567 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3572 nid
= __early_pfn_to_nid(pfn
);
3573 if (nid
>= 0 && nid
!= node
)
3579 /* Basic iterator support to walk early_node_map[] */
3580 #define for_each_active_range_index_in_nid(i, nid) \
3581 for (i = first_active_region_index_in_nid(nid); i != -1; \
3582 i = next_active_region_index_in_nid(i, nid))
3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3589 * If an architecture guarantees that all ranges registered with
3590 * add_active_ranges() contain no holes and may be freed, this
3591 * this function may be used instead of calling free_bootmem() manually.
3593 void __init
free_bootmem_with_active_regions(int nid
,
3594 unsigned long max_low_pfn
)
3598 for_each_active_range_index_in_nid(i
, nid
) {
3599 unsigned long size_pages
= 0;
3600 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3602 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3605 if (end_pfn
> max_low_pfn
)
3606 end_pfn
= max_low_pfn
;
3608 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3609 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3610 PFN_PHYS(early_node_map
[i
].start_pfn
),
3611 size_pages
<< PAGE_SHIFT
);
3615 int __init
add_from_early_node_map(struct range
*range
, int az
,
3616 int nr_range
, int nid
)
3621 /* need to go over early_node_map to find out good range for node */
3622 for_each_active_range_index_in_nid(i
, nid
) {
3623 start
= early_node_map
[i
].start_pfn
;
3624 end
= early_node_map
[i
].end_pfn
;
3625 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3630 #ifdef CONFIG_NO_BOOTMEM
3631 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3632 u64 goal
, u64 limit
)
3637 /* need to go over early_node_map to find out good range for node */
3638 for_each_active_range_index_in_nid(i
, nid
) {
3640 u64 ei_start
, ei_last
;
3642 ei_last
= early_node_map
[i
].end_pfn
;
3643 ei_last
<<= PAGE_SHIFT
;
3644 ei_start
= early_node_map
[i
].start_pfn
;
3645 ei_start
<<= PAGE_SHIFT
;
3646 addr
= find_early_area(ei_start
, ei_last
,
3647 goal
, limit
, size
, align
);
3653 printk(KERN_DEBUG
"alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3655 ei_start
, ei_last
, goal
, limit
, size
,
3659 ptr
= phys_to_virt(addr
);
3660 memset(ptr
, 0, size
);
3661 reserve_early_without_check(addr
, addr
+ size
, "BOOTMEM");
3670 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3675 for_each_active_range_index_in_nid(i
, nid
) {
3676 ret
= work_fn(early_node_map
[i
].start_pfn
,
3677 early_node_map
[i
].end_pfn
, data
);
3683 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3684 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3686 * If an architecture guarantees that all ranges registered with
3687 * add_active_ranges() contain no holes and may be freed, this
3688 * function may be used instead of calling memory_present() manually.
3690 void __init
sparse_memory_present_with_active_regions(int nid
)
3694 for_each_active_range_index_in_nid(i
, nid
)
3695 memory_present(early_node_map
[i
].nid
,
3696 early_node_map
[i
].start_pfn
,
3697 early_node_map
[i
].end_pfn
);
3701 * get_pfn_range_for_nid - Return the start and end page frames for a node
3702 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3703 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3704 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3706 * It returns the start and end page frame of a node based on information
3707 * provided by an arch calling add_active_range(). If called for a node
3708 * with no available memory, a warning is printed and the start and end
3711 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3712 unsigned long *start_pfn
, unsigned long *end_pfn
)
3718 for_each_active_range_index_in_nid(i
, nid
) {
3719 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3720 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3723 if (*start_pfn
== -1UL)
3728 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3729 * assumption is made that zones within a node are ordered in monotonic
3730 * increasing memory addresses so that the "highest" populated zone is used
3732 static void __init
find_usable_zone_for_movable(void)
3735 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3736 if (zone_index
== ZONE_MOVABLE
)
3739 if (arch_zone_highest_possible_pfn
[zone_index
] >
3740 arch_zone_lowest_possible_pfn
[zone_index
])
3744 VM_BUG_ON(zone_index
== -1);
3745 movable_zone
= zone_index
;
3749 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3750 * because it is sized independant of architecture. Unlike the other zones,
3751 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3752 * in each node depending on the size of each node and how evenly kernelcore
3753 * is distributed. This helper function adjusts the zone ranges
3754 * provided by the architecture for a given node by using the end of the
3755 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3756 * zones within a node are in order of monotonic increases memory addresses
3758 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3759 unsigned long zone_type
,
3760 unsigned long node_start_pfn
,
3761 unsigned long node_end_pfn
,
3762 unsigned long *zone_start_pfn
,
3763 unsigned long *zone_end_pfn
)
3765 /* Only adjust if ZONE_MOVABLE is on this node */
3766 if (zone_movable_pfn
[nid
]) {
3767 /* Size ZONE_MOVABLE */
3768 if (zone_type
== ZONE_MOVABLE
) {
3769 *zone_start_pfn
= zone_movable_pfn
[nid
];
3770 *zone_end_pfn
= min(node_end_pfn
,
3771 arch_zone_highest_possible_pfn
[movable_zone
]);
3773 /* Adjust for ZONE_MOVABLE starting within this range */
3774 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3775 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3776 *zone_end_pfn
= zone_movable_pfn
[nid
];
3778 /* Check if this whole range is within ZONE_MOVABLE */
3779 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3780 *zone_start_pfn
= *zone_end_pfn
;
3785 * Return the number of pages a zone spans in a node, including holes
3786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3788 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3789 unsigned long zone_type
,
3790 unsigned long *ignored
)
3792 unsigned long node_start_pfn
, node_end_pfn
;
3793 unsigned long zone_start_pfn
, zone_end_pfn
;
3795 /* Get the start and end of the node and zone */
3796 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3797 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3798 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3799 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3800 node_start_pfn
, node_end_pfn
,
3801 &zone_start_pfn
, &zone_end_pfn
);
3803 /* Check that this node has pages within the zone's required range */
3804 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3807 /* Move the zone boundaries inside the node if necessary */
3808 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3809 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3811 /* Return the spanned pages */
3812 return zone_end_pfn
- zone_start_pfn
;
3816 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3817 * then all holes in the requested range will be accounted for.
3819 unsigned long __meminit
__absent_pages_in_range(int nid
,
3820 unsigned long range_start_pfn
,
3821 unsigned long range_end_pfn
)
3824 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3825 unsigned long start_pfn
;
3827 /* Find the end_pfn of the first active range of pfns in the node */
3828 i
= first_active_region_index_in_nid(nid
);
3832 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3834 /* Account for ranges before physical memory on this node */
3835 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3836 hole_pages
= prev_end_pfn
- range_start_pfn
;
3838 /* Find all holes for the zone within the node */
3839 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3841 /* No need to continue if prev_end_pfn is outside the zone */
3842 if (prev_end_pfn
>= range_end_pfn
)
3845 /* Make sure the end of the zone is not within the hole */
3846 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3847 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3849 /* Update the hole size cound and move on */
3850 if (start_pfn
> range_start_pfn
) {
3851 BUG_ON(prev_end_pfn
> start_pfn
);
3852 hole_pages
+= start_pfn
- prev_end_pfn
;
3854 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3857 /* Account for ranges past physical memory on this node */
3858 if (range_end_pfn
> prev_end_pfn
)
3859 hole_pages
+= range_end_pfn
-
3860 max(range_start_pfn
, prev_end_pfn
);
3866 * absent_pages_in_range - Return number of page frames in holes within a range
3867 * @start_pfn: The start PFN to start searching for holes
3868 * @end_pfn: The end PFN to stop searching for holes
3870 * It returns the number of pages frames in memory holes within a range.
3872 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3873 unsigned long end_pfn
)
3875 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3878 /* Return the number of page frames in holes in a zone on a node */
3879 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3880 unsigned long zone_type
,
3881 unsigned long *ignored
)
3883 unsigned long node_start_pfn
, node_end_pfn
;
3884 unsigned long zone_start_pfn
, zone_end_pfn
;
3886 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3887 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3889 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3892 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3893 node_start_pfn
, node_end_pfn
,
3894 &zone_start_pfn
, &zone_end_pfn
);
3895 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3899 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3900 unsigned long zone_type
,
3901 unsigned long *zones_size
)
3903 return zones_size
[zone_type
];
3906 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3907 unsigned long zone_type
,
3908 unsigned long *zholes_size
)
3913 return zholes_size
[zone_type
];
3918 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3919 unsigned long *zones_size
, unsigned long *zholes_size
)
3921 unsigned long realtotalpages
, totalpages
= 0;
3924 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3925 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3927 pgdat
->node_spanned_pages
= totalpages
;
3929 realtotalpages
= totalpages
;
3930 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3932 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3934 pgdat
->node_present_pages
= realtotalpages
;
3935 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3939 #ifndef CONFIG_SPARSEMEM
3941 * Calculate the size of the zone->blockflags rounded to an unsigned long
3942 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3943 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3944 * round what is now in bits to nearest long in bits, then return it in
3947 static unsigned long __init
usemap_size(unsigned long zonesize
)
3949 unsigned long usemapsize
;
3951 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3952 usemapsize
= usemapsize
>> pageblock_order
;
3953 usemapsize
*= NR_PAGEBLOCK_BITS
;
3954 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3956 return usemapsize
/ 8;
3959 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3960 struct zone
*zone
, unsigned long zonesize
)
3962 unsigned long usemapsize
= usemap_size(zonesize
);
3963 zone
->pageblock_flags
= NULL
;
3965 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3968 static void inline setup_usemap(struct pglist_data
*pgdat
,
3969 struct zone
*zone
, unsigned long zonesize
) {}
3970 #endif /* CONFIG_SPARSEMEM */
3972 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3974 /* Return a sensible default order for the pageblock size. */
3975 static inline int pageblock_default_order(void)
3977 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3978 return HUGETLB_PAGE_ORDER
;
3983 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3984 static inline void __init
set_pageblock_order(unsigned int order
)
3986 /* Check that pageblock_nr_pages has not already been setup */
3987 if (pageblock_order
)
3991 * Assume the largest contiguous order of interest is a huge page.
3992 * This value may be variable depending on boot parameters on IA64
3994 pageblock_order
= order
;
3996 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3999 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4000 * and pageblock_default_order() are unused as pageblock_order is set
4001 * at compile-time. See include/linux/pageblock-flags.h for the values of
4002 * pageblock_order based on the kernel config
4004 static inline int pageblock_default_order(unsigned int order
)
4008 #define set_pageblock_order(x) do {} while (0)
4010 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4013 * Set up the zone data structures:
4014 * - mark all pages reserved
4015 * - mark all memory queues empty
4016 * - clear the memory bitmaps
4018 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4019 unsigned long *zones_size
, unsigned long *zholes_size
)
4022 int nid
= pgdat
->node_id
;
4023 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4026 pgdat_resize_init(pgdat
);
4027 pgdat
->nr_zones
= 0;
4028 init_waitqueue_head(&pgdat
->kswapd_wait
);
4029 pgdat
->kswapd_max_order
= 0;
4030 pgdat_page_cgroup_init(pgdat
);
4032 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4033 struct zone
*zone
= pgdat
->node_zones
+ j
;
4034 unsigned long size
, realsize
, memmap_pages
;
4037 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4038 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4042 * Adjust realsize so that it accounts for how much memory
4043 * is used by this zone for memmap. This affects the watermark
4044 * and per-cpu initialisations
4047 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4048 if (realsize
>= memmap_pages
) {
4049 realsize
-= memmap_pages
;
4052 " %s zone: %lu pages used for memmap\n",
4053 zone_names
[j
], memmap_pages
);
4056 " %s zone: %lu pages exceeds realsize %lu\n",
4057 zone_names
[j
], memmap_pages
, realsize
);
4059 /* Account for reserved pages */
4060 if (j
== 0 && realsize
> dma_reserve
) {
4061 realsize
-= dma_reserve
;
4062 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4063 zone_names
[0], dma_reserve
);
4066 if (!is_highmem_idx(j
))
4067 nr_kernel_pages
+= realsize
;
4068 nr_all_pages
+= realsize
;
4070 zone
->spanned_pages
= size
;
4071 zone
->present_pages
= realsize
;
4074 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4076 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4078 zone
->name
= zone_names
[j
];
4079 spin_lock_init(&zone
->lock
);
4080 spin_lock_init(&zone
->lru_lock
);
4081 zone_seqlock_init(zone
);
4082 zone
->zone_pgdat
= pgdat
;
4084 zone
->prev_priority
= DEF_PRIORITY
;
4086 zone_pcp_init(zone
);
4088 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4089 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4091 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4092 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4093 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4094 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4095 zap_zone_vm_stats(zone
);
4100 set_pageblock_order(pageblock_default_order());
4101 setup_usemap(pgdat
, zone
, size
);
4102 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4103 size
, MEMMAP_EARLY
);
4105 memmap_init(size
, nid
, j
, zone_start_pfn
);
4106 zone_start_pfn
+= size
;
4110 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4112 /* Skip empty nodes */
4113 if (!pgdat
->node_spanned_pages
)
4116 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4117 /* ia64 gets its own node_mem_map, before this, without bootmem */
4118 if (!pgdat
->node_mem_map
) {
4119 unsigned long size
, start
, end
;
4123 * The zone's endpoints aren't required to be MAX_ORDER
4124 * aligned but the node_mem_map endpoints must be in order
4125 * for the buddy allocator to function correctly.
4127 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4128 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4129 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4130 size
= (end
- start
) * sizeof(struct page
);
4131 map
= alloc_remap(pgdat
->node_id
, size
);
4133 map
= alloc_bootmem_node(pgdat
, size
);
4134 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4136 #ifndef CONFIG_NEED_MULTIPLE_NODES
4138 * With no DISCONTIG, the global mem_map is just set as node 0's
4140 if (pgdat
== NODE_DATA(0)) {
4141 mem_map
= NODE_DATA(0)->node_mem_map
;
4142 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4143 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4144 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4145 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4148 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4151 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4152 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4154 pg_data_t
*pgdat
= NODE_DATA(nid
);
4156 pgdat
->node_id
= nid
;
4157 pgdat
->node_start_pfn
= node_start_pfn
;
4158 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4160 alloc_node_mem_map(pgdat
);
4161 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4162 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4163 nid
, (unsigned long)pgdat
,
4164 (unsigned long)pgdat
->node_mem_map
);
4167 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4170 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4172 #if MAX_NUMNODES > 1
4174 * Figure out the number of possible node ids.
4176 static void __init
setup_nr_node_ids(void)
4179 unsigned int highest
= 0;
4181 for_each_node_mask(node
, node_possible_map
)
4183 nr_node_ids
= highest
+ 1;
4186 static inline void setup_nr_node_ids(void)
4192 * add_active_range - Register a range of PFNs backed by physical memory
4193 * @nid: The node ID the range resides on
4194 * @start_pfn: The start PFN of the available physical memory
4195 * @end_pfn: The end PFN of the available physical memory
4197 * These ranges are stored in an early_node_map[] and later used by
4198 * free_area_init_nodes() to calculate zone sizes and holes. If the
4199 * range spans a memory hole, it is up to the architecture to ensure
4200 * the memory is not freed by the bootmem allocator. If possible
4201 * the range being registered will be merged with existing ranges.
4203 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4204 unsigned long end_pfn
)
4208 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4209 "Entering add_active_range(%d, %#lx, %#lx) "
4210 "%d entries of %d used\n",
4211 nid
, start_pfn
, end_pfn
,
4212 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4214 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4216 /* Merge with existing active regions if possible */
4217 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4218 if (early_node_map
[i
].nid
!= nid
)
4221 /* Skip if an existing region covers this new one */
4222 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4223 end_pfn
<= early_node_map
[i
].end_pfn
)
4226 /* Merge forward if suitable */
4227 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4228 end_pfn
> early_node_map
[i
].end_pfn
) {
4229 early_node_map
[i
].end_pfn
= end_pfn
;
4233 /* Merge backward if suitable */
4234 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4235 end_pfn
>= early_node_map
[i
].start_pfn
) {
4236 early_node_map
[i
].start_pfn
= start_pfn
;
4241 /* Check that early_node_map is large enough */
4242 if (i
>= MAX_ACTIVE_REGIONS
) {
4243 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4244 MAX_ACTIVE_REGIONS
);
4248 early_node_map
[i
].nid
= nid
;
4249 early_node_map
[i
].start_pfn
= start_pfn
;
4250 early_node_map
[i
].end_pfn
= end_pfn
;
4251 nr_nodemap_entries
= i
+ 1;
4255 * remove_active_range - Shrink an existing registered range of PFNs
4256 * @nid: The node id the range is on that should be shrunk
4257 * @start_pfn: The new PFN of the range
4258 * @end_pfn: The new PFN of the range
4260 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4261 * The map is kept near the end physical page range that has already been
4262 * registered. This function allows an arch to shrink an existing registered
4265 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4266 unsigned long end_pfn
)
4271 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4272 nid
, start_pfn
, end_pfn
);
4274 /* Find the old active region end and shrink */
4275 for_each_active_range_index_in_nid(i
, nid
) {
4276 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4277 early_node_map
[i
].end_pfn
<= end_pfn
) {
4279 early_node_map
[i
].start_pfn
= 0;
4280 early_node_map
[i
].end_pfn
= 0;
4284 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4285 early_node_map
[i
].end_pfn
> start_pfn
) {
4286 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4287 early_node_map
[i
].end_pfn
= start_pfn
;
4288 if (temp_end_pfn
> end_pfn
)
4289 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4292 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4293 early_node_map
[i
].end_pfn
> end_pfn
&&
4294 early_node_map
[i
].start_pfn
< end_pfn
) {
4295 early_node_map
[i
].start_pfn
= end_pfn
;
4303 /* remove the blank ones */
4304 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4305 if (early_node_map
[i
].nid
!= nid
)
4307 if (early_node_map
[i
].end_pfn
)
4309 /* we found it, get rid of it */
4310 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4311 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4312 sizeof(early_node_map
[j
]));
4313 j
= nr_nodemap_entries
- 1;
4314 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4315 nr_nodemap_entries
--;
4320 * remove_all_active_ranges - Remove all currently registered regions
4322 * During discovery, it may be found that a table like SRAT is invalid
4323 * and an alternative discovery method must be used. This function removes
4324 * all currently registered regions.
4326 void __init
remove_all_active_ranges(void)
4328 memset(early_node_map
, 0, sizeof(early_node_map
));
4329 nr_nodemap_entries
= 0;
4332 /* Compare two active node_active_regions */
4333 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4335 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4336 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4338 /* Done this way to avoid overflows */
4339 if (arange
->start_pfn
> brange
->start_pfn
)
4341 if (arange
->start_pfn
< brange
->start_pfn
)
4347 /* sort the node_map by start_pfn */
4348 void __init
sort_node_map(void)
4350 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4351 sizeof(struct node_active_region
),
4352 cmp_node_active_region
, NULL
);
4355 /* Find the lowest pfn for a node */
4356 static unsigned long __init
find_min_pfn_for_node(int nid
)
4359 unsigned long min_pfn
= ULONG_MAX
;
4361 /* Assuming a sorted map, the first range found has the starting pfn */
4362 for_each_active_range_index_in_nid(i
, nid
)
4363 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4365 if (min_pfn
== ULONG_MAX
) {
4367 "Could not find start_pfn for node %d\n", nid
);
4375 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4377 * It returns the minimum PFN based on information provided via
4378 * add_active_range().
4380 unsigned long __init
find_min_pfn_with_active_regions(void)
4382 return find_min_pfn_for_node(MAX_NUMNODES
);
4386 * early_calculate_totalpages()
4387 * Sum pages in active regions for movable zone.
4388 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4390 static unsigned long __init
early_calculate_totalpages(void)
4393 unsigned long totalpages
= 0;
4395 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4396 unsigned long pages
= early_node_map
[i
].end_pfn
-
4397 early_node_map
[i
].start_pfn
;
4398 totalpages
+= pages
;
4400 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4406 * Find the PFN the Movable zone begins in each node. Kernel memory
4407 * is spread evenly between nodes as long as the nodes have enough
4408 * memory. When they don't, some nodes will have more kernelcore than
4411 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4414 unsigned long usable_startpfn
;
4415 unsigned long kernelcore_node
, kernelcore_remaining
;
4416 /* save the state before borrow the nodemask */
4417 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4418 unsigned long totalpages
= early_calculate_totalpages();
4419 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4422 * If movablecore was specified, calculate what size of
4423 * kernelcore that corresponds so that memory usable for
4424 * any allocation type is evenly spread. If both kernelcore
4425 * and movablecore are specified, then the value of kernelcore
4426 * will be used for required_kernelcore if it's greater than
4427 * what movablecore would have allowed.
4429 if (required_movablecore
) {
4430 unsigned long corepages
;
4433 * Round-up so that ZONE_MOVABLE is at least as large as what
4434 * was requested by the user
4436 required_movablecore
=
4437 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4438 corepages
= totalpages
- required_movablecore
;
4440 required_kernelcore
= max(required_kernelcore
, corepages
);
4443 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4444 if (!required_kernelcore
)
4447 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4448 find_usable_zone_for_movable();
4449 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4452 /* Spread kernelcore memory as evenly as possible throughout nodes */
4453 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4454 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4456 * Recalculate kernelcore_node if the division per node
4457 * now exceeds what is necessary to satisfy the requested
4458 * amount of memory for the kernel
4460 if (required_kernelcore
< kernelcore_node
)
4461 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4464 * As the map is walked, we track how much memory is usable
4465 * by the kernel using kernelcore_remaining. When it is
4466 * 0, the rest of the node is usable by ZONE_MOVABLE
4468 kernelcore_remaining
= kernelcore_node
;
4470 /* Go through each range of PFNs within this node */
4471 for_each_active_range_index_in_nid(i
, nid
) {
4472 unsigned long start_pfn
, end_pfn
;
4473 unsigned long size_pages
;
4475 start_pfn
= max(early_node_map
[i
].start_pfn
,
4476 zone_movable_pfn
[nid
]);
4477 end_pfn
= early_node_map
[i
].end_pfn
;
4478 if (start_pfn
>= end_pfn
)
4481 /* Account for what is only usable for kernelcore */
4482 if (start_pfn
< usable_startpfn
) {
4483 unsigned long kernel_pages
;
4484 kernel_pages
= min(end_pfn
, usable_startpfn
)
4487 kernelcore_remaining
-= min(kernel_pages
,
4488 kernelcore_remaining
);
4489 required_kernelcore
-= min(kernel_pages
,
4490 required_kernelcore
);
4492 /* Continue if range is now fully accounted */
4493 if (end_pfn
<= usable_startpfn
) {
4496 * Push zone_movable_pfn to the end so
4497 * that if we have to rebalance
4498 * kernelcore across nodes, we will
4499 * not double account here
4501 zone_movable_pfn
[nid
] = end_pfn
;
4504 start_pfn
= usable_startpfn
;
4508 * The usable PFN range for ZONE_MOVABLE is from
4509 * start_pfn->end_pfn. Calculate size_pages as the
4510 * number of pages used as kernelcore
4512 size_pages
= end_pfn
- start_pfn
;
4513 if (size_pages
> kernelcore_remaining
)
4514 size_pages
= kernelcore_remaining
;
4515 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4518 * Some kernelcore has been met, update counts and
4519 * break if the kernelcore for this node has been
4522 required_kernelcore
-= min(required_kernelcore
,
4524 kernelcore_remaining
-= size_pages
;
4525 if (!kernelcore_remaining
)
4531 * If there is still required_kernelcore, we do another pass with one
4532 * less node in the count. This will push zone_movable_pfn[nid] further
4533 * along on the nodes that still have memory until kernelcore is
4537 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4540 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4541 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4542 zone_movable_pfn
[nid
] =
4543 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4546 /* restore the node_state */
4547 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4550 /* Any regular memory on that node ? */
4551 static void check_for_regular_memory(pg_data_t
*pgdat
)
4553 #ifdef CONFIG_HIGHMEM
4554 enum zone_type zone_type
;
4556 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4557 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4558 if (zone
->present_pages
)
4559 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4565 * free_area_init_nodes - Initialise all pg_data_t and zone data
4566 * @max_zone_pfn: an array of max PFNs for each zone
4568 * This will call free_area_init_node() for each active node in the system.
4569 * Using the page ranges provided by add_active_range(), the size of each
4570 * zone in each node and their holes is calculated. If the maximum PFN
4571 * between two adjacent zones match, it is assumed that the zone is empty.
4572 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4573 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4574 * starts where the previous one ended. For example, ZONE_DMA32 starts
4575 * at arch_max_dma_pfn.
4577 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4582 /* Sort early_node_map as initialisation assumes it is sorted */
4585 /* Record where the zone boundaries are */
4586 memset(arch_zone_lowest_possible_pfn
, 0,
4587 sizeof(arch_zone_lowest_possible_pfn
));
4588 memset(arch_zone_highest_possible_pfn
, 0,
4589 sizeof(arch_zone_highest_possible_pfn
));
4590 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4591 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4592 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4593 if (i
== ZONE_MOVABLE
)
4595 arch_zone_lowest_possible_pfn
[i
] =
4596 arch_zone_highest_possible_pfn
[i
-1];
4597 arch_zone_highest_possible_pfn
[i
] =
4598 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4600 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4601 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4603 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4604 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4605 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4607 /* Print out the zone ranges */
4608 printk("Zone PFN ranges:\n");
4609 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4610 if (i
== ZONE_MOVABLE
)
4612 printk(" %-8s ", zone_names
[i
]);
4613 if (arch_zone_lowest_possible_pfn
[i
] ==
4614 arch_zone_highest_possible_pfn
[i
])
4617 printk("%0#10lx -> %0#10lx\n",
4618 arch_zone_lowest_possible_pfn
[i
],
4619 arch_zone_highest_possible_pfn
[i
]);
4622 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4623 printk("Movable zone start PFN for each node\n");
4624 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4625 if (zone_movable_pfn
[i
])
4626 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4629 /* Print out the early_node_map[] */
4630 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4631 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4632 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4633 early_node_map
[i
].start_pfn
,
4634 early_node_map
[i
].end_pfn
);
4636 /* Initialise every node */
4637 mminit_verify_pageflags_layout();
4638 setup_nr_node_ids();
4639 for_each_online_node(nid
) {
4640 pg_data_t
*pgdat
= NODE_DATA(nid
);
4641 free_area_init_node(nid
, NULL
,
4642 find_min_pfn_for_node(nid
), NULL
);
4644 /* Any memory on that node */
4645 if (pgdat
->node_present_pages
)
4646 node_set_state(nid
, N_HIGH_MEMORY
);
4647 check_for_regular_memory(pgdat
);
4651 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4653 unsigned long long coremem
;
4657 coremem
= memparse(p
, &p
);
4658 *core
= coremem
>> PAGE_SHIFT
;
4660 /* Paranoid check that UL is enough for the coremem value */
4661 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4667 * kernelcore=size sets the amount of memory for use for allocations that
4668 * cannot be reclaimed or migrated.
4670 static int __init
cmdline_parse_kernelcore(char *p
)
4672 return cmdline_parse_core(p
, &required_kernelcore
);
4676 * movablecore=size sets the amount of memory for use for allocations that
4677 * can be reclaimed or migrated.
4679 static int __init
cmdline_parse_movablecore(char *p
)
4681 return cmdline_parse_core(p
, &required_movablecore
);
4684 early_param("kernelcore", cmdline_parse_kernelcore
);
4685 early_param("movablecore", cmdline_parse_movablecore
);
4687 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4690 * set_dma_reserve - set the specified number of pages reserved in the first zone
4691 * @new_dma_reserve: The number of pages to mark reserved
4693 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4694 * In the DMA zone, a significant percentage may be consumed by kernel image
4695 * and other unfreeable allocations which can skew the watermarks badly. This
4696 * function may optionally be used to account for unfreeable pages in the
4697 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4698 * smaller per-cpu batchsize.
4700 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4702 dma_reserve
= new_dma_reserve
;
4705 #ifndef CONFIG_NEED_MULTIPLE_NODES
4706 struct pglist_data __refdata contig_page_data
= {
4707 #ifndef CONFIG_NO_BOOTMEM
4708 .bdata
= &bootmem_node_data
[0]
4711 EXPORT_SYMBOL(contig_page_data
);
4714 void __init
free_area_init(unsigned long *zones_size
)
4716 free_area_init_node(0, zones_size
,
4717 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4720 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4721 unsigned long action
, void *hcpu
)
4723 int cpu
= (unsigned long)hcpu
;
4725 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4729 * Spill the event counters of the dead processor
4730 * into the current processors event counters.
4731 * This artificially elevates the count of the current
4734 vm_events_fold_cpu(cpu
);
4737 * Zero the differential counters of the dead processor
4738 * so that the vm statistics are consistent.
4740 * This is only okay since the processor is dead and cannot
4741 * race with what we are doing.
4743 refresh_cpu_vm_stats(cpu
);
4748 void __init
page_alloc_init(void)
4750 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4754 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4755 * or min_free_kbytes changes.
4757 static void calculate_totalreserve_pages(void)
4759 struct pglist_data
*pgdat
;
4760 unsigned long reserve_pages
= 0;
4761 enum zone_type i
, j
;
4763 for_each_online_pgdat(pgdat
) {
4764 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4765 struct zone
*zone
= pgdat
->node_zones
+ i
;
4766 unsigned long max
= 0;
4768 /* Find valid and maximum lowmem_reserve in the zone */
4769 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4770 if (zone
->lowmem_reserve
[j
] > max
)
4771 max
= zone
->lowmem_reserve
[j
];
4774 /* we treat the high watermark as reserved pages. */
4775 max
+= high_wmark_pages(zone
);
4777 if (max
> zone
->present_pages
)
4778 max
= zone
->present_pages
;
4779 reserve_pages
+= max
;
4782 totalreserve_pages
= reserve_pages
;
4786 * setup_per_zone_lowmem_reserve - called whenever
4787 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4788 * has a correct pages reserved value, so an adequate number of
4789 * pages are left in the zone after a successful __alloc_pages().
4791 static void setup_per_zone_lowmem_reserve(void)
4793 struct pglist_data
*pgdat
;
4794 enum zone_type j
, idx
;
4796 for_each_online_pgdat(pgdat
) {
4797 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4798 struct zone
*zone
= pgdat
->node_zones
+ j
;
4799 unsigned long present_pages
= zone
->present_pages
;
4801 zone
->lowmem_reserve
[j
] = 0;
4805 struct zone
*lower_zone
;
4809 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4810 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4812 lower_zone
= pgdat
->node_zones
+ idx
;
4813 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4814 sysctl_lowmem_reserve_ratio
[idx
];
4815 present_pages
+= lower_zone
->present_pages
;
4820 /* update totalreserve_pages */
4821 calculate_totalreserve_pages();
4825 * setup_per_zone_wmarks - called when min_free_kbytes changes
4826 * or when memory is hot-{added|removed}
4828 * Ensures that the watermark[min,low,high] values for each zone are set
4829 * correctly with respect to min_free_kbytes.
4831 void setup_per_zone_wmarks(void)
4833 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4834 unsigned long lowmem_pages
= 0;
4836 unsigned long flags
;
4838 /* Calculate total number of !ZONE_HIGHMEM pages */
4839 for_each_zone(zone
) {
4840 if (!is_highmem(zone
))
4841 lowmem_pages
+= zone
->present_pages
;
4844 for_each_zone(zone
) {
4847 spin_lock_irqsave(&zone
->lock
, flags
);
4848 tmp
= (u64
)pages_min
* zone
->present_pages
;
4849 do_div(tmp
, lowmem_pages
);
4850 if (is_highmem(zone
)) {
4852 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4853 * need highmem pages, so cap pages_min to a small
4856 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4857 * deltas controls asynch page reclaim, and so should
4858 * not be capped for highmem.
4862 min_pages
= zone
->present_pages
/ 1024;
4863 if (min_pages
< SWAP_CLUSTER_MAX
)
4864 min_pages
= SWAP_CLUSTER_MAX
;
4865 if (min_pages
> 128)
4867 zone
->watermark
[WMARK_MIN
] = min_pages
;
4870 * If it's a lowmem zone, reserve a number of pages
4871 * proportionate to the zone's size.
4873 zone
->watermark
[WMARK_MIN
] = tmp
;
4876 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4877 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4878 setup_zone_migrate_reserve(zone
);
4879 spin_unlock_irqrestore(&zone
->lock
, flags
);
4882 /* update totalreserve_pages */
4883 calculate_totalreserve_pages();
4887 * The inactive anon list should be small enough that the VM never has to
4888 * do too much work, but large enough that each inactive page has a chance
4889 * to be referenced again before it is swapped out.
4891 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4892 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4893 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4894 * the anonymous pages are kept on the inactive list.
4897 * memory ratio inactive anon
4898 * -------------------------------------
4907 void calculate_zone_inactive_ratio(struct zone
*zone
)
4909 unsigned int gb
, ratio
;
4911 /* Zone size in gigabytes */
4912 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4914 ratio
= int_sqrt(10 * gb
);
4918 zone
->inactive_ratio
= ratio
;
4921 static void __init
setup_per_zone_inactive_ratio(void)
4926 calculate_zone_inactive_ratio(zone
);
4930 * Initialise min_free_kbytes.
4932 * For small machines we want it small (128k min). For large machines
4933 * we want it large (64MB max). But it is not linear, because network
4934 * bandwidth does not increase linearly with machine size. We use
4936 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4937 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4953 static int __init
init_per_zone_wmark_min(void)
4955 unsigned long lowmem_kbytes
;
4957 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4959 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4960 if (min_free_kbytes
< 128)
4961 min_free_kbytes
= 128;
4962 if (min_free_kbytes
> 65536)
4963 min_free_kbytes
= 65536;
4964 setup_per_zone_wmarks();
4965 setup_per_zone_lowmem_reserve();
4966 setup_per_zone_inactive_ratio();
4969 module_init(init_per_zone_wmark_min
)
4972 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4973 * that we can call two helper functions whenever min_free_kbytes
4976 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4977 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4979 proc_dointvec(table
, write
, buffer
, length
, ppos
);
4981 setup_per_zone_wmarks();
4986 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4987 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4992 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4997 zone
->min_unmapped_pages
= (zone
->present_pages
*
4998 sysctl_min_unmapped_ratio
) / 100;
5002 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5003 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5008 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5013 zone
->min_slab_pages
= (zone
->present_pages
*
5014 sysctl_min_slab_ratio
) / 100;
5020 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5021 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5022 * whenever sysctl_lowmem_reserve_ratio changes.
5024 * The reserve ratio obviously has absolutely no relation with the
5025 * minimum watermarks. The lowmem reserve ratio can only make sense
5026 * if in function of the boot time zone sizes.
5028 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5029 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5031 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5032 setup_per_zone_lowmem_reserve();
5037 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5038 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5039 * can have before it gets flushed back to buddy allocator.
5042 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5043 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5049 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5050 if (!write
|| (ret
== -EINVAL
))
5052 for_each_populated_zone(zone
) {
5053 for_each_possible_cpu(cpu
) {
5055 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5056 setup_pagelist_highmark(
5057 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5063 int hashdist
= HASHDIST_DEFAULT
;
5066 static int __init
set_hashdist(char *str
)
5070 hashdist
= simple_strtoul(str
, &str
, 0);
5073 __setup("hashdist=", set_hashdist
);
5077 * allocate a large system hash table from bootmem
5078 * - it is assumed that the hash table must contain an exact power-of-2
5079 * quantity of entries
5080 * - limit is the number of hash buckets, not the total allocation size
5082 void *__init
alloc_large_system_hash(const char *tablename
,
5083 unsigned long bucketsize
,
5084 unsigned long numentries
,
5087 unsigned int *_hash_shift
,
5088 unsigned int *_hash_mask
,
5089 unsigned long limit
)
5091 unsigned long long max
= limit
;
5092 unsigned long log2qty
, size
;
5095 /* allow the kernel cmdline to have a say */
5097 /* round applicable memory size up to nearest megabyte */
5098 numentries
= nr_kernel_pages
;
5099 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5100 numentries
>>= 20 - PAGE_SHIFT
;
5101 numentries
<<= 20 - PAGE_SHIFT
;
5103 /* limit to 1 bucket per 2^scale bytes of low memory */
5104 if (scale
> PAGE_SHIFT
)
5105 numentries
>>= (scale
- PAGE_SHIFT
);
5107 numentries
<<= (PAGE_SHIFT
- scale
);
5109 /* Make sure we've got at least a 0-order allocation.. */
5110 if (unlikely(flags
& HASH_SMALL
)) {
5111 /* Makes no sense without HASH_EARLY */
5112 WARN_ON(!(flags
& HASH_EARLY
));
5113 if (!(numentries
>> *_hash_shift
)) {
5114 numentries
= 1UL << *_hash_shift
;
5115 BUG_ON(!numentries
);
5117 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5118 numentries
= PAGE_SIZE
/ bucketsize
;
5120 numentries
= roundup_pow_of_two(numentries
);
5122 /* limit allocation size to 1/16 total memory by default */
5124 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5125 do_div(max
, bucketsize
);
5128 if (numentries
> max
)
5131 log2qty
= ilog2(numentries
);
5134 size
= bucketsize
<< log2qty
;
5135 if (flags
& HASH_EARLY
)
5136 table
= alloc_bootmem_nopanic(size
);
5138 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5141 * If bucketsize is not a power-of-two, we may free
5142 * some pages at the end of hash table which
5143 * alloc_pages_exact() automatically does
5145 if (get_order(size
) < MAX_ORDER
) {
5146 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5147 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5150 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5153 panic("Failed to allocate %s hash table\n", tablename
);
5155 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
5158 ilog2(size
) - PAGE_SHIFT
,
5162 *_hash_shift
= log2qty
;
5164 *_hash_mask
= (1 << log2qty
) - 1;
5169 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5170 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5173 #ifdef CONFIG_SPARSEMEM
5174 return __pfn_to_section(pfn
)->pageblock_flags
;
5176 return zone
->pageblock_flags
;
5177 #endif /* CONFIG_SPARSEMEM */
5180 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5182 #ifdef CONFIG_SPARSEMEM
5183 pfn
&= (PAGES_PER_SECTION
-1);
5184 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5186 pfn
= pfn
- zone
->zone_start_pfn
;
5187 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5188 #endif /* CONFIG_SPARSEMEM */
5192 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5193 * @page: The page within the block of interest
5194 * @start_bitidx: The first bit of interest to retrieve
5195 * @end_bitidx: The last bit of interest
5196 * returns pageblock_bits flags
5198 unsigned long get_pageblock_flags_group(struct page
*page
,
5199 int start_bitidx
, int end_bitidx
)
5202 unsigned long *bitmap
;
5203 unsigned long pfn
, bitidx
;
5204 unsigned long flags
= 0;
5205 unsigned long value
= 1;
5207 zone
= page_zone(page
);
5208 pfn
= page_to_pfn(page
);
5209 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5210 bitidx
= pfn_to_bitidx(zone
, pfn
);
5212 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5213 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5220 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5221 * @page: The page within the block of interest
5222 * @start_bitidx: The first bit of interest
5223 * @end_bitidx: The last bit of interest
5224 * @flags: The flags to set
5226 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5227 int start_bitidx
, int end_bitidx
)
5230 unsigned long *bitmap
;
5231 unsigned long pfn
, bitidx
;
5232 unsigned long value
= 1;
5234 zone
= page_zone(page
);
5235 pfn
= page_to_pfn(page
);
5236 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5237 bitidx
= pfn_to_bitidx(zone
, pfn
);
5238 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5239 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5241 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5243 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5245 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5249 * This is designed as sub function...plz see page_isolation.c also.
5250 * set/clear page block's type to be ISOLATE.
5251 * page allocater never alloc memory from ISOLATE block.
5254 int set_migratetype_isolate(struct page
*page
)
5257 struct page
*curr_page
;
5258 unsigned long flags
, pfn
, iter
;
5259 unsigned long immobile
= 0;
5260 struct memory_isolate_notify arg
;
5265 zone
= page_zone(page
);
5266 zone_idx
= zone_idx(zone
);
5268 spin_lock_irqsave(&zone
->lock
, flags
);
5269 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
||
5270 zone_idx
== ZONE_MOVABLE
) {
5275 pfn
= page_to_pfn(page
);
5276 arg
.start_pfn
= pfn
;
5277 arg
.nr_pages
= pageblock_nr_pages
;
5278 arg
.pages_found
= 0;
5281 * It may be possible to isolate a pageblock even if the
5282 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5283 * notifier chain is used by balloon drivers to return the
5284 * number of pages in a range that are held by the balloon
5285 * driver to shrink memory. If all the pages are accounted for
5286 * by balloons, are free, or on the LRU, isolation can continue.
5287 * Later, for example, when memory hotplug notifier runs, these
5288 * pages reported as "can be isolated" should be isolated(freed)
5289 * by the balloon driver through the memory notifier chain.
5291 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5292 notifier_ret
= notifier_to_errno(notifier_ret
);
5293 if (notifier_ret
|| !arg
.pages_found
)
5296 for (iter
= pfn
; iter
< (pfn
+ pageblock_nr_pages
); iter
++) {
5297 if (!pfn_valid_within(pfn
))
5300 curr_page
= pfn_to_page(iter
);
5301 if (!page_count(curr_page
) || PageLRU(curr_page
))
5307 if (arg
.pages_found
== immobile
)
5312 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5313 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5316 spin_unlock_irqrestore(&zone
->lock
, flags
);
5322 void unset_migratetype_isolate(struct page
*page
)
5325 unsigned long flags
;
5326 zone
= page_zone(page
);
5327 spin_lock_irqsave(&zone
->lock
, flags
);
5328 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5330 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5331 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5333 spin_unlock_irqrestore(&zone
->lock
, flags
);
5336 #ifdef CONFIG_MEMORY_HOTREMOVE
5338 * All pages in the range must be isolated before calling this.
5341 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5347 unsigned long flags
;
5348 /* find the first valid pfn */
5349 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5354 zone
= page_zone(pfn_to_page(pfn
));
5355 spin_lock_irqsave(&zone
->lock
, flags
);
5357 while (pfn
< end_pfn
) {
5358 if (!pfn_valid(pfn
)) {
5362 page
= pfn_to_page(pfn
);
5363 BUG_ON(page_count(page
));
5364 BUG_ON(!PageBuddy(page
));
5365 order
= page_order(page
);
5366 #ifdef CONFIG_DEBUG_VM
5367 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5368 pfn
, 1 << order
, end_pfn
);
5370 list_del(&page
->lru
);
5371 rmv_page_order(page
);
5372 zone
->free_area
[order
].nr_free
--;
5373 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5375 for (i
= 0; i
< (1 << order
); i
++)
5376 SetPageReserved((page
+i
));
5377 pfn
+= (1 << order
);
5379 spin_unlock_irqrestore(&zone
->lock
, flags
);
5383 #ifdef CONFIG_MEMORY_FAILURE
5384 bool is_free_buddy_page(struct page
*page
)
5386 struct zone
*zone
= page_zone(page
);
5387 unsigned long pfn
= page_to_pfn(page
);
5388 unsigned long flags
;
5391 spin_lock_irqsave(&zone
->lock
, flags
);
5392 for (order
= 0; order
< MAX_ORDER
; order
++) {
5393 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5395 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5398 spin_unlock_irqrestore(&zone
->lock
, flags
);
5400 return order
< MAX_ORDER
;
5404 static struct trace_print_flags pageflag_names
[] = {
5405 {1UL << PG_locked
, "locked" },
5406 {1UL << PG_error
, "error" },
5407 {1UL << PG_referenced
, "referenced" },
5408 {1UL << PG_uptodate
, "uptodate" },
5409 {1UL << PG_dirty
, "dirty" },
5410 {1UL << PG_lru
, "lru" },
5411 {1UL << PG_active
, "active" },
5412 {1UL << PG_slab
, "slab" },
5413 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5414 {1UL << PG_arch_1
, "arch_1" },
5415 {1UL << PG_reserved
, "reserved" },
5416 {1UL << PG_private
, "private" },
5417 {1UL << PG_private_2
, "private_2" },
5418 {1UL << PG_writeback
, "writeback" },
5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5420 {1UL << PG_head
, "head" },
5421 {1UL << PG_tail
, "tail" },
5423 {1UL << PG_compound
, "compound" },
5425 {1UL << PG_swapcache
, "swapcache" },
5426 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5427 {1UL << PG_reclaim
, "reclaim" },
5428 {1UL << PG_buddy
, "buddy" },
5429 {1UL << PG_swapbacked
, "swapbacked" },
5430 {1UL << PG_unevictable
, "unevictable" },
5432 {1UL << PG_mlocked
, "mlocked" },
5434 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5435 {1UL << PG_uncached
, "uncached" },
5437 #ifdef CONFIG_MEMORY_FAILURE
5438 {1UL << PG_hwpoison
, "hwpoison" },
5443 static void dump_page_flags(unsigned long flags
)
5445 const char *delim
= "";
5449 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5451 /* remove zone id */
5452 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5454 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5456 mask
= pageflag_names
[i
].mask
;
5457 if ((flags
& mask
) != mask
)
5461 printk("%s%s", delim
, pageflag_names
[i
].name
);
5465 /* check for left over flags */
5467 printk("%s%#lx", delim
, flags
);
5472 void dump_page(struct page
*page
)
5475 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5476 page
, page_count(page
), page_mapcount(page
),
5477 page
->mapping
, page
->index
);
5478 dump_page_flags(page
->flags
);