2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 /* We do our best to align skb_shared_info on a separate cache
188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
189 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
190 * Both skb->head and skb_shared_info are cache line aligned.
192 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
193 data
= kmalloc_node_track_caller(size
, gfp_mask
, node
);
196 /* kmalloc(size) might give us more room than requested.
197 * Put skb_shared_info exactly at the end of allocated zone,
198 * to allow max possible filling before reallocation.
200 size
= SKB_WITH_OVERHEAD(ksize(data
));
201 prefetchw(data
+ size
);
204 * Only clear those fields we need to clear, not those that we will
205 * actually initialise below. Hence, don't put any more fields after
206 * the tail pointer in struct sk_buff!
208 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
209 /* Account for allocated memory : skb + skb->head */
210 skb
->truesize
= SKB_TRUESIZE(size
);
211 atomic_set(&skb
->users
, 1);
214 skb_reset_tail_pointer(skb
);
215 skb
->end
= skb
->tail
+ size
;
216 #ifdef NET_SKBUFF_DATA_USES_OFFSET
217 skb
->mac_header
= ~0U;
220 /* make sure we initialize shinfo sequentially */
221 shinfo
= skb_shinfo(skb
);
222 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
223 atomic_set(&shinfo
->dataref
, 1);
224 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
227 struct sk_buff
*child
= skb
+ 1;
228 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
230 kmemcheck_annotate_bitfield(child
, flags1
);
231 kmemcheck_annotate_bitfield(child
, flags2
);
232 skb
->fclone
= SKB_FCLONE_ORIG
;
233 atomic_set(fclone_ref
, 1);
235 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
240 kmem_cache_free(cache
, skb
);
244 EXPORT_SYMBOL(__alloc_skb
);
247 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
248 * @dev: network device to receive on
249 * @length: length to allocate
250 * @gfp_mask: get_free_pages mask, passed to alloc_skb
252 * Allocate a new &sk_buff and assign it a usage count of one. The
253 * buffer has unspecified headroom built in. Users should allocate
254 * the headroom they think they need without accounting for the
255 * built in space. The built in space is used for optimisations.
257 * %NULL is returned if there is no free memory.
259 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
260 unsigned int length
, gfp_t gfp_mask
)
264 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
266 skb_reserve(skb
, NET_SKB_PAD
);
271 EXPORT_SYMBOL(__netdev_alloc_skb
);
273 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
276 skb_fill_page_desc(skb
, i
, page
, off
, size
);
278 skb
->data_len
+= size
;
279 skb
->truesize
+= size
;
281 EXPORT_SYMBOL(skb_add_rx_frag
);
284 * dev_alloc_skb - allocate an skbuff for receiving
285 * @length: length to allocate
287 * Allocate a new &sk_buff and assign it a usage count of one. The
288 * buffer has unspecified headroom built in. Users should allocate
289 * the headroom they think they need without accounting for the
290 * built in space. The built in space is used for optimisations.
292 * %NULL is returned if there is no free memory. Although this function
293 * allocates memory it can be called from an interrupt.
295 struct sk_buff
*dev_alloc_skb(unsigned int length
)
298 * There is more code here than it seems:
299 * __dev_alloc_skb is an inline
301 return __dev_alloc_skb(length
, GFP_ATOMIC
);
303 EXPORT_SYMBOL(dev_alloc_skb
);
305 static void skb_drop_list(struct sk_buff
**listp
)
307 struct sk_buff
*list
= *listp
;
312 struct sk_buff
*this = list
;
318 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
320 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
323 static void skb_clone_fraglist(struct sk_buff
*skb
)
325 struct sk_buff
*list
;
327 skb_walk_frags(skb
, list
)
331 static void skb_release_data(struct sk_buff
*skb
)
334 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
335 &skb_shinfo(skb
)->dataref
)) {
336 if (skb_shinfo(skb
)->nr_frags
) {
338 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
339 skb_frag_unref(skb
, i
);
343 * If skb buf is from userspace, we need to notify the caller
344 * the lower device DMA has done;
346 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
347 struct ubuf_info
*uarg
;
349 uarg
= skb_shinfo(skb
)->destructor_arg
;
351 uarg
->callback(uarg
);
354 if (skb_has_frag_list(skb
))
355 skb_drop_fraglist(skb
);
362 * Free an skbuff by memory without cleaning the state.
364 static void kfree_skbmem(struct sk_buff
*skb
)
366 struct sk_buff
*other
;
367 atomic_t
*fclone_ref
;
369 switch (skb
->fclone
) {
370 case SKB_FCLONE_UNAVAILABLE
:
371 kmem_cache_free(skbuff_head_cache
, skb
);
374 case SKB_FCLONE_ORIG
:
375 fclone_ref
= (atomic_t
*) (skb
+ 2);
376 if (atomic_dec_and_test(fclone_ref
))
377 kmem_cache_free(skbuff_fclone_cache
, skb
);
380 case SKB_FCLONE_CLONE
:
381 fclone_ref
= (atomic_t
*) (skb
+ 1);
384 /* The clone portion is available for
385 * fast-cloning again.
387 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
389 if (atomic_dec_and_test(fclone_ref
))
390 kmem_cache_free(skbuff_fclone_cache
, other
);
395 static void skb_release_head_state(struct sk_buff
*skb
)
399 secpath_put(skb
->sp
);
401 if (skb
->destructor
) {
403 skb
->destructor(skb
);
405 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
406 nf_conntrack_put(skb
->nfct
);
408 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
409 nf_conntrack_put_reasm(skb
->nfct_reasm
);
411 #ifdef CONFIG_BRIDGE_NETFILTER
412 nf_bridge_put(skb
->nf_bridge
);
414 /* XXX: IS this still necessary? - JHS */
415 #ifdef CONFIG_NET_SCHED
417 #ifdef CONFIG_NET_CLS_ACT
423 /* Free everything but the sk_buff shell. */
424 static void skb_release_all(struct sk_buff
*skb
)
426 skb_release_head_state(skb
);
427 skb_release_data(skb
);
431 * __kfree_skb - private function
434 * Free an sk_buff. Release anything attached to the buffer.
435 * Clean the state. This is an internal helper function. Users should
436 * always call kfree_skb
439 void __kfree_skb(struct sk_buff
*skb
)
441 skb_release_all(skb
);
444 EXPORT_SYMBOL(__kfree_skb
);
447 * kfree_skb - free an sk_buff
448 * @skb: buffer to free
450 * Drop a reference to the buffer and free it if the usage count has
453 void kfree_skb(struct sk_buff
*skb
)
457 if (likely(atomic_read(&skb
->users
) == 1))
459 else if (likely(!atomic_dec_and_test(&skb
->users
)))
461 trace_kfree_skb(skb
, __builtin_return_address(0));
464 EXPORT_SYMBOL(kfree_skb
);
467 * consume_skb - free an skbuff
468 * @skb: buffer to free
470 * Drop a ref to the buffer and free it if the usage count has hit zero
471 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
472 * is being dropped after a failure and notes that
474 void consume_skb(struct sk_buff
*skb
)
478 if (likely(atomic_read(&skb
->users
) == 1))
480 else if (likely(!atomic_dec_and_test(&skb
->users
)))
482 trace_consume_skb(skb
);
485 EXPORT_SYMBOL(consume_skb
);
488 * skb_recycle - clean up an skb for reuse
491 * Recycles the skb to be reused as a receive buffer. This
492 * function does any necessary reference count dropping, and
493 * cleans up the skbuff as if it just came from __alloc_skb().
495 void skb_recycle(struct sk_buff
*skb
)
497 struct skb_shared_info
*shinfo
;
499 skb_release_head_state(skb
);
501 shinfo
= skb_shinfo(skb
);
502 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
503 atomic_set(&shinfo
->dataref
, 1);
505 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
506 skb
->data
= skb
->head
+ NET_SKB_PAD
;
507 skb_reset_tail_pointer(skb
);
509 EXPORT_SYMBOL(skb_recycle
);
512 * skb_recycle_check - check if skb can be reused for receive
514 * @skb_size: minimum receive buffer size
516 * Checks that the skb passed in is not shared or cloned, and
517 * that it is linear and its head portion at least as large as
518 * skb_size so that it can be recycled as a receive buffer.
519 * If these conditions are met, this function does any necessary
520 * reference count dropping and cleans up the skbuff as if it
521 * just came from __alloc_skb().
523 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
525 if (!skb_is_recycleable(skb
, skb_size
))
532 EXPORT_SYMBOL(skb_recycle_check
);
534 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
536 new->tstamp
= old
->tstamp
;
538 new->transport_header
= old
->transport_header
;
539 new->network_header
= old
->network_header
;
540 new->mac_header
= old
->mac_header
;
541 skb_dst_copy(new, old
);
542 new->rxhash
= old
->rxhash
;
543 new->ooo_okay
= old
->ooo_okay
;
544 new->l4_rxhash
= old
->l4_rxhash
;
546 new->sp
= secpath_get(old
->sp
);
548 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
549 new->csum
= old
->csum
;
550 new->local_df
= old
->local_df
;
551 new->pkt_type
= old
->pkt_type
;
552 new->ip_summed
= old
->ip_summed
;
553 skb_copy_queue_mapping(new, old
);
554 new->priority
= old
->priority
;
555 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
556 new->ipvs_property
= old
->ipvs_property
;
558 new->protocol
= old
->protocol
;
559 new->mark
= old
->mark
;
560 new->skb_iif
= old
->skb_iif
;
562 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
563 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
564 new->nf_trace
= old
->nf_trace
;
566 #ifdef CONFIG_NET_SCHED
567 new->tc_index
= old
->tc_index
;
568 #ifdef CONFIG_NET_CLS_ACT
569 new->tc_verd
= old
->tc_verd
;
572 new->vlan_tci
= old
->vlan_tci
;
574 skb_copy_secmark(new, old
);
578 * You should not add any new code to this function. Add it to
579 * __copy_skb_header above instead.
581 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
583 #define C(x) n->x = skb->x
585 n
->next
= n
->prev
= NULL
;
587 __copy_skb_header(n
, skb
);
592 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
595 n
->destructor
= NULL
;
601 atomic_set(&n
->users
, 1);
603 atomic_inc(&(skb_shinfo(skb
)->dataref
));
611 * skb_morph - morph one skb into another
612 * @dst: the skb to receive the contents
613 * @src: the skb to supply the contents
615 * This is identical to skb_clone except that the target skb is
616 * supplied by the user.
618 * The target skb is returned upon exit.
620 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
622 skb_release_all(dst
);
623 return __skb_clone(dst
, src
);
625 EXPORT_SYMBOL_GPL(skb_morph
);
627 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
628 * @skb: the skb to modify
629 * @gfp_mask: allocation priority
631 * This must be called on SKBTX_DEV_ZEROCOPY skb.
632 * It will copy all frags into kernel and drop the reference
633 * to userspace pages.
635 * If this function is called from an interrupt gfp_mask() must be
638 * Returns 0 on success or a negative error code on failure
639 * to allocate kernel memory to copy to.
641 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
644 int num_frags
= skb_shinfo(skb
)->nr_frags
;
645 struct page
*page
, *head
= NULL
;
646 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
648 for (i
= 0; i
< num_frags
; i
++) {
650 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
652 page
= alloc_page(GFP_ATOMIC
);
655 struct page
*next
= (struct page
*)head
->private;
661 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
662 memcpy(page_address(page
),
663 vaddr
+ f
->page_offset
, skb_frag_size(f
));
664 kunmap_skb_frag(vaddr
);
665 page
->private = (unsigned long)head
;
669 /* skb frags release userspace buffers */
670 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
671 skb_frag_unref(skb
, i
);
673 uarg
->callback(uarg
);
675 /* skb frags point to kernel buffers */
676 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
677 __skb_fill_page_desc(skb
, i
-1, head
, 0,
678 skb_shinfo(skb
)->frags
[i
- 1].size
);
679 head
= (struct page
*)head
->private;
682 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
688 * skb_clone - duplicate an sk_buff
689 * @skb: buffer to clone
690 * @gfp_mask: allocation priority
692 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
693 * copies share the same packet data but not structure. The new
694 * buffer has a reference count of 1. If the allocation fails the
695 * function returns %NULL otherwise the new buffer is returned.
697 * If this function is called from an interrupt gfp_mask() must be
701 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
705 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
706 if (skb_copy_ubufs(skb
, gfp_mask
))
711 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
712 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
713 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
714 n
->fclone
= SKB_FCLONE_CLONE
;
715 atomic_inc(fclone_ref
);
717 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
721 kmemcheck_annotate_bitfield(n
, flags1
);
722 kmemcheck_annotate_bitfield(n
, flags2
);
723 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
726 return __skb_clone(n
, skb
);
728 EXPORT_SYMBOL(skb_clone
);
730 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
732 #ifndef NET_SKBUFF_DATA_USES_OFFSET
734 * Shift between the two data areas in bytes
736 unsigned long offset
= new->data
- old
->data
;
739 __copy_skb_header(new, old
);
741 #ifndef NET_SKBUFF_DATA_USES_OFFSET
742 /* {transport,network,mac}_header are relative to skb->head */
743 new->transport_header
+= offset
;
744 new->network_header
+= offset
;
745 if (skb_mac_header_was_set(new))
746 new->mac_header
+= offset
;
748 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
749 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
750 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
754 * skb_copy - create private copy of an sk_buff
755 * @skb: buffer to copy
756 * @gfp_mask: allocation priority
758 * Make a copy of both an &sk_buff and its data. This is used when the
759 * caller wishes to modify the data and needs a private copy of the
760 * data to alter. Returns %NULL on failure or the pointer to the buffer
761 * on success. The returned buffer has a reference count of 1.
763 * As by-product this function converts non-linear &sk_buff to linear
764 * one, so that &sk_buff becomes completely private and caller is allowed
765 * to modify all the data of returned buffer. This means that this
766 * function is not recommended for use in circumstances when only
767 * header is going to be modified. Use pskb_copy() instead.
770 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
772 int headerlen
= skb_headroom(skb
);
773 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
774 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
779 /* Set the data pointer */
780 skb_reserve(n
, headerlen
);
781 /* Set the tail pointer and length */
782 skb_put(n
, skb
->len
);
784 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
787 copy_skb_header(n
, skb
);
790 EXPORT_SYMBOL(skb_copy
);
793 * pskb_copy - create copy of an sk_buff with private head.
794 * @skb: buffer to copy
795 * @gfp_mask: allocation priority
797 * Make a copy of both an &sk_buff and part of its data, located
798 * in header. Fragmented data remain shared. This is used when
799 * the caller wishes to modify only header of &sk_buff and needs
800 * private copy of the header to alter. Returns %NULL on failure
801 * or the pointer to the buffer on success.
802 * The returned buffer has a reference count of 1.
805 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
807 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
808 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
813 /* Set the data pointer */
814 skb_reserve(n
, skb_headroom(skb
));
815 /* Set the tail pointer and length */
816 skb_put(n
, skb_headlen(skb
));
818 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
820 n
->truesize
+= skb
->data_len
;
821 n
->data_len
= skb
->data_len
;
824 if (skb_shinfo(skb
)->nr_frags
) {
827 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
828 if (skb_copy_ubufs(skb
, gfp_mask
)) {
834 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
835 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
836 skb_frag_ref(skb
, i
);
838 skb_shinfo(n
)->nr_frags
= i
;
841 if (skb_has_frag_list(skb
)) {
842 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
843 skb_clone_fraglist(n
);
846 copy_skb_header(n
, skb
);
850 EXPORT_SYMBOL(pskb_copy
);
853 * pskb_expand_head - reallocate header of &sk_buff
854 * @skb: buffer to reallocate
855 * @nhead: room to add at head
856 * @ntail: room to add at tail
857 * @gfp_mask: allocation priority
859 * Expands (or creates identical copy, if &nhead and &ntail are zero)
860 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
861 * reference count of 1. Returns zero in the case of success or error,
862 * if expansion failed. In the last case, &sk_buff is not changed.
864 * All the pointers pointing into skb header may change and must be
865 * reloaded after call to this function.
868 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
873 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
882 size
= SKB_DATA_ALIGN(size
);
884 /* Check if we can avoid taking references on fragments if we own
885 * the last reference on skb->head. (see skb_release_data())
890 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
891 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
895 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
896 memmove(skb
->head
+ size
, skb_shinfo(skb
),
897 offsetof(struct skb_shared_info
,
898 frags
[skb_shinfo(skb
)->nr_frags
]));
899 memmove(skb
->head
+ nhead
, skb
->head
,
900 skb_tail_pointer(skb
) - skb
->head
);
905 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
909 /* Copy only real data... and, alas, header. This should be
910 * optimized for the cases when header is void.
912 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
914 memcpy((struct skb_shared_info
*)(data
+ size
),
916 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
921 /* copy this zero copy skb frags */
922 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
923 if (skb_copy_ubufs(skb
, gfp_mask
))
926 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
927 skb_frag_ref(skb
, i
);
929 if (skb_has_frag_list(skb
))
930 skb_clone_fraglist(skb
);
932 skb_release_data(skb
);
934 off
= (data
+ nhead
) - skb
->head
;
939 #ifdef NET_SKBUFF_DATA_USES_OFFSET
943 skb
->end
= skb
->head
+ size
;
945 /* {transport,network,mac}_header and tail are relative to skb->head */
947 skb
->transport_header
+= off
;
948 skb
->network_header
+= off
;
949 if (skb_mac_header_was_set(skb
))
950 skb
->mac_header
+= off
;
951 /* Only adjust this if it actually is csum_start rather than csum */
952 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
953 skb
->csum_start
+= nhead
;
957 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
965 EXPORT_SYMBOL(pskb_expand_head
);
967 /* Make private copy of skb with writable head and some headroom */
969 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
971 struct sk_buff
*skb2
;
972 int delta
= headroom
- skb_headroom(skb
);
975 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
977 skb2
= skb_clone(skb
, GFP_ATOMIC
);
978 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
986 EXPORT_SYMBOL(skb_realloc_headroom
);
989 * skb_copy_expand - copy and expand sk_buff
990 * @skb: buffer to copy
991 * @newheadroom: new free bytes at head
992 * @newtailroom: new free bytes at tail
993 * @gfp_mask: allocation priority
995 * Make a copy of both an &sk_buff and its data and while doing so
996 * allocate additional space.
998 * This is used when the caller wishes to modify the data and needs a
999 * private copy of the data to alter as well as more space for new fields.
1000 * Returns %NULL on failure or the pointer to the buffer
1001 * on success. The returned buffer has a reference count of 1.
1003 * You must pass %GFP_ATOMIC as the allocation priority if this function
1004 * is called from an interrupt.
1006 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1007 int newheadroom
, int newtailroom
,
1011 * Allocate the copy buffer
1013 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1015 int oldheadroom
= skb_headroom(skb
);
1016 int head_copy_len
, head_copy_off
;
1022 skb_reserve(n
, newheadroom
);
1024 /* Set the tail pointer and length */
1025 skb_put(n
, skb
->len
);
1027 head_copy_len
= oldheadroom
;
1029 if (newheadroom
<= head_copy_len
)
1030 head_copy_len
= newheadroom
;
1032 head_copy_off
= newheadroom
- head_copy_len
;
1034 /* Copy the linear header and data. */
1035 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1036 skb
->len
+ head_copy_len
))
1039 copy_skb_header(n
, skb
);
1041 off
= newheadroom
- oldheadroom
;
1042 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1043 n
->csum_start
+= off
;
1044 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1045 n
->transport_header
+= off
;
1046 n
->network_header
+= off
;
1047 if (skb_mac_header_was_set(skb
))
1048 n
->mac_header
+= off
;
1053 EXPORT_SYMBOL(skb_copy_expand
);
1056 * skb_pad - zero pad the tail of an skb
1057 * @skb: buffer to pad
1058 * @pad: space to pad
1060 * Ensure that a buffer is followed by a padding area that is zero
1061 * filled. Used by network drivers which may DMA or transfer data
1062 * beyond the buffer end onto the wire.
1064 * May return error in out of memory cases. The skb is freed on error.
1067 int skb_pad(struct sk_buff
*skb
, int pad
)
1072 /* If the skbuff is non linear tailroom is always zero.. */
1073 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1074 memset(skb
->data
+skb
->len
, 0, pad
);
1078 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1079 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1080 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1085 /* FIXME: The use of this function with non-linear skb's really needs
1088 err
= skb_linearize(skb
);
1092 memset(skb
->data
+ skb
->len
, 0, pad
);
1099 EXPORT_SYMBOL(skb_pad
);
1102 * skb_put - add data to a buffer
1103 * @skb: buffer to use
1104 * @len: amount of data to add
1106 * This function extends the used data area of the buffer. If this would
1107 * exceed the total buffer size the kernel will panic. A pointer to the
1108 * first byte of the extra data is returned.
1110 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1112 unsigned char *tmp
= skb_tail_pointer(skb
);
1113 SKB_LINEAR_ASSERT(skb
);
1116 if (unlikely(skb
->tail
> skb
->end
))
1117 skb_over_panic(skb
, len
, __builtin_return_address(0));
1120 EXPORT_SYMBOL(skb_put
);
1123 * skb_push - add data to the start of a buffer
1124 * @skb: buffer to use
1125 * @len: amount of data to add
1127 * This function extends the used data area of the buffer at the buffer
1128 * start. If this would exceed the total buffer headroom the kernel will
1129 * panic. A pointer to the first byte of the extra data is returned.
1131 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1135 if (unlikely(skb
->data
<skb
->head
))
1136 skb_under_panic(skb
, len
, __builtin_return_address(0));
1139 EXPORT_SYMBOL(skb_push
);
1142 * skb_pull - remove data from the start of a buffer
1143 * @skb: buffer to use
1144 * @len: amount of data to remove
1146 * This function removes data from the start of a buffer, returning
1147 * the memory to the headroom. A pointer to the next data in the buffer
1148 * is returned. Once the data has been pulled future pushes will overwrite
1151 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1153 return skb_pull_inline(skb
, len
);
1155 EXPORT_SYMBOL(skb_pull
);
1158 * skb_trim - remove end from a buffer
1159 * @skb: buffer to alter
1162 * Cut the length of a buffer down by removing data from the tail. If
1163 * the buffer is already under the length specified it is not modified.
1164 * The skb must be linear.
1166 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1169 __skb_trim(skb
, len
);
1171 EXPORT_SYMBOL(skb_trim
);
1173 /* Trims skb to length len. It can change skb pointers.
1176 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1178 struct sk_buff
**fragp
;
1179 struct sk_buff
*frag
;
1180 int offset
= skb_headlen(skb
);
1181 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1185 if (skb_cloned(skb
) &&
1186 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1193 for (; i
< nfrags
; i
++) {
1194 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1201 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1204 skb_shinfo(skb
)->nr_frags
= i
;
1206 for (; i
< nfrags
; i
++)
1207 skb_frag_unref(skb
, i
);
1209 if (skb_has_frag_list(skb
))
1210 skb_drop_fraglist(skb
);
1214 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1215 fragp
= &frag
->next
) {
1216 int end
= offset
+ frag
->len
;
1218 if (skb_shared(frag
)) {
1219 struct sk_buff
*nfrag
;
1221 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1222 if (unlikely(!nfrag
))
1225 nfrag
->next
= frag
->next
;
1237 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1241 skb_drop_list(&frag
->next
);
1246 if (len
> skb_headlen(skb
)) {
1247 skb
->data_len
-= skb
->len
- len
;
1252 skb_set_tail_pointer(skb
, len
);
1257 EXPORT_SYMBOL(___pskb_trim
);
1260 * __pskb_pull_tail - advance tail of skb header
1261 * @skb: buffer to reallocate
1262 * @delta: number of bytes to advance tail
1264 * The function makes a sense only on a fragmented &sk_buff,
1265 * it expands header moving its tail forward and copying necessary
1266 * data from fragmented part.
1268 * &sk_buff MUST have reference count of 1.
1270 * Returns %NULL (and &sk_buff does not change) if pull failed
1271 * or value of new tail of skb in the case of success.
1273 * All the pointers pointing into skb header may change and must be
1274 * reloaded after call to this function.
1277 /* Moves tail of skb head forward, copying data from fragmented part,
1278 * when it is necessary.
1279 * 1. It may fail due to malloc failure.
1280 * 2. It may change skb pointers.
1282 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1284 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1286 /* If skb has not enough free space at tail, get new one
1287 * plus 128 bytes for future expansions. If we have enough
1288 * room at tail, reallocate without expansion only if skb is cloned.
1290 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1292 if (eat
> 0 || skb_cloned(skb
)) {
1293 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1298 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1301 /* Optimization: no fragments, no reasons to preestimate
1302 * size of pulled pages. Superb.
1304 if (!skb_has_frag_list(skb
))
1307 /* Estimate size of pulled pages. */
1309 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1310 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1317 /* If we need update frag list, we are in troubles.
1318 * Certainly, it possible to add an offset to skb data,
1319 * but taking into account that pulling is expected to
1320 * be very rare operation, it is worth to fight against
1321 * further bloating skb head and crucify ourselves here instead.
1322 * Pure masohism, indeed. 8)8)
1325 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1326 struct sk_buff
*clone
= NULL
;
1327 struct sk_buff
*insp
= NULL
;
1332 if (list
->len
<= eat
) {
1333 /* Eaten as whole. */
1338 /* Eaten partially. */
1340 if (skb_shared(list
)) {
1341 /* Sucks! We need to fork list. :-( */
1342 clone
= skb_clone(list
, GFP_ATOMIC
);
1348 /* This may be pulled without
1352 if (!pskb_pull(list
, eat
)) {
1360 /* Free pulled out fragments. */
1361 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1362 skb_shinfo(skb
)->frag_list
= list
->next
;
1365 /* And insert new clone at head. */
1368 skb_shinfo(skb
)->frag_list
= clone
;
1371 /* Success! Now we may commit changes to skb data. */
1376 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1377 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1380 skb_frag_unref(skb
, i
);
1383 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1385 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1386 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1392 skb_shinfo(skb
)->nr_frags
= k
;
1395 skb
->data_len
-= delta
;
1397 return skb_tail_pointer(skb
);
1399 EXPORT_SYMBOL(__pskb_pull_tail
);
1402 * skb_copy_bits - copy bits from skb to kernel buffer
1404 * @offset: offset in source
1405 * @to: destination buffer
1406 * @len: number of bytes to copy
1408 * Copy the specified number of bytes from the source skb to the
1409 * destination buffer.
1412 * If its prototype is ever changed,
1413 * check arch/{*}/net/{*}.S files,
1414 * since it is called from BPF assembly code.
1416 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1418 int start
= skb_headlen(skb
);
1419 struct sk_buff
*frag_iter
;
1422 if (offset
> (int)skb
->len
- len
)
1426 if ((copy
= start
- offset
) > 0) {
1429 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1430 if ((len
-= copy
) == 0)
1436 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1439 WARN_ON(start
> offset
+ len
);
1441 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1442 if ((copy
= end
- offset
) > 0) {
1448 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1450 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1451 offset
- start
, copy
);
1452 kunmap_skb_frag(vaddr
);
1454 if ((len
-= copy
) == 0)
1462 skb_walk_frags(skb
, frag_iter
) {
1465 WARN_ON(start
> offset
+ len
);
1467 end
= start
+ frag_iter
->len
;
1468 if ((copy
= end
- offset
) > 0) {
1471 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1473 if ((len
-= copy
) == 0)
1487 EXPORT_SYMBOL(skb_copy_bits
);
1490 * Callback from splice_to_pipe(), if we need to release some pages
1491 * at the end of the spd in case we error'ed out in filling the pipe.
1493 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1495 put_page(spd
->pages
[i
]);
1498 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1499 unsigned int *offset
,
1500 struct sk_buff
*skb
, struct sock
*sk
)
1502 struct page
*p
= sk
->sk_sndmsg_page
;
1507 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1511 off
= sk
->sk_sndmsg_off
= 0;
1512 /* hold one ref to this page until it's full */
1516 off
= sk
->sk_sndmsg_off
;
1517 mlen
= PAGE_SIZE
- off
;
1518 if (mlen
< 64 && mlen
< *len
) {
1523 *len
= min_t(unsigned int, *len
, mlen
);
1526 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1527 sk
->sk_sndmsg_off
+= *len
;
1535 * Fill page/offset/length into spd, if it can hold more pages.
1537 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1538 struct pipe_inode_info
*pipe
, struct page
*page
,
1539 unsigned int *len
, unsigned int offset
,
1540 struct sk_buff
*skb
, int linear
,
1543 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1547 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1553 spd
->pages
[spd
->nr_pages
] = page
;
1554 spd
->partial
[spd
->nr_pages
].len
= *len
;
1555 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1561 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1562 unsigned int *plen
, unsigned int off
)
1567 n
= *poff
/ PAGE_SIZE
;
1569 *page
= nth_page(*page
, n
);
1571 *poff
= *poff
% PAGE_SIZE
;
1575 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1576 unsigned int plen
, unsigned int *off
,
1577 unsigned int *len
, struct sk_buff
*skb
,
1578 struct splice_pipe_desc
*spd
, int linear
,
1580 struct pipe_inode_info
*pipe
)
1585 /* skip this segment if already processed */
1591 /* ignore any bits we already processed */
1593 __segment_seek(&page
, &poff
, &plen
, *off
);
1598 unsigned int flen
= min(*len
, plen
);
1600 /* the linear region may spread across several pages */
1601 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1603 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1606 __segment_seek(&page
, &poff
, &plen
, flen
);
1609 } while (*len
&& plen
);
1615 * Map linear and fragment data from the skb to spd. It reports failure if the
1616 * pipe is full or if we already spliced the requested length.
1618 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1619 unsigned int *offset
, unsigned int *len
,
1620 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1625 * map the linear part
1627 if (__splice_segment(virt_to_page(skb
->data
),
1628 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1630 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1634 * then map the fragments
1636 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1637 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1639 if (__splice_segment(skb_frag_page(f
),
1640 f
->page_offset
, skb_frag_size(f
),
1641 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1649 * Map data from the skb to a pipe. Should handle both the linear part,
1650 * the fragments, and the frag list. It does NOT handle frag lists within
1651 * the frag list, if such a thing exists. We'd probably need to recurse to
1652 * handle that cleanly.
1654 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1655 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1658 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1659 struct page
*pages
[PIPE_DEF_BUFFERS
];
1660 struct splice_pipe_desc spd
= {
1664 .ops
= &sock_pipe_buf_ops
,
1665 .spd_release
= sock_spd_release
,
1667 struct sk_buff
*frag_iter
;
1668 struct sock
*sk
= skb
->sk
;
1671 if (splice_grow_spd(pipe
, &spd
))
1675 * __skb_splice_bits() only fails if the output has no room left,
1676 * so no point in going over the frag_list for the error case.
1678 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1684 * now see if we have a frag_list to map
1686 skb_walk_frags(skb
, frag_iter
) {
1689 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1696 * Drop the socket lock, otherwise we have reverse
1697 * locking dependencies between sk_lock and i_mutex
1698 * here as compared to sendfile(). We enter here
1699 * with the socket lock held, and splice_to_pipe() will
1700 * grab the pipe inode lock. For sendfile() emulation,
1701 * we call into ->sendpage() with the i_mutex lock held
1702 * and networking will grab the socket lock.
1705 ret
= splice_to_pipe(pipe
, &spd
);
1709 splice_shrink_spd(pipe
, &spd
);
1714 * skb_store_bits - store bits from kernel buffer to skb
1715 * @skb: destination buffer
1716 * @offset: offset in destination
1717 * @from: source buffer
1718 * @len: number of bytes to copy
1720 * Copy the specified number of bytes from the source buffer to the
1721 * destination skb. This function handles all the messy bits of
1722 * traversing fragment lists and such.
1725 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1727 int start
= skb_headlen(skb
);
1728 struct sk_buff
*frag_iter
;
1731 if (offset
> (int)skb
->len
- len
)
1734 if ((copy
= start
- offset
) > 0) {
1737 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1738 if ((len
-= copy
) == 0)
1744 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1745 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1748 WARN_ON(start
> offset
+ len
);
1750 end
= start
+ skb_frag_size(frag
);
1751 if ((copy
= end
- offset
) > 0) {
1757 vaddr
= kmap_skb_frag(frag
);
1758 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1760 kunmap_skb_frag(vaddr
);
1762 if ((len
-= copy
) == 0)
1770 skb_walk_frags(skb
, frag_iter
) {
1773 WARN_ON(start
> offset
+ len
);
1775 end
= start
+ frag_iter
->len
;
1776 if ((copy
= end
- offset
) > 0) {
1779 if (skb_store_bits(frag_iter
, offset
- start
,
1782 if ((len
-= copy
) == 0)
1795 EXPORT_SYMBOL(skb_store_bits
);
1797 /* Checksum skb data. */
1799 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1800 int len
, __wsum csum
)
1802 int start
= skb_headlen(skb
);
1803 int i
, copy
= start
- offset
;
1804 struct sk_buff
*frag_iter
;
1807 /* Checksum header. */
1811 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1812 if ((len
-= copy
) == 0)
1818 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1821 WARN_ON(start
> offset
+ len
);
1823 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1824 if ((copy
= end
- offset
) > 0) {
1827 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1831 vaddr
= kmap_skb_frag(frag
);
1832 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1833 offset
- start
, copy
, 0);
1834 kunmap_skb_frag(vaddr
);
1835 csum
= csum_block_add(csum
, csum2
, pos
);
1844 skb_walk_frags(skb
, frag_iter
) {
1847 WARN_ON(start
> offset
+ len
);
1849 end
= start
+ frag_iter
->len
;
1850 if ((copy
= end
- offset
) > 0) {
1854 csum2
= skb_checksum(frag_iter
, offset
- start
,
1856 csum
= csum_block_add(csum
, csum2
, pos
);
1857 if ((len
-= copy
) == 0)
1868 EXPORT_SYMBOL(skb_checksum
);
1870 /* Both of above in one bottle. */
1872 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1873 u8
*to
, int len
, __wsum csum
)
1875 int start
= skb_headlen(skb
);
1876 int i
, copy
= start
- offset
;
1877 struct sk_buff
*frag_iter
;
1884 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1886 if ((len
-= copy
) == 0)
1893 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1896 WARN_ON(start
> offset
+ len
);
1898 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1899 if ((copy
= end
- offset
) > 0) {
1902 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1906 vaddr
= kmap_skb_frag(frag
);
1907 csum2
= csum_partial_copy_nocheck(vaddr
+
1911 kunmap_skb_frag(vaddr
);
1912 csum
= csum_block_add(csum
, csum2
, pos
);
1922 skb_walk_frags(skb
, frag_iter
) {
1926 WARN_ON(start
> offset
+ len
);
1928 end
= start
+ frag_iter
->len
;
1929 if ((copy
= end
- offset
) > 0) {
1932 csum2
= skb_copy_and_csum_bits(frag_iter
,
1935 csum
= csum_block_add(csum
, csum2
, pos
);
1936 if ((len
-= copy
) == 0)
1947 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1949 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1954 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1955 csstart
= skb_checksum_start_offset(skb
);
1957 csstart
= skb_headlen(skb
);
1959 BUG_ON(csstart
> skb_headlen(skb
));
1961 skb_copy_from_linear_data(skb
, to
, csstart
);
1964 if (csstart
!= skb
->len
)
1965 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1966 skb
->len
- csstart
, 0);
1968 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1969 long csstuff
= csstart
+ skb
->csum_offset
;
1971 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1974 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1977 * skb_dequeue - remove from the head of the queue
1978 * @list: list to dequeue from
1980 * Remove the head of the list. The list lock is taken so the function
1981 * may be used safely with other locking list functions. The head item is
1982 * returned or %NULL if the list is empty.
1985 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1987 unsigned long flags
;
1988 struct sk_buff
*result
;
1990 spin_lock_irqsave(&list
->lock
, flags
);
1991 result
= __skb_dequeue(list
);
1992 spin_unlock_irqrestore(&list
->lock
, flags
);
1995 EXPORT_SYMBOL(skb_dequeue
);
1998 * skb_dequeue_tail - remove from the tail of the queue
1999 * @list: list to dequeue from
2001 * Remove the tail of the list. The list lock is taken so the function
2002 * may be used safely with other locking list functions. The tail item is
2003 * returned or %NULL if the list is empty.
2005 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2007 unsigned long flags
;
2008 struct sk_buff
*result
;
2010 spin_lock_irqsave(&list
->lock
, flags
);
2011 result
= __skb_dequeue_tail(list
);
2012 spin_unlock_irqrestore(&list
->lock
, flags
);
2015 EXPORT_SYMBOL(skb_dequeue_tail
);
2018 * skb_queue_purge - empty a list
2019 * @list: list to empty
2021 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2022 * the list and one reference dropped. This function takes the list
2023 * lock and is atomic with respect to other list locking functions.
2025 void skb_queue_purge(struct sk_buff_head
*list
)
2027 struct sk_buff
*skb
;
2028 while ((skb
= skb_dequeue(list
)) != NULL
)
2031 EXPORT_SYMBOL(skb_queue_purge
);
2034 * skb_queue_head - queue a buffer at the list head
2035 * @list: list to use
2036 * @newsk: buffer to queue
2038 * Queue a buffer at the start of the list. This function takes the
2039 * list lock and can be used safely with other locking &sk_buff functions
2042 * A buffer cannot be placed on two lists at the same time.
2044 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2046 unsigned long flags
;
2048 spin_lock_irqsave(&list
->lock
, flags
);
2049 __skb_queue_head(list
, newsk
);
2050 spin_unlock_irqrestore(&list
->lock
, flags
);
2052 EXPORT_SYMBOL(skb_queue_head
);
2055 * skb_queue_tail - queue a buffer at the list tail
2056 * @list: list to use
2057 * @newsk: buffer to queue
2059 * Queue a buffer at the tail of the list. This function takes the
2060 * list lock and can be used safely with other locking &sk_buff functions
2063 * A buffer cannot be placed on two lists at the same time.
2065 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2067 unsigned long flags
;
2069 spin_lock_irqsave(&list
->lock
, flags
);
2070 __skb_queue_tail(list
, newsk
);
2071 spin_unlock_irqrestore(&list
->lock
, flags
);
2073 EXPORT_SYMBOL(skb_queue_tail
);
2076 * skb_unlink - remove a buffer from a list
2077 * @skb: buffer to remove
2078 * @list: list to use
2080 * Remove a packet from a list. The list locks are taken and this
2081 * function is atomic with respect to other list locked calls
2083 * You must know what list the SKB is on.
2085 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2087 unsigned long flags
;
2089 spin_lock_irqsave(&list
->lock
, flags
);
2090 __skb_unlink(skb
, list
);
2091 spin_unlock_irqrestore(&list
->lock
, flags
);
2093 EXPORT_SYMBOL(skb_unlink
);
2096 * skb_append - append a buffer
2097 * @old: buffer to insert after
2098 * @newsk: buffer to insert
2099 * @list: list to use
2101 * Place a packet after a given packet in a list. The list locks are taken
2102 * and this function is atomic with respect to other list locked calls.
2103 * A buffer cannot be placed on two lists at the same time.
2105 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2107 unsigned long flags
;
2109 spin_lock_irqsave(&list
->lock
, flags
);
2110 __skb_queue_after(list
, old
, newsk
);
2111 spin_unlock_irqrestore(&list
->lock
, flags
);
2113 EXPORT_SYMBOL(skb_append
);
2116 * skb_insert - insert a buffer
2117 * @old: buffer to insert before
2118 * @newsk: buffer to insert
2119 * @list: list to use
2121 * Place a packet before a given packet in a list. The list locks are
2122 * taken and this function is atomic with respect to other list locked
2125 * A buffer cannot be placed on two lists at the same time.
2127 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2129 unsigned long flags
;
2131 spin_lock_irqsave(&list
->lock
, flags
);
2132 __skb_insert(newsk
, old
->prev
, old
, list
);
2133 spin_unlock_irqrestore(&list
->lock
, flags
);
2135 EXPORT_SYMBOL(skb_insert
);
2137 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2138 struct sk_buff
* skb1
,
2139 const u32 len
, const int pos
)
2143 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2145 /* And move data appendix as is. */
2146 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2147 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2149 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2150 skb_shinfo(skb
)->nr_frags
= 0;
2151 skb1
->data_len
= skb
->data_len
;
2152 skb1
->len
+= skb1
->data_len
;
2155 skb_set_tail_pointer(skb
, len
);
2158 static inline void skb_split_no_header(struct sk_buff
*skb
,
2159 struct sk_buff
* skb1
,
2160 const u32 len
, int pos
)
2163 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2165 skb_shinfo(skb
)->nr_frags
= 0;
2166 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2168 skb
->data_len
= len
- pos
;
2170 for (i
= 0; i
< nfrags
; i
++) {
2171 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2173 if (pos
+ size
> len
) {
2174 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2178 * We have two variants in this case:
2179 * 1. Move all the frag to the second
2180 * part, if it is possible. F.e.
2181 * this approach is mandatory for TUX,
2182 * where splitting is expensive.
2183 * 2. Split is accurately. We make this.
2185 skb_frag_ref(skb
, i
);
2186 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2187 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2188 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2189 skb_shinfo(skb
)->nr_frags
++;
2193 skb_shinfo(skb
)->nr_frags
++;
2196 skb_shinfo(skb1
)->nr_frags
= k
;
2200 * skb_split - Split fragmented skb to two parts at length len.
2201 * @skb: the buffer to split
2202 * @skb1: the buffer to receive the second part
2203 * @len: new length for skb
2205 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2207 int pos
= skb_headlen(skb
);
2209 if (len
< pos
) /* Split line is inside header. */
2210 skb_split_inside_header(skb
, skb1
, len
, pos
);
2211 else /* Second chunk has no header, nothing to copy. */
2212 skb_split_no_header(skb
, skb1
, len
, pos
);
2214 EXPORT_SYMBOL(skb_split
);
2216 /* Shifting from/to a cloned skb is a no-go.
2218 * Caller cannot keep skb_shinfo related pointers past calling here!
2220 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2222 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2226 * skb_shift - Shifts paged data partially from skb to another
2227 * @tgt: buffer into which tail data gets added
2228 * @skb: buffer from which the paged data comes from
2229 * @shiftlen: shift up to this many bytes
2231 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2232 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2233 * It's up to caller to free skb if everything was shifted.
2235 * If @tgt runs out of frags, the whole operation is aborted.
2237 * Skb cannot include anything else but paged data while tgt is allowed
2238 * to have non-paged data as well.
2240 * TODO: full sized shift could be optimized but that would need
2241 * specialized skb free'er to handle frags without up-to-date nr_frags.
2243 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2245 int from
, to
, merge
, todo
;
2246 struct skb_frag_struct
*fragfrom
, *fragto
;
2248 BUG_ON(shiftlen
> skb
->len
);
2249 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2253 to
= skb_shinfo(tgt
)->nr_frags
;
2254 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2256 /* Actual merge is delayed until the point when we know we can
2257 * commit all, so that we don't have to undo partial changes
2260 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2261 fragfrom
->page_offset
)) {
2266 todo
-= skb_frag_size(fragfrom
);
2268 if (skb_prepare_for_shift(skb
) ||
2269 skb_prepare_for_shift(tgt
))
2272 /* All previous frag pointers might be stale! */
2273 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2274 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2276 skb_frag_size_add(fragto
, shiftlen
);
2277 skb_frag_size_sub(fragfrom
, shiftlen
);
2278 fragfrom
->page_offset
+= shiftlen
;
2286 /* Skip full, not-fitting skb to avoid expensive operations */
2287 if ((shiftlen
== skb
->len
) &&
2288 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2291 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2294 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2295 if (to
== MAX_SKB_FRAGS
)
2298 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2299 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2301 if (todo
>= skb_frag_size(fragfrom
)) {
2302 *fragto
= *fragfrom
;
2303 todo
-= skb_frag_size(fragfrom
);
2308 __skb_frag_ref(fragfrom
);
2309 fragto
->page
= fragfrom
->page
;
2310 fragto
->page_offset
= fragfrom
->page_offset
;
2311 skb_frag_size_set(fragto
, todo
);
2313 fragfrom
->page_offset
+= todo
;
2314 skb_frag_size_sub(fragfrom
, todo
);
2322 /* Ready to "commit" this state change to tgt */
2323 skb_shinfo(tgt
)->nr_frags
= to
;
2326 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2327 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2329 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2330 __skb_frag_unref(fragfrom
);
2333 /* Reposition in the original skb */
2335 while (from
< skb_shinfo(skb
)->nr_frags
)
2336 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2337 skb_shinfo(skb
)->nr_frags
= to
;
2339 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2342 /* Most likely the tgt won't ever need its checksum anymore, skb on
2343 * the other hand might need it if it needs to be resent
2345 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2346 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2348 /* Yak, is it really working this way? Some helper please? */
2349 skb
->len
-= shiftlen
;
2350 skb
->data_len
-= shiftlen
;
2351 skb
->truesize
-= shiftlen
;
2352 tgt
->len
+= shiftlen
;
2353 tgt
->data_len
+= shiftlen
;
2354 tgt
->truesize
+= shiftlen
;
2360 * skb_prepare_seq_read - Prepare a sequential read of skb data
2361 * @skb: the buffer to read
2362 * @from: lower offset of data to be read
2363 * @to: upper offset of data to be read
2364 * @st: state variable
2366 * Initializes the specified state variable. Must be called before
2367 * invoking skb_seq_read() for the first time.
2369 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2370 unsigned int to
, struct skb_seq_state
*st
)
2372 st
->lower_offset
= from
;
2373 st
->upper_offset
= to
;
2374 st
->root_skb
= st
->cur_skb
= skb
;
2375 st
->frag_idx
= st
->stepped_offset
= 0;
2376 st
->frag_data
= NULL
;
2378 EXPORT_SYMBOL(skb_prepare_seq_read
);
2381 * skb_seq_read - Sequentially read skb data
2382 * @consumed: number of bytes consumed by the caller so far
2383 * @data: destination pointer for data to be returned
2384 * @st: state variable
2386 * Reads a block of skb data at &consumed relative to the
2387 * lower offset specified to skb_prepare_seq_read(). Assigns
2388 * the head of the data block to &data and returns the length
2389 * of the block or 0 if the end of the skb data or the upper
2390 * offset has been reached.
2392 * The caller is not required to consume all of the data
2393 * returned, i.e. &consumed is typically set to the number
2394 * of bytes already consumed and the next call to
2395 * skb_seq_read() will return the remaining part of the block.
2397 * Note 1: The size of each block of data returned can be arbitrary,
2398 * this limitation is the cost for zerocopy seqeuental
2399 * reads of potentially non linear data.
2401 * Note 2: Fragment lists within fragments are not implemented
2402 * at the moment, state->root_skb could be replaced with
2403 * a stack for this purpose.
2405 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2406 struct skb_seq_state
*st
)
2408 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2411 if (unlikely(abs_offset
>= st
->upper_offset
))
2415 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2417 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2418 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2419 return block_limit
- abs_offset
;
2422 if (st
->frag_idx
== 0 && !st
->frag_data
)
2423 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2425 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2426 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2427 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2429 if (abs_offset
< block_limit
) {
2431 st
->frag_data
= kmap_skb_frag(frag
);
2433 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2434 (abs_offset
- st
->stepped_offset
);
2436 return block_limit
- abs_offset
;
2439 if (st
->frag_data
) {
2440 kunmap_skb_frag(st
->frag_data
);
2441 st
->frag_data
= NULL
;
2445 st
->stepped_offset
+= skb_frag_size(frag
);
2448 if (st
->frag_data
) {
2449 kunmap_skb_frag(st
->frag_data
);
2450 st
->frag_data
= NULL
;
2453 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2454 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2457 } else if (st
->cur_skb
->next
) {
2458 st
->cur_skb
= st
->cur_skb
->next
;
2465 EXPORT_SYMBOL(skb_seq_read
);
2468 * skb_abort_seq_read - Abort a sequential read of skb data
2469 * @st: state variable
2471 * Must be called if skb_seq_read() was not called until it
2474 void skb_abort_seq_read(struct skb_seq_state
*st
)
2477 kunmap_skb_frag(st
->frag_data
);
2479 EXPORT_SYMBOL(skb_abort_seq_read
);
2481 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2483 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2484 struct ts_config
*conf
,
2485 struct ts_state
*state
)
2487 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2490 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2492 skb_abort_seq_read(TS_SKB_CB(state
));
2496 * skb_find_text - Find a text pattern in skb data
2497 * @skb: the buffer to look in
2498 * @from: search offset
2500 * @config: textsearch configuration
2501 * @state: uninitialized textsearch state variable
2503 * Finds a pattern in the skb data according to the specified
2504 * textsearch configuration. Use textsearch_next() to retrieve
2505 * subsequent occurrences of the pattern. Returns the offset
2506 * to the first occurrence or UINT_MAX if no match was found.
2508 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2509 unsigned int to
, struct ts_config
*config
,
2510 struct ts_state
*state
)
2514 config
->get_next_block
= skb_ts_get_next_block
;
2515 config
->finish
= skb_ts_finish
;
2517 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2519 ret
= textsearch_find(config
, state
);
2520 return (ret
<= to
- from
? ret
: UINT_MAX
);
2522 EXPORT_SYMBOL(skb_find_text
);
2525 * skb_append_datato_frags: - append the user data to a skb
2526 * @sk: sock structure
2527 * @skb: skb structure to be appened with user data.
2528 * @getfrag: call back function to be used for getting the user data
2529 * @from: pointer to user message iov
2530 * @length: length of the iov message
2532 * Description: This procedure append the user data in the fragment part
2533 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2535 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2536 int (*getfrag
)(void *from
, char *to
, int offset
,
2537 int len
, int odd
, struct sk_buff
*skb
),
2538 void *from
, int length
)
2541 skb_frag_t
*frag
= NULL
;
2542 struct page
*page
= NULL
;
2548 /* Return error if we don't have space for new frag */
2549 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2550 if (frg_cnt
>= MAX_SKB_FRAGS
)
2553 /* allocate a new page for next frag */
2554 page
= alloc_pages(sk
->sk_allocation
, 0);
2556 /* If alloc_page fails just return failure and caller will
2557 * free previous allocated pages by doing kfree_skb()
2562 /* initialize the next frag */
2563 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2564 skb
->truesize
+= PAGE_SIZE
;
2565 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2567 /* get the new initialized frag */
2568 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2569 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2571 /* copy the user data to page */
2572 left
= PAGE_SIZE
- frag
->page_offset
;
2573 copy
= (length
> left
)? left
: length
;
2575 ret
= getfrag(from
, skb_frag_address(frag
) + skb_frag_size(frag
),
2576 offset
, copy
, 0, skb
);
2580 /* copy was successful so update the size parameters */
2581 skb_frag_size_add(frag
, copy
);
2583 skb
->data_len
+= copy
;
2587 } while (length
> 0);
2591 EXPORT_SYMBOL(skb_append_datato_frags
);
2594 * skb_pull_rcsum - pull skb and update receive checksum
2595 * @skb: buffer to update
2596 * @len: length of data pulled
2598 * This function performs an skb_pull on the packet and updates
2599 * the CHECKSUM_COMPLETE checksum. It should be used on
2600 * receive path processing instead of skb_pull unless you know
2601 * that the checksum difference is zero (e.g., a valid IP header)
2602 * or you are setting ip_summed to CHECKSUM_NONE.
2604 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2606 BUG_ON(len
> skb
->len
);
2608 BUG_ON(skb
->len
< skb
->data_len
);
2609 skb_postpull_rcsum(skb
, skb
->data
, len
);
2610 return skb
->data
+= len
;
2612 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2615 * skb_segment - Perform protocol segmentation on skb.
2616 * @skb: buffer to segment
2617 * @features: features for the output path (see dev->features)
2619 * This function performs segmentation on the given skb. It returns
2620 * a pointer to the first in a list of new skbs for the segments.
2621 * In case of error it returns ERR_PTR(err).
2623 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2625 struct sk_buff
*segs
= NULL
;
2626 struct sk_buff
*tail
= NULL
;
2627 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2628 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2629 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2630 unsigned int offset
= doffset
;
2631 unsigned int headroom
;
2633 int sg
= !!(features
& NETIF_F_SG
);
2634 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2639 __skb_push(skb
, doffset
);
2640 headroom
= skb_headroom(skb
);
2641 pos
= skb_headlen(skb
);
2644 struct sk_buff
*nskb
;
2649 len
= skb
->len
- offset
;
2653 hsize
= skb_headlen(skb
) - offset
;
2656 if (hsize
> len
|| !sg
)
2659 if (!hsize
&& i
>= nfrags
) {
2660 BUG_ON(fskb
->len
!= len
);
2663 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2666 if (unlikely(!nskb
))
2669 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2670 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2675 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2677 skb_release_head_state(nskb
);
2678 __skb_push(nskb
, doffset
);
2680 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2683 if (unlikely(!nskb
))
2686 skb_reserve(nskb
, headroom
);
2687 __skb_put(nskb
, doffset
);
2696 __copy_skb_header(nskb
, skb
);
2697 nskb
->mac_len
= skb
->mac_len
;
2699 /* nskb and skb might have different headroom */
2700 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2701 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2703 skb_reset_mac_header(nskb
);
2704 skb_set_network_header(nskb
, skb
->mac_len
);
2705 nskb
->transport_header
= (nskb
->network_header
+
2706 skb_network_header_len(skb
));
2707 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2709 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2713 nskb
->ip_summed
= CHECKSUM_NONE
;
2714 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2720 frag
= skb_shinfo(nskb
)->frags
;
2722 skb_copy_from_linear_data_offset(skb
, offset
,
2723 skb_put(nskb
, hsize
), hsize
);
2725 while (pos
< offset
+ len
&& i
< nfrags
) {
2726 *frag
= skb_shinfo(skb
)->frags
[i
];
2727 __skb_frag_ref(frag
);
2728 size
= skb_frag_size(frag
);
2731 frag
->page_offset
+= offset
- pos
;
2732 skb_frag_size_sub(frag
, offset
- pos
);
2735 skb_shinfo(nskb
)->nr_frags
++;
2737 if (pos
+ size
<= offset
+ len
) {
2741 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2748 if (pos
< offset
+ len
) {
2749 struct sk_buff
*fskb2
= fskb
;
2751 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2757 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2763 SKB_FRAG_ASSERT(nskb
);
2764 skb_shinfo(nskb
)->frag_list
= fskb2
;
2768 nskb
->data_len
= len
- hsize
;
2769 nskb
->len
+= nskb
->data_len
;
2770 nskb
->truesize
+= nskb
->data_len
;
2771 } while ((offset
+= len
) < skb
->len
);
2776 while ((skb
= segs
)) {
2780 return ERR_PTR(err
);
2782 EXPORT_SYMBOL_GPL(skb_segment
);
2784 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2786 struct sk_buff
*p
= *head
;
2787 struct sk_buff
*nskb
;
2788 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2789 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2790 unsigned int headroom
;
2791 unsigned int len
= skb_gro_len(skb
);
2792 unsigned int offset
= skb_gro_offset(skb
);
2793 unsigned int headlen
= skb_headlen(skb
);
2795 if (p
->len
+ len
>= 65536)
2798 if (pinfo
->frag_list
)
2800 else if (headlen
<= offset
) {
2803 int i
= skbinfo
->nr_frags
;
2804 int nr_frags
= pinfo
->nr_frags
+ i
;
2808 if (nr_frags
> MAX_SKB_FRAGS
)
2811 pinfo
->nr_frags
= nr_frags
;
2812 skbinfo
->nr_frags
= 0;
2814 frag
= pinfo
->frags
+ nr_frags
;
2815 frag2
= skbinfo
->frags
+ i
;
2820 frag
->page_offset
+= offset
;
2821 skb_frag_size_sub(frag
, offset
);
2823 skb
->truesize
-= skb
->data_len
;
2824 skb
->len
-= skb
->data_len
;
2827 NAPI_GRO_CB(skb
)->free
= 1;
2829 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2832 headroom
= skb_headroom(p
);
2833 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2834 if (unlikely(!nskb
))
2837 __copy_skb_header(nskb
, p
);
2838 nskb
->mac_len
= p
->mac_len
;
2840 skb_reserve(nskb
, headroom
);
2841 __skb_put(nskb
, skb_gro_offset(p
));
2843 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2844 skb_set_network_header(nskb
, skb_network_offset(p
));
2845 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2847 __skb_pull(p
, skb_gro_offset(p
));
2848 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2849 p
->data
- skb_mac_header(p
));
2851 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2852 skb_shinfo(nskb
)->frag_list
= p
;
2853 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2854 pinfo
->gso_size
= 0;
2855 skb_header_release(p
);
2858 nskb
->data_len
+= p
->len
;
2859 nskb
->truesize
+= p
->len
;
2860 nskb
->len
+= p
->len
;
2863 nskb
->next
= p
->next
;
2869 if (offset
> headlen
) {
2870 unsigned int eat
= offset
- headlen
;
2872 skbinfo
->frags
[0].page_offset
+= eat
;
2873 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
2874 skb
->data_len
-= eat
;
2879 __skb_pull(skb
, offset
);
2881 p
->prev
->next
= skb
;
2883 skb_header_release(skb
);
2886 NAPI_GRO_CB(p
)->count
++;
2891 NAPI_GRO_CB(skb
)->same_flow
= 1;
2894 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2896 void __init
skb_init(void)
2898 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2899 sizeof(struct sk_buff
),
2901 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2903 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2904 (2*sizeof(struct sk_buff
)) +
2907 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2912 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2913 * @skb: Socket buffer containing the buffers to be mapped
2914 * @sg: The scatter-gather list to map into
2915 * @offset: The offset into the buffer's contents to start mapping
2916 * @len: Length of buffer space to be mapped
2918 * Fill the specified scatter-gather list with mappings/pointers into a
2919 * region of the buffer space attached to a socket buffer.
2922 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2924 int start
= skb_headlen(skb
);
2925 int i
, copy
= start
- offset
;
2926 struct sk_buff
*frag_iter
;
2932 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2934 if ((len
-= copy
) == 0)
2939 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2942 WARN_ON(start
> offset
+ len
);
2944 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2945 if ((copy
= end
- offset
) > 0) {
2946 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2950 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
2951 frag
->page_offset
+offset
-start
);
2960 skb_walk_frags(skb
, frag_iter
) {
2963 WARN_ON(start
> offset
+ len
);
2965 end
= start
+ frag_iter
->len
;
2966 if ((copy
= end
- offset
) > 0) {
2969 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2971 if ((len
-= copy
) == 0)
2981 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2983 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2985 sg_mark_end(&sg
[nsg
- 1]);
2989 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2992 * skb_cow_data - Check that a socket buffer's data buffers are writable
2993 * @skb: The socket buffer to check.
2994 * @tailbits: Amount of trailing space to be added
2995 * @trailer: Returned pointer to the skb where the @tailbits space begins
2997 * Make sure that the data buffers attached to a socket buffer are
2998 * writable. If they are not, private copies are made of the data buffers
2999 * and the socket buffer is set to use these instead.
3001 * If @tailbits is given, make sure that there is space to write @tailbits
3002 * bytes of data beyond current end of socket buffer. @trailer will be
3003 * set to point to the skb in which this space begins.
3005 * The number of scatterlist elements required to completely map the
3006 * COW'd and extended socket buffer will be returned.
3008 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3012 struct sk_buff
*skb1
, **skb_p
;
3014 /* If skb is cloned or its head is paged, reallocate
3015 * head pulling out all the pages (pages are considered not writable
3016 * at the moment even if they are anonymous).
3018 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3019 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3022 /* Easy case. Most of packets will go this way. */
3023 if (!skb_has_frag_list(skb
)) {
3024 /* A little of trouble, not enough of space for trailer.
3025 * This should not happen, when stack is tuned to generate
3026 * good frames. OK, on miss we reallocate and reserve even more
3027 * space, 128 bytes is fair. */
3029 if (skb_tailroom(skb
) < tailbits
&&
3030 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3038 /* Misery. We are in troubles, going to mincer fragments... */
3041 skb_p
= &skb_shinfo(skb
)->frag_list
;
3044 while ((skb1
= *skb_p
) != NULL
) {
3047 /* The fragment is partially pulled by someone,
3048 * this can happen on input. Copy it and everything
3051 if (skb_shared(skb1
))
3054 /* If the skb is the last, worry about trailer. */
3056 if (skb1
->next
== NULL
&& tailbits
) {
3057 if (skb_shinfo(skb1
)->nr_frags
||
3058 skb_has_frag_list(skb1
) ||
3059 skb_tailroom(skb1
) < tailbits
)
3060 ntail
= tailbits
+ 128;
3066 skb_shinfo(skb1
)->nr_frags
||
3067 skb_has_frag_list(skb1
)) {
3068 struct sk_buff
*skb2
;
3070 /* Fuck, we are miserable poor guys... */
3072 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3074 skb2
= skb_copy_expand(skb1
,
3078 if (unlikely(skb2
== NULL
))
3082 skb_set_owner_w(skb2
, skb1
->sk
);
3084 /* Looking around. Are we still alive?
3085 * OK, link new skb, drop old one */
3087 skb2
->next
= skb1
->next
;
3094 skb_p
= &skb1
->next
;
3099 EXPORT_SYMBOL_GPL(skb_cow_data
);
3101 static void sock_rmem_free(struct sk_buff
*skb
)
3103 struct sock
*sk
= skb
->sk
;
3105 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3109 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3111 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3113 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3114 (unsigned)sk
->sk_rcvbuf
)
3119 skb
->destructor
= sock_rmem_free
;
3120 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3122 /* before exiting rcu section, make sure dst is refcounted */
3125 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3126 if (!sock_flag(sk
, SOCK_DEAD
))
3127 sk
->sk_data_ready(sk
, skb
->len
);
3130 EXPORT_SYMBOL(sock_queue_err_skb
);
3132 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3133 struct skb_shared_hwtstamps
*hwtstamps
)
3135 struct sock
*sk
= orig_skb
->sk
;
3136 struct sock_exterr_skb
*serr
;
3137 struct sk_buff
*skb
;
3143 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3148 *skb_hwtstamps(skb
) =
3152 * no hardware time stamps available,
3153 * so keep the shared tx_flags and only
3154 * store software time stamp
3156 skb
->tstamp
= ktime_get_real();
3159 serr
= SKB_EXT_ERR(skb
);
3160 memset(serr
, 0, sizeof(*serr
));
3161 serr
->ee
.ee_errno
= ENOMSG
;
3162 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3164 err
= sock_queue_err_skb(sk
, skb
);
3169 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3173 * skb_partial_csum_set - set up and verify partial csum values for packet
3174 * @skb: the skb to set
3175 * @start: the number of bytes after skb->data to start checksumming.
3176 * @off: the offset from start to place the checksum.
3178 * For untrusted partially-checksummed packets, we need to make sure the values
3179 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3181 * This function checks and sets those values and skb->ip_summed: if this
3182 * returns false you should drop the packet.
3184 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3186 if (unlikely(start
> skb_headlen(skb
)) ||
3187 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3188 if (net_ratelimit())
3190 "bad partial csum: csum=%u/%u len=%u\n",
3191 start
, off
, skb_headlen(skb
));
3194 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3195 skb
->csum_start
= skb_headroom(skb
) + start
;
3196 skb
->csum_offset
= off
;
3199 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3201 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3203 if (net_ratelimit())
3204 pr_warning("%s: received packets cannot be forwarded"
3205 " while LRO is enabled\n", skb
->dev
->name
);
3207 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);