block: use the same failfast bits for bio and request
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob4daae1ee2b237f5c0ec69b792f079f1567cbdb73
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39 static int __make_request(struct request_queue *q, struct bio *bio);
42 * For the allocated request tables
44 static struct kmem_cache *request_cachep;
47 * For queue allocation
49 struct kmem_cache *blk_requestq_cachep;
52 * Controlling structure to kblockd
54 static struct workqueue_struct *kblockd_workqueue;
56 static void drive_stat_acct(struct request *rq, int new_io)
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
60 int cpu;
62 if (!blk_do_io_stat(rq))
63 return;
65 cpu = part_stat_lock();
66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68 if (!new_io)
69 part_stat_inc(cpu, part, merges[rw]);
70 else {
71 part_round_stats(cpu, part);
72 part_inc_in_flight(part);
75 part_stat_unlock();
78 void blk_queue_congestion_threshold(struct request_queue *q)
80 int nr;
82 nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 if (nr > q->nr_requests)
84 nr = q->nr_requests;
85 q->nr_congestion_on = nr;
87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 if (nr < 1)
89 nr = 1;
90 q->nr_congestion_off = nr;
93 /**
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * @bdev: device
97 * Locates the passed device's request queue and returns the address of its
98 * backing_dev_info
100 * Will return NULL if the request queue cannot be located.
102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 struct backing_dev_info *ret = NULL;
105 struct request_queue *q = bdev_get_queue(bdev);
107 if (q)
108 ret = &q->backing_dev_info;
109 return ret;
111 EXPORT_SYMBOL(blk_get_backing_dev_info);
113 void blk_rq_init(struct request_queue *q, struct request *rq)
115 memset(rq, 0, sizeof(*rq));
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->cmd = rq->__cmd;
125 rq->cmd_len = BLK_MAX_CDB;
126 rq->tag = -1;
127 rq->ref_count = 1;
128 rq->start_time = jiffies;
130 EXPORT_SYMBOL(blk_rq_init);
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
135 struct request_queue *q = rq->q;
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
158 if (bio->bi_size == 0)
159 bio_endio(bio, error);
160 } else {
163 * Okay, this is the barrier request in progress, just
164 * record the error;
166 if (error && !q->orderr)
167 q->orderr = error;
171 void blk_dump_rq_flags(struct request *rq, char *msg)
173 int bit;
175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
185 if (blk_pc_request(rq)) {
186 printk(KERN_INFO " cdb: ");
187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
192 EXPORT_SYMBOL(blk_dump_rq_flags);
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
202 void blk_plug_device(struct request_queue *q)
204 WARN_ON(!irqs_disabled());
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
210 if (blk_queue_stopped(q))
211 return;
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 trace_block_plug(q);
218 EXPORT_SYMBOL(blk_plug_device);
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
228 void blk_plug_device_unlocked(struct request_queue *q)
230 unsigned long flags;
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
242 int blk_remove_plug(struct request_queue *q)
244 WARN_ON(!irqs_disabled());
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 return 0;
249 del_timer(&q->unplug_timer);
250 return 1;
252 EXPORT_SYMBOL(blk_remove_plug);
255 * remove the plug and let it rip..
257 void __generic_unplug_device(struct request_queue *q)
259 if (unlikely(blk_queue_stopped(q)))
260 return;
261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 return;
264 q->request_fn(q);
268 * generic_unplug_device - fire a request queue
269 * @q: The &struct request_queue in question
271 * Description:
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
276 * transfers started.
278 void generic_unplug_device(struct request_queue *q)
280 if (blk_queue_plugged(q)) {
281 spin_lock_irq(q->queue_lock);
282 __generic_unplug_device(q);
283 spin_unlock_irq(q->queue_lock);
286 EXPORT_SYMBOL(generic_unplug_device);
288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 struct page *page)
291 struct request_queue *q = bdi->unplug_io_data;
293 blk_unplug(q);
296 void blk_unplug_work(struct work_struct *work)
298 struct request_queue *q =
299 container_of(work, struct request_queue, unplug_work);
301 trace_block_unplug_io(q);
302 q->unplug_fn(q);
305 void blk_unplug_timeout(unsigned long data)
307 struct request_queue *q = (struct request_queue *)data;
309 trace_block_unplug_timer(q);
310 kblockd_schedule_work(q, &q->unplug_work);
313 void blk_unplug(struct request_queue *q)
316 * devices don't necessarily have an ->unplug_fn defined
318 if (q->unplug_fn) {
319 trace_block_unplug_io(q);
320 q->unplug_fn(q);
323 EXPORT_SYMBOL(blk_unplug);
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
334 void blk_start_queue(struct request_queue *q)
336 WARN_ON(!irqs_disabled());
338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 __blk_run_queue(q);
341 EXPORT_SYMBOL(blk_start_queue);
344 * blk_stop_queue - stop a queue
345 * @q: The &struct request_queue in question
347 * Description:
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
357 void blk_stop_queue(struct request_queue *q)
359 blk_remove_plug(q);
360 queue_flag_set(QUEUE_FLAG_STOPPED, q);
362 EXPORT_SYMBOL(blk_stop_queue);
365 * blk_sync_queue - cancel any pending callbacks on a queue
366 * @q: the queue
368 * Description:
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
373 * that the callbacks might use. The caller must already have made sure
374 * that its ->make_request_fn will not re-add plugging prior to calling
375 * this function.
378 void blk_sync_queue(struct request_queue *q)
380 del_timer_sync(&q->unplug_timer);
381 del_timer_sync(&q->timeout);
382 cancel_work_sync(&q->unplug_work);
384 EXPORT_SYMBOL(blk_sync_queue);
387 * __blk_run_queue - run a single device queue
388 * @q: The queue to run
390 * Description:
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
395 void __blk_run_queue(struct request_queue *q)
397 blk_remove_plug(q);
399 if (unlikely(blk_queue_stopped(q)))
400 return;
402 if (elv_queue_empty(q))
403 return;
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 kblockd_schedule_work(q, &q->unplug_work);
417 EXPORT_SYMBOL(__blk_run_queue);
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
423 * Description:
424 * Invoke request handling on this queue, if it has pending work to do.
425 * May be used to restart queueing when a request has completed.
427 void blk_run_queue(struct request_queue *q)
429 unsigned long flags;
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
435 EXPORT_SYMBOL(blk_run_queue);
437 void blk_put_queue(struct request_queue *q)
439 kobject_put(&q->kobj);
442 void blk_cleanup_queue(struct request_queue *q)
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
450 blk_sync_queue(q);
452 mutex_lock(&q->sysfs_lock);
453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 mutex_unlock(&q->sysfs_lock);
456 if (q->elevator)
457 elevator_exit(q->elevator);
459 blk_put_queue(q);
461 EXPORT_SYMBOL(blk_cleanup_queue);
463 static int blk_init_free_list(struct request_queue *q)
465 struct request_list *rl = &q->rq;
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 rl->elvpriv = 0;
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
476 if (!rl->rq_pool)
477 return -ENOMEM;
479 return 0;
482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
484 return blk_alloc_queue_node(gfp_mask, -1);
486 EXPORT_SYMBOL(blk_alloc_queue);
488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
490 struct request_queue *q;
491 int err;
493 q = kmem_cache_alloc_node(blk_requestq_cachep,
494 gfp_mask | __GFP_ZERO, node_id);
495 if (!q)
496 return NULL;
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
505 err = bdi_init(&q->backing_dev_info);
506 if (err) {
507 kmem_cache_free(blk_requestq_cachep, q);
508 return NULL;
511 init_timer(&q->unplug_timer);
512 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
513 INIT_LIST_HEAD(&q->timeout_list);
514 INIT_WORK(&q->unplug_work, blk_unplug_work);
516 kobject_init(&q->kobj, &blk_queue_ktype);
518 mutex_init(&q->sysfs_lock);
519 spin_lock_init(&q->__queue_lock);
521 return q;
523 EXPORT_SYMBOL(blk_alloc_queue_node);
526 * blk_init_queue - prepare a request queue for use with a block device
527 * @rfn: The function to be called to process requests that have been
528 * placed on the queue.
529 * @lock: Request queue spin lock
531 * Description:
532 * If a block device wishes to use the standard request handling procedures,
533 * which sorts requests and coalesces adjacent requests, then it must
534 * call blk_init_queue(). The function @rfn will be called when there
535 * are requests on the queue that need to be processed. If the device
536 * supports plugging, then @rfn may not be called immediately when requests
537 * are available on the queue, but may be called at some time later instead.
538 * Plugged queues are generally unplugged when a buffer belonging to one
539 * of the requests on the queue is needed, or due to memory pressure.
541 * @rfn is not required, or even expected, to remove all requests off the
542 * queue, but only as many as it can handle at a time. If it does leave
543 * requests on the queue, it is responsible for arranging that the requests
544 * get dealt with eventually.
546 * The queue spin lock must be held while manipulating the requests on the
547 * request queue; this lock will be taken also from interrupt context, so irq
548 * disabling is needed for it.
550 * Function returns a pointer to the initialized request queue, or %NULL if
551 * it didn't succeed.
553 * Note:
554 * blk_init_queue() must be paired with a blk_cleanup_queue() call
555 * when the block device is deactivated (such as at module unload).
558 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
560 return blk_init_queue_node(rfn, lock, -1);
562 EXPORT_SYMBOL(blk_init_queue);
564 struct request_queue *
565 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
567 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
569 if (!q)
570 return NULL;
572 q->node = node_id;
573 if (blk_init_free_list(q)) {
574 kmem_cache_free(blk_requestq_cachep, q);
575 return NULL;
578 q->request_fn = rfn;
579 q->prep_rq_fn = NULL;
580 q->unplug_fn = generic_unplug_device;
581 q->queue_flags = QUEUE_FLAG_DEFAULT;
582 q->queue_lock = lock;
585 * This also sets hw/phys segments, boundary and size
587 blk_queue_make_request(q, __make_request);
589 q->sg_reserved_size = INT_MAX;
592 * all done
594 if (!elevator_init(q, NULL)) {
595 blk_queue_congestion_threshold(q);
596 return q;
599 blk_put_queue(q);
600 return NULL;
602 EXPORT_SYMBOL(blk_init_queue_node);
604 int blk_get_queue(struct request_queue *q)
606 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
607 kobject_get(&q->kobj);
608 return 0;
611 return 1;
614 static inline void blk_free_request(struct request_queue *q, struct request *rq)
616 if (rq->cmd_flags & REQ_ELVPRIV)
617 elv_put_request(q, rq);
618 mempool_free(rq, q->rq.rq_pool);
621 static struct request *
622 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
624 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
626 if (!rq)
627 return NULL;
629 blk_rq_init(q, rq);
631 rq->cmd_flags = flags | REQ_ALLOCED;
633 if (priv) {
634 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
635 mempool_free(rq, q->rq.rq_pool);
636 return NULL;
638 rq->cmd_flags |= REQ_ELVPRIV;
641 return rq;
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
650 if (!ioc)
651 return 0;
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
656 * lose wakeups.
658 return ioc->nr_batch_requests == q->nr_batching ||
659 (ioc->nr_batch_requests > 0
660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
667 * a nice run.
669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
671 if (!ioc || ioc_batching(q, ioc))
672 return;
674 ioc->nr_batch_requests = q->nr_batching;
675 ioc->last_waited = jiffies;
678 static void __freed_request(struct request_queue *q, int sync)
680 struct request_list *rl = &q->rq;
682 if (rl->count[sync] < queue_congestion_off_threshold(q))
683 blk_clear_queue_congested(q, sync);
685 if (rl->count[sync] + 1 <= q->nr_requests) {
686 if (waitqueue_active(&rl->wait[sync]))
687 wake_up(&rl->wait[sync]);
689 blk_clear_queue_full(q, sync);
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
697 static void freed_request(struct request_queue *q, int sync, int priv)
699 struct request_list *rl = &q->rq;
701 rl->count[sync]--;
702 if (priv)
703 rl->elvpriv--;
705 __freed_request(q, sync);
707 if (unlikely(rl->starved[sync ^ 1]))
708 __freed_request(q, sync ^ 1);
712 * Get a free request, queue_lock must be held.
713 * Returns NULL on failure, with queue_lock held.
714 * Returns !NULL on success, with queue_lock *not held*.
716 static struct request *get_request(struct request_queue *q, int rw_flags,
717 struct bio *bio, gfp_t gfp_mask)
719 struct request *rq = NULL;
720 struct request_list *rl = &q->rq;
721 struct io_context *ioc = NULL;
722 const bool is_sync = rw_is_sync(rw_flags) != 0;
723 int may_queue, priv;
725 may_queue = elv_may_queue(q, rw_flags);
726 if (may_queue == ELV_MQUEUE_NO)
727 goto rq_starved;
729 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
730 if (rl->count[is_sync]+1 >= q->nr_requests) {
731 ioc = current_io_context(GFP_ATOMIC, q->node);
733 * The queue will fill after this allocation, so set
734 * it as full, and mark this process as "batching".
735 * This process will be allowed to complete a batch of
736 * requests, others will be blocked.
738 if (!blk_queue_full(q, is_sync)) {
739 ioc_set_batching(q, ioc);
740 blk_set_queue_full(q, is_sync);
741 } else {
742 if (may_queue != ELV_MQUEUE_MUST
743 && !ioc_batching(q, ioc)) {
745 * The queue is full and the allocating
746 * process is not a "batcher", and not
747 * exempted by the IO scheduler
749 goto out;
753 blk_set_queue_congested(q, is_sync);
757 * Only allow batching queuers to allocate up to 50% over the defined
758 * limit of requests, otherwise we could have thousands of requests
759 * allocated with any setting of ->nr_requests
761 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
762 goto out;
764 rl->count[is_sync]++;
765 rl->starved[is_sync] = 0;
767 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
768 if (priv)
769 rl->elvpriv++;
771 if (blk_queue_io_stat(q))
772 rw_flags |= REQ_IO_STAT;
773 spin_unlock_irq(q->queue_lock);
775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
776 if (unlikely(!rq)) {
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
784 spin_lock_irq(q->queue_lock);
785 freed_request(q, is_sync, priv);
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
794 rq_starved:
795 if (unlikely(rl->count[is_sync] == 0))
796 rl->starved[is_sync] = 1;
798 goto out;
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
807 if (ioc_batching(q, ioc))
808 ioc->nr_batch_requests--;
810 trace_block_getrq(q, bio, rw_flags & 1);
811 out:
812 return rq;
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
819 * Called with q->queue_lock held, and returns with it unlocked.
821 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
822 struct bio *bio)
824 const bool is_sync = rw_is_sync(rw_flags) != 0;
825 struct request *rq;
827 rq = get_request(q, rw_flags, bio, GFP_NOIO);
828 while (!rq) {
829 DEFINE_WAIT(wait);
830 struct io_context *ioc;
831 struct request_list *rl = &q->rq;
833 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
834 TASK_UNINTERRUPTIBLE);
836 trace_block_sleeprq(q, bio, rw_flags & 1);
838 __generic_unplug_device(q);
839 spin_unlock_irq(q->queue_lock);
840 io_schedule();
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
848 ioc = current_io_context(GFP_NOIO, q->node);
849 ioc_set_batching(q, ioc);
851 spin_lock_irq(q->queue_lock);
852 finish_wait(&rl->wait[is_sync], &wait);
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
857 return rq;
860 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862 struct request *rq;
864 BUG_ON(rw != READ && rw != WRITE);
866 spin_lock_irq(q->queue_lock);
867 if (gfp_mask & __GFP_WAIT) {
868 rq = get_request_wait(q, rw, NULL);
869 } else {
870 rq = get_request(q, rw, NULL, gfp_mask);
871 if (!rq)
872 spin_unlock_irq(q->queue_lock);
874 /* q->queue_lock is unlocked at this point */
876 return rq;
878 EXPORT_SYMBOL(blk_get_request);
881 * blk_make_request - given a bio, allocate a corresponding struct request.
882 * @q: target request queue
883 * @bio: The bio describing the memory mappings that will be submitted for IO.
884 * It may be a chained-bio properly constructed by block/bio layer.
885 * @gfp_mask: gfp flags to be used for memory allocation
887 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
888 * type commands. Where the struct request needs to be farther initialized by
889 * the caller. It is passed a &struct bio, which describes the memory info of
890 * the I/O transfer.
892 * The caller of blk_make_request must make sure that bi_io_vec
893 * are set to describe the memory buffers. That bio_data_dir() will return
894 * the needed direction of the request. (And all bio's in the passed bio-chain
895 * are properly set accordingly)
897 * If called under none-sleepable conditions, mapped bio buffers must not
898 * need bouncing, by calling the appropriate masked or flagged allocator,
899 * suitable for the target device. Otherwise the call to blk_queue_bounce will
900 * BUG.
902 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
903 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
904 * anything but the first bio in the chain. Otherwise you risk waiting for IO
905 * completion of a bio that hasn't been submitted yet, thus resulting in a
906 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
907 * of bio_alloc(), as that avoids the mempool deadlock.
908 * If possible a big IO should be split into smaller parts when allocation
909 * fails. Partial allocation should not be an error, or you risk a live-lock.
911 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
912 gfp_t gfp_mask)
914 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
916 if (unlikely(!rq))
917 return ERR_PTR(-ENOMEM);
919 for_each_bio(bio) {
920 struct bio *bounce_bio = bio;
921 int ret;
923 blk_queue_bounce(q, &bounce_bio);
924 ret = blk_rq_append_bio(q, rq, bounce_bio);
925 if (unlikely(ret)) {
926 blk_put_request(rq);
927 return ERR_PTR(ret);
931 return rq;
933 EXPORT_SYMBOL(blk_make_request);
936 * blk_requeue_request - put a request back on queue
937 * @q: request queue where request should be inserted
938 * @rq: request to be inserted
940 * Description:
941 * Drivers often keep queueing requests until the hardware cannot accept
942 * more, when that condition happens we need to put the request back
943 * on the queue. Must be called with queue lock held.
945 void blk_requeue_request(struct request_queue *q, struct request *rq)
947 blk_delete_timer(rq);
948 blk_clear_rq_complete(rq);
949 trace_block_rq_requeue(q, rq);
951 if (blk_rq_tagged(rq))
952 blk_queue_end_tag(q, rq);
954 BUG_ON(blk_queued_rq(rq));
956 elv_requeue_request(q, rq);
958 EXPORT_SYMBOL(blk_requeue_request);
961 * blk_insert_request - insert a special request into a request queue
962 * @q: request queue where request should be inserted
963 * @rq: request to be inserted
964 * @at_head: insert request at head or tail of queue
965 * @data: private data
967 * Description:
968 * Many block devices need to execute commands asynchronously, so they don't
969 * block the whole kernel from preemption during request execution. This is
970 * accomplished normally by inserting aritficial requests tagged as
971 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
972 * be scheduled for actual execution by the request queue.
974 * We have the option of inserting the head or the tail of the queue.
975 * Typically we use the tail for new ioctls and so forth. We use the head
976 * of the queue for things like a QUEUE_FULL message from a device, or a
977 * host that is unable to accept a particular command.
979 void blk_insert_request(struct request_queue *q, struct request *rq,
980 int at_head, void *data)
982 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
983 unsigned long flags;
986 * tell I/O scheduler that this isn't a regular read/write (ie it
987 * must not attempt merges on this) and that it acts as a soft
988 * barrier
990 rq->cmd_type = REQ_TYPE_SPECIAL;
992 rq->special = data;
994 spin_lock_irqsave(q->queue_lock, flags);
997 * If command is tagged, release the tag
999 if (blk_rq_tagged(rq))
1000 blk_queue_end_tag(q, rq);
1002 drive_stat_acct(rq, 1);
1003 __elv_add_request(q, rq, where, 0);
1004 __blk_run_queue(q);
1005 spin_unlock_irqrestore(q->queue_lock, flags);
1007 EXPORT_SYMBOL(blk_insert_request);
1010 * add-request adds a request to the linked list.
1011 * queue lock is held and interrupts disabled, as we muck with the
1012 * request queue list.
1014 static inline void add_request(struct request_queue *q, struct request *req)
1016 drive_stat_acct(req, 1);
1019 * elevator indicated where it wants this request to be
1020 * inserted at elevator_merge time
1022 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1025 static void part_round_stats_single(int cpu, struct hd_struct *part,
1026 unsigned long now)
1028 if (now == part->stamp)
1029 return;
1031 if (part->in_flight) {
1032 __part_stat_add(cpu, part, time_in_queue,
1033 part->in_flight * (now - part->stamp));
1034 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1036 part->stamp = now;
1040 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1041 * @cpu: cpu number for stats access
1042 * @part: target partition
1044 * The average IO queue length and utilisation statistics are maintained
1045 * by observing the current state of the queue length and the amount of
1046 * time it has been in this state for.
1048 * Normally, that accounting is done on IO completion, but that can result
1049 * in more than a second's worth of IO being accounted for within any one
1050 * second, leading to >100% utilisation. To deal with that, we call this
1051 * function to do a round-off before returning the results when reading
1052 * /proc/diskstats. This accounts immediately for all queue usage up to
1053 * the current jiffies and restarts the counters again.
1055 void part_round_stats(int cpu, struct hd_struct *part)
1057 unsigned long now = jiffies;
1059 if (part->partno)
1060 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1061 part_round_stats_single(cpu, part, now);
1063 EXPORT_SYMBOL_GPL(part_round_stats);
1066 * queue lock must be held
1068 void __blk_put_request(struct request_queue *q, struct request *req)
1070 if (unlikely(!q))
1071 return;
1072 if (unlikely(--req->ref_count))
1073 return;
1075 elv_completed_request(q, req);
1077 /* this is a bio leak */
1078 WARN_ON(req->bio != NULL);
1081 * Request may not have originated from ll_rw_blk. if not,
1082 * it didn't come out of our reserved rq pools
1084 if (req->cmd_flags & REQ_ALLOCED) {
1085 int is_sync = rq_is_sync(req) != 0;
1086 int priv = req->cmd_flags & REQ_ELVPRIV;
1088 BUG_ON(!list_empty(&req->queuelist));
1089 BUG_ON(!hlist_unhashed(&req->hash));
1091 blk_free_request(q, req);
1092 freed_request(q, is_sync, priv);
1095 EXPORT_SYMBOL_GPL(__blk_put_request);
1097 void blk_put_request(struct request *req)
1099 unsigned long flags;
1100 struct request_queue *q = req->q;
1102 spin_lock_irqsave(q->queue_lock, flags);
1103 __blk_put_request(q, req);
1104 spin_unlock_irqrestore(q->queue_lock, flags);
1106 EXPORT_SYMBOL(blk_put_request);
1108 void init_request_from_bio(struct request *req, struct bio *bio)
1110 req->cpu = bio->bi_comp_cpu;
1111 req->cmd_type = REQ_TYPE_FS;
1114 * Inherit FAILFAST from bio (for read-ahead, and explicit
1115 * FAILFAST). FAILFAST flags are identical for req and bio.
1117 if (bio_rw_ahead(bio))
1118 req->cmd_flags |= REQ_FAILFAST_MASK;
1119 else
1120 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1122 if (unlikely(bio_discard(bio))) {
1123 req->cmd_flags |= REQ_DISCARD;
1124 if (bio_barrier(bio))
1125 req->cmd_flags |= REQ_SOFTBARRIER;
1126 req->q->prepare_discard_fn(req->q, req);
1127 } else if (unlikely(bio_barrier(bio)))
1128 req->cmd_flags |= REQ_HARDBARRIER;
1130 if (bio_sync(bio))
1131 req->cmd_flags |= REQ_RW_SYNC;
1132 if (bio_rw_meta(bio))
1133 req->cmd_flags |= REQ_RW_META;
1134 if (bio_noidle(bio))
1135 req->cmd_flags |= REQ_NOIDLE;
1137 req->errors = 0;
1138 req->__sector = bio->bi_sector;
1139 req->ioprio = bio_prio(bio);
1140 blk_rq_bio_prep(req->q, req, bio);
1144 * Only disabling plugging for non-rotational devices if it does tagging
1145 * as well, otherwise we do need the proper merging
1147 static inline bool queue_should_plug(struct request_queue *q)
1149 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1152 static int __make_request(struct request_queue *q, struct bio *bio)
1154 struct request *req;
1155 int el_ret;
1156 unsigned int bytes = bio->bi_size;
1157 const unsigned short prio = bio_prio(bio);
1158 const int sync = bio_sync(bio);
1159 const int unplug = bio_unplug(bio);
1160 int rw_flags;
1162 if (bio_barrier(bio) && bio_has_data(bio) &&
1163 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1164 bio_endio(bio, -EOPNOTSUPP);
1165 return 0;
1168 * low level driver can indicate that it wants pages above a
1169 * certain limit bounced to low memory (ie for highmem, or even
1170 * ISA dma in theory)
1172 blk_queue_bounce(q, &bio);
1174 spin_lock_irq(q->queue_lock);
1176 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1177 goto get_rq;
1179 el_ret = elv_merge(q, &req, bio);
1180 switch (el_ret) {
1181 case ELEVATOR_BACK_MERGE:
1182 BUG_ON(!rq_mergeable(req));
1184 if (!ll_back_merge_fn(q, req, bio))
1185 break;
1187 trace_block_bio_backmerge(q, bio);
1189 req->biotail->bi_next = bio;
1190 req->biotail = bio;
1191 req->__data_len += bytes;
1192 req->ioprio = ioprio_best(req->ioprio, prio);
1193 if (!blk_rq_cpu_valid(req))
1194 req->cpu = bio->bi_comp_cpu;
1195 drive_stat_acct(req, 0);
1196 if (!attempt_back_merge(q, req))
1197 elv_merged_request(q, req, el_ret);
1198 goto out;
1200 case ELEVATOR_FRONT_MERGE:
1201 BUG_ON(!rq_mergeable(req));
1203 if (!ll_front_merge_fn(q, req, bio))
1204 break;
1206 trace_block_bio_frontmerge(q, bio);
1208 bio->bi_next = req->bio;
1209 req->bio = bio;
1212 * may not be valid. if the low level driver said
1213 * it didn't need a bounce buffer then it better
1214 * not touch req->buffer either...
1216 req->buffer = bio_data(bio);
1217 req->__sector = bio->bi_sector;
1218 req->__data_len += bytes;
1219 req->ioprio = ioprio_best(req->ioprio, prio);
1220 if (!blk_rq_cpu_valid(req))
1221 req->cpu = bio->bi_comp_cpu;
1222 drive_stat_acct(req, 0);
1223 if (!attempt_front_merge(q, req))
1224 elv_merged_request(q, req, el_ret);
1225 goto out;
1227 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1228 default:
1232 get_rq:
1234 * This sync check and mask will be re-done in init_request_from_bio(),
1235 * but we need to set it earlier to expose the sync flag to the
1236 * rq allocator and io schedulers.
1238 rw_flags = bio_data_dir(bio);
1239 if (sync)
1240 rw_flags |= REQ_RW_SYNC;
1243 * Grab a free request. This is might sleep but can not fail.
1244 * Returns with the queue unlocked.
1246 req = get_request_wait(q, rw_flags, bio);
1249 * After dropping the lock and possibly sleeping here, our request
1250 * may now be mergeable after it had proven unmergeable (above).
1251 * We don't worry about that case for efficiency. It won't happen
1252 * often, and the elevators are able to handle it.
1254 init_request_from_bio(req, bio);
1256 spin_lock_irq(q->queue_lock);
1257 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1258 bio_flagged(bio, BIO_CPU_AFFINE))
1259 req->cpu = blk_cpu_to_group(smp_processor_id());
1260 if (queue_should_plug(q) && elv_queue_empty(q))
1261 blk_plug_device(q);
1262 add_request(q, req);
1263 out:
1264 if (unplug || !queue_should_plug(q))
1265 __generic_unplug_device(q);
1266 spin_unlock_irq(q->queue_lock);
1267 return 0;
1271 * If bio->bi_dev is a partition, remap the location
1273 static inline void blk_partition_remap(struct bio *bio)
1275 struct block_device *bdev = bio->bi_bdev;
1277 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1278 struct hd_struct *p = bdev->bd_part;
1280 bio->bi_sector += p->start_sect;
1281 bio->bi_bdev = bdev->bd_contains;
1283 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1284 bdev->bd_dev,
1285 bio->bi_sector - p->start_sect);
1289 static void handle_bad_sector(struct bio *bio)
1291 char b[BDEVNAME_SIZE];
1293 printk(KERN_INFO "attempt to access beyond end of device\n");
1294 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1295 bdevname(bio->bi_bdev, b),
1296 bio->bi_rw,
1297 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1298 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1300 set_bit(BIO_EOF, &bio->bi_flags);
1303 #ifdef CONFIG_FAIL_MAKE_REQUEST
1305 static DECLARE_FAULT_ATTR(fail_make_request);
1307 static int __init setup_fail_make_request(char *str)
1309 return setup_fault_attr(&fail_make_request, str);
1311 __setup("fail_make_request=", setup_fail_make_request);
1313 static int should_fail_request(struct bio *bio)
1315 struct hd_struct *part = bio->bi_bdev->bd_part;
1317 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1318 return should_fail(&fail_make_request, bio->bi_size);
1320 return 0;
1323 static int __init fail_make_request_debugfs(void)
1325 return init_fault_attr_dentries(&fail_make_request,
1326 "fail_make_request");
1329 late_initcall(fail_make_request_debugfs);
1331 #else /* CONFIG_FAIL_MAKE_REQUEST */
1333 static inline int should_fail_request(struct bio *bio)
1335 return 0;
1338 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1341 * Check whether this bio extends beyond the end of the device.
1343 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1345 sector_t maxsector;
1347 if (!nr_sectors)
1348 return 0;
1350 /* Test device or partition size, when known. */
1351 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1352 if (maxsector) {
1353 sector_t sector = bio->bi_sector;
1355 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1357 * This may well happen - the kernel calls bread()
1358 * without checking the size of the device, e.g., when
1359 * mounting a device.
1361 handle_bad_sector(bio);
1362 return 1;
1366 return 0;
1370 * generic_make_request - hand a buffer to its device driver for I/O
1371 * @bio: The bio describing the location in memory and on the device.
1373 * generic_make_request() is used to make I/O requests of block
1374 * devices. It is passed a &struct bio, which describes the I/O that needs
1375 * to be done.
1377 * generic_make_request() does not return any status. The
1378 * success/failure status of the request, along with notification of
1379 * completion, is delivered asynchronously through the bio->bi_end_io
1380 * function described (one day) else where.
1382 * The caller of generic_make_request must make sure that bi_io_vec
1383 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1384 * set to describe the device address, and the
1385 * bi_end_io and optionally bi_private are set to describe how
1386 * completion notification should be signaled.
1388 * generic_make_request and the drivers it calls may use bi_next if this
1389 * bio happens to be merged with someone else, and may change bi_dev and
1390 * bi_sector for remaps as it sees fit. So the values of these fields
1391 * should NOT be depended on after the call to generic_make_request.
1393 static inline void __generic_make_request(struct bio *bio)
1395 struct request_queue *q;
1396 sector_t old_sector;
1397 int ret, nr_sectors = bio_sectors(bio);
1398 dev_t old_dev;
1399 int err = -EIO;
1401 might_sleep();
1403 if (bio_check_eod(bio, nr_sectors))
1404 goto end_io;
1407 * Resolve the mapping until finished. (drivers are
1408 * still free to implement/resolve their own stacking
1409 * by explicitly returning 0)
1411 * NOTE: we don't repeat the blk_size check for each new device.
1412 * Stacking drivers are expected to know what they are doing.
1414 old_sector = -1;
1415 old_dev = 0;
1416 do {
1417 char b[BDEVNAME_SIZE];
1419 q = bdev_get_queue(bio->bi_bdev);
1420 if (unlikely(!q)) {
1421 printk(KERN_ERR
1422 "generic_make_request: Trying to access "
1423 "nonexistent block-device %s (%Lu)\n",
1424 bdevname(bio->bi_bdev, b),
1425 (long long) bio->bi_sector);
1426 goto end_io;
1429 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1430 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1431 bdevname(bio->bi_bdev, b),
1432 bio_sectors(bio),
1433 queue_max_hw_sectors(q));
1434 goto end_io;
1437 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1438 goto end_io;
1440 if (should_fail_request(bio))
1441 goto end_io;
1444 * If this device has partitions, remap block n
1445 * of partition p to block n+start(p) of the disk.
1447 blk_partition_remap(bio);
1449 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1450 goto end_io;
1452 if (old_sector != -1)
1453 trace_block_remap(q, bio, old_dev, old_sector);
1455 trace_block_bio_queue(q, bio);
1457 old_sector = bio->bi_sector;
1458 old_dev = bio->bi_bdev->bd_dev;
1460 if (bio_check_eod(bio, nr_sectors))
1461 goto end_io;
1463 if (bio_discard(bio) && !q->prepare_discard_fn) {
1464 err = -EOPNOTSUPP;
1465 goto end_io;
1468 ret = q->make_request_fn(q, bio);
1469 } while (ret);
1471 return;
1473 end_io:
1474 bio_endio(bio, err);
1478 * We only want one ->make_request_fn to be active at a time,
1479 * else stack usage with stacked devices could be a problem.
1480 * So use current->bio_{list,tail} to keep a list of requests
1481 * submited by a make_request_fn function.
1482 * current->bio_tail is also used as a flag to say if
1483 * generic_make_request is currently active in this task or not.
1484 * If it is NULL, then no make_request is active. If it is non-NULL,
1485 * then a make_request is active, and new requests should be added
1486 * at the tail
1488 void generic_make_request(struct bio *bio)
1490 if (current->bio_tail) {
1491 /* make_request is active */
1492 *(current->bio_tail) = bio;
1493 bio->bi_next = NULL;
1494 current->bio_tail = &bio->bi_next;
1495 return;
1497 /* following loop may be a bit non-obvious, and so deserves some
1498 * explanation.
1499 * Before entering the loop, bio->bi_next is NULL (as all callers
1500 * ensure that) so we have a list with a single bio.
1501 * We pretend that we have just taken it off a longer list, so
1502 * we assign bio_list to the next (which is NULL) and bio_tail
1503 * to &bio_list, thus initialising the bio_list of new bios to be
1504 * added. __generic_make_request may indeed add some more bios
1505 * through a recursive call to generic_make_request. If it
1506 * did, we find a non-NULL value in bio_list and re-enter the loop
1507 * from the top. In this case we really did just take the bio
1508 * of the top of the list (no pretending) and so fixup bio_list and
1509 * bio_tail or bi_next, and call into __generic_make_request again.
1511 * The loop was structured like this to make only one call to
1512 * __generic_make_request (which is important as it is large and
1513 * inlined) and to keep the structure simple.
1515 BUG_ON(bio->bi_next);
1516 do {
1517 current->bio_list = bio->bi_next;
1518 if (bio->bi_next == NULL)
1519 current->bio_tail = &current->bio_list;
1520 else
1521 bio->bi_next = NULL;
1522 __generic_make_request(bio);
1523 bio = current->bio_list;
1524 } while (bio);
1525 current->bio_tail = NULL; /* deactivate */
1527 EXPORT_SYMBOL(generic_make_request);
1530 * submit_bio - submit a bio to the block device layer for I/O
1531 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1532 * @bio: The &struct bio which describes the I/O
1534 * submit_bio() is very similar in purpose to generic_make_request(), and
1535 * uses that function to do most of the work. Both are fairly rough
1536 * interfaces; @bio must be presetup and ready for I/O.
1539 void submit_bio(int rw, struct bio *bio)
1541 int count = bio_sectors(bio);
1543 bio->bi_rw |= rw;
1546 * If it's a regular read/write or a barrier with data attached,
1547 * go through the normal accounting stuff before submission.
1549 if (bio_has_data(bio)) {
1550 if (rw & WRITE) {
1551 count_vm_events(PGPGOUT, count);
1552 } else {
1553 task_io_account_read(bio->bi_size);
1554 count_vm_events(PGPGIN, count);
1557 if (unlikely(block_dump)) {
1558 char b[BDEVNAME_SIZE];
1559 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1560 current->comm, task_pid_nr(current),
1561 (rw & WRITE) ? "WRITE" : "READ",
1562 (unsigned long long)bio->bi_sector,
1563 bdevname(bio->bi_bdev, b));
1567 generic_make_request(bio);
1569 EXPORT_SYMBOL(submit_bio);
1572 * blk_rq_check_limits - Helper function to check a request for the queue limit
1573 * @q: the queue
1574 * @rq: the request being checked
1576 * Description:
1577 * @rq may have been made based on weaker limitations of upper-level queues
1578 * in request stacking drivers, and it may violate the limitation of @q.
1579 * Since the block layer and the underlying device driver trust @rq
1580 * after it is inserted to @q, it should be checked against @q before
1581 * the insertion using this generic function.
1583 * This function should also be useful for request stacking drivers
1584 * in some cases below, so export this fuction.
1585 * Request stacking drivers like request-based dm may change the queue
1586 * limits while requests are in the queue (e.g. dm's table swapping).
1587 * Such request stacking drivers should check those requests agaist
1588 * the new queue limits again when they dispatch those requests,
1589 * although such checkings are also done against the old queue limits
1590 * when submitting requests.
1592 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1594 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1595 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1596 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1597 return -EIO;
1601 * queue's settings related to segment counting like q->bounce_pfn
1602 * may differ from that of other stacking queues.
1603 * Recalculate it to check the request correctly on this queue's
1604 * limitation.
1606 blk_recalc_rq_segments(rq);
1607 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1608 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1609 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1610 return -EIO;
1613 return 0;
1615 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1618 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1619 * @q: the queue to submit the request
1620 * @rq: the request being queued
1622 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1624 unsigned long flags;
1626 if (blk_rq_check_limits(q, rq))
1627 return -EIO;
1629 #ifdef CONFIG_FAIL_MAKE_REQUEST
1630 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1631 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1632 return -EIO;
1633 #endif
1635 spin_lock_irqsave(q->queue_lock, flags);
1638 * Submitting request must be dequeued before calling this function
1639 * because it will be linked to another request_queue
1641 BUG_ON(blk_queued_rq(rq));
1643 drive_stat_acct(rq, 1);
1644 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1646 spin_unlock_irqrestore(q->queue_lock, flags);
1648 return 0;
1650 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1652 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1654 if (blk_do_io_stat(req)) {
1655 const int rw = rq_data_dir(req);
1656 struct hd_struct *part;
1657 int cpu;
1659 cpu = part_stat_lock();
1660 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1661 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1662 part_stat_unlock();
1666 static void blk_account_io_done(struct request *req)
1669 * Account IO completion. bar_rq isn't accounted as a normal
1670 * IO on queueing nor completion. Accounting the containing
1671 * request is enough.
1673 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1674 unsigned long duration = jiffies - req->start_time;
1675 const int rw = rq_data_dir(req);
1676 struct hd_struct *part;
1677 int cpu;
1679 cpu = part_stat_lock();
1680 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1682 part_stat_inc(cpu, part, ios[rw]);
1683 part_stat_add(cpu, part, ticks[rw], duration);
1684 part_round_stats(cpu, part);
1685 part_dec_in_flight(part);
1687 part_stat_unlock();
1692 * blk_peek_request - peek at the top of a request queue
1693 * @q: request queue to peek at
1695 * Description:
1696 * Return the request at the top of @q. The returned request
1697 * should be started using blk_start_request() before LLD starts
1698 * processing it.
1700 * Return:
1701 * Pointer to the request at the top of @q if available. Null
1702 * otherwise.
1704 * Context:
1705 * queue_lock must be held.
1707 struct request *blk_peek_request(struct request_queue *q)
1709 struct request *rq;
1710 int ret;
1712 while ((rq = __elv_next_request(q)) != NULL) {
1713 if (!(rq->cmd_flags & REQ_STARTED)) {
1715 * This is the first time the device driver
1716 * sees this request (possibly after
1717 * requeueing). Notify IO scheduler.
1719 if (blk_sorted_rq(rq))
1720 elv_activate_rq(q, rq);
1723 * just mark as started even if we don't start
1724 * it, a request that has been delayed should
1725 * not be passed by new incoming requests
1727 rq->cmd_flags |= REQ_STARTED;
1728 trace_block_rq_issue(q, rq);
1731 if (!q->boundary_rq || q->boundary_rq == rq) {
1732 q->end_sector = rq_end_sector(rq);
1733 q->boundary_rq = NULL;
1736 if (rq->cmd_flags & REQ_DONTPREP)
1737 break;
1739 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1741 * make sure space for the drain appears we
1742 * know we can do this because max_hw_segments
1743 * has been adjusted to be one fewer than the
1744 * device can handle
1746 rq->nr_phys_segments++;
1749 if (!q->prep_rq_fn)
1750 break;
1752 ret = q->prep_rq_fn(q, rq);
1753 if (ret == BLKPREP_OK) {
1754 break;
1755 } else if (ret == BLKPREP_DEFER) {
1757 * the request may have been (partially) prepped.
1758 * we need to keep this request in the front to
1759 * avoid resource deadlock. REQ_STARTED will
1760 * prevent other fs requests from passing this one.
1762 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1763 !(rq->cmd_flags & REQ_DONTPREP)) {
1765 * remove the space for the drain we added
1766 * so that we don't add it again
1768 --rq->nr_phys_segments;
1771 rq = NULL;
1772 break;
1773 } else if (ret == BLKPREP_KILL) {
1774 rq->cmd_flags |= REQ_QUIET;
1776 * Mark this request as started so we don't trigger
1777 * any debug logic in the end I/O path.
1779 blk_start_request(rq);
1780 __blk_end_request_all(rq, -EIO);
1781 } else {
1782 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1783 break;
1787 return rq;
1789 EXPORT_SYMBOL(blk_peek_request);
1791 void blk_dequeue_request(struct request *rq)
1793 struct request_queue *q = rq->q;
1795 BUG_ON(list_empty(&rq->queuelist));
1796 BUG_ON(ELV_ON_HASH(rq));
1798 list_del_init(&rq->queuelist);
1801 * the time frame between a request being removed from the lists
1802 * and to it is freed is accounted as io that is in progress at
1803 * the driver side.
1805 if (blk_account_rq(rq))
1806 q->in_flight[rq_is_sync(rq)]++;
1810 * blk_start_request - start request processing on the driver
1811 * @req: request to dequeue
1813 * Description:
1814 * Dequeue @req and start timeout timer on it. This hands off the
1815 * request to the driver.
1817 * Block internal functions which don't want to start timer should
1818 * call blk_dequeue_request().
1820 * Context:
1821 * queue_lock must be held.
1823 void blk_start_request(struct request *req)
1825 blk_dequeue_request(req);
1828 * We are now handing the request to the hardware, initialize
1829 * resid_len to full count and add the timeout handler.
1831 req->resid_len = blk_rq_bytes(req);
1832 if (unlikely(blk_bidi_rq(req)))
1833 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1835 blk_add_timer(req);
1837 EXPORT_SYMBOL(blk_start_request);
1840 * blk_fetch_request - fetch a request from a request queue
1841 * @q: request queue to fetch a request from
1843 * Description:
1844 * Return the request at the top of @q. The request is started on
1845 * return and LLD can start processing it immediately.
1847 * Return:
1848 * Pointer to the request at the top of @q if available. Null
1849 * otherwise.
1851 * Context:
1852 * queue_lock must be held.
1854 struct request *blk_fetch_request(struct request_queue *q)
1856 struct request *rq;
1858 rq = blk_peek_request(q);
1859 if (rq)
1860 blk_start_request(rq);
1861 return rq;
1863 EXPORT_SYMBOL(blk_fetch_request);
1866 * blk_update_request - Special helper function for request stacking drivers
1867 * @req: the request being processed
1868 * @error: %0 for success, < %0 for error
1869 * @nr_bytes: number of bytes to complete @req
1871 * Description:
1872 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1873 * the request structure even if @req doesn't have leftover.
1874 * If @req has leftover, sets it up for the next range of segments.
1876 * This special helper function is only for request stacking drivers
1877 * (e.g. request-based dm) so that they can handle partial completion.
1878 * Actual device drivers should use blk_end_request instead.
1880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1881 * %false return from this function.
1883 * Return:
1884 * %false - this request doesn't have any more data
1885 * %true - this request has more data
1887 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1889 int total_bytes, bio_nbytes, next_idx = 0;
1890 struct bio *bio;
1892 if (!req->bio)
1893 return false;
1895 trace_block_rq_complete(req->q, req);
1898 * For fs requests, rq is just carrier of independent bio's
1899 * and each partial completion should be handled separately.
1900 * Reset per-request error on each partial completion.
1902 * TODO: tj: This is too subtle. It would be better to let
1903 * low level drivers do what they see fit.
1905 if (blk_fs_request(req))
1906 req->errors = 0;
1908 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1909 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1910 req->rq_disk ? req->rq_disk->disk_name : "?",
1911 (unsigned long long)blk_rq_pos(req));
1914 blk_account_io_completion(req, nr_bytes);
1916 total_bytes = bio_nbytes = 0;
1917 while ((bio = req->bio) != NULL) {
1918 int nbytes;
1920 if (nr_bytes >= bio->bi_size) {
1921 req->bio = bio->bi_next;
1922 nbytes = bio->bi_size;
1923 req_bio_endio(req, bio, nbytes, error);
1924 next_idx = 0;
1925 bio_nbytes = 0;
1926 } else {
1927 int idx = bio->bi_idx + next_idx;
1929 if (unlikely(idx >= bio->bi_vcnt)) {
1930 blk_dump_rq_flags(req, "__end_that");
1931 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1932 __func__, idx, bio->bi_vcnt);
1933 break;
1936 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1937 BIO_BUG_ON(nbytes > bio->bi_size);
1940 * not a complete bvec done
1942 if (unlikely(nbytes > nr_bytes)) {
1943 bio_nbytes += nr_bytes;
1944 total_bytes += nr_bytes;
1945 break;
1949 * advance to the next vector
1951 next_idx++;
1952 bio_nbytes += nbytes;
1955 total_bytes += nbytes;
1956 nr_bytes -= nbytes;
1958 bio = req->bio;
1959 if (bio) {
1961 * end more in this run, or just return 'not-done'
1963 if (unlikely(nr_bytes <= 0))
1964 break;
1969 * completely done
1971 if (!req->bio) {
1973 * Reset counters so that the request stacking driver
1974 * can find how many bytes remain in the request
1975 * later.
1977 req->__data_len = 0;
1978 return false;
1982 * if the request wasn't completed, update state
1984 if (bio_nbytes) {
1985 req_bio_endio(req, bio, bio_nbytes, error);
1986 bio->bi_idx += next_idx;
1987 bio_iovec(bio)->bv_offset += nr_bytes;
1988 bio_iovec(bio)->bv_len -= nr_bytes;
1991 req->__data_len -= total_bytes;
1992 req->buffer = bio_data(req->bio);
1994 /* update sector only for requests with clear definition of sector */
1995 if (blk_fs_request(req) || blk_discard_rq(req))
1996 req->__sector += total_bytes >> 9;
1999 * If total number of sectors is less than the first segment
2000 * size, something has gone terribly wrong.
2002 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2003 printk(KERN_ERR "blk: request botched\n");
2004 req->__data_len = blk_rq_cur_bytes(req);
2007 /* recalculate the number of segments */
2008 blk_recalc_rq_segments(req);
2010 return true;
2012 EXPORT_SYMBOL_GPL(blk_update_request);
2014 static bool blk_update_bidi_request(struct request *rq, int error,
2015 unsigned int nr_bytes,
2016 unsigned int bidi_bytes)
2018 if (blk_update_request(rq, error, nr_bytes))
2019 return true;
2021 /* Bidi request must be completed as a whole */
2022 if (unlikely(blk_bidi_rq(rq)) &&
2023 blk_update_request(rq->next_rq, error, bidi_bytes))
2024 return true;
2026 add_disk_randomness(rq->rq_disk);
2028 return false;
2032 * queue lock must be held
2034 static void blk_finish_request(struct request *req, int error)
2036 if (blk_rq_tagged(req))
2037 blk_queue_end_tag(req->q, req);
2039 BUG_ON(blk_queued_rq(req));
2041 if (unlikely(laptop_mode) && blk_fs_request(req))
2042 laptop_io_completion();
2044 blk_delete_timer(req);
2046 blk_account_io_done(req);
2048 if (req->end_io)
2049 req->end_io(req, error);
2050 else {
2051 if (blk_bidi_rq(req))
2052 __blk_put_request(req->next_rq->q, req->next_rq);
2054 __blk_put_request(req->q, req);
2059 * blk_end_bidi_request - Complete a bidi request
2060 * @rq: the request to complete
2061 * @error: %0 for success, < %0 for error
2062 * @nr_bytes: number of bytes to complete @rq
2063 * @bidi_bytes: number of bytes to complete @rq->next_rq
2065 * Description:
2066 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2067 * Drivers that supports bidi can safely call this member for any
2068 * type of request, bidi or uni. In the later case @bidi_bytes is
2069 * just ignored.
2071 * Return:
2072 * %false - we are done with this request
2073 * %true - still buffers pending for this request
2075 static bool blk_end_bidi_request(struct request *rq, int error,
2076 unsigned int nr_bytes, unsigned int bidi_bytes)
2078 struct request_queue *q = rq->q;
2079 unsigned long flags;
2081 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2082 return true;
2084 spin_lock_irqsave(q->queue_lock, flags);
2085 blk_finish_request(rq, error);
2086 spin_unlock_irqrestore(q->queue_lock, flags);
2088 return false;
2092 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2093 * @rq: the request to complete
2094 * @error: %0 for success, < %0 for error
2095 * @nr_bytes: number of bytes to complete @rq
2096 * @bidi_bytes: number of bytes to complete @rq->next_rq
2098 * Description:
2099 * Identical to blk_end_bidi_request() except that queue lock is
2100 * assumed to be locked on entry and remains so on return.
2102 * Return:
2103 * %false - we are done with this request
2104 * %true - still buffers pending for this request
2106 static bool __blk_end_bidi_request(struct request *rq, int error,
2107 unsigned int nr_bytes, unsigned int bidi_bytes)
2109 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2110 return true;
2112 blk_finish_request(rq, error);
2114 return false;
2118 * blk_end_request - Helper function for drivers to complete the request.
2119 * @rq: the request being processed
2120 * @error: %0 for success, < %0 for error
2121 * @nr_bytes: number of bytes to complete
2123 * Description:
2124 * Ends I/O on a number of bytes attached to @rq.
2125 * If @rq has leftover, sets it up for the next range of segments.
2127 * Return:
2128 * %false - we are done with this request
2129 * %true - still buffers pending for this request
2131 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2133 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2135 EXPORT_SYMBOL(blk_end_request);
2138 * blk_end_request_all - Helper function for drives to finish the request.
2139 * @rq: the request to finish
2140 * @error: %0 for success, < %0 for error
2142 * Description:
2143 * Completely finish @rq.
2145 void blk_end_request_all(struct request *rq, int error)
2147 bool pending;
2148 unsigned int bidi_bytes = 0;
2150 if (unlikely(blk_bidi_rq(rq)))
2151 bidi_bytes = blk_rq_bytes(rq->next_rq);
2153 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2154 BUG_ON(pending);
2156 EXPORT_SYMBOL(blk_end_request_all);
2159 * blk_end_request_cur - Helper function to finish the current request chunk.
2160 * @rq: the request to finish the current chunk for
2161 * @error: %0 for success, < %0 for error
2163 * Description:
2164 * Complete the current consecutively mapped chunk from @rq.
2166 * Return:
2167 * %false - we are done with this request
2168 * %true - still buffers pending for this request
2170 bool blk_end_request_cur(struct request *rq, int error)
2172 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2174 EXPORT_SYMBOL(blk_end_request_cur);
2177 * __blk_end_request - Helper function for drivers to complete the request.
2178 * @rq: the request being processed
2179 * @error: %0 for success, < %0 for error
2180 * @nr_bytes: number of bytes to complete
2182 * Description:
2183 * Must be called with queue lock held unlike blk_end_request().
2185 * Return:
2186 * %false - we are done with this request
2187 * %true - still buffers pending for this request
2189 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2191 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2193 EXPORT_SYMBOL(__blk_end_request);
2196 * __blk_end_request_all - Helper function for drives to finish the request.
2197 * @rq: the request to finish
2198 * @error: %0 for success, < %0 for error
2200 * Description:
2201 * Completely finish @rq. Must be called with queue lock held.
2203 void __blk_end_request_all(struct request *rq, int error)
2205 bool pending;
2206 unsigned int bidi_bytes = 0;
2208 if (unlikely(blk_bidi_rq(rq)))
2209 bidi_bytes = blk_rq_bytes(rq->next_rq);
2211 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2212 BUG_ON(pending);
2214 EXPORT_SYMBOL(__blk_end_request_all);
2217 * __blk_end_request_cur - Helper function to finish the current request chunk.
2218 * @rq: the request to finish the current chunk for
2219 * @error: %0 for success, < %0 for error
2221 * Description:
2222 * Complete the current consecutively mapped chunk from @rq. Must
2223 * be called with queue lock held.
2225 * Return:
2226 * %false - we are done with this request
2227 * %true - still buffers pending for this request
2229 bool __blk_end_request_cur(struct request *rq, int error)
2231 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2233 EXPORT_SYMBOL(__blk_end_request_cur);
2235 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2236 struct bio *bio)
2238 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2239 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2241 if (bio_has_data(bio)) {
2242 rq->nr_phys_segments = bio_phys_segments(q, bio);
2243 rq->buffer = bio_data(bio);
2245 rq->__data_len = bio->bi_size;
2246 rq->bio = rq->biotail = bio;
2248 if (bio->bi_bdev)
2249 rq->rq_disk = bio->bi_bdev->bd_disk;
2253 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2254 * @q : the queue of the device being checked
2256 * Description:
2257 * Check if underlying low-level drivers of a device are busy.
2258 * If the drivers want to export their busy state, they must set own
2259 * exporting function using blk_queue_lld_busy() first.
2261 * Basically, this function is used only by request stacking drivers
2262 * to stop dispatching requests to underlying devices when underlying
2263 * devices are busy. This behavior helps more I/O merging on the queue
2264 * of the request stacking driver and prevents I/O throughput regression
2265 * on burst I/O load.
2267 * Return:
2268 * 0 - Not busy (The request stacking driver should dispatch request)
2269 * 1 - Busy (The request stacking driver should stop dispatching request)
2271 int blk_lld_busy(struct request_queue *q)
2273 if (q->lld_busy_fn)
2274 return q->lld_busy_fn(q);
2276 return 0;
2278 EXPORT_SYMBOL_GPL(blk_lld_busy);
2281 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2282 * @rq: the clone request to be cleaned up
2284 * Description:
2285 * Free all bios in @rq for a cloned request.
2287 void blk_rq_unprep_clone(struct request *rq)
2289 struct bio *bio;
2291 while ((bio = rq->bio) != NULL) {
2292 rq->bio = bio->bi_next;
2294 bio_put(bio);
2297 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2300 * Copy attributes of the original request to the clone request.
2301 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2303 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2305 dst->cpu = src->cpu;
2306 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2307 dst->cmd_type = src->cmd_type;
2308 dst->__sector = blk_rq_pos(src);
2309 dst->__data_len = blk_rq_bytes(src);
2310 dst->nr_phys_segments = src->nr_phys_segments;
2311 dst->ioprio = src->ioprio;
2312 dst->extra_len = src->extra_len;
2316 * blk_rq_prep_clone - Helper function to setup clone request
2317 * @rq: the request to be setup
2318 * @rq_src: original request to be cloned
2319 * @bs: bio_set that bios for clone are allocated from
2320 * @gfp_mask: memory allocation mask for bio
2321 * @bio_ctr: setup function to be called for each clone bio.
2322 * Returns %0 for success, non %0 for failure.
2323 * @data: private data to be passed to @bio_ctr
2325 * Description:
2326 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2327 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2328 * are not copied, and copying such parts is the caller's responsibility.
2329 * Also, pages which the original bios are pointing to are not copied
2330 * and the cloned bios just point same pages.
2331 * So cloned bios must be completed before original bios, which means
2332 * the caller must complete @rq before @rq_src.
2334 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2335 struct bio_set *bs, gfp_t gfp_mask,
2336 int (*bio_ctr)(struct bio *, struct bio *, void *),
2337 void *data)
2339 struct bio *bio, *bio_src;
2341 if (!bs)
2342 bs = fs_bio_set;
2344 blk_rq_init(NULL, rq);
2346 __rq_for_each_bio(bio_src, rq_src) {
2347 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2348 if (!bio)
2349 goto free_and_out;
2351 __bio_clone(bio, bio_src);
2353 if (bio_integrity(bio_src) &&
2354 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2355 goto free_and_out;
2357 if (bio_ctr && bio_ctr(bio, bio_src, data))
2358 goto free_and_out;
2360 if (rq->bio) {
2361 rq->biotail->bi_next = bio;
2362 rq->biotail = bio;
2363 } else
2364 rq->bio = rq->biotail = bio;
2367 __blk_rq_prep_clone(rq, rq_src);
2369 return 0;
2371 free_and_out:
2372 if (bio)
2373 bio_free(bio, bs);
2374 blk_rq_unprep_clone(rq);
2376 return -ENOMEM;
2378 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2380 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2382 return queue_work(kblockd_workqueue, work);
2384 EXPORT_SYMBOL(kblockd_schedule_work);
2386 int __init blk_dev_init(void)
2388 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2389 sizeof(((struct request *)0)->cmd_flags));
2391 kblockd_workqueue = create_workqueue("kblockd");
2392 if (!kblockd_workqueue)
2393 panic("Failed to create kblockd\n");
2395 request_cachep = kmem_cache_create("blkdev_requests",
2396 sizeof(struct request), 0, SLAB_PANIC, NULL);
2398 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2399 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2401 return 0;