2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
41 void rds_inc_init(struct rds_incoming
*inc
, struct rds_connection
*conn
,
44 atomic_set(&inc
->i_refcount
, 1);
45 INIT_LIST_HEAD(&inc
->i_item
);
48 inc
->i_rdma_cookie
= 0;
50 EXPORT_SYMBOL_GPL(rds_inc_init
);
52 void rds_inc_addref(struct rds_incoming
*inc
)
54 rdsdebug("addref inc %p ref %d\n", inc
, atomic_read(&inc
->i_refcount
));
55 atomic_inc(&inc
->i_refcount
);
57 EXPORT_SYMBOL_GPL(rds_inc_addref
);
59 void rds_inc_put(struct rds_incoming
*inc
)
61 rdsdebug("put inc %p ref %d\n", inc
, atomic_read(&inc
->i_refcount
));
62 if (atomic_dec_and_test(&inc
->i_refcount
)) {
63 BUG_ON(!list_empty(&inc
->i_item
));
65 inc
->i_conn
->c_trans
->inc_free(inc
);
68 EXPORT_SYMBOL_GPL(rds_inc_put
);
70 static void rds_recv_rcvbuf_delta(struct rds_sock
*rs
, struct sock
*sk
,
71 struct rds_cong_map
*map
,
72 int delta
, __be16 port
)
79 rs
->rs_rcv_bytes
+= delta
;
80 now_congested
= rs
->rs_rcv_bytes
> rds_sk_rcvbuf(rs
);
82 rdsdebug("rs %p (%pI4:%u) recv bytes %d buf %d "
83 "now_cong %d delta %d\n",
84 rs
, &rs
->rs_bound_addr
,
85 ntohs(rs
->rs_bound_port
), rs
->rs_rcv_bytes
,
86 rds_sk_rcvbuf(rs
), now_congested
, delta
);
88 /* wasn't -> am congested */
89 if (!rs
->rs_congested
&& now_congested
) {
91 rds_cong_set_bit(map
, port
);
92 rds_cong_queue_updates(map
);
94 /* was -> aren't congested */
95 /* Require more free space before reporting uncongested to prevent
96 bouncing cong/uncong state too often */
97 else if (rs
->rs_congested
&& (rs
->rs_rcv_bytes
< (rds_sk_rcvbuf(rs
)/2))) {
99 rds_cong_clear_bit(map
, port
);
100 rds_cong_queue_updates(map
);
103 /* do nothing if no change in cong state */
107 * Process all extension headers that come with this message.
109 static void rds_recv_incoming_exthdrs(struct rds_incoming
*inc
, struct rds_sock
*rs
)
111 struct rds_header
*hdr
= &inc
->i_hdr
;
112 unsigned int pos
= 0, type
, len
;
114 struct rds_ext_header_version version
;
115 struct rds_ext_header_rdma rdma
;
116 struct rds_ext_header_rdma_dest rdma_dest
;
120 len
= sizeof(buffer
);
121 type
= rds_message_next_extension(hdr
, &pos
, &buffer
, &len
);
122 if (type
== RDS_EXTHDR_NONE
)
124 /* Process extension header here */
126 case RDS_EXTHDR_RDMA
:
127 rds_rdma_unuse(rs
, be32_to_cpu(buffer
.rdma
.h_rdma_rkey
), 0);
130 case RDS_EXTHDR_RDMA_DEST
:
131 /* We ignore the size for now. We could stash it
132 * somewhere and use it for error checking. */
133 inc
->i_rdma_cookie
= rds_rdma_make_cookie(
134 be32_to_cpu(buffer
.rdma_dest
.h_rdma_rkey
),
135 be32_to_cpu(buffer
.rdma_dest
.h_rdma_offset
));
143 * The transport must make sure that this is serialized against other
144 * rx and conn reset on this specific conn.
146 * We currently assert that only one fragmented message will be sent
147 * down a connection at a time. This lets us reassemble in the conn
148 * instead of per-flow which means that we don't have to go digging through
149 * flows to tear down partial reassembly progress on conn failure and
150 * we save flow lookup and locking for each frag arrival. It does mean
151 * that small messages will wait behind large ones. Fragmenting at all
152 * is only to reduce the memory consumption of pre-posted buffers.
154 * The caller passes in saddr and daddr instead of us getting it from the
155 * conn. This lets loopback, who only has one conn for both directions,
156 * tell us which roles the addrs in the conn are playing for this message.
158 void rds_recv_incoming(struct rds_connection
*conn
, __be32 saddr
, __be32 daddr
,
159 struct rds_incoming
*inc
, gfp_t gfp
, enum km_type km
)
161 struct rds_sock
*rs
= NULL
;
166 inc
->i_rx_jiffies
= jiffies
;
168 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
169 "flags 0x%x rx_jiffies %lu\n", conn
,
170 (unsigned long long)conn
->c_next_rx_seq
,
172 (unsigned long long)be64_to_cpu(inc
->i_hdr
.h_sequence
),
173 be32_to_cpu(inc
->i_hdr
.h_len
),
174 be16_to_cpu(inc
->i_hdr
.h_sport
),
175 be16_to_cpu(inc
->i_hdr
.h_dport
),
180 * Sequence numbers should only increase. Messages get their
181 * sequence number as they're queued in a sending conn. They
182 * can be dropped, though, if the sending socket is closed before
183 * they hit the wire. So sequence numbers can skip forward
184 * under normal operation. They can also drop back in the conn
185 * failover case as previously sent messages are resent down the
186 * new instance of a conn. We drop those, otherwise we have
187 * to assume that the next valid seq does not come after a
188 * hole in the fragment stream.
190 * The headers don't give us a way to realize if fragments of
191 * a message have been dropped. We assume that frags that arrive
192 * to a flow are part of the current message on the flow that is
193 * being reassembled. This means that senders can't drop messages
194 * from the sending conn until all their frags are sent.
196 * XXX we could spend more on the wire to get more robust failure
197 * detection, arguably worth it to avoid data corruption.
199 if (be64_to_cpu(inc
->i_hdr
.h_sequence
) < conn
->c_next_rx_seq
&&
200 (inc
->i_hdr
.h_flags
& RDS_FLAG_RETRANSMITTED
)) {
201 rds_stats_inc(s_recv_drop_old_seq
);
204 conn
->c_next_rx_seq
= be64_to_cpu(inc
->i_hdr
.h_sequence
) + 1;
206 if (rds_sysctl_ping_enable
&& inc
->i_hdr
.h_dport
== 0) {
207 rds_stats_inc(s_recv_ping
);
208 rds_send_pong(conn
, inc
->i_hdr
.h_sport
);
212 rs
= rds_find_bound(daddr
, inc
->i_hdr
.h_dport
);
214 rds_stats_inc(s_recv_drop_no_sock
);
218 /* Process extension headers */
219 rds_recv_incoming_exthdrs(inc
, rs
);
221 /* We can be racing with rds_release() which marks the socket dead. */
222 sk
= rds_rs_to_sk(rs
);
224 /* serialize with rds_release -> sock_orphan */
225 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
226 if (!sock_flag(sk
, SOCK_DEAD
)) {
227 rdsdebug("adding inc %p to rs %p's recv queue\n", inc
, rs
);
228 rds_stats_inc(s_recv_queued
);
229 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
230 be32_to_cpu(inc
->i_hdr
.h_len
),
233 list_add_tail(&inc
->i_item
, &rs
->rs_recv_queue
);
234 __rds_wake_sk_sleep(sk
);
236 rds_stats_inc(s_recv_drop_dead_sock
);
238 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
244 EXPORT_SYMBOL_GPL(rds_recv_incoming
);
247 * be very careful here. This is being called as the condition in
248 * wait_event_*() needs to cope with being called many times.
250 static int rds_next_incoming(struct rds_sock
*rs
, struct rds_incoming
**inc
)
255 read_lock_irqsave(&rs
->rs_recv_lock
, flags
);
256 if (!list_empty(&rs
->rs_recv_queue
)) {
257 *inc
= list_entry(rs
->rs_recv_queue
.next
,
260 rds_inc_addref(*inc
);
262 read_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
268 static int rds_still_queued(struct rds_sock
*rs
, struct rds_incoming
*inc
,
271 struct sock
*sk
= rds_rs_to_sk(rs
);
275 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
276 if (!list_empty(&inc
->i_item
)) {
279 /* XXX make sure this i_conn is reliable */
280 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
281 -be32_to_cpu(inc
->i_hdr
.h_len
),
283 list_del_init(&inc
->i_item
);
287 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
289 rdsdebug("inc %p rs %p still %d dropped %d\n", inc
, rs
, ret
, drop
);
294 * Pull errors off the error queue.
295 * If msghdr is NULL, we will just purge the error queue.
297 int rds_notify_queue_get(struct rds_sock
*rs
, struct msghdr
*msghdr
)
299 struct rds_notifier
*notifier
;
300 struct rds_rdma_notify cmsg
;
301 unsigned int count
= 0, max_messages
= ~0U;
307 /* put_cmsg copies to user space and thus may sleep. We can't do this
308 * with rs_lock held, so first grab as many notifications as we can stuff
309 * in the user provided cmsg buffer. We don't try to copy more, to avoid
310 * losing notifications - except when the buffer is so small that it wouldn't
311 * even hold a single notification. Then we give him as much of this single
312 * msg as we can squeeze in, and set MSG_CTRUNC.
315 max_messages
= msghdr
->msg_controllen
/ CMSG_SPACE(sizeof(cmsg
));
320 spin_lock_irqsave(&rs
->rs_lock
, flags
);
321 while (!list_empty(&rs
->rs_notify_queue
) && count
< max_messages
) {
322 notifier
= list_entry(rs
->rs_notify_queue
.next
,
323 struct rds_notifier
, n_list
);
324 list_move(¬ifier
->n_list
, ©
);
327 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
332 while (!list_empty(©
)) {
333 notifier
= list_entry(copy
.next
, struct rds_notifier
, n_list
);
336 cmsg
.user_token
= notifier
->n_user_token
;
337 cmsg
.status
= notifier
->n_status
;
339 err
= put_cmsg(msghdr
, SOL_RDS
, RDS_CMSG_RDMA_STATUS
,
340 sizeof(cmsg
), &cmsg
);
345 list_del_init(¬ifier
->n_list
);
349 /* If we bailed out because of an error in put_cmsg,
350 * we may be left with one or more notifications that we
351 * didn't process. Return them to the head of the list. */
352 if (!list_empty(©
)) {
353 spin_lock_irqsave(&rs
->rs_lock
, flags
);
354 list_splice(©
, &rs
->rs_notify_queue
);
355 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
362 * Queue a congestion notification
364 static int rds_notify_cong(struct rds_sock
*rs
, struct msghdr
*msghdr
)
366 uint64_t notify
= rs
->rs_cong_notify
;
370 err
= put_cmsg(msghdr
, SOL_RDS
, RDS_CMSG_CONG_UPDATE
,
371 sizeof(notify
), ¬ify
);
375 spin_lock_irqsave(&rs
->rs_lock
, flags
);
376 rs
->rs_cong_notify
&= ~notify
;
377 spin_unlock_irqrestore(&rs
->rs_lock
, flags
);
383 * Receive any control messages.
385 static int rds_cmsg_recv(struct rds_incoming
*inc
, struct msghdr
*msg
)
389 if (inc
->i_rdma_cookie
) {
390 ret
= put_cmsg(msg
, SOL_RDS
, RDS_CMSG_RDMA_DEST
,
391 sizeof(inc
->i_rdma_cookie
), &inc
->i_rdma_cookie
);
399 int rds_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*msg
,
400 size_t size
, int msg_flags
)
402 struct sock
*sk
= sock
->sk
;
403 struct rds_sock
*rs
= rds_sk_to_rs(sk
);
405 int ret
= 0, nonblock
= msg_flags
& MSG_DONTWAIT
;
406 struct sockaddr_in
*sin
;
407 struct rds_incoming
*inc
= NULL
;
409 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
410 timeo
= sock_rcvtimeo(sk
, nonblock
);
412 rdsdebug("size %zu flags 0x%x timeo %ld\n", size
, msg_flags
, timeo
);
414 if (msg_flags
& MSG_OOB
)
418 /* If there are pending notifications, do those - and nothing else */
419 if (!list_empty(&rs
->rs_notify_queue
)) {
420 ret
= rds_notify_queue_get(rs
, msg
);
424 if (rs
->rs_cong_notify
) {
425 ret
= rds_notify_cong(rs
, msg
);
429 if (!rds_next_incoming(rs
, &inc
)) {
435 timeo
= wait_event_interruptible_timeout(*sk
->sk_sleep
,
436 (!list_empty(&rs
->rs_notify_queue
) ||
437 rs
->rs_cong_notify
||
438 rds_next_incoming(rs
, &inc
)), timeo
);
439 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc
,
441 if (timeo
> 0 || timeo
== MAX_SCHEDULE_TIMEOUT
)
450 rdsdebug("copying inc %p from %pI4:%u to user\n", inc
,
451 &inc
->i_conn
->c_faddr
,
452 ntohs(inc
->i_hdr
.h_sport
));
453 ret
= inc
->i_conn
->c_trans
->inc_copy_to_user(inc
, msg
->msg_iov
,
459 * if the message we just copied isn't at the head of the
460 * recv queue then someone else raced us to return it, try
461 * to get the next message.
463 if (!rds_still_queued(rs
, inc
, !(msg_flags
& MSG_PEEK
))) {
466 rds_stats_inc(s_recv_deliver_raced
);
470 if (ret
< be32_to_cpu(inc
->i_hdr
.h_len
)) {
471 if (msg_flags
& MSG_TRUNC
)
472 ret
= be32_to_cpu(inc
->i_hdr
.h_len
);
473 msg
->msg_flags
|= MSG_TRUNC
;
476 if (rds_cmsg_recv(inc
, msg
)) {
481 rds_stats_inc(s_recv_delivered
);
483 sin
= (struct sockaddr_in
*)msg
->msg_name
;
485 sin
->sin_family
= AF_INET
;
486 sin
->sin_port
= inc
->i_hdr
.h_sport
;
487 sin
->sin_addr
.s_addr
= inc
->i_saddr
;
488 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
501 * The socket is being shut down and we're asked to drop messages that were
502 * queued for recvmsg. The caller has unbound the socket so the receive path
503 * won't queue any more incoming fragments or messages on the socket.
505 void rds_clear_recv_queue(struct rds_sock
*rs
)
507 struct sock
*sk
= rds_rs_to_sk(rs
);
508 struct rds_incoming
*inc
, *tmp
;
511 write_lock_irqsave(&rs
->rs_recv_lock
, flags
);
512 list_for_each_entry_safe(inc
, tmp
, &rs
->rs_recv_queue
, i_item
) {
513 rds_recv_rcvbuf_delta(rs
, sk
, inc
->i_conn
->c_lcong
,
514 -be32_to_cpu(inc
->i_hdr
.h_len
),
516 list_del_init(&inc
->i_item
);
519 write_unlock_irqrestore(&rs
->rs_recv_lock
, flags
);
523 * inc->i_saddr isn't used here because it is only set in the receive
526 void rds_inc_info_copy(struct rds_incoming
*inc
,
527 struct rds_info_iterator
*iter
,
528 __be32 saddr
, __be32 daddr
, int flip
)
530 struct rds_info_message minfo
;
532 minfo
.seq
= be64_to_cpu(inc
->i_hdr
.h_sequence
);
533 minfo
.len
= be32_to_cpu(inc
->i_hdr
.h_len
);
538 minfo
.lport
= inc
->i_hdr
.h_dport
;
539 minfo
.fport
= inc
->i_hdr
.h_sport
;
543 minfo
.lport
= inc
->i_hdr
.h_sport
;
544 minfo
.fport
= inc
->i_hdr
.h_dport
;
547 rds_info_copy(iter
, &minfo
, sizeof(minfo
));