2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
71 struct list_head link
;
76 static long region_add(struct list_head
*head
, long f
, long t
)
78 struct file_region
*rg
, *nrg
, *trg
;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg
, head
, link
)
85 /* Round our left edge to the current segment if it encloses us. */
89 /* Check for and consume any regions we now overlap with. */
91 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
92 if (&rg
->link
== head
)
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
112 static long region_chg(struct list_head
*head
, long f
, long t
)
114 struct file_region
*rg
, *nrg
;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg
, head
, link
)
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg
->link
== head
|| t
< rg
->from
) {
126 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
131 INIT_LIST_HEAD(&nrg
->link
);
132 list_add(&nrg
->link
, rg
->link
.prev
);
137 /* Round our left edge to the current segment if it encloses us. */
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
144 if (&rg
->link
== head
)
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
156 chg
-= rg
->to
- rg
->from
;
161 static long region_truncate(struct list_head
*head
, long end
)
163 struct file_region
*rg
, *trg
;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg
, head
, link
)
170 if (&rg
->link
== head
)
173 /* If we are in the middle of a region then adjust it. */
174 if (end
> rg
->from
) {
177 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
182 if (&rg
->link
== head
)
184 chg
+= rg
->to
- rg
->from
;
191 static long region_count(struct list_head
*head
, long f
, long t
)
193 struct file_region
*rg
;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg
, head
, link
) {
206 seg_from
= max(rg
->from
, f
);
207 seg_to
= min(rg
->to
, t
);
209 chg
+= seg_to
- seg_from
;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
220 struct vm_area_struct
*vma
, unsigned long address
)
222 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
223 (vma
->vm_pgoff
>> huge_page_order(h
));
226 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
227 unsigned long address
)
229 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
238 struct hstate
*hstate
;
240 if (!is_vm_hugetlb_page(vma
))
243 hstate
= hstate_vma(vma
);
245 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
258 return vma_kernel_pagesize(vma
);
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
292 return (unsigned long)vma
->vm_private_data
;
295 static void set_vma_private_data(struct vm_area_struct
*vma
,
298 vma
->vm_private_data
= (void *)value
;
303 struct list_head regions
;
306 static struct resv_map
*resv_map_alloc(void)
308 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
312 kref_init(&resv_map
->refs
);
313 INIT_LIST_HEAD(&resv_map
->regions
);
318 static void resv_map_release(struct kref
*ref
)
320 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map
->regions
, 0);
327 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
331 return (struct resv_map
*)(get_vma_private_data(vma
) &
336 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
342 HPAGE_RESV_MASK
) | (unsigned long)map
);
345 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
350 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
353 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
357 return (get_vma_private_data(vma
) & flag
) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate
*h
,
362 struct vm_area_struct
*vma
)
364 if (vma
->vm_flags
& VM_NORESERVE
)
367 if (vma
->vm_flags
& VM_MAYSHARE
) {
368 /* Shared mappings always use reserves */
369 h
->resv_huge_pages
--;
370 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
372 * Only the process that called mmap() has reserves for
375 h
->resv_huge_pages
--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
383 if (!(vma
->vm_flags
& VM_MAYSHARE
))
384 vma
->vm_private_data
= (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct
*vma
)
390 if (vma
->vm_flags
& VM_MAYSHARE
)
392 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
397 static void clear_gigantic_page(struct page
*page
,
398 unsigned long addr
, unsigned long sz
)
401 struct page
*p
= page
;
404 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++, p
= mem_map_next(p
, page
, i
)) {
406 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
409 static void clear_huge_page(struct page
*page
,
410 unsigned long addr
, unsigned long sz
)
414 if (unlikely(sz
/PAGE_SIZE
> MAX_ORDER_NR_PAGES
)) {
415 clear_gigantic_page(page
, addr
, sz
);
420 for (i
= 0; i
< sz
/PAGE_SIZE
; i
++) {
422 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
426 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
427 unsigned long addr
, struct vm_area_struct
*vma
)
430 struct hstate
*h
= hstate_vma(vma
);
431 struct page
*dst_base
= dst
;
432 struct page
*src_base
= src
;
434 for (i
= 0; i
< pages_per_huge_page(h
); ) {
436 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
439 dst
= mem_map_next(dst
, dst_base
, i
);
440 src
= mem_map_next(src
, src_base
, i
);
444 static void copy_user_huge_page(struct page
*dst
, struct page
*src
,
445 unsigned long addr
, struct vm_area_struct
*vma
)
448 struct hstate
*h
= hstate_vma(vma
);
450 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
451 copy_user_gigantic_page(dst
, src
, addr
, vma
);
456 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
458 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
462 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
465 struct hstate
*h
= page_hstate(src
);
466 struct page
*dst_base
= dst
;
467 struct page
*src_base
= src
;
469 for (i
= 0; i
< pages_per_huge_page(h
); ) {
471 copy_highpage(dst
, src
);
474 dst
= mem_map_next(dst
, dst_base
, i
);
475 src
= mem_map_next(src
, src_base
, i
);
479 void copy_huge_page(struct page
*dst
, struct page
*src
)
482 struct hstate
*h
= page_hstate(src
);
484 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
485 copy_gigantic_page(dst
, src
);
490 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
492 copy_highpage(dst
+ i
, src
+ i
);
496 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
498 int nid
= page_to_nid(page
);
499 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
500 h
->free_huge_pages
++;
501 h
->free_huge_pages_node
[nid
]++;
504 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
508 if (list_empty(&h
->hugepage_freelists
[nid
]))
510 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
511 list_del(&page
->lru
);
512 set_page_refcounted(page
);
513 h
->free_huge_pages
--;
514 h
->free_huge_pages_node
[nid
]--;
518 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
519 struct vm_area_struct
*vma
,
520 unsigned long address
, int avoid_reserve
)
522 struct page
*page
= NULL
;
523 struct mempolicy
*mpol
;
524 nodemask_t
*nodemask
;
525 struct zonelist
*zonelist
;
530 zonelist
= huge_zonelist(vma
, address
,
531 htlb_alloc_mask
, &mpol
, &nodemask
);
533 * A child process with MAP_PRIVATE mappings created by their parent
534 * have no page reserves. This check ensures that reservations are
535 * not "stolen". The child may still get SIGKILLed
537 if (!vma_has_reserves(vma
) &&
538 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
541 /* If reserves cannot be used, ensure enough pages are in the pool */
542 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
545 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
546 MAX_NR_ZONES
- 1, nodemask
) {
547 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
548 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
551 decrement_hugepage_resv_vma(h
, vma
);
562 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
566 VM_BUG_ON(h
->order
>= MAX_ORDER
);
569 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
570 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
571 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
572 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
573 1 << PG_private
| 1<< PG_writeback
);
575 set_compound_page_dtor(page
, NULL
);
576 set_page_refcounted(page
);
577 arch_release_hugepage(page
);
578 __free_pages(page
, huge_page_order(h
));
581 struct hstate
*size_to_hstate(unsigned long size
)
586 if (huge_page_size(h
) == size
)
592 static void free_huge_page(struct page
*page
)
595 * Can't pass hstate in here because it is called from the
596 * compound page destructor.
598 struct hstate
*h
= page_hstate(page
);
599 int nid
= page_to_nid(page
);
600 struct address_space
*mapping
;
602 mapping
= (struct address_space
*) page_private(page
);
603 set_page_private(page
, 0);
604 page
->mapping
= NULL
;
605 BUG_ON(page_count(page
));
606 BUG_ON(page_mapcount(page
));
607 INIT_LIST_HEAD(&page
->lru
);
609 spin_lock(&hugetlb_lock
);
610 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
611 update_and_free_page(h
, page
);
612 h
->surplus_huge_pages
--;
613 h
->surplus_huge_pages_node
[nid
]--;
615 enqueue_huge_page(h
, page
);
617 spin_unlock(&hugetlb_lock
);
619 hugetlb_put_quota(mapping
, 1);
622 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
624 set_compound_page_dtor(page
, free_huge_page
);
625 spin_lock(&hugetlb_lock
);
627 h
->nr_huge_pages_node
[nid
]++;
628 spin_unlock(&hugetlb_lock
);
629 put_page(page
); /* free it into the hugepage allocator */
632 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
635 int nr_pages
= 1 << order
;
636 struct page
*p
= page
+ 1;
638 /* we rely on prep_new_huge_page to set the destructor */
639 set_compound_order(page
, order
);
641 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
643 p
->first_page
= page
;
647 int PageHuge(struct page
*page
)
649 compound_page_dtor
*dtor
;
651 if (!PageCompound(page
))
654 page
= compound_head(page
);
655 dtor
= get_compound_page_dtor(page
);
657 return dtor
== free_huge_page
;
660 EXPORT_SYMBOL_GPL(PageHuge
);
662 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
666 if (h
->order
>= MAX_ORDER
)
669 page
= alloc_pages_exact_node(nid
,
670 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
671 __GFP_REPEAT
|__GFP_NOWARN
,
674 if (arch_prepare_hugepage(page
)) {
675 __free_pages(page
, huge_page_order(h
));
678 prep_new_huge_page(h
, page
, nid
);
685 * common helper functions for hstate_next_node_to_{alloc|free}.
686 * We may have allocated or freed a huge page based on a different
687 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
688 * be outside of *nodes_allowed. Ensure that we use an allowed
689 * node for alloc or free.
691 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
693 nid
= next_node(nid
, *nodes_allowed
);
694 if (nid
== MAX_NUMNODES
)
695 nid
= first_node(*nodes_allowed
);
696 VM_BUG_ON(nid
>= MAX_NUMNODES
);
701 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
703 if (!node_isset(nid
, *nodes_allowed
))
704 nid
= next_node_allowed(nid
, nodes_allowed
);
709 * returns the previously saved node ["this node"] from which to
710 * allocate a persistent huge page for the pool and advance the
711 * next node from which to allocate, handling wrap at end of node
714 static int hstate_next_node_to_alloc(struct hstate
*h
,
715 nodemask_t
*nodes_allowed
)
719 VM_BUG_ON(!nodes_allowed
);
721 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
722 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
727 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
734 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
735 next_nid
= start_nid
;
738 page
= alloc_fresh_huge_page_node(h
, next_nid
);
743 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
744 } while (next_nid
!= start_nid
);
747 count_vm_event(HTLB_BUDDY_PGALLOC
);
749 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
755 * helper for free_pool_huge_page() - return the previously saved
756 * node ["this node"] from which to free a huge page. Advance the
757 * next node id whether or not we find a free huge page to free so
758 * that the next attempt to free addresses the next node.
760 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
764 VM_BUG_ON(!nodes_allowed
);
766 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
767 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
773 * Free huge page from pool from next node to free.
774 * Attempt to keep persistent huge pages more or less
775 * balanced over allowed nodes.
776 * Called with hugetlb_lock locked.
778 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
785 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
786 next_nid
= start_nid
;
790 * If we're returning unused surplus pages, only examine
791 * nodes with surplus pages.
793 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
794 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
796 list_entry(h
->hugepage_freelists
[next_nid
].next
,
798 list_del(&page
->lru
);
799 h
->free_huge_pages
--;
800 h
->free_huge_pages_node
[next_nid
]--;
802 h
->surplus_huge_pages
--;
803 h
->surplus_huge_pages_node
[next_nid
]--;
805 update_and_free_page(h
, page
);
809 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
810 } while (next_nid
!= start_nid
);
815 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
820 if (h
->order
>= MAX_ORDER
)
824 * Assume we will successfully allocate the surplus page to
825 * prevent racing processes from causing the surplus to exceed
828 * This however introduces a different race, where a process B
829 * tries to grow the static hugepage pool while alloc_pages() is
830 * called by process A. B will only examine the per-node
831 * counters in determining if surplus huge pages can be
832 * converted to normal huge pages in adjust_pool_surplus(). A
833 * won't be able to increment the per-node counter, until the
834 * lock is dropped by B, but B doesn't drop hugetlb_lock until
835 * no more huge pages can be converted from surplus to normal
836 * state (and doesn't try to convert again). Thus, we have a
837 * case where a surplus huge page exists, the pool is grown, and
838 * the surplus huge page still exists after, even though it
839 * should just have been converted to a normal huge page. This
840 * does not leak memory, though, as the hugepage will be freed
841 * once it is out of use. It also does not allow the counters to
842 * go out of whack in adjust_pool_surplus() as we don't modify
843 * the node values until we've gotten the hugepage and only the
844 * per-node value is checked there.
846 spin_lock(&hugetlb_lock
);
847 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
848 spin_unlock(&hugetlb_lock
);
852 h
->surplus_huge_pages
++;
854 spin_unlock(&hugetlb_lock
);
856 if (nid
== NUMA_NO_NODE
)
857 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
858 __GFP_REPEAT
|__GFP_NOWARN
,
861 page
= alloc_pages_exact_node(nid
,
862 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
863 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
865 if (page
&& arch_prepare_hugepage(page
)) {
866 __free_pages(page
, huge_page_order(h
));
870 spin_lock(&hugetlb_lock
);
872 r_nid
= page_to_nid(page
);
873 set_compound_page_dtor(page
, free_huge_page
);
875 * We incremented the global counters already
877 h
->nr_huge_pages_node
[r_nid
]++;
878 h
->surplus_huge_pages_node
[r_nid
]++;
879 __count_vm_event(HTLB_BUDDY_PGALLOC
);
882 h
->surplus_huge_pages
--;
883 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
885 spin_unlock(&hugetlb_lock
);
891 * This allocation function is useful in the context where vma is irrelevant.
892 * E.g. soft-offlining uses this function because it only cares physical
893 * address of error page.
895 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
899 spin_lock(&hugetlb_lock
);
900 page
= dequeue_huge_page_node(h
, nid
);
901 spin_unlock(&hugetlb_lock
);
904 page
= alloc_buddy_huge_page(h
, nid
);
910 * Increase the hugetlb pool such that it can accomodate a reservation
913 static int gather_surplus_pages(struct hstate
*h
, int delta
)
915 struct list_head surplus_list
;
916 struct page
*page
, *tmp
;
918 int needed
, allocated
;
920 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
922 h
->resv_huge_pages
+= delta
;
927 INIT_LIST_HEAD(&surplus_list
);
931 spin_unlock(&hugetlb_lock
);
932 for (i
= 0; i
< needed
; i
++) {
933 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
936 * We were not able to allocate enough pages to
937 * satisfy the entire reservation so we free what
938 * we've allocated so far.
942 list_add(&page
->lru
, &surplus_list
);
947 * After retaking hugetlb_lock, we need to recalculate 'needed'
948 * because either resv_huge_pages or free_huge_pages may have changed.
950 spin_lock(&hugetlb_lock
);
951 needed
= (h
->resv_huge_pages
+ delta
) -
952 (h
->free_huge_pages
+ allocated
);
957 * The surplus_list now contains _at_least_ the number of extra pages
958 * needed to accomodate the reservation. Add the appropriate number
959 * of pages to the hugetlb pool and free the extras back to the buddy
960 * allocator. Commit the entire reservation here to prevent another
961 * process from stealing the pages as they are added to the pool but
962 * before they are reserved.
965 h
->resv_huge_pages
+= delta
;
968 spin_unlock(&hugetlb_lock
);
969 /* Free the needed pages to the hugetlb pool */
970 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
973 list_del(&page
->lru
);
975 * This page is now managed by the hugetlb allocator and has
976 * no users -- drop the buddy allocator's reference.
978 put_page_testzero(page
);
979 VM_BUG_ON(page_count(page
));
980 enqueue_huge_page(h
, page
);
983 /* Free unnecessary surplus pages to the buddy allocator */
985 if (!list_empty(&surplus_list
)) {
986 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
987 list_del(&page
->lru
);
991 spin_lock(&hugetlb_lock
);
997 * When releasing a hugetlb pool reservation, any surplus pages that were
998 * allocated to satisfy the reservation must be explicitly freed if they were
1000 * Called with hugetlb_lock held.
1002 static void return_unused_surplus_pages(struct hstate
*h
,
1003 unsigned long unused_resv_pages
)
1005 unsigned long nr_pages
;
1007 /* Uncommit the reservation */
1008 h
->resv_huge_pages
-= unused_resv_pages
;
1010 /* Cannot return gigantic pages currently */
1011 if (h
->order
>= MAX_ORDER
)
1014 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1017 * We want to release as many surplus pages as possible, spread
1018 * evenly across all nodes with memory. Iterate across these nodes
1019 * until we can no longer free unreserved surplus pages. This occurs
1020 * when the nodes with surplus pages have no free pages.
1021 * free_pool_huge_page() will balance the the freed pages across the
1022 * on-line nodes with memory and will handle the hstate accounting.
1024 while (nr_pages
--) {
1025 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
1031 * Determine if the huge page at addr within the vma has an associated
1032 * reservation. Where it does not we will need to logically increase
1033 * reservation and actually increase quota before an allocation can occur.
1034 * Where any new reservation would be required the reservation change is
1035 * prepared, but not committed. Once the page has been quota'd allocated
1036 * an instantiated the change should be committed via vma_commit_reservation.
1037 * No action is required on failure.
1039 static long vma_needs_reservation(struct hstate
*h
,
1040 struct vm_area_struct
*vma
, unsigned long addr
)
1042 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1043 struct inode
*inode
= mapping
->host
;
1045 if (vma
->vm_flags
& VM_MAYSHARE
) {
1046 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1047 return region_chg(&inode
->i_mapping
->private_list
,
1050 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1055 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1056 struct resv_map
*reservations
= vma_resv_map(vma
);
1058 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1064 static void vma_commit_reservation(struct hstate
*h
,
1065 struct vm_area_struct
*vma
, unsigned long addr
)
1067 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1068 struct inode
*inode
= mapping
->host
;
1070 if (vma
->vm_flags
& VM_MAYSHARE
) {
1071 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1072 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1074 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1075 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1076 struct resv_map
*reservations
= vma_resv_map(vma
);
1078 /* Mark this page used in the map. */
1079 region_add(&reservations
->regions
, idx
, idx
+ 1);
1083 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1084 unsigned long addr
, int avoid_reserve
)
1086 struct hstate
*h
= hstate_vma(vma
);
1088 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1089 struct inode
*inode
= mapping
->host
;
1093 * Processes that did not create the mapping will have no reserves and
1094 * will not have accounted against quota. Check that the quota can be
1095 * made before satisfying the allocation
1096 * MAP_NORESERVE mappings may also need pages and quota allocated
1097 * if no reserve mapping overlaps.
1099 chg
= vma_needs_reservation(h
, vma
, addr
);
1101 return ERR_PTR(chg
);
1103 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1104 return ERR_PTR(-ENOSPC
);
1106 spin_lock(&hugetlb_lock
);
1107 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1108 spin_unlock(&hugetlb_lock
);
1111 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1113 hugetlb_put_quota(inode
->i_mapping
, chg
);
1114 return ERR_PTR(-VM_FAULT_SIGBUS
);
1118 set_page_private(page
, (unsigned long) mapping
);
1120 vma_commit_reservation(h
, vma
, addr
);
1125 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1127 struct huge_bootmem_page
*m
;
1128 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1133 addr
= __alloc_bootmem_node_nopanic(
1134 NODE_DATA(hstate_next_node_to_alloc(h
,
1135 &node_states
[N_HIGH_MEMORY
])),
1136 huge_page_size(h
), huge_page_size(h
), 0);
1140 * Use the beginning of the huge page to store the
1141 * huge_bootmem_page struct (until gather_bootmem
1142 * puts them into the mem_map).
1152 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1153 /* Put them into a private list first because mem_map is not up yet */
1154 list_add(&m
->list
, &huge_boot_pages
);
1159 static void prep_compound_huge_page(struct page
*page
, int order
)
1161 if (unlikely(order
> (MAX_ORDER
- 1)))
1162 prep_compound_gigantic_page(page
, order
);
1164 prep_compound_page(page
, order
);
1167 /* Put bootmem huge pages into the standard lists after mem_map is up */
1168 static void __init
gather_bootmem_prealloc(void)
1170 struct huge_bootmem_page
*m
;
1172 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1173 struct page
*page
= virt_to_page(m
);
1174 struct hstate
*h
= m
->hstate
;
1175 __ClearPageReserved(page
);
1176 WARN_ON(page_count(page
) != 1);
1177 prep_compound_huge_page(page
, h
->order
);
1178 prep_new_huge_page(h
, page
, page_to_nid(page
));
1182 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1186 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1187 if (h
->order
>= MAX_ORDER
) {
1188 if (!alloc_bootmem_huge_page(h
))
1190 } else if (!alloc_fresh_huge_page(h
,
1191 &node_states
[N_HIGH_MEMORY
]))
1194 h
->max_huge_pages
= i
;
1197 static void __init
hugetlb_init_hstates(void)
1201 for_each_hstate(h
) {
1202 /* oversize hugepages were init'ed in early boot */
1203 if (h
->order
< MAX_ORDER
)
1204 hugetlb_hstate_alloc_pages(h
);
1208 static char * __init
memfmt(char *buf
, unsigned long n
)
1210 if (n
>= (1UL << 30))
1211 sprintf(buf
, "%lu GB", n
>> 30);
1212 else if (n
>= (1UL << 20))
1213 sprintf(buf
, "%lu MB", n
>> 20);
1215 sprintf(buf
, "%lu KB", n
>> 10);
1219 static void __init
report_hugepages(void)
1223 for_each_hstate(h
) {
1225 printk(KERN_INFO
"HugeTLB registered %s page size, "
1226 "pre-allocated %ld pages\n",
1227 memfmt(buf
, huge_page_size(h
)),
1228 h
->free_huge_pages
);
1232 #ifdef CONFIG_HIGHMEM
1233 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1234 nodemask_t
*nodes_allowed
)
1238 if (h
->order
>= MAX_ORDER
)
1241 for_each_node_mask(i
, *nodes_allowed
) {
1242 struct page
*page
, *next
;
1243 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1244 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1245 if (count
>= h
->nr_huge_pages
)
1247 if (PageHighMem(page
))
1249 list_del(&page
->lru
);
1250 update_and_free_page(h
, page
);
1251 h
->free_huge_pages
--;
1252 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1257 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1258 nodemask_t
*nodes_allowed
)
1264 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1265 * balanced by operating on them in a round-robin fashion.
1266 * Returns 1 if an adjustment was made.
1268 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1271 int start_nid
, next_nid
;
1274 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1277 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1279 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1280 next_nid
= start_nid
;
1286 * To shrink on this node, there must be a surplus page
1288 if (!h
->surplus_huge_pages_node
[nid
]) {
1289 next_nid
= hstate_next_node_to_alloc(h
,
1296 * Surplus cannot exceed the total number of pages
1298 if (h
->surplus_huge_pages_node
[nid
] >=
1299 h
->nr_huge_pages_node
[nid
]) {
1300 next_nid
= hstate_next_node_to_free(h
,
1306 h
->surplus_huge_pages
+= delta
;
1307 h
->surplus_huge_pages_node
[nid
] += delta
;
1310 } while (next_nid
!= start_nid
);
1315 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1316 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1317 nodemask_t
*nodes_allowed
)
1319 unsigned long min_count
, ret
;
1321 if (h
->order
>= MAX_ORDER
)
1322 return h
->max_huge_pages
;
1325 * Increase the pool size
1326 * First take pages out of surplus state. Then make up the
1327 * remaining difference by allocating fresh huge pages.
1329 * We might race with alloc_buddy_huge_page() here and be unable
1330 * to convert a surplus huge page to a normal huge page. That is
1331 * not critical, though, it just means the overall size of the
1332 * pool might be one hugepage larger than it needs to be, but
1333 * within all the constraints specified by the sysctls.
1335 spin_lock(&hugetlb_lock
);
1336 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1337 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1341 while (count
> persistent_huge_pages(h
)) {
1343 * If this allocation races such that we no longer need the
1344 * page, free_huge_page will handle it by freeing the page
1345 * and reducing the surplus.
1347 spin_unlock(&hugetlb_lock
);
1348 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1349 spin_lock(&hugetlb_lock
);
1353 /* Bail for signals. Probably ctrl-c from user */
1354 if (signal_pending(current
))
1359 * Decrease the pool size
1360 * First return free pages to the buddy allocator (being careful
1361 * to keep enough around to satisfy reservations). Then place
1362 * pages into surplus state as needed so the pool will shrink
1363 * to the desired size as pages become free.
1365 * By placing pages into the surplus state independent of the
1366 * overcommit value, we are allowing the surplus pool size to
1367 * exceed overcommit. There are few sane options here. Since
1368 * alloc_buddy_huge_page() is checking the global counter,
1369 * though, we'll note that we're not allowed to exceed surplus
1370 * and won't grow the pool anywhere else. Not until one of the
1371 * sysctls are changed, or the surplus pages go out of use.
1373 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1374 min_count
= max(count
, min_count
);
1375 try_to_free_low(h
, min_count
, nodes_allowed
);
1376 while (min_count
< persistent_huge_pages(h
)) {
1377 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1380 while (count
< persistent_huge_pages(h
)) {
1381 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1385 ret
= persistent_huge_pages(h
);
1386 spin_unlock(&hugetlb_lock
);
1390 #define HSTATE_ATTR_RO(_name) \
1391 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1393 #define HSTATE_ATTR(_name) \
1394 static struct kobj_attribute _name##_attr = \
1395 __ATTR(_name, 0644, _name##_show, _name##_store)
1397 static struct kobject
*hugepages_kobj
;
1398 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1400 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1402 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1406 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1407 if (hstate_kobjs
[i
] == kobj
) {
1409 *nidp
= NUMA_NO_NODE
;
1413 return kobj_to_node_hstate(kobj
, nidp
);
1416 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1417 struct kobj_attribute
*attr
, char *buf
)
1420 unsigned long nr_huge_pages
;
1423 h
= kobj_to_hstate(kobj
, &nid
);
1424 if (nid
== NUMA_NO_NODE
)
1425 nr_huge_pages
= h
->nr_huge_pages
;
1427 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1429 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1431 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1432 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1433 const char *buf
, size_t len
)
1437 unsigned long count
;
1439 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1441 err
= strict_strtoul(buf
, 10, &count
);
1445 h
= kobj_to_hstate(kobj
, &nid
);
1446 if (nid
== NUMA_NO_NODE
) {
1448 * global hstate attribute
1450 if (!(obey_mempolicy
&&
1451 init_nodemask_of_mempolicy(nodes_allowed
))) {
1452 NODEMASK_FREE(nodes_allowed
);
1453 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1455 } else if (nodes_allowed
) {
1457 * per node hstate attribute: adjust count to global,
1458 * but restrict alloc/free to the specified node.
1460 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1461 init_nodemask_of_node(nodes_allowed
, nid
);
1463 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1465 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1467 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1468 NODEMASK_FREE(nodes_allowed
);
1473 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1474 struct kobj_attribute
*attr
, char *buf
)
1476 return nr_hugepages_show_common(kobj
, attr
, buf
);
1479 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1480 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1482 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1484 HSTATE_ATTR(nr_hugepages
);
1489 * hstate attribute for optionally mempolicy-based constraint on persistent
1490 * huge page alloc/free.
1492 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1493 struct kobj_attribute
*attr
, char *buf
)
1495 return nr_hugepages_show_common(kobj
, attr
, buf
);
1498 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1499 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1501 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1503 HSTATE_ATTR(nr_hugepages_mempolicy
);
1507 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1508 struct kobj_attribute
*attr
, char *buf
)
1510 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1511 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1513 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1514 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1517 unsigned long input
;
1518 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1520 err
= strict_strtoul(buf
, 10, &input
);
1524 spin_lock(&hugetlb_lock
);
1525 h
->nr_overcommit_huge_pages
= input
;
1526 spin_unlock(&hugetlb_lock
);
1530 HSTATE_ATTR(nr_overcommit_hugepages
);
1532 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1533 struct kobj_attribute
*attr
, char *buf
)
1536 unsigned long free_huge_pages
;
1539 h
= kobj_to_hstate(kobj
, &nid
);
1540 if (nid
== NUMA_NO_NODE
)
1541 free_huge_pages
= h
->free_huge_pages
;
1543 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1545 return sprintf(buf
, "%lu\n", free_huge_pages
);
1547 HSTATE_ATTR_RO(free_hugepages
);
1549 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1550 struct kobj_attribute
*attr
, char *buf
)
1552 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1553 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1555 HSTATE_ATTR_RO(resv_hugepages
);
1557 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1558 struct kobj_attribute
*attr
, char *buf
)
1561 unsigned long surplus_huge_pages
;
1564 h
= kobj_to_hstate(kobj
, &nid
);
1565 if (nid
== NUMA_NO_NODE
)
1566 surplus_huge_pages
= h
->surplus_huge_pages
;
1568 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1570 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1572 HSTATE_ATTR_RO(surplus_hugepages
);
1574 static struct attribute
*hstate_attrs
[] = {
1575 &nr_hugepages_attr
.attr
,
1576 &nr_overcommit_hugepages_attr
.attr
,
1577 &free_hugepages_attr
.attr
,
1578 &resv_hugepages_attr
.attr
,
1579 &surplus_hugepages_attr
.attr
,
1581 &nr_hugepages_mempolicy_attr
.attr
,
1586 static struct attribute_group hstate_attr_group
= {
1587 .attrs
= hstate_attrs
,
1590 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1591 struct kobject
**hstate_kobjs
,
1592 struct attribute_group
*hstate_attr_group
)
1595 int hi
= h
- hstates
;
1597 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1598 if (!hstate_kobjs
[hi
])
1601 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1603 kobject_put(hstate_kobjs
[hi
]);
1608 static void __init
hugetlb_sysfs_init(void)
1613 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1614 if (!hugepages_kobj
)
1617 for_each_hstate(h
) {
1618 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1619 hstate_kobjs
, &hstate_attr_group
);
1621 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1630 * with node sysdevs in node_devices[] using a parallel array. The array
1631 * index of a node sysdev or _hstate == node id.
1632 * This is here to avoid any static dependency of the node sysdev driver, in
1633 * the base kernel, on the hugetlb module.
1635 struct node_hstate
{
1636 struct kobject
*hugepages_kobj
;
1637 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1639 struct node_hstate node_hstates
[MAX_NUMNODES
];
1642 * A subset of global hstate attributes for node sysdevs
1644 static struct attribute
*per_node_hstate_attrs
[] = {
1645 &nr_hugepages_attr
.attr
,
1646 &free_hugepages_attr
.attr
,
1647 &surplus_hugepages_attr
.attr
,
1651 static struct attribute_group per_node_hstate_attr_group
= {
1652 .attrs
= per_node_hstate_attrs
,
1656 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1657 * Returns node id via non-NULL nidp.
1659 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1663 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1664 struct node_hstate
*nhs
= &node_hstates
[nid
];
1666 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1667 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1679 * Unregister hstate attributes from a single node sysdev.
1680 * No-op if no hstate attributes attached.
1682 void hugetlb_unregister_node(struct node
*node
)
1685 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1687 if (!nhs
->hugepages_kobj
)
1688 return; /* no hstate attributes */
1691 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1692 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1693 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1696 kobject_put(nhs
->hugepages_kobj
);
1697 nhs
->hugepages_kobj
= NULL
;
1701 * hugetlb module exit: unregister hstate attributes from node sysdevs
1704 static void hugetlb_unregister_all_nodes(void)
1709 * disable node sysdev registrations.
1711 register_hugetlbfs_with_node(NULL
, NULL
);
1714 * remove hstate attributes from any nodes that have them.
1716 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1717 hugetlb_unregister_node(&node_devices
[nid
]);
1721 * Register hstate attributes for a single node sysdev.
1722 * No-op if attributes already registered.
1724 void hugetlb_register_node(struct node
*node
)
1727 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1730 if (nhs
->hugepages_kobj
)
1731 return; /* already allocated */
1733 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1734 &node
->sysdev
.kobj
);
1735 if (!nhs
->hugepages_kobj
)
1738 for_each_hstate(h
) {
1739 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1741 &per_node_hstate_attr_group
);
1743 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1745 h
->name
, node
->sysdev
.id
);
1746 hugetlb_unregister_node(node
);
1753 * hugetlb init time: register hstate attributes for all registered node
1754 * sysdevs of nodes that have memory. All on-line nodes should have
1755 * registered their associated sysdev by this time.
1757 static void hugetlb_register_all_nodes(void)
1761 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1762 struct node
*node
= &node_devices
[nid
];
1763 if (node
->sysdev
.id
== nid
)
1764 hugetlb_register_node(node
);
1768 * Let the node sysdev driver know we're here so it can
1769 * [un]register hstate attributes on node hotplug.
1771 register_hugetlbfs_with_node(hugetlb_register_node
,
1772 hugetlb_unregister_node
);
1774 #else /* !CONFIG_NUMA */
1776 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1784 static void hugetlb_unregister_all_nodes(void) { }
1786 static void hugetlb_register_all_nodes(void) { }
1790 static void __exit
hugetlb_exit(void)
1794 hugetlb_unregister_all_nodes();
1796 for_each_hstate(h
) {
1797 kobject_put(hstate_kobjs
[h
- hstates
]);
1800 kobject_put(hugepages_kobj
);
1802 module_exit(hugetlb_exit
);
1804 static int __init
hugetlb_init(void)
1806 /* Some platform decide whether they support huge pages at boot
1807 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1808 * there is no such support
1810 if (HPAGE_SHIFT
== 0)
1813 if (!size_to_hstate(default_hstate_size
)) {
1814 default_hstate_size
= HPAGE_SIZE
;
1815 if (!size_to_hstate(default_hstate_size
))
1816 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1818 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1819 if (default_hstate_max_huge_pages
)
1820 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1822 hugetlb_init_hstates();
1824 gather_bootmem_prealloc();
1828 hugetlb_sysfs_init();
1830 hugetlb_register_all_nodes();
1834 module_init(hugetlb_init
);
1836 /* Should be called on processing a hugepagesz=... option */
1837 void __init
hugetlb_add_hstate(unsigned order
)
1842 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1843 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1846 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1848 h
= &hstates
[max_hstate
++];
1850 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1851 h
->nr_huge_pages
= 0;
1852 h
->free_huge_pages
= 0;
1853 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1854 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1855 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1856 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1857 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1858 huge_page_size(h
)/1024);
1863 static int __init
hugetlb_nrpages_setup(char *s
)
1866 static unsigned long *last_mhp
;
1869 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1870 * so this hugepages= parameter goes to the "default hstate".
1873 mhp
= &default_hstate_max_huge_pages
;
1875 mhp
= &parsed_hstate
->max_huge_pages
;
1877 if (mhp
== last_mhp
) {
1878 printk(KERN_WARNING
"hugepages= specified twice without "
1879 "interleaving hugepagesz=, ignoring\n");
1883 if (sscanf(s
, "%lu", mhp
) <= 0)
1887 * Global state is always initialized later in hugetlb_init.
1888 * But we need to allocate >= MAX_ORDER hstates here early to still
1889 * use the bootmem allocator.
1891 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1892 hugetlb_hstate_alloc_pages(parsed_hstate
);
1898 __setup("hugepages=", hugetlb_nrpages_setup
);
1900 static int __init
hugetlb_default_setup(char *s
)
1902 default_hstate_size
= memparse(s
, &s
);
1905 __setup("default_hugepagesz=", hugetlb_default_setup
);
1907 static unsigned int cpuset_mems_nr(unsigned int *array
)
1910 unsigned int nr
= 0;
1912 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1918 #ifdef CONFIG_SYSCTL
1919 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1920 struct ctl_table
*table
, int write
,
1921 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1923 struct hstate
*h
= &default_hstate
;
1927 tmp
= h
->max_huge_pages
;
1930 table
->maxlen
= sizeof(unsigned long);
1931 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1934 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1935 GFP_KERNEL
| __GFP_NORETRY
);
1936 if (!(obey_mempolicy
&&
1937 init_nodemask_of_mempolicy(nodes_allowed
))) {
1938 NODEMASK_FREE(nodes_allowed
);
1939 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1941 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1943 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1944 NODEMASK_FREE(nodes_allowed
);
1950 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1951 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1954 return hugetlb_sysctl_handler_common(false, table
, write
,
1955 buffer
, length
, ppos
);
1959 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1960 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1962 return hugetlb_sysctl_handler_common(true, table
, write
,
1963 buffer
, length
, ppos
);
1965 #endif /* CONFIG_NUMA */
1967 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1968 void __user
*buffer
,
1969 size_t *length
, loff_t
*ppos
)
1971 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1972 if (hugepages_treat_as_movable
)
1973 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1975 htlb_alloc_mask
= GFP_HIGHUSER
;
1979 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1980 void __user
*buffer
,
1981 size_t *length
, loff_t
*ppos
)
1983 struct hstate
*h
= &default_hstate
;
1987 tmp
= h
->nr_overcommit_huge_pages
;
1990 table
->maxlen
= sizeof(unsigned long);
1991 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1994 spin_lock(&hugetlb_lock
);
1995 h
->nr_overcommit_huge_pages
= tmp
;
1996 spin_unlock(&hugetlb_lock
);
2002 #endif /* CONFIG_SYSCTL */
2004 void hugetlb_report_meminfo(struct seq_file
*m
)
2006 struct hstate
*h
= &default_hstate
;
2008 "HugePages_Total: %5lu\n"
2009 "HugePages_Free: %5lu\n"
2010 "HugePages_Rsvd: %5lu\n"
2011 "HugePages_Surp: %5lu\n"
2012 "Hugepagesize: %8lu kB\n",
2016 h
->surplus_huge_pages
,
2017 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2020 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2022 struct hstate
*h
= &default_hstate
;
2024 "Node %d HugePages_Total: %5u\n"
2025 "Node %d HugePages_Free: %5u\n"
2026 "Node %d HugePages_Surp: %5u\n",
2027 nid
, h
->nr_huge_pages_node
[nid
],
2028 nid
, h
->free_huge_pages_node
[nid
],
2029 nid
, h
->surplus_huge_pages_node
[nid
]);
2032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2033 unsigned long hugetlb_total_pages(void)
2035 struct hstate
*h
= &default_hstate
;
2036 return h
->nr_huge_pages
* pages_per_huge_page(h
);
2039 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2043 spin_lock(&hugetlb_lock
);
2045 * When cpuset is configured, it breaks the strict hugetlb page
2046 * reservation as the accounting is done on a global variable. Such
2047 * reservation is completely rubbish in the presence of cpuset because
2048 * the reservation is not checked against page availability for the
2049 * current cpuset. Application can still potentially OOM'ed by kernel
2050 * with lack of free htlb page in cpuset that the task is in.
2051 * Attempt to enforce strict accounting with cpuset is almost
2052 * impossible (or too ugly) because cpuset is too fluid that
2053 * task or memory node can be dynamically moved between cpusets.
2055 * The change of semantics for shared hugetlb mapping with cpuset is
2056 * undesirable. However, in order to preserve some of the semantics,
2057 * we fall back to check against current free page availability as
2058 * a best attempt and hopefully to minimize the impact of changing
2059 * semantics that cpuset has.
2062 if (gather_surplus_pages(h
, delta
) < 0)
2065 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2066 return_unused_surplus_pages(h
, delta
);
2073 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2076 spin_unlock(&hugetlb_lock
);
2080 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2082 struct resv_map
*reservations
= vma_resv_map(vma
);
2085 * This new VMA should share its siblings reservation map if present.
2086 * The VMA will only ever have a valid reservation map pointer where
2087 * it is being copied for another still existing VMA. As that VMA
2088 * has a reference to the reservation map it cannot dissappear until
2089 * after this open call completes. It is therefore safe to take a
2090 * new reference here without additional locking.
2093 kref_get(&reservations
->refs
);
2096 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2098 struct hstate
*h
= hstate_vma(vma
);
2099 struct resv_map
*reservations
= vma_resv_map(vma
);
2100 unsigned long reserve
;
2101 unsigned long start
;
2105 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2106 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2108 reserve
= (end
- start
) -
2109 region_count(&reservations
->regions
, start
, end
);
2111 kref_put(&reservations
->refs
, resv_map_release
);
2114 hugetlb_acct_memory(h
, -reserve
);
2115 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2121 * We cannot handle pagefaults against hugetlb pages at all. They cause
2122 * handle_mm_fault() to try to instantiate regular-sized pages in the
2123 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2126 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2132 const struct vm_operations_struct hugetlb_vm_ops
= {
2133 .fault
= hugetlb_vm_op_fault
,
2134 .open
= hugetlb_vm_op_open
,
2135 .close
= hugetlb_vm_op_close
,
2138 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2145 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2147 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2149 entry
= pte_mkyoung(entry
);
2150 entry
= pte_mkhuge(entry
);
2155 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2156 unsigned long address
, pte_t
*ptep
)
2160 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2161 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
2162 update_mmu_cache(vma
, address
, ptep
);
2167 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2168 struct vm_area_struct
*vma
)
2170 pte_t
*src_pte
, *dst_pte
, entry
;
2171 struct page
*ptepage
;
2174 struct hstate
*h
= hstate_vma(vma
);
2175 unsigned long sz
= huge_page_size(h
);
2177 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2179 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2180 src_pte
= huge_pte_offset(src
, addr
);
2183 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2187 /* If the pagetables are shared don't copy or take references */
2188 if (dst_pte
== src_pte
)
2191 spin_lock(&dst
->page_table_lock
);
2192 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2193 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2195 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2196 entry
= huge_ptep_get(src_pte
);
2197 ptepage
= pte_page(entry
);
2199 page_dup_rmap(ptepage
);
2200 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2202 spin_unlock(&src
->page_table_lock
);
2203 spin_unlock(&dst
->page_table_lock
);
2211 static int is_hugetlb_entry_migration(pte_t pte
)
2215 if (huge_pte_none(pte
) || pte_present(pte
))
2217 swp
= pte_to_swp_entry(pte
);
2218 if (non_swap_entry(swp
) && is_migration_entry(swp
)) {
2224 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2228 if (huge_pte_none(pte
) || pte_present(pte
))
2230 swp
= pte_to_swp_entry(pte
);
2231 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
)) {
2237 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2238 unsigned long end
, struct page
*ref_page
)
2240 struct mm_struct
*mm
= vma
->vm_mm
;
2241 unsigned long address
;
2246 struct hstate
*h
= hstate_vma(vma
);
2247 unsigned long sz
= huge_page_size(h
);
2250 * A page gathering list, protected by per file i_mmap_lock. The
2251 * lock is used to avoid list corruption from multiple unmapping
2252 * of the same page since we are using page->lru.
2254 LIST_HEAD(page_list
);
2256 WARN_ON(!is_vm_hugetlb_page(vma
));
2257 BUG_ON(start
& ~huge_page_mask(h
));
2258 BUG_ON(end
& ~huge_page_mask(h
));
2260 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2261 spin_lock(&mm
->page_table_lock
);
2262 for (address
= start
; address
< end
; address
+= sz
) {
2263 ptep
= huge_pte_offset(mm
, address
);
2267 if (huge_pmd_unshare(mm
, &address
, ptep
))
2271 * If a reference page is supplied, it is because a specific
2272 * page is being unmapped, not a range. Ensure the page we
2273 * are about to unmap is the actual page of interest.
2276 pte
= huge_ptep_get(ptep
);
2277 if (huge_pte_none(pte
))
2279 page
= pte_page(pte
);
2280 if (page
!= ref_page
)
2284 * Mark the VMA as having unmapped its page so that
2285 * future faults in this VMA will fail rather than
2286 * looking like data was lost
2288 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2291 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2292 if (huge_pte_none(pte
))
2296 * HWPoisoned hugepage is already unmapped and dropped reference
2298 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2301 page
= pte_page(pte
);
2303 set_page_dirty(page
);
2304 list_add(&page
->lru
, &page_list
);
2306 spin_unlock(&mm
->page_table_lock
);
2307 flush_tlb_range(vma
, start
, end
);
2308 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2309 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2310 page_remove_rmap(page
);
2311 list_del(&page
->lru
);
2316 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2317 unsigned long end
, struct page
*ref_page
)
2319 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2320 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2321 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2325 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2326 * mappping it owns the reserve page for. The intention is to unmap the page
2327 * from other VMAs and let the children be SIGKILLed if they are faulting the
2330 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2331 struct page
*page
, unsigned long address
)
2333 struct hstate
*h
= hstate_vma(vma
);
2334 struct vm_area_struct
*iter_vma
;
2335 struct address_space
*mapping
;
2336 struct prio_tree_iter iter
;
2340 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2341 * from page cache lookup which is in HPAGE_SIZE units.
2343 address
= address
& huge_page_mask(h
);
2344 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
2345 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
2346 mapping
= (struct address_space
*)page_private(page
);
2349 * Take the mapping lock for the duration of the table walk. As
2350 * this mapping should be shared between all the VMAs,
2351 * __unmap_hugepage_range() is called as the lock is already held
2353 spin_lock(&mapping
->i_mmap_lock
);
2354 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2355 /* Do not unmap the current VMA */
2356 if (iter_vma
== vma
)
2360 * Unmap the page from other VMAs without their own reserves.
2361 * They get marked to be SIGKILLed if they fault in these
2362 * areas. This is because a future no-page fault on this VMA
2363 * could insert a zeroed page instead of the data existing
2364 * from the time of fork. This would look like data corruption
2366 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2367 __unmap_hugepage_range(iter_vma
,
2368 address
, address
+ huge_page_size(h
),
2371 spin_unlock(&mapping
->i_mmap_lock
);
2377 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2379 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2380 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2381 struct page
*pagecache_page
)
2383 struct hstate
*h
= hstate_vma(vma
);
2384 struct page
*old_page
, *new_page
;
2386 int outside_reserve
= 0;
2388 old_page
= pte_page(pte
);
2391 /* If no-one else is actually using this page, avoid the copy
2392 * and just make the page writable */
2393 avoidcopy
= (page_mapcount(old_page
) == 1);
2395 if (PageAnon(old_page
))
2396 page_move_anon_rmap(old_page
, vma
, address
);
2397 set_huge_ptep_writable(vma
, address
, ptep
);
2402 * If the process that created a MAP_PRIVATE mapping is about to
2403 * perform a COW due to a shared page count, attempt to satisfy
2404 * the allocation without using the existing reserves. The pagecache
2405 * page is used to determine if the reserve at this address was
2406 * consumed or not. If reserves were used, a partial faulted mapping
2407 * at the time of fork() could consume its reserves on COW instead
2408 * of the full address range.
2410 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2411 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2412 old_page
!= pagecache_page
)
2413 outside_reserve
= 1;
2415 page_cache_get(old_page
);
2417 /* Drop page_table_lock as buddy allocator may be called */
2418 spin_unlock(&mm
->page_table_lock
);
2419 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2421 if (IS_ERR(new_page
)) {
2422 page_cache_release(old_page
);
2425 * If a process owning a MAP_PRIVATE mapping fails to COW,
2426 * it is due to references held by a child and an insufficient
2427 * huge page pool. To guarantee the original mappers
2428 * reliability, unmap the page from child processes. The child
2429 * may get SIGKILLed if it later faults.
2431 if (outside_reserve
) {
2432 BUG_ON(huge_pte_none(pte
));
2433 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2434 BUG_ON(page_count(old_page
) != 1);
2435 BUG_ON(huge_pte_none(pte
));
2436 spin_lock(&mm
->page_table_lock
);
2437 goto retry_avoidcopy
;
2442 /* Caller expects lock to be held */
2443 spin_lock(&mm
->page_table_lock
);
2444 return -PTR_ERR(new_page
);
2448 * When the original hugepage is shared one, it does not have
2449 * anon_vma prepared.
2451 if (unlikely(anon_vma_prepare(vma
))) {
2452 /* Caller expects lock to be held */
2453 spin_lock(&mm
->page_table_lock
);
2454 return VM_FAULT_OOM
;
2457 copy_user_huge_page(new_page
, old_page
, address
, vma
);
2458 __SetPageUptodate(new_page
);
2461 * Retake the page_table_lock to check for racing updates
2462 * before the page tables are altered
2464 spin_lock(&mm
->page_table_lock
);
2465 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2466 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2468 mmu_notifier_invalidate_range_start(mm
,
2469 address
& huge_page_mask(h
),
2470 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2471 huge_ptep_clear_flush(vma
, address
, ptep
);
2472 set_huge_pte_at(mm
, address
, ptep
,
2473 make_huge_pte(vma
, new_page
, 1));
2474 page_remove_rmap(old_page
);
2475 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2476 /* Make the old page be freed below */
2477 new_page
= old_page
;
2478 mmu_notifier_invalidate_range_end(mm
,
2479 address
& huge_page_mask(h
),
2480 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2482 page_cache_release(new_page
);
2483 page_cache_release(old_page
);
2487 /* Return the pagecache page at a given address within a VMA */
2488 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2489 struct vm_area_struct
*vma
, unsigned long address
)
2491 struct address_space
*mapping
;
2494 mapping
= vma
->vm_file
->f_mapping
;
2495 idx
= vma_hugecache_offset(h
, vma
, address
);
2497 return find_lock_page(mapping
, idx
);
2501 * Return whether there is a pagecache page to back given address within VMA.
2502 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2504 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2505 struct vm_area_struct
*vma
, unsigned long address
)
2507 struct address_space
*mapping
;
2511 mapping
= vma
->vm_file
->f_mapping
;
2512 idx
= vma_hugecache_offset(h
, vma
, address
);
2514 page
= find_get_page(mapping
, idx
);
2517 return page
!= NULL
;
2520 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2521 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2523 struct hstate
*h
= hstate_vma(vma
);
2524 int ret
= VM_FAULT_SIGBUS
;
2528 struct address_space
*mapping
;
2532 * Currently, we are forced to kill the process in the event the
2533 * original mapper has unmapped pages from the child due to a failed
2534 * COW. Warn that such a situation has occured as it may not be obvious
2536 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2538 "PID %d killed due to inadequate hugepage pool\n",
2543 mapping
= vma
->vm_file
->f_mapping
;
2544 idx
= vma_hugecache_offset(h
, vma
, address
);
2547 * Use page lock to guard against racing truncation
2548 * before we get page_table_lock.
2551 page
= find_lock_page(mapping
, idx
);
2553 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2556 page
= alloc_huge_page(vma
, address
, 0);
2558 ret
= -PTR_ERR(page
);
2561 clear_huge_page(page
, address
, huge_page_size(h
));
2562 __SetPageUptodate(page
);
2564 if (vma
->vm_flags
& VM_MAYSHARE
) {
2566 struct inode
*inode
= mapping
->host
;
2568 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2576 spin_lock(&inode
->i_lock
);
2577 inode
->i_blocks
+= blocks_per_huge_page(h
);
2578 spin_unlock(&inode
->i_lock
);
2579 page_dup_rmap(page
);
2582 if (unlikely(anon_vma_prepare(vma
))) {
2584 goto backout_unlocked
;
2586 hugepage_add_new_anon_rmap(page
, vma
, address
);
2590 * If memory error occurs between mmap() and fault, some process
2591 * don't have hwpoisoned swap entry for errored virtual address.
2592 * So we need to block hugepage fault by PG_hwpoison bit check.
2594 if (unlikely(PageHWPoison(page
))) {
2595 ret
= VM_FAULT_HWPOISON
|
2596 VM_FAULT_SET_HINDEX(h
- hstates
);
2597 goto backout_unlocked
;
2599 page_dup_rmap(page
);
2603 * If we are going to COW a private mapping later, we examine the
2604 * pending reservations for this page now. This will ensure that
2605 * any allocations necessary to record that reservation occur outside
2608 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2609 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2611 goto backout_unlocked
;
2614 spin_lock(&mm
->page_table_lock
);
2615 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2620 if (!huge_pte_none(huge_ptep_get(ptep
)))
2623 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2624 && (vma
->vm_flags
& VM_SHARED
)));
2625 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2627 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2628 /* Optimization, do the COW without a second fault */
2629 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2632 spin_unlock(&mm
->page_table_lock
);
2638 spin_unlock(&mm
->page_table_lock
);
2645 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2646 unsigned long address
, unsigned int flags
)
2651 struct page
*page
= NULL
;
2652 struct page
*pagecache_page
= NULL
;
2653 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2654 struct hstate
*h
= hstate_vma(vma
);
2656 ptep
= huge_pte_offset(mm
, address
);
2658 entry
= huge_ptep_get(ptep
);
2659 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2660 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2662 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2663 return VM_FAULT_HWPOISON_LARGE
|
2664 VM_FAULT_SET_HINDEX(h
- hstates
);
2667 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2669 return VM_FAULT_OOM
;
2672 * Serialize hugepage allocation and instantiation, so that we don't
2673 * get spurious allocation failures if two CPUs race to instantiate
2674 * the same page in the page cache.
2676 mutex_lock(&hugetlb_instantiation_mutex
);
2677 entry
= huge_ptep_get(ptep
);
2678 if (huge_pte_none(entry
)) {
2679 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2686 * If we are going to COW the mapping later, we examine the pending
2687 * reservations for this page now. This will ensure that any
2688 * allocations necessary to record that reservation occur outside the
2689 * spinlock. For private mappings, we also lookup the pagecache
2690 * page now as it is used to determine if a reservation has been
2693 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2694 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2699 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2700 pagecache_page
= hugetlbfs_pagecache_page(h
,
2705 * hugetlb_cow() requires page locks of pte_page(entry) and
2706 * pagecache_page, so here we need take the former one
2707 * when page != pagecache_page or !pagecache_page.
2708 * Note that locking order is always pagecache_page -> page,
2709 * so no worry about deadlock.
2711 page
= pte_page(entry
);
2712 if (page
!= pagecache_page
)
2715 spin_lock(&mm
->page_table_lock
);
2716 /* Check for a racing update before calling hugetlb_cow */
2717 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2718 goto out_page_table_lock
;
2721 if (flags
& FAULT_FLAG_WRITE
) {
2722 if (!pte_write(entry
)) {
2723 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2725 goto out_page_table_lock
;
2727 entry
= pte_mkdirty(entry
);
2729 entry
= pte_mkyoung(entry
);
2730 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2731 flags
& FAULT_FLAG_WRITE
))
2732 update_mmu_cache(vma
, address
, ptep
);
2734 out_page_table_lock
:
2735 spin_unlock(&mm
->page_table_lock
);
2737 if (pagecache_page
) {
2738 unlock_page(pagecache_page
);
2739 put_page(pagecache_page
);
2744 mutex_unlock(&hugetlb_instantiation_mutex
);
2749 /* Can be overriden by architectures */
2750 __attribute__((weak
)) struct page
*
2751 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2752 pud_t
*pud
, int write
)
2758 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2759 struct page
**pages
, struct vm_area_struct
**vmas
,
2760 unsigned long *position
, int *length
, int i
,
2763 unsigned long pfn_offset
;
2764 unsigned long vaddr
= *position
;
2765 int remainder
= *length
;
2766 struct hstate
*h
= hstate_vma(vma
);
2768 spin_lock(&mm
->page_table_lock
);
2769 while (vaddr
< vma
->vm_end
&& remainder
) {
2775 * Some archs (sparc64, sh*) have multiple pte_ts to
2776 * each hugepage. We have to make sure we get the
2777 * first, for the page indexing below to work.
2779 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2780 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2783 * When coredumping, it suits get_dump_page if we just return
2784 * an error where there's an empty slot with no huge pagecache
2785 * to back it. This way, we avoid allocating a hugepage, and
2786 * the sparse dumpfile avoids allocating disk blocks, but its
2787 * huge holes still show up with zeroes where they need to be.
2789 if (absent
&& (flags
& FOLL_DUMP
) &&
2790 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2796 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2799 spin_unlock(&mm
->page_table_lock
);
2800 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2801 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2802 spin_lock(&mm
->page_table_lock
);
2803 if (!(ret
& VM_FAULT_ERROR
))
2810 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2811 page
= pte_page(huge_ptep_get(pte
));
2814 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2825 if (vaddr
< vma
->vm_end
&& remainder
&&
2826 pfn_offset
< pages_per_huge_page(h
)) {
2828 * We use pfn_offset to avoid touching the pageframes
2829 * of this compound page.
2834 spin_unlock(&mm
->page_table_lock
);
2835 *length
= remainder
;
2838 return i
? i
: -EFAULT
;
2841 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2842 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2844 struct mm_struct
*mm
= vma
->vm_mm
;
2845 unsigned long start
= address
;
2848 struct hstate
*h
= hstate_vma(vma
);
2850 BUG_ON(address
>= end
);
2851 flush_cache_range(vma
, address
, end
);
2853 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2854 spin_lock(&mm
->page_table_lock
);
2855 for (; address
< end
; address
+= huge_page_size(h
)) {
2856 ptep
= huge_pte_offset(mm
, address
);
2859 if (huge_pmd_unshare(mm
, &address
, ptep
))
2861 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2862 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2863 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2864 set_huge_pte_at(mm
, address
, ptep
, pte
);
2867 spin_unlock(&mm
->page_table_lock
);
2868 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2870 flush_tlb_range(vma
, start
, end
);
2873 int hugetlb_reserve_pages(struct inode
*inode
,
2875 struct vm_area_struct
*vma
,
2879 struct hstate
*h
= hstate_inode(inode
);
2882 * Only apply hugepage reservation if asked. At fault time, an
2883 * attempt will be made for VM_NORESERVE to allocate a page
2884 * and filesystem quota without using reserves
2886 if (acctflag
& VM_NORESERVE
)
2890 * Shared mappings base their reservation on the number of pages that
2891 * are already allocated on behalf of the file. Private mappings need
2892 * to reserve the full area even if read-only as mprotect() may be
2893 * called to make the mapping read-write. Assume !vma is a shm mapping
2895 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2896 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2898 struct resv_map
*resv_map
= resv_map_alloc();
2904 set_vma_resv_map(vma
, resv_map
);
2905 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2911 /* There must be enough filesystem quota for the mapping */
2912 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2916 * Check enough hugepages are available for the reservation.
2917 * Hand back the quota if there are not
2919 ret
= hugetlb_acct_memory(h
, chg
);
2921 hugetlb_put_quota(inode
->i_mapping
, chg
);
2926 * Account for the reservations made. Shared mappings record regions
2927 * that have reservations as they are shared by multiple VMAs.
2928 * When the last VMA disappears, the region map says how much
2929 * the reservation was and the page cache tells how much of
2930 * the reservation was consumed. Private mappings are per-VMA and
2931 * only the consumed reservations are tracked. When the VMA
2932 * disappears, the original reservation is the VMA size and the
2933 * consumed reservations are stored in the map. Hence, nothing
2934 * else has to be done for private mappings here
2936 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2937 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2941 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2943 struct hstate
*h
= hstate_inode(inode
);
2944 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2946 spin_lock(&inode
->i_lock
);
2947 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2948 spin_unlock(&inode
->i_lock
);
2950 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2951 hugetlb_acct_memory(h
, -(chg
- freed
));
2954 #ifdef CONFIG_MEMORY_FAILURE
2956 /* Should be called in hugetlb_lock */
2957 static int is_hugepage_on_freelist(struct page
*hpage
)
2961 struct hstate
*h
= page_hstate(hpage
);
2962 int nid
= page_to_nid(hpage
);
2964 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
2971 * This function is called from memory failure code.
2972 * Assume the caller holds page lock of the head page.
2974 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
2976 struct hstate
*h
= page_hstate(hpage
);
2977 int nid
= page_to_nid(hpage
);
2980 spin_lock(&hugetlb_lock
);
2981 if (is_hugepage_on_freelist(hpage
)) {
2982 list_del(&hpage
->lru
);
2983 set_page_refcounted(hpage
);
2984 h
->free_huge_pages
--;
2985 h
->free_huge_pages_node
[nid
]--;
2988 spin_unlock(&hugetlb_lock
);