2 * x86 instruction analysis
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
21 #include <linux/string.h>
25 #define get_next(t, insn) \
26 ({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
28 #define peek_next(t, insn) \
29 ({t r; r = *(t*)insn->next_byte; r; })
31 #define peek_nbyte_next(t, insn, n) \
32 ({t r; r = *(t*)((insn)->next_byte + n); r; })
35 * insn_init() - initialize struct insn
36 * @insn: &struct insn to be initialized
37 * @kaddr: address (in kernel memory) of instruction (or copy thereof)
38 * @x86_64: !0 for 64-bit kernel or 64-bit app
40 void insn_init(struct insn
*insn
, const void *kaddr
, int x86_64
)
42 memset(insn
, 0, sizeof(*insn
));
44 insn
->next_byte
= kaddr
;
45 insn
->x86_64
= x86_64
? 1 : 0;
54 * insn_get_prefixes - scan x86 instruction prefix bytes
55 * @insn: &struct insn containing instruction
57 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
58 * to point to the (first) opcode. No effect if @insn->prefixes.got
61 void insn_get_prefixes(struct insn
*insn
)
63 struct insn_field
*prefixes
= &insn
->prefixes
;
73 b
= peek_next(insn_byte_t
, insn
);
74 attr
= inat_get_opcode_attribute(b
);
75 while (inat_is_legacy_prefix(attr
)) {
76 /* Skip if same prefix */
77 for (i
= 0; i
< nb
; i
++)
78 if (prefixes
->bytes
[i
] == b
)
81 /* Invalid instruction */
83 prefixes
->bytes
[nb
++] = b
;
84 if (inat_is_address_size_prefix(attr
)) {
85 /* address size switches 2/4 or 4/8 */
87 insn
->addr_bytes
^= 12;
89 insn
->addr_bytes
^= 6;
90 } else if (inat_is_operand_size_prefix(attr
)) {
91 /* oprand size switches 2/4 */
92 insn
->opnd_bytes
^= 6;
98 b
= peek_next(insn_byte_t
, insn
);
99 attr
= inat_get_opcode_attribute(b
);
101 /* Set the last prefix */
102 if (lb
&& lb
!= insn
->prefixes
.bytes
[3]) {
103 if (unlikely(insn
->prefixes
.bytes
[3])) {
104 /* Swap the last prefix */
105 b
= insn
->prefixes
.bytes
[3];
106 for (i
= 0; i
< nb
; i
++)
107 if (prefixes
->bytes
[i
] == lb
)
108 prefixes
->bytes
[i
] = b
;
110 insn
->prefixes
.bytes
[3] = lb
;
113 /* Decode REX prefix */
115 b
= peek_next(insn_byte_t
, insn
);
116 attr
= inat_get_opcode_attribute(b
);
117 if (inat_is_rex_prefix(attr
)) {
118 insn
->rex_prefix
.value
= b
;
119 insn
->rex_prefix
.nbytes
= 1;
122 /* REX.W overrides opnd_size */
123 insn
->opnd_bytes
= 8;
126 insn
->rex_prefix
.got
= 1;
128 /* Decode VEX prefix */
129 b
= peek_next(insn_byte_t
, insn
);
130 attr
= inat_get_opcode_attribute(b
);
131 if (inat_is_vex_prefix(attr
)) {
132 insn_byte_t b2
= peek_nbyte_next(insn_byte_t
, insn
, 1);
135 * In 32-bits mode, if the [7:6] bits (mod bits of
136 * ModRM) on the second byte are not 11b, it is
139 if (X86_MODRM_MOD(b2
) != 3)
142 insn
->vex_prefix
.bytes
[0] = b
;
143 insn
->vex_prefix
.bytes
[1] = b2
;
144 if (inat_is_vex3_prefix(attr
)) {
145 b2
= peek_nbyte_next(insn_byte_t
, insn
, 2);
146 insn
->vex_prefix
.bytes
[2] = b2
;
147 insn
->vex_prefix
.nbytes
= 3;
148 insn
->next_byte
+= 3;
149 if (insn
->x86_64
&& X86_VEX_W(b2
))
150 /* VEX.W overrides opnd_size */
151 insn
->opnd_bytes
= 8;
153 insn
->vex_prefix
.nbytes
= 2;
154 insn
->next_byte
+= 2;
158 insn
->vex_prefix
.got
= 1;
165 * insn_get_opcode - collect opcode(s)
166 * @insn: &struct insn containing instruction
168 * Populates @insn->opcode, updates @insn->next_byte to point past the
169 * opcode byte(s), and set @insn->attr (except for groups).
170 * If necessary, first collects any preceding (prefix) bytes.
171 * Sets @insn->opcode.value = opcode1. No effect if @insn->opcode.got
174 void insn_get_opcode(struct insn
*insn
)
176 struct insn_field
*opcode
= &insn
->opcode
;
180 if (!insn
->prefixes
.got
)
181 insn_get_prefixes(insn
);
183 /* Get first opcode */
184 op
= get_next(insn_byte_t
, insn
);
185 opcode
->bytes
[0] = op
;
188 /* Check if there is VEX prefix or not */
189 if (insn_is_avx(insn
)) {
191 m
= insn_vex_m_bits(insn
);
192 p
= insn_vex_p_bits(insn
);
193 insn
->attr
= inat_get_avx_attribute(op
, m
, p
);
194 if (!inat_accept_vex(insn
->attr
))
195 insn
->attr
= 0; /* This instruction is bad */
196 goto end
; /* VEX has only 1 byte for opcode */
199 insn
->attr
= inat_get_opcode_attribute(op
);
200 while (inat_is_escape(insn
->attr
)) {
201 /* Get escaped opcode */
202 op
= get_next(insn_byte_t
, insn
);
203 opcode
->bytes
[opcode
->nbytes
++] = op
;
204 pfx
= insn_last_prefix(insn
);
205 insn
->attr
= inat_get_escape_attribute(op
, pfx
, insn
->attr
);
207 if (inat_must_vex(insn
->attr
))
208 insn
->attr
= 0; /* This instruction is bad */
214 * insn_get_modrm - collect ModRM byte, if any
215 * @insn: &struct insn containing instruction
217 * Populates @insn->modrm and updates @insn->next_byte to point past the
218 * ModRM byte, if any. If necessary, first collects the preceding bytes
219 * (prefixes and opcode(s)). No effect if @insn->modrm.got is already 1.
221 void insn_get_modrm(struct insn
*insn
)
223 struct insn_field
*modrm
= &insn
->modrm
;
224 insn_byte_t pfx
, mod
;
227 if (!insn
->opcode
.got
)
228 insn_get_opcode(insn
);
230 if (inat_has_modrm(insn
->attr
)) {
231 mod
= get_next(insn_byte_t
, insn
);
234 if (inat_is_group(insn
->attr
)) {
235 pfx
= insn_last_prefix(insn
);
236 insn
->attr
= inat_get_group_attribute(mod
, pfx
,
241 if (insn
->x86_64
&& inat_is_force64(insn
->attr
))
242 insn
->opnd_bytes
= 8;
248 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249 * @insn: &struct insn containing instruction
251 * If necessary, first collects the instruction up to and including the
252 * ModRM byte. No effect if @insn->x86_64 is 0.
254 int insn_rip_relative(struct insn
*insn
)
256 struct insn_field
*modrm
= &insn
->modrm
;
261 insn_get_modrm(insn
);
263 * For rip-relative instructions, the mod field (top 2 bits)
264 * is zero and the r/m field (bottom 3 bits) is 0x5.
266 return (modrm
->nbytes
&& (modrm
->value
& 0xc7) == 0x5);
270 * insn_get_sib() - Get the SIB byte of instruction
271 * @insn: &struct insn containing instruction
273 * If necessary, first collects the instruction up to and including the
276 void insn_get_sib(struct insn
*insn
)
282 if (!insn
->modrm
.got
)
283 insn_get_modrm(insn
);
284 if (insn
->modrm
.nbytes
) {
285 modrm
= (insn_byte_t
)insn
->modrm
.value
;
286 if (insn
->addr_bytes
!= 2 &&
287 X86_MODRM_MOD(modrm
) != 3 && X86_MODRM_RM(modrm
) == 4) {
288 insn
->sib
.value
= get_next(insn_byte_t
, insn
);
289 insn
->sib
.nbytes
= 1;
297 * insn_get_displacement() - Get the displacement of instruction
298 * @insn: &struct insn containing instruction
300 * If necessary, first collects the instruction up to and including the
302 * Displacement value is sign-expanded.
304 void insn_get_displacement(struct insn
*insn
)
306 insn_byte_t mod
, rm
, base
;
308 if (insn
->displacement
.got
)
312 if (insn
->modrm
.nbytes
) {
314 * Interpreting the modrm byte:
315 * mod = 00 - no displacement fields (exceptions below)
316 * mod = 01 - 1-byte displacement field
317 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318 * address size = 2 (0x67 prefix in 32-bit mode)
319 * mod = 11 - no memory operand
321 * If address size = 2...
322 * mod = 00, r/m = 110 - displacement field is 2 bytes
324 * If address size != 2...
325 * mod != 11, r/m = 100 - SIB byte exists
326 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327 * mod = 00, r/m = 101 - rip-relative addressing, displacement
330 mod
= X86_MODRM_MOD(insn
->modrm
.value
);
331 rm
= X86_MODRM_RM(insn
->modrm
.value
);
332 base
= X86_SIB_BASE(insn
->sib
.value
);
336 insn
->displacement
.value
= get_next(char, insn
);
337 insn
->displacement
.nbytes
= 1;
338 } else if (insn
->addr_bytes
== 2) {
339 if ((mod
== 0 && rm
== 6) || mod
== 2) {
340 insn
->displacement
.value
=
341 get_next(short, insn
);
342 insn
->displacement
.nbytes
= 2;
345 if ((mod
== 0 && rm
== 5) || mod
== 2 ||
346 (mod
== 0 && base
== 5)) {
347 insn
->displacement
.value
= get_next(int, insn
);
348 insn
->displacement
.nbytes
= 4;
353 insn
->displacement
.got
= 1;
356 /* Decode moffset16/32/64 */
357 static void __get_moffset(struct insn
*insn
)
359 switch (insn
->addr_bytes
) {
361 insn
->moffset1
.value
= get_next(short, insn
);
362 insn
->moffset1
.nbytes
= 2;
365 insn
->moffset1
.value
= get_next(int, insn
);
366 insn
->moffset1
.nbytes
= 4;
369 insn
->moffset1
.value
= get_next(int, insn
);
370 insn
->moffset1
.nbytes
= 4;
371 insn
->moffset2
.value
= get_next(int, insn
);
372 insn
->moffset2
.nbytes
= 4;
375 insn
->moffset1
.got
= insn
->moffset2
.got
= 1;
378 /* Decode imm v32(Iz) */
379 static void __get_immv32(struct insn
*insn
)
381 switch (insn
->opnd_bytes
) {
383 insn
->immediate
.value
= get_next(short, insn
);
384 insn
->immediate
.nbytes
= 2;
388 insn
->immediate
.value
= get_next(int, insn
);
389 insn
->immediate
.nbytes
= 4;
394 /* Decode imm v64(Iv/Ov) */
395 static void __get_immv(struct insn
*insn
)
397 switch (insn
->opnd_bytes
) {
399 insn
->immediate1
.value
= get_next(short, insn
);
400 insn
->immediate1
.nbytes
= 2;
403 insn
->immediate1
.value
= get_next(int, insn
);
404 insn
->immediate1
.nbytes
= 4;
407 insn
->immediate1
.value
= get_next(int, insn
);
408 insn
->immediate1
.nbytes
= 4;
409 insn
->immediate2
.value
= get_next(int, insn
);
410 insn
->immediate2
.nbytes
= 4;
413 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
416 /* Decode ptr16:16/32(Ap) */
417 static void __get_immptr(struct insn
*insn
)
419 switch (insn
->opnd_bytes
) {
421 insn
->immediate1
.value
= get_next(short, insn
);
422 insn
->immediate1
.nbytes
= 2;
425 insn
->immediate1
.value
= get_next(int, insn
);
426 insn
->immediate1
.nbytes
= 4;
429 /* ptr16:64 is not exist (no segment) */
432 insn
->immediate2
.value
= get_next(unsigned short, insn
);
433 insn
->immediate2
.nbytes
= 2;
434 insn
->immediate1
.got
= insn
->immediate2
.got
= 1;
438 * insn_get_immediate() - Get the immediates of instruction
439 * @insn: &struct insn containing instruction
441 * If necessary, first collects the instruction up to and including the
442 * displacement bytes.
443 * Basically, most of immediates are sign-expanded. Unsigned-value can be
444 * get by bit masking with ((1 << (nbytes * 8)) - 1)
446 void insn_get_immediate(struct insn
*insn
)
448 if (insn
->immediate
.got
)
450 if (!insn
->displacement
.got
)
451 insn_get_displacement(insn
);
453 if (inat_has_moffset(insn
->attr
)) {
458 if (!inat_has_immediate(insn
->attr
))
462 switch (inat_immediate_size(insn
->attr
)) {
464 insn
->immediate
.value
= get_next(char, insn
);
465 insn
->immediate
.nbytes
= 1;
468 insn
->immediate
.value
= get_next(short, insn
);
469 insn
->immediate
.nbytes
= 2;
472 insn
->immediate
.value
= get_next(int, insn
);
473 insn
->immediate
.nbytes
= 4;
476 insn
->immediate1
.value
= get_next(int, insn
);
477 insn
->immediate1
.nbytes
= 4;
478 insn
->immediate2
.value
= get_next(int, insn
);
479 insn
->immediate2
.nbytes
= 4;
484 case INAT_IMM_VWORD32
:
493 if (inat_has_second_immediate(insn
->attr
)) {
494 insn
->immediate2
.value
= get_next(char, insn
);
495 insn
->immediate2
.nbytes
= 1;
498 insn
->immediate
.got
= 1;
502 * insn_get_length() - Get the length of instruction
503 * @insn: &struct insn containing instruction
505 * If necessary, first collects the instruction up to and including the
508 void insn_get_length(struct insn
*insn
)
512 if (!insn
->immediate
.got
)
513 insn_get_immediate(insn
);
514 insn
->length
= (unsigned char)((unsigned long)insn
->next_byte
515 - (unsigned long)insn
->kaddr
);