sh: Drop associative writes for SH-4 cache flushes.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh / mm / cache-sh4.c
blobf36a08bf3d5cd62ba42821e5b511346333206c54
1 /*
2 * arch/sh/mm/cache-sh4.c
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2009 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <linux/highmem.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/cacheflush.h>
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
28 #define MAX_ICACHE_PAGES 32
30 static void __flush_cache_one(unsigned long addr, unsigned long phys,
31 unsigned long exec_offset);
34 * Write back the range of D-cache, and purge the I-cache.
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
39 static void __uses_jump_to_uncached sh4_flush_icache_range(void *args)
41 struct flusher_data *data = args;
42 unsigned long start, end;
43 unsigned long flags, v;
44 int i;
46 start = data->addr1;
47 end = data->addr2;
49 /* If there are too many pages then just blow away the caches */
50 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51 local_flush_cache_all(NULL);
52 return;
56 * Selectively flush d-cache then invalidate the i-cache.
57 * This is inefficient, so only use this for small ranges.
59 start &= ~(L1_CACHE_BYTES-1);
60 end += L1_CACHE_BYTES-1;
61 end &= ~(L1_CACHE_BYTES-1);
63 local_irq_save(flags);
64 jump_to_uncached();
66 for (v = start; v < end; v += L1_CACHE_BYTES) {
67 unsigned long icacheaddr;
68 int j, n;
70 __ocbwb(v);
72 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73 cpu_data->icache.entry_mask);
75 /* Clear i-cache line valid-bit */
76 n = boot_cpu_data.icache.n_aliases;
77 for (i = 0; i < cpu_data->icache.ways; i++) {
78 for (j = 0; j < n; j++)
79 __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80 icacheaddr += cpu_data->icache.way_incr;
84 back_to_cached();
85 local_irq_restore(flags);
88 static inline void flush_cache_one(unsigned long start, unsigned long phys)
90 unsigned long flags, exec_offset = 0;
93 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
96 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97 (start < CACHE_OC_ADDRESS_ARRAY))
98 exec_offset = cached_to_uncached;
100 local_irq_save(flags);
101 __flush_cache_one(start, phys, exec_offset);
102 local_irq_restore(flags);
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
109 static void sh4_flush_dcache_page(void *arg)
111 struct page *page = arg;
112 #ifndef CONFIG_SMP
113 struct address_space *mapping = page_mapping(page);
115 if (mapping && !mapping_mapped(mapping))
116 set_bit(PG_dcache_dirty, &page->flags);
117 else
118 #endif
120 unsigned long phys = page_to_phys(page);
121 unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
122 int i, n;
124 /* Loop all the D-cache */
125 n = boot_cpu_data.dcache.n_aliases;
126 for (i = 0; i < n; i++, addr += PAGE_SIZE)
127 flush_cache_one(addr, phys);
130 wmb();
133 /* TODO: Selective icache invalidation through IC address array.. */
134 static void __uses_jump_to_uncached flush_icache_all(void)
136 unsigned long flags, ccr;
138 local_irq_save(flags);
139 jump_to_uncached();
141 /* Flush I-cache */
142 ccr = ctrl_inl(CCR);
143 ccr |= CCR_CACHE_ICI;
144 ctrl_outl(ccr, CCR);
147 * back_to_cached() will take care of the barrier for us, don't add
148 * another one!
151 back_to_cached();
152 local_irq_restore(flags);
155 static void flush_dcache_all(void)
157 unsigned long addr, end_addr, entry_offset;
159 end_addr = CACHE_OC_ADDRESS_ARRAY +
160 (current_cpu_data.dcache.sets <<
161 current_cpu_data.dcache.entry_shift) *
162 current_cpu_data.dcache.ways;
164 entry_offset = 1 << current_cpu_data.dcache.entry_shift;
166 for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
167 __raw_writel(0, addr); addr += entry_offset;
168 __raw_writel(0, addr); addr += entry_offset;
169 __raw_writel(0, addr); addr += entry_offset;
170 __raw_writel(0, addr); addr += entry_offset;
171 __raw_writel(0, addr); addr += entry_offset;
172 __raw_writel(0, addr); addr += entry_offset;
173 __raw_writel(0, addr); addr += entry_offset;
174 __raw_writel(0, addr); addr += entry_offset;
178 static void sh4_flush_cache_all(void *unused)
180 flush_dcache_all();
181 flush_icache_all();
185 * Note : (RPC) since the caches are physically tagged, the only point
186 * of flush_cache_mm for SH-4 is to get rid of aliases from the
187 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
188 * lines can stay resident so long as the virtual address they were
189 * accessed with (hence cache set) is in accord with the physical
190 * address (i.e. tag). It's no different here.
192 * Caller takes mm->mmap_sem.
194 static void sh4_flush_cache_mm(void *arg)
196 struct mm_struct *mm = arg;
198 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
199 return;
201 flush_dcache_all();
205 * Write back and invalidate I/D-caches for the page.
207 * ADDR: Virtual Address (U0 address)
208 * PFN: Physical page number
210 static void sh4_flush_cache_page(void *args)
212 struct flusher_data *data = args;
213 struct vm_area_struct *vma;
214 struct page *page;
215 unsigned long address, pfn, phys;
216 int map_coherent = 0;
217 pgd_t *pgd;
218 pud_t *pud;
219 pmd_t *pmd;
220 pte_t *pte;
221 void *vaddr;
223 vma = data->vma;
224 address = data->addr1 & PAGE_MASK;
225 pfn = data->addr2;
226 phys = pfn << PAGE_SHIFT;
227 page = pfn_to_page(pfn);
229 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
230 return;
232 pgd = pgd_offset(vma->vm_mm, address);
233 pud = pud_offset(pgd, address);
234 pmd = pmd_offset(pud, address);
235 pte = pte_offset_kernel(pmd, address);
237 /* If the page isn't present, there is nothing to do here. */
238 if (!(pte_val(*pte) & _PAGE_PRESENT))
239 return;
241 if ((vma->vm_mm == current->active_mm))
242 vaddr = NULL;
243 else {
245 * Use kmap_coherent or kmap_atomic to do flushes for
246 * another ASID than the current one.
248 map_coherent = (current_cpu_data.dcache.n_aliases &&
249 !test_bit(PG_dcache_dirty, &page->flags) &&
250 page_mapped(page));
251 if (map_coherent)
252 vaddr = kmap_coherent(page, address);
253 else
254 vaddr = kmap_atomic(page, KM_USER0);
256 address = (unsigned long)vaddr;
259 if (pages_do_alias(address, phys))
260 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
261 (address & shm_align_mask), phys);
263 if (vma->vm_flags & VM_EXEC)
264 flush_icache_all();
266 if (vaddr) {
267 if (map_coherent)
268 kunmap_coherent(vaddr);
269 else
270 kunmap_atomic(vaddr, KM_USER0);
275 * Write back and invalidate D-caches.
277 * START, END: Virtual Address (U0 address)
279 * NOTE: We need to flush the _physical_ page entry.
280 * Flushing the cache lines for U0 only isn't enough.
281 * We need to flush for P1 too, which may contain aliases.
283 static void sh4_flush_cache_range(void *args)
285 struct flusher_data *data = args;
286 struct vm_area_struct *vma;
287 unsigned long start, end;
289 vma = data->vma;
290 start = data->addr1;
291 end = data->addr2;
293 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
294 return;
297 * If cache is only 4k-per-way, there are never any 'aliases'. Since
298 * the cache is physically tagged, the data can just be left in there.
300 if (boot_cpu_data.dcache.n_aliases == 0)
301 return;
303 flush_dcache_all();
305 if (vma->vm_flags & VM_EXEC)
306 flush_icache_all();
310 * __flush_cache_one
312 * @addr: address in memory mapped cache array
313 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
314 * set i.e. associative write)
315 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
316 * region else 0x0
318 * The offset into the cache array implied by 'addr' selects the
319 * 'colour' of the virtual address range that will be flushed. The
320 * operation (purge/write-back) is selected by the lower 2 bits of
321 * 'phys'.
323 static void __flush_cache_one(unsigned long addr, unsigned long phys,
324 unsigned long exec_offset)
326 int way_count;
327 unsigned long base_addr = addr;
328 struct cache_info *dcache;
329 unsigned long way_incr;
330 unsigned long a, ea, p;
331 unsigned long temp_pc;
333 dcache = &boot_cpu_data.dcache;
334 /* Write this way for better assembly. */
335 way_count = dcache->ways;
336 way_incr = dcache->way_incr;
339 * Apply exec_offset (i.e. branch to P2 if required.).
341 * FIXME:
343 * If I write "=r" for the (temp_pc), it puts this in r6 hence
344 * trashing exec_offset before it's been added on - why? Hence
345 * "=&r" as a 'workaround'
347 asm volatile("mov.l 1f, %0\n\t"
348 "add %1, %0\n\t"
349 "jmp @%0\n\t"
350 "nop\n\t"
351 ".balign 4\n\t"
352 "1: .long 2f\n\t"
353 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
356 * We know there will be >=1 iteration, so write as do-while to avoid
357 * pointless nead-of-loop check for 0 iterations.
359 do {
360 ea = base_addr + PAGE_SIZE;
361 a = base_addr;
362 p = phys;
364 do {
365 *(volatile unsigned long *)a = p;
367 * Next line: intentionally not p+32, saves an add, p
368 * will do since only the cache tag bits need to
369 * match.
371 *(volatile unsigned long *)(a+32) = p;
372 a += 64;
373 p += 64;
374 } while (a < ea);
376 base_addr += way_incr;
377 } while (--way_count != 0);
380 extern void __weak sh4__flush_region_init(void);
383 * SH-4 has virtually indexed and physically tagged cache.
385 void __init sh4_cache_init(void)
387 printk("PVR=%08x CVR=%08x PRR=%08x\n",
388 ctrl_inl(CCN_PVR),
389 ctrl_inl(CCN_CVR),
390 ctrl_inl(CCN_PRR));
392 local_flush_icache_range = sh4_flush_icache_range;
393 local_flush_dcache_page = sh4_flush_dcache_page;
394 local_flush_cache_all = sh4_flush_cache_all;
395 local_flush_cache_mm = sh4_flush_cache_mm;
396 local_flush_cache_dup_mm = sh4_flush_cache_mm;
397 local_flush_cache_page = sh4_flush_cache_page;
398 local_flush_cache_range = sh4_flush_cache_range;
400 sh4__flush_region_init();