HWPOISON: Add support for poison swap entries v2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blobd7a528c80de87f3280b344d3ea9f09ed37b3b673
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct *work);
59 /* Sampling types */
60 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62 struct cpu_dbs_info_s {
63 cputime64_t prev_cpu_idle;
64 cputime64_t prev_cpu_wall;
65 cputime64_t prev_cpu_nice;
66 struct cpufreq_policy *cur_policy;
67 struct delayed_work work;
68 struct cpufreq_frequency_table *freq_table;
69 unsigned int freq_lo;
70 unsigned int freq_lo_jiffies;
71 unsigned int freq_hi_jiffies;
72 int cpu;
73 unsigned int sample_type:1;
75 * percpu mutex that serializes governor limit change with
76 * do_dbs_timer invocation. We do not want do_dbs_timer to run
77 * when user is changing the governor or limits.
79 struct mutex timer_mutex;
81 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
83 static unsigned int dbs_enable; /* number of CPUs using this policy */
86 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
87 * different CPUs. It protects dbs_enable in governor start/stop.
89 static DEFINE_MUTEX(dbs_mutex);
91 static struct workqueue_struct *kondemand_wq;
93 static struct dbs_tuners {
94 unsigned int sampling_rate;
95 unsigned int up_threshold;
96 unsigned int down_differential;
97 unsigned int ignore_nice;
98 unsigned int powersave_bias;
99 } dbs_tuners_ins = {
100 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102 .ignore_nice = 0,
103 .powersave_bias = 0,
106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107 cputime64_t *wall)
109 cputime64_t idle_time;
110 cputime64_t cur_wall_time;
111 cputime64_t busy_time;
113 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115 kstat_cpu(cpu).cpustat.system);
117 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
120 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
122 idle_time = cputime64_sub(cur_wall_time, busy_time);
123 if (wall)
124 *wall = cur_wall_time;
126 return idle_time;
129 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
131 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
133 if (idle_time == -1ULL)
134 return get_cpu_idle_time_jiffy(cpu, wall);
136 return idle_time;
140 * Find right freq to be set now with powersave_bias on.
141 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
145 unsigned int freq_next,
146 unsigned int relation)
148 unsigned int freq_req, freq_reduc, freq_avg;
149 unsigned int freq_hi, freq_lo;
150 unsigned int index = 0;
151 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
152 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
153 policy->cpu);
155 if (!dbs_info->freq_table) {
156 dbs_info->freq_lo = 0;
157 dbs_info->freq_lo_jiffies = 0;
158 return freq_next;
161 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
162 relation, &index);
163 freq_req = dbs_info->freq_table[index].frequency;
164 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
165 freq_avg = freq_req - freq_reduc;
167 /* Find freq bounds for freq_avg in freq_table */
168 index = 0;
169 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
170 CPUFREQ_RELATION_H, &index);
171 freq_lo = dbs_info->freq_table[index].frequency;
172 index = 0;
173 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
174 CPUFREQ_RELATION_L, &index);
175 freq_hi = dbs_info->freq_table[index].frequency;
177 /* Find out how long we have to be in hi and lo freqs */
178 if (freq_hi == freq_lo) {
179 dbs_info->freq_lo = 0;
180 dbs_info->freq_lo_jiffies = 0;
181 return freq_lo;
183 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
184 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
185 jiffies_hi += ((freq_hi - freq_lo) / 2);
186 jiffies_hi /= (freq_hi - freq_lo);
187 jiffies_lo = jiffies_total - jiffies_hi;
188 dbs_info->freq_lo = freq_lo;
189 dbs_info->freq_lo_jiffies = jiffies_lo;
190 dbs_info->freq_hi_jiffies = jiffies_hi;
191 return freq_hi;
194 static void ondemand_powersave_bias_init_cpu(int cpu)
196 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
197 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
198 dbs_info->freq_lo = 0;
201 static void ondemand_powersave_bias_init(void)
203 int i;
204 for_each_online_cpu(i) {
205 ondemand_powersave_bias_init_cpu(i);
209 /************************** sysfs interface ************************/
210 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
212 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
213 "sysfs file is deprecated - used by: %s\n", current->comm);
214 return sprintf(buf, "%u\n", -1U);
217 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
219 return sprintf(buf, "%u\n", min_sampling_rate);
222 #define define_one_ro(_name) \
223 static struct freq_attr _name = \
224 __ATTR(_name, 0444, show_##_name, NULL)
226 define_one_ro(sampling_rate_max);
227 define_one_ro(sampling_rate_min);
229 /* cpufreq_ondemand Governor Tunables */
230 #define show_one(file_name, object) \
231 static ssize_t show_##file_name \
232 (struct cpufreq_policy *unused, char *buf) \
234 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
236 show_one(sampling_rate, sampling_rate);
237 show_one(up_threshold, up_threshold);
238 show_one(ignore_nice_load, ignore_nice);
239 show_one(powersave_bias, powersave_bias);
241 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
242 const char *buf, size_t count)
244 unsigned int input;
245 int ret;
246 ret = sscanf(buf, "%u", &input);
247 if (ret != 1)
248 return -EINVAL;
250 mutex_lock(&dbs_mutex);
251 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
252 mutex_unlock(&dbs_mutex);
254 return count;
257 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
258 const char *buf, size_t count)
260 unsigned int input;
261 int ret;
262 ret = sscanf(buf, "%u", &input);
264 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
265 input < MIN_FREQUENCY_UP_THRESHOLD) {
266 return -EINVAL;
269 mutex_lock(&dbs_mutex);
270 dbs_tuners_ins.up_threshold = input;
271 mutex_unlock(&dbs_mutex);
273 return count;
276 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
277 const char *buf, size_t count)
279 unsigned int input;
280 int ret;
282 unsigned int j;
284 ret = sscanf(buf, "%u", &input);
285 if (ret != 1)
286 return -EINVAL;
288 if (input > 1)
289 input = 1;
291 mutex_lock(&dbs_mutex);
292 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
293 mutex_unlock(&dbs_mutex);
294 return count;
296 dbs_tuners_ins.ignore_nice = input;
298 /* we need to re-evaluate prev_cpu_idle */
299 for_each_online_cpu(j) {
300 struct cpu_dbs_info_s *dbs_info;
301 dbs_info = &per_cpu(od_cpu_dbs_info, j);
302 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
303 &dbs_info->prev_cpu_wall);
304 if (dbs_tuners_ins.ignore_nice)
305 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
308 mutex_unlock(&dbs_mutex);
310 return count;
313 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
314 const char *buf, size_t count)
316 unsigned int input;
317 int ret;
318 ret = sscanf(buf, "%u", &input);
320 if (ret != 1)
321 return -EINVAL;
323 if (input > 1000)
324 input = 1000;
326 mutex_lock(&dbs_mutex);
327 dbs_tuners_ins.powersave_bias = input;
328 ondemand_powersave_bias_init();
329 mutex_unlock(&dbs_mutex);
331 return count;
334 #define define_one_rw(_name) \
335 static struct freq_attr _name = \
336 __ATTR(_name, 0644, show_##_name, store_##_name)
338 define_one_rw(sampling_rate);
339 define_one_rw(up_threshold);
340 define_one_rw(ignore_nice_load);
341 define_one_rw(powersave_bias);
343 static struct attribute *dbs_attributes[] = {
344 &sampling_rate_max.attr,
345 &sampling_rate_min.attr,
346 &sampling_rate.attr,
347 &up_threshold.attr,
348 &ignore_nice_load.attr,
349 &powersave_bias.attr,
350 NULL
353 static struct attribute_group dbs_attr_group = {
354 .attrs = dbs_attributes,
355 .name = "ondemand",
358 /************************** sysfs end ************************/
360 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
362 unsigned int max_load_freq;
364 struct cpufreq_policy *policy;
365 unsigned int j;
367 this_dbs_info->freq_lo = 0;
368 policy = this_dbs_info->cur_policy;
371 * Every sampling_rate, we check, if current idle time is less
372 * than 20% (default), then we try to increase frequency
373 * Every sampling_rate, we look for a the lowest
374 * frequency which can sustain the load while keeping idle time over
375 * 30%. If such a frequency exist, we try to decrease to this frequency.
377 * Any frequency increase takes it to the maximum frequency.
378 * Frequency reduction happens at minimum steps of
379 * 5% (default) of current frequency
382 /* Get Absolute Load - in terms of freq */
383 max_load_freq = 0;
385 for_each_cpu(j, policy->cpus) {
386 struct cpu_dbs_info_s *j_dbs_info;
387 cputime64_t cur_wall_time, cur_idle_time;
388 unsigned int idle_time, wall_time;
389 unsigned int load, load_freq;
390 int freq_avg;
392 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
394 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
396 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
397 j_dbs_info->prev_cpu_wall);
398 j_dbs_info->prev_cpu_wall = cur_wall_time;
400 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
401 j_dbs_info->prev_cpu_idle);
402 j_dbs_info->prev_cpu_idle = cur_idle_time;
404 if (dbs_tuners_ins.ignore_nice) {
405 cputime64_t cur_nice;
406 unsigned long cur_nice_jiffies;
408 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
409 j_dbs_info->prev_cpu_nice);
411 * Assumption: nice time between sampling periods will
412 * be less than 2^32 jiffies for 32 bit sys
414 cur_nice_jiffies = (unsigned long)
415 cputime64_to_jiffies64(cur_nice);
417 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
418 idle_time += jiffies_to_usecs(cur_nice_jiffies);
421 if (unlikely(!wall_time || wall_time < idle_time))
422 continue;
424 load = 100 * (wall_time - idle_time) / wall_time;
426 freq_avg = __cpufreq_driver_getavg(policy, j);
427 if (freq_avg <= 0)
428 freq_avg = policy->cur;
430 load_freq = load * freq_avg;
431 if (load_freq > max_load_freq)
432 max_load_freq = load_freq;
435 /* Check for frequency increase */
436 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
437 /* if we are already at full speed then break out early */
438 if (!dbs_tuners_ins.powersave_bias) {
439 if (policy->cur == policy->max)
440 return;
442 __cpufreq_driver_target(policy, policy->max,
443 CPUFREQ_RELATION_H);
444 } else {
445 int freq = powersave_bias_target(policy, policy->max,
446 CPUFREQ_RELATION_H);
447 __cpufreq_driver_target(policy, freq,
448 CPUFREQ_RELATION_L);
450 return;
453 /* Check for frequency decrease */
454 /* if we cannot reduce the frequency anymore, break out early */
455 if (policy->cur == policy->min)
456 return;
459 * The optimal frequency is the frequency that is the lowest that
460 * can support the current CPU usage without triggering the up
461 * policy. To be safe, we focus 10 points under the threshold.
463 if (max_load_freq <
464 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
465 policy->cur) {
466 unsigned int freq_next;
467 freq_next = max_load_freq /
468 (dbs_tuners_ins.up_threshold -
469 dbs_tuners_ins.down_differential);
471 if (!dbs_tuners_ins.powersave_bias) {
472 __cpufreq_driver_target(policy, freq_next,
473 CPUFREQ_RELATION_L);
474 } else {
475 int freq = powersave_bias_target(policy, freq_next,
476 CPUFREQ_RELATION_L);
477 __cpufreq_driver_target(policy, freq,
478 CPUFREQ_RELATION_L);
483 static void do_dbs_timer(struct work_struct *work)
485 struct cpu_dbs_info_s *dbs_info =
486 container_of(work, struct cpu_dbs_info_s, work.work);
487 unsigned int cpu = dbs_info->cpu;
488 int sample_type = dbs_info->sample_type;
490 /* We want all CPUs to do sampling nearly on same jiffy */
491 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
493 delay -= jiffies % delay;
494 mutex_lock(&dbs_info->timer_mutex);
496 /* Common NORMAL_SAMPLE setup */
497 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
498 if (!dbs_tuners_ins.powersave_bias ||
499 sample_type == DBS_NORMAL_SAMPLE) {
500 dbs_check_cpu(dbs_info);
501 if (dbs_info->freq_lo) {
502 /* Setup timer for SUB_SAMPLE */
503 dbs_info->sample_type = DBS_SUB_SAMPLE;
504 delay = dbs_info->freq_hi_jiffies;
506 } else {
507 __cpufreq_driver_target(dbs_info->cur_policy,
508 dbs_info->freq_lo, CPUFREQ_RELATION_H);
510 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
511 mutex_unlock(&dbs_info->timer_mutex);
514 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
516 /* We want all CPUs to do sampling nearly on same jiffy */
517 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
518 delay -= jiffies % delay;
520 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
521 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
522 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
523 delay);
526 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
528 cancel_delayed_work_sync(&dbs_info->work);
531 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
532 unsigned int event)
534 unsigned int cpu = policy->cpu;
535 struct cpu_dbs_info_s *this_dbs_info;
536 unsigned int j;
537 int rc;
539 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
541 switch (event) {
542 case CPUFREQ_GOV_START:
543 if ((!cpu_online(cpu)) || (!policy->cur))
544 return -EINVAL;
546 mutex_lock(&dbs_mutex);
548 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
549 if (rc) {
550 mutex_unlock(&dbs_mutex);
551 return rc;
554 dbs_enable++;
555 for_each_cpu(j, policy->cpus) {
556 struct cpu_dbs_info_s *j_dbs_info;
557 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
558 j_dbs_info->cur_policy = policy;
560 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
561 &j_dbs_info->prev_cpu_wall);
562 if (dbs_tuners_ins.ignore_nice) {
563 j_dbs_info->prev_cpu_nice =
564 kstat_cpu(j).cpustat.nice;
567 this_dbs_info->cpu = cpu;
568 ondemand_powersave_bias_init_cpu(cpu);
569 mutex_init(&this_dbs_info->timer_mutex);
571 * Start the timerschedule work, when this governor
572 * is used for first time
574 if (dbs_enable == 1) {
575 unsigned int latency;
576 /* policy latency is in nS. Convert it to uS first */
577 latency = policy->cpuinfo.transition_latency / 1000;
578 if (latency == 0)
579 latency = 1;
580 /* Bring kernel and HW constraints together */
581 min_sampling_rate = max(min_sampling_rate,
582 MIN_LATENCY_MULTIPLIER * latency);
583 dbs_tuners_ins.sampling_rate =
584 max(min_sampling_rate,
585 latency * LATENCY_MULTIPLIER);
587 mutex_unlock(&dbs_mutex);
589 dbs_timer_init(this_dbs_info);
590 break;
592 case CPUFREQ_GOV_STOP:
593 dbs_timer_exit(this_dbs_info);
595 mutex_lock(&dbs_mutex);
596 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
597 mutex_destroy(&this_dbs_info->timer_mutex);
598 dbs_enable--;
599 mutex_unlock(&dbs_mutex);
601 break;
603 case CPUFREQ_GOV_LIMITS:
604 mutex_lock(&this_dbs_info->timer_mutex);
605 if (policy->max < this_dbs_info->cur_policy->cur)
606 __cpufreq_driver_target(this_dbs_info->cur_policy,
607 policy->max, CPUFREQ_RELATION_H);
608 else if (policy->min > this_dbs_info->cur_policy->cur)
609 __cpufreq_driver_target(this_dbs_info->cur_policy,
610 policy->min, CPUFREQ_RELATION_L);
611 mutex_unlock(&this_dbs_info->timer_mutex);
612 break;
614 return 0;
617 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
618 static
619 #endif
620 struct cpufreq_governor cpufreq_gov_ondemand = {
621 .name = "ondemand",
622 .governor = cpufreq_governor_dbs,
623 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
624 .owner = THIS_MODULE,
627 static int __init cpufreq_gov_dbs_init(void)
629 int err;
630 cputime64_t wall;
631 u64 idle_time;
632 int cpu = get_cpu();
634 idle_time = get_cpu_idle_time_us(cpu, &wall);
635 put_cpu();
636 if (idle_time != -1ULL) {
637 /* Idle micro accounting is supported. Use finer thresholds */
638 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
639 dbs_tuners_ins.down_differential =
640 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
642 * In no_hz/micro accounting case we set the minimum frequency
643 * not depending on HZ, but fixed (very low). The deferred
644 * timer might skip some samples if idle/sleeping as needed.
646 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
647 } else {
648 /* For correct statistics, we need 10 ticks for each measure */
649 min_sampling_rate =
650 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
653 kondemand_wq = create_workqueue("kondemand");
654 if (!kondemand_wq) {
655 printk(KERN_ERR "Creation of kondemand failed\n");
656 return -EFAULT;
658 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
659 if (err)
660 destroy_workqueue(kondemand_wq);
662 return err;
665 static void __exit cpufreq_gov_dbs_exit(void)
667 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
668 destroy_workqueue(kondemand_wq);
672 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
673 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
674 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
675 "Low Latency Frequency Transition capable processors");
676 MODULE_LICENSE("GPL");
678 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
679 fs_initcall(cpufreq_gov_dbs_init);
680 #else
681 module_init(cpufreq_gov_dbs_init);
682 #endif
683 module_exit(cpufreq_gov_dbs_exit);