2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate
;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct
*work
);
60 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
62 struct cpu_dbs_info_s
{
63 cputime64_t prev_cpu_idle
;
64 cputime64_t prev_cpu_wall
;
65 cputime64_t prev_cpu_nice
;
66 struct cpufreq_policy
*cur_policy
;
67 struct delayed_work work
;
68 struct cpufreq_frequency_table
*freq_table
;
70 unsigned int freq_lo_jiffies
;
71 unsigned int freq_hi_jiffies
;
73 unsigned int sample_type
:1;
75 * percpu mutex that serializes governor limit change with
76 * do_dbs_timer invocation. We do not want do_dbs_timer to run
77 * when user is changing the governor or limits.
79 struct mutex timer_mutex
;
81 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, od_cpu_dbs_info
);
83 static unsigned int dbs_enable
; /* number of CPUs using this policy */
86 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
87 * different CPUs. It protects dbs_enable in governor start/stop.
89 static DEFINE_MUTEX(dbs_mutex
);
91 static struct workqueue_struct
*kondemand_wq
;
93 static struct dbs_tuners
{
94 unsigned int sampling_rate
;
95 unsigned int up_threshold
;
96 unsigned int down_differential
;
97 unsigned int ignore_nice
;
98 unsigned int powersave_bias
;
100 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
101 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
106 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
109 cputime64_t idle_time
;
110 cputime64_t cur_wall_time
;
111 cputime64_t busy_time
;
113 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
114 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
115 kstat_cpu(cpu
).cpustat
.system
);
117 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
118 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
119 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
120 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
122 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
124 *wall
= cur_wall_time
;
129 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
131 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
133 if (idle_time
== -1ULL)
134 return get_cpu_idle_time_jiffy(cpu
, wall
);
140 * Find right freq to be set now with powersave_bias on.
141 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
145 unsigned int freq_next
,
146 unsigned int relation
)
148 unsigned int freq_req
, freq_reduc
, freq_avg
;
149 unsigned int freq_hi
, freq_lo
;
150 unsigned int index
= 0;
151 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
152 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
,
155 if (!dbs_info
->freq_table
) {
156 dbs_info
->freq_lo
= 0;
157 dbs_info
->freq_lo_jiffies
= 0;
161 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
163 freq_req
= dbs_info
->freq_table
[index
].frequency
;
164 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
165 freq_avg
= freq_req
- freq_reduc
;
167 /* Find freq bounds for freq_avg in freq_table */
169 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
170 CPUFREQ_RELATION_H
, &index
);
171 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
173 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
174 CPUFREQ_RELATION_L
, &index
);
175 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
177 /* Find out how long we have to be in hi and lo freqs */
178 if (freq_hi
== freq_lo
) {
179 dbs_info
->freq_lo
= 0;
180 dbs_info
->freq_lo_jiffies
= 0;
183 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
184 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
185 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
186 jiffies_hi
/= (freq_hi
- freq_lo
);
187 jiffies_lo
= jiffies_total
- jiffies_hi
;
188 dbs_info
->freq_lo
= freq_lo
;
189 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
190 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
194 static void ondemand_powersave_bias_init_cpu(int cpu
)
196 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
197 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
198 dbs_info
->freq_lo
= 0;
201 static void ondemand_powersave_bias_init(void)
204 for_each_online_cpu(i
) {
205 ondemand_powersave_bias_init_cpu(i
);
209 /************************** sysfs interface ************************/
210 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
212 printk_once(KERN_INFO
"CPUFREQ: ondemand sampling_rate_max "
213 "sysfs file is deprecated - used by: %s\n", current
->comm
);
214 return sprintf(buf
, "%u\n", -1U);
217 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
219 return sprintf(buf
, "%u\n", min_sampling_rate
);
222 #define define_one_ro(_name) \
223 static struct freq_attr _name = \
224 __ATTR(_name, 0444, show_##_name, NULL)
226 define_one_ro(sampling_rate_max
);
227 define_one_ro(sampling_rate_min
);
229 /* cpufreq_ondemand Governor Tunables */
230 #define show_one(file_name, object) \
231 static ssize_t show_##file_name \
232 (struct cpufreq_policy *unused, char *buf) \
234 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
236 show_one(sampling_rate
, sampling_rate
);
237 show_one(up_threshold
, up_threshold
);
238 show_one(ignore_nice_load
, ignore_nice
);
239 show_one(powersave_bias
, powersave_bias
);
241 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
242 const char *buf
, size_t count
)
246 ret
= sscanf(buf
, "%u", &input
);
250 mutex_lock(&dbs_mutex
);
251 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
252 mutex_unlock(&dbs_mutex
);
257 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
258 const char *buf
, size_t count
)
262 ret
= sscanf(buf
, "%u", &input
);
264 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
265 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
269 mutex_lock(&dbs_mutex
);
270 dbs_tuners_ins
.up_threshold
= input
;
271 mutex_unlock(&dbs_mutex
);
276 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
277 const char *buf
, size_t count
)
284 ret
= sscanf(buf
, "%u", &input
);
291 mutex_lock(&dbs_mutex
);
292 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
293 mutex_unlock(&dbs_mutex
);
296 dbs_tuners_ins
.ignore_nice
= input
;
298 /* we need to re-evaluate prev_cpu_idle */
299 for_each_online_cpu(j
) {
300 struct cpu_dbs_info_s
*dbs_info
;
301 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
302 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
303 &dbs_info
->prev_cpu_wall
);
304 if (dbs_tuners_ins
.ignore_nice
)
305 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
308 mutex_unlock(&dbs_mutex
);
313 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
314 const char *buf
, size_t count
)
318 ret
= sscanf(buf
, "%u", &input
);
326 mutex_lock(&dbs_mutex
);
327 dbs_tuners_ins
.powersave_bias
= input
;
328 ondemand_powersave_bias_init();
329 mutex_unlock(&dbs_mutex
);
334 #define define_one_rw(_name) \
335 static struct freq_attr _name = \
336 __ATTR(_name, 0644, show_##_name, store_##_name)
338 define_one_rw(sampling_rate
);
339 define_one_rw(up_threshold
);
340 define_one_rw(ignore_nice_load
);
341 define_one_rw(powersave_bias
);
343 static struct attribute
*dbs_attributes
[] = {
344 &sampling_rate_max
.attr
,
345 &sampling_rate_min
.attr
,
348 &ignore_nice_load
.attr
,
349 &powersave_bias
.attr
,
353 static struct attribute_group dbs_attr_group
= {
354 .attrs
= dbs_attributes
,
358 /************************** sysfs end ************************/
360 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
362 unsigned int max_load_freq
;
364 struct cpufreq_policy
*policy
;
367 this_dbs_info
->freq_lo
= 0;
368 policy
= this_dbs_info
->cur_policy
;
371 * Every sampling_rate, we check, if current idle time is less
372 * than 20% (default), then we try to increase frequency
373 * Every sampling_rate, we look for a the lowest
374 * frequency which can sustain the load while keeping idle time over
375 * 30%. If such a frequency exist, we try to decrease to this frequency.
377 * Any frequency increase takes it to the maximum frequency.
378 * Frequency reduction happens at minimum steps of
379 * 5% (default) of current frequency
382 /* Get Absolute Load - in terms of freq */
385 for_each_cpu(j
, policy
->cpus
) {
386 struct cpu_dbs_info_s
*j_dbs_info
;
387 cputime64_t cur_wall_time
, cur_idle_time
;
388 unsigned int idle_time
, wall_time
;
389 unsigned int load
, load_freq
;
392 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
394 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
396 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
397 j_dbs_info
->prev_cpu_wall
);
398 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
400 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
401 j_dbs_info
->prev_cpu_idle
);
402 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
404 if (dbs_tuners_ins
.ignore_nice
) {
405 cputime64_t cur_nice
;
406 unsigned long cur_nice_jiffies
;
408 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
409 j_dbs_info
->prev_cpu_nice
);
411 * Assumption: nice time between sampling periods will
412 * be less than 2^32 jiffies for 32 bit sys
414 cur_nice_jiffies
= (unsigned long)
415 cputime64_to_jiffies64(cur_nice
);
417 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
418 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
421 if (unlikely(!wall_time
|| wall_time
< idle_time
))
424 load
= 100 * (wall_time
- idle_time
) / wall_time
;
426 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
428 freq_avg
= policy
->cur
;
430 load_freq
= load
* freq_avg
;
431 if (load_freq
> max_load_freq
)
432 max_load_freq
= load_freq
;
435 /* Check for frequency increase */
436 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
437 /* if we are already at full speed then break out early */
438 if (!dbs_tuners_ins
.powersave_bias
) {
439 if (policy
->cur
== policy
->max
)
442 __cpufreq_driver_target(policy
, policy
->max
,
445 int freq
= powersave_bias_target(policy
, policy
->max
,
447 __cpufreq_driver_target(policy
, freq
,
453 /* Check for frequency decrease */
454 /* if we cannot reduce the frequency anymore, break out early */
455 if (policy
->cur
== policy
->min
)
459 * The optimal frequency is the frequency that is the lowest that
460 * can support the current CPU usage without triggering the up
461 * policy. To be safe, we focus 10 points under the threshold.
464 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
466 unsigned int freq_next
;
467 freq_next
= max_load_freq
/
468 (dbs_tuners_ins
.up_threshold
-
469 dbs_tuners_ins
.down_differential
);
471 if (!dbs_tuners_ins
.powersave_bias
) {
472 __cpufreq_driver_target(policy
, freq_next
,
475 int freq
= powersave_bias_target(policy
, freq_next
,
477 __cpufreq_driver_target(policy
, freq
,
483 static void do_dbs_timer(struct work_struct
*work
)
485 struct cpu_dbs_info_s
*dbs_info
=
486 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
487 unsigned int cpu
= dbs_info
->cpu
;
488 int sample_type
= dbs_info
->sample_type
;
490 /* We want all CPUs to do sampling nearly on same jiffy */
491 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
493 delay
-= jiffies
% delay
;
494 mutex_lock(&dbs_info
->timer_mutex
);
496 /* Common NORMAL_SAMPLE setup */
497 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
498 if (!dbs_tuners_ins
.powersave_bias
||
499 sample_type
== DBS_NORMAL_SAMPLE
) {
500 dbs_check_cpu(dbs_info
);
501 if (dbs_info
->freq_lo
) {
502 /* Setup timer for SUB_SAMPLE */
503 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
504 delay
= dbs_info
->freq_hi_jiffies
;
507 __cpufreq_driver_target(dbs_info
->cur_policy
,
508 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
510 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
511 mutex_unlock(&dbs_info
->timer_mutex
);
514 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
516 /* We want all CPUs to do sampling nearly on same jiffy */
517 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
518 delay
-= jiffies
% delay
;
520 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
521 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
522 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
526 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
528 cancel_delayed_work_sync(&dbs_info
->work
);
531 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
534 unsigned int cpu
= policy
->cpu
;
535 struct cpu_dbs_info_s
*this_dbs_info
;
539 this_dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
542 case CPUFREQ_GOV_START
:
543 if ((!cpu_online(cpu
)) || (!policy
->cur
))
546 mutex_lock(&dbs_mutex
);
548 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
550 mutex_unlock(&dbs_mutex
);
555 for_each_cpu(j
, policy
->cpus
) {
556 struct cpu_dbs_info_s
*j_dbs_info
;
557 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
558 j_dbs_info
->cur_policy
= policy
;
560 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
561 &j_dbs_info
->prev_cpu_wall
);
562 if (dbs_tuners_ins
.ignore_nice
) {
563 j_dbs_info
->prev_cpu_nice
=
564 kstat_cpu(j
).cpustat
.nice
;
567 this_dbs_info
->cpu
= cpu
;
568 ondemand_powersave_bias_init_cpu(cpu
);
569 mutex_init(&this_dbs_info
->timer_mutex
);
571 * Start the timerschedule work, when this governor
572 * is used for first time
574 if (dbs_enable
== 1) {
575 unsigned int latency
;
576 /* policy latency is in nS. Convert it to uS first */
577 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
580 /* Bring kernel and HW constraints together */
581 min_sampling_rate
= max(min_sampling_rate
,
582 MIN_LATENCY_MULTIPLIER
* latency
);
583 dbs_tuners_ins
.sampling_rate
=
584 max(min_sampling_rate
,
585 latency
* LATENCY_MULTIPLIER
);
587 mutex_unlock(&dbs_mutex
);
589 dbs_timer_init(this_dbs_info
);
592 case CPUFREQ_GOV_STOP
:
593 dbs_timer_exit(this_dbs_info
);
595 mutex_lock(&dbs_mutex
);
596 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
597 mutex_destroy(&this_dbs_info
->timer_mutex
);
599 mutex_unlock(&dbs_mutex
);
603 case CPUFREQ_GOV_LIMITS
:
604 mutex_lock(&this_dbs_info
->timer_mutex
);
605 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
606 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
607 policy
->max
, CPUFREQ_RELATION_H
);
608 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
609 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
610 policy
->min
, CPUFREQ_RELATION_L
);
611 mutex_unlock(&this_dbs_info
->timer_mutex
);
617 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
620 struct cpufreq_governor cpufreq_gov_ondemand
= {
622 .governor
= cpufreq_governor_dbs
,
623 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
624 .owner
= THIS_MODULE
,
627 static int __init
cpufreq_gov_dbs_init(void)
634 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
636 if (idle_time
!= -1ULL) {
637 /* Idle micro accounting is supported. Use finer thresholds */
638 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
639 dbs_tuners_ins
.down_differential
=
640 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
642 * In no_hz/micro accounting case we set the minimum frequency
643 * not depending on HZ, but fixed (very low). The deferred
644 * timer might skip some samples if idle/sleeping as needed.
646 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
648 /* For correct statistics, we need 10 ticks for each measure */
650 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
653 kondemand_wq
= create_workqueue("kondemand");
655 printk(KERN_ERR
"Creation of kondemand failed\n");
658 err
= cpufreq_register_governor(&cpufreq_gov_ondemand
);
660 destroy_workqueue(kondemand_wq
);
665 static void __exit
cpufreq_gov_dbs_exit(void)
667 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
668 destroy_workqueue(kondemand_wq
);
672 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
673 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
674 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
675 "Low Latency Frequency Transition capable processors");
676 MODULE_LICENSE("GPL");
678 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
679 fs_initcall(cpufreq_gov_dbs_init
);
681 module_init(cpufreq_gov_dbs_init
);
683 module_exit(cpufreq_gov_dbs_exit
);