scsi: remove private BIT macros
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / elevator.c
blob816a7c8d6394257d89fb36bd67c6b01a62d92020
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83 return 0;
86 * different data direction or already started, don't merge
88 if (bio_data_dir(bio) != rq_data_dir(rq))
89 return 0;
92 * must be same device and not a special request
94 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 return 0;
98 * only merge integrity protected bio into ditto rq
100 if (bio_integrity(bio) != blk_integrity_rq(rq))
101 return 0;
103 if (!elv_iosched_allow_merge(rq, bio))
104 return 0;
106 return 1;
108 EXPORT_SYMBOL(elv_rq_merge_ok);
110 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
112 int ret = ELEVATOR_NO_MERGE;
115 * we can merge and sequence is ok, check if it's possible
117 if (elv_rq_merge_ok(__rq, bio)) {
118 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
119 ret = ELEVATOR_BACK_MERGE;
120 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
121 ret = ELEVATOR_FRONT_MERGE;
124 return ret;
127 static struct elevator_type *elevator_find(const char *name)
129 struct elevator_type *e;
131 list_for_each_entry(e, &elv_list, list) {
132 if (!strcmp(e->elevator_name, name))
133 return e;
136 return NULL;
139 static void elevator_put(struct elevator_type *e)
141 module_put(e->elevator_owner);
144 static struct elevator_type *elevator_get(const char *name)
146 struct elevator_type *e;
148 spin_lock(&elv_list_lock);
150 e = elevator_find(name);
151 if (!e) {
152 char elv[ELV_NAME_MAX + strlen("-iosched")];
154 spin_unlock(&elv_list_lock);
156 snprintf(elv, sizeof(elv), "%s-iosched", name);
158 request_module("%s", elv);
159 spin_lock(&elv_list_lock);
160 e = elevator_find(name);
163 if (e && !try_module_get(e->elevator_owner))
164 e = NULL;
166 spin_unlock(&elv_list_lock);
168 return e;
171 static void *elevator_init_queue(struct request_queue *q,
172 struct elevator_queue *eq)
174 return eq->ops->elevator_init_fn(q);
177 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
178 void *data)
180 q->elevator = eq;
181 eq->elevator_data = data;
184 static char chosen_elevator[16];
186 static int __init elevator_setup(char *str)
189 * Be backwards-compatible with previous kernels, so users
190 * won't get the wrong elevator.
192 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
193 return 1;
196 __setup("elevator=", elevator_setup);
198 static struct kobj_type elv_ktype;
200 static struct elevator_queue *elevator_alloc(struct request_queue *q,
201 struct elevator_type *e)
203 struct elevator_queue *eq;
204 int i;
206 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
207 if (unlikely(!eq))
208 goto err;
210 eq->ops = &e->ops;
211 eq->elevator_type = e;
212 kobject_init(&eq->kobj, &elv_ktype);
213 mutex_init(&eq->sysfs_lock);
215 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
216 GFP_KERNEL, q->node);
217 if (!eq->hash)
218 goto err;
220 for (i = 0; i < ELV_HASH_ENTRIES; i++)
221 INIT_HLIST_HEAD(&eq->hash[i]);
223 return eq;
224 err:
225 kfree(eq);
226 elevator_put(e);
227 return NULL;
230 static void elevator_release(struct kobject *kobj)
232 struct elevator_queue *e;
234 e = container_of(kobj, struct elevator_queue, kobj);
235 elevator_put(e->elevator_type);
236 kfree(e->hash);
237 kfree(e);
240 int elevator_init(struct request_queue *q, char *name)
242 struct elevator_type *e = NULL;
243 struct elevator_queue *eq;
244 void *data;
246 if (unlikely(q->elevator))
247 return 0;
249 INIT_LIST_HEAD(&q->queue_head);
250 q->last_merge = NULL;
251 q->end_sector = 0;
252 q->boundary_rq = NULL;
254 if (name) {
255 e = elevator_get(name);
256 if (!e)
257 return -EINVAL;
260 if (!e && *chosen_elevator) {
261 e = elevator_get(chosen_elevator);
262 if (!e)
263 printk(KERN_ERR "I/O scheduler %s not found\n",
264 chosen_elevator);
267 if (!e) {
268 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
269 if (!e) {
270 printk(KERN_ERR
271 "Default I/O scheduler not found. " \
272 "Using noop.\n");
273 e = elevator_get("noop");
277 eq = elevator_alloc(q, e);
278 if (!eq)
279 return -ENOMEM;
281 data = elevator_init_queue(q, eq);
282 if (!data) {
283 kobject_put(&eq->kobj);
284 return -ENOMEM;
287 elevator_attach(q, eq, data);
288 return 0;
290 EXPORT_SYMBOL(elevator_init);
292 void elevator_exit(struct elevator_queue *e)
294 mutex_lock(&e->sysfs_lock);
295 if (e->ops->elevator_exit_fn)
296 e->ops->elevator_exit_fn(e);
297 e->ops = NULL;
298 mutex_unlock(&e->sysfs_lock);
300 kobject_put(&e->kobj);
302 EXPORT_SYMBOL(elevator_exit);
304 static inline void __elv_rqhash_del(struct request *rq)
306 hlist_del_init(&rq->hash);
309 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
311 if (ELV_ON_HASH(rq))
312 __elv_rqhash_del(rq);
315 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
317 struct elevator_queue *e = q->elevator;
319 BUG_ON(ELV_ON_HASH(rq));
320 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
323 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
325 __elv_rqhash_del(rq);
326 elv_rqhash_add(q, rq);
329 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
331 struct elevator_queue *e = q->elevator;
332 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
333 struct hlist_node *entry, *next;
334 struct request *rq;
336 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
337 BUG_ON(!ELV_ON_HASH(rq));
339 if (unlikely(!rq_mergeable(rq))) {
340 __elv_rqhash_del(rq);
341 continue;
344 if (rq_hash_key(rq) == offset)
345 return rq;
348 return NULL;
352 * RB-tree support functions for inserting/lookup/removal of requests
353 * in a sorted RB tree.
355 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
357 struct rb_node **p = &root->rb_node;
358 struct rb_node *parent = NULL;
359 struct request *__rq;
361 while (*p) {
362 parent = *p;
363 __rq = rb_entry(parent, struct request, rb_node);
365 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
366 p = &(*p)->rb_left;
367 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
368 p = &(*p)->rb_right;
369 else
370 return __rq;
373 rb_link_node(&rq->rb_node, parent, p);
374 rb_insert_color(&rq->rb_node, root);
375 return NULL;
377 EXPORT_SYMBOL(elv_rb_add);
379 void elv_rb_del(struct rb_root *root, struct request *rq)
381 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
382 rb_erase(&rq->rb_node, root);
383 RB_CLEAR_NODE(&rq->rb_node);
385 EXPORT_SYMBOL(elv_rb_del);
387 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
389 struct rb_node *n = root->rb_node;
390 struct request *rq;
392 while (n) {
393 rq = rb_entry(n, struct request, rb_node);
395 if (sector < blk_rq_pos(rq))
396 n = n->rb_left;
397 else if (sector > blk_rq_pos(rq))
398 n = n->rb_right;
399 else
400 return rq;
403 return NULL;
405 EXPORT_SYMBOL(elv_rb_find);
408 * Insert rq into dispatch queue of q. Queue lock must be held on
409 * entry. rq is sort instead into the dispatch queue. To be used by
410 * specific elevators.
412 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
414 sector_t boundary;
415 struct list_head *entry;
416 int stop_flags;
418 if (q->last_merge == rq)
419 q->last_merge = NULL;
421 elv_rqhash_del(q, rq);
423 q->nr_sorted--;
425 boundary = q->end_sector;
426 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
427 list_for_each_prev(entry, &q->queue_head) {
428 struct request *pos = list_entry_rq(entry);
430 if ((rq->cmd_flags & REQ_DISCARD) !=
431 (pos->cmd_flags & REQ_DISCARD))
432 break;
433 if (rq_data_dir(rq) != rq_data_dir(pos))
434 break;
435 if (pos->cmd_flags & stop_flags)
436 break;
437 if (blk_rq_pos(rq) >= boundary) {
438 if (blk_rq_pos(pos) < boundary)
439 continue;
440 } else {
441 if (blk_rq_pos(pos) >= boundary)
442 break;
444 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
445 break;
448 list_add(&rq->queuelist, entry);
450 EXPORT_SYMBOL(elv_dispatch_sort);
453 * Insert rq into dispatch queue of q. Queue lock must be held on
454 * entry. rq is added to the back of the dispatch queue. To be used by
455 * specific elevators.
457 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
459 if (q->last_merge == rq)
460 q->last_merge = NULL;
462 elv_rqhash_del(q, rq);
464 q->nr_sorted--;
466 q->end_sector = rq_end_sector(rq);
467 q->boundary_rq = rq;
468 list_add_tail(&rq->queuelist, &q->queue_head);
470 EXPORT_SYMBOL(elv_dispatch_add_tail);
472 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
474 struct elevator_queue *e = q->elevator;
475 struct request *__rq;
476 int ret;
479 * Levels of merges:
480 * nomerges: No merges at all attempted
481 * noxmerges: Only simple one-hit cache try
482 * merges: All merge tries attempted
484 if (blk_queue_nomerges(q))
485 return ELEVATOR_NO_MERGE;
488 * First try one-hit cache.
490 if (q->last_merge) {
491 ret = elv_try_merge(q->last_merge, bio);
492 if (ret != ELEVATOR_NO_MERGE) {
493 *req = q->last_merge;
494 return ret;
498 if (blk_queue_noxmerges(q))
499 return ELEVATOR_NO_MERGE;
502 * See if our hash lookup can find a potential backmerge.
504 __rq = elv_rqhash_find(q, bio->bi_sector);
505 if (__rq && elv_rq_merge_ok(__rq, bio)) {
506 *req = __rq;
507 return ELEVATOR_BACK_MERGE;
510 if (e->ops->elevator_merge_fn)
511 return e->ops->elevator_merge_fn(q, req, bio);
513 return ELEVATOR_NO_MERGE;
516 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
518 struct elevator_queue *e = q->elevator;
520 if (e->ops->elevator_merged_fn)
521 e->ops->elevator_merged_fn(q, rq, type);
523 if (type == ELEVATOR_BACK_MERGE)
524 elv_rqhash_reposition(q, rq);
526 q->last_merge = rq;
529 void elv_merge_requests(struct request_queue *q, struct request *rq,
530 struct request *next)
532 struct elevator_queue *e = q->elevator;
534 if (e->ops->elevator_merge_req_fn)
535 e->ops->elevator_merge_req_fn(q, rq, next);
537 elv_rqhash_reposition(q, rq);
538 elv_rqhash_del(q, next);
540 q->nr_sorted--;
541 q->last_merge = rq;
544 void elv_bio_merged(struct request_queue *q, struct request *rq,
545 struct bio *bio)
547 struct elevator_queue *e = q->elevator;
549 if (e->ops->elevator_bio_merged_fn)
550 e->ops->elevator_bio_merged_fn(q, rq, bio);
553 void elv_requeue_request(struct request_queue *q, struct request *rq)
556 * it already went through dequeue, we need to decrement the
557 * in_flight count again
559 if (blk_account_rq(rq)) {
560 q->in_flight[rq_is_sync(rq)]--;
561 if (rq->cmd_flags & REQ_SORTED)
562 elv_deactivate_rq(q, rq);
565 rq->cmd_flags &= ~REQ_STARTED;
567 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
570 void elv_drain_elevator(struct request_queue *q)
572 static int printed;
573 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
575 if (q->nr_sorted == 0)
576 return;
577 if (printed++ < 10) {
578 printk(KERN_ERR "%s: forced dispatching is broken "
579 "(nr_sorted=%u), please report this\n",
580 q->elevator->elevator_type->elevator_name, q->nr_sorted);
585 * Call with queue lock held, interrupts disabled
587 void elv_quiesce_start(struct request_queue *q)
589 if (!q->elevator)
590 return;
592 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
595 * make sure we don't have any requests in flight
597 elv_drain_elevator(q);
598 while (q->rq.elvpriv) {
599 __blk_run_queue(q);
600 spin_unlock_irq(q->queue_lock);
601 msleep(10);
602 spin_lock_irq(q->queue_lock);
603 elv_drain_elevator(q);
607 void elv_quiesce_end(struct request_queue *q)
609 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
612 void elv_insert(struct request_queue *q, struct request *rq, int where)
614 struct list_head *pos;
615 unsigned ordseq;
616 int unplug_it = 1;
618 trace_block_rq_insert(q, rq);
620 rq->q = q;
622 switch (where) {
623 case ELEVATOR_INSERT_FRONT:
624 rq->cmd_flags |= REQ_SOFTBARRIER;
626 list_add(&rq->queuelist, &q->queue_head);
627 break;
629 case ELEVATOR_INSERT_BACK:
630 rq->cmd_flags |= REQ_SOFTBARRIER;
631 elv_drain_elevator(q);
632 list_add_tail(&rq->queuelist, &q->queue_head);
634 * We kick the queue here for the following reasons.
635 * - The elevator might have returned NULL previously
636 * to delay requests and returned them now. As the
637 * queue wasn't empty before this request, ll_rw_blk
638 * won't run the queue on return, resulting in hang.
639 * - Usually, back inserted requests won't be merged
640 * with anything. There's no point in delaying queue
641 * processing.
643 __blk_run_queue(q);
644 break;
646 case ELEVATOR_INSERT_SORT:
647 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
648 !(rq->cmd_flags & REQ_DISCARD));
649 rq->cmd_flags |= REQ_SORTED;
650 q->nr_sorted++;
651 if (rq_mergeable(rq)) {
652 elv_rqhash_add(q, rq);
653 if (!q->last_merge)
654 q->last_merge = rq;
658 * Some ioscheds (cfq) run q->request_fn directly, so
659 * rq cannot be accessed after calling
660 * elevator_add_req_fn.
662 q->elevator->ops->elevator_add_req_fn(q, rq);
663 break;
665 case ELEVATOR_INSERT_REQUEUE:
667 * If ordered flush isn't in progress, we do front
668 * insertion; otherwise, requests should be requeued
669 * in ordseq order.
671 rq->cmd_flags |= REQ_SOFTBARRIER;
674 * Most requeues happen because of a busy condition,
675 * don't force unplug of the queue for that case.
677 unplug_it = 0;
679 if (q->ordseq == 0) {
680 list_add(&rq->queuelist, &q->queue_head);
681 break;
684 ordseq = blk_ordered_req_seq(rq);
686 list_for_each(pos, &q->queue_head) {
687 struct request *pos_rq = list_entry_rq(pos);
688 if (ordseq <= blk_ordered_req_seq(pos_rq))
689 break;
692 list_add_tail(&rq->queuelist, pos);
693 break;
695 default:
696 printk(KERN_ERR "%s: bad insertion point %d\n",
697 __func__, where);
698 BUG();
701 if (unplug_it && blk_queue_plugged(q)) {
702 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
703 - queue_in_flight(q);
705 if (nrq >= q->unplug_thresh)
706 __generic_unplug_device(q);
710 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
711 int plug)
713 if (q->ordcolor)
714 rq->cmd_flags |= REQ_ORDERED_COLOR;
716 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
718 * toggle ordered color
720 if (rq->cmd_flags & REQ_HARDBARRIER)
721 q->ordcolor ^= 1;
724 * barriers implicitly indicate back insertion
726 if (where == ELEVATOR_INSERT_SORT)
727 where = ELEVATOR_INSERT_BACK;
730 * this request is scheduling boundary, update
731 * end_sector
733 if (rq->cmd_type == REQ_TYPE_FS ||
734 (rq->cmd_flags & REQ_DISCARD)) {
735 q->end_sector = rq_end_sector(rq);
736 q->boundary_rq = rq;
738 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
739 where == ELEVATOR_INSERT_SORT)
740 where = ELEVATOR_INSERT_BACK;
742 if (plug)
743 blk_plug_device(q);
745 elv_insert(q, rq, where);
747 EXPORT_SYMBOL(__elv_add_request);
749 void elv_add_request(struct request_queue *q, struct request *rq, int where,
750 int plug)
752 unsigned long flags;
754 spin_lock_irqsave(q->queue_lock, flags);
755 __elv_add_request(q, rq, where, plug);
756 spin_unlock_irqrestore(q->queue_lock, flags);
758 EXPORT_SYMBOL(elv_add_request);
760 int elv_queue_empty(struct request_queue *q)
762 struct elevator_queue *e = q->elevator;
764 if (!list_empty(&q->queue_head))
765 return 0;
767 if (e->ops->elevator_queue_empty_fn)
768 return e->ops->elevator_queue_empty_fn(q);
770 return 1;
772 EXPORT_SYMBOL(elv_queue_empty);
774 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
776 struct elevator_queue *e = q->elevator;
778 if (e->ops->elevator_latter_req_fn)
779 return e->ops->elevator_latter_req_fn(q, rq);
780 return NULL;
783 struct request *elv_former_request(struct request_queue *q, struct request *rq)
785 struct elevator_queue *e = q->elevator;
787 if (e->ops->elevator_former_req_fn)
788 return e->ops->elevator_former_req_fn(q, rq);
789 return NULL;
792 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
794 struct elevator_queue *e = q->elevator;
796 if (e->ops->elevator_set_req_fn)
797 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
799 rq->elevator_private = NULL;
800 return 0;
803 void elv_put_request(struct request_queue *q, struct request *rq)
805 struct elevator_queue *e = q->elevator;
807 if (e->ops->elevator_put_req_fn)
808 e->ops->elevator_put_req_fn(rq);
811 int elv_may_queue(struct request_queue *q, int rw)
813 struct elevator_queue *e = q->elevator;
815 if (e->ops->elevator_may_queue_fn)
816 return e->ops->elevator_may_queue_fn(q, rw);
818 return ELV_MQUEUE_MAY;
821 void elv_abort_queue(struct request_queue *q)
823 struct request *rq;
825 while (!list_empty(&q->queue_head)) {
826 rq = list_entry_rq(q->queue_head.next);
827 rq->cmd_flags |= REQ_QUIET;
828 trace_block_rq_abort(q, rq);
830 * Mark this request as started so we don't trigger
831 * any debug logic in the end I/O path.
833 blk_start_request(rq);
834 __blk_end_request_all(rq, -EIO);
837 EXPORT_SYMBOL(elv_abort_queue);
839 void elv_completed_request(struct request_queue *q, struct request *rq)
841 struct elevator_queue *e = q->elevator;
844 * request is released from the driver, io must be done
846 if (blk_account_rq(rq)) {
847 q->in_flight[rq_is_sync(rq)]--;
848 if ((rq->cmd_flags & REQ_SORTED) &&
849 e->ops->elevator_completed_req_fn)
850 e->ops->elevator_completed_req_fn(q, rq);
854 * Check if the queue is waiting for fs requests to be
855 * drained for flush sequence.
857 if (unlikely(q->ordseq)) {
858 struct request *next = NULL;
860 if (!list_empty(&q->queue_head))
861 next = list_entry_rq(q->queue_head.next);
863 if (!queue_in_flight(q) &&
864 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
865 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
866 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
867 __blk_run_queue(q);
872 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
874 static ssize_t
875 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
877 struct elv_fs_entry *entry = to_elv(attr);
878 struct elevator_queue *e;
879 ssize_t error;
881 if (!entry->show)
882 return -EIO;
884 e = container_of(kobj, struct elevator_queue, kobj);
885 mutex_lock(&e->sysfs_lock);
886 error = e->ops ? entry->show(e, page) : -ENOENT;
887 mutex_unlock(&e->sysfs_lock);
888 return error;
891 static ssize_t
892 elv_attr_store(struct kobject *kobj, struct attribute *attr,
893 const char *page, size_t length)
895 struct elv_fs_entry *entry = to_elv(attr);
896 struct elevator_queue *e;
897 ssize_t error;
899 if (!entry->store)
900 return -EIO;
902 e = container_of(kobj, struct elevator_queue, kobj);
903 mutex_lock(&e->sysfs_lock);
904 error = e->ops ? entry->store(e, page, length) : -ENOENT;
905 mutex_unlock(&e->sysfs_lock);
906 return error;
909 static const struct sysfs_ops elv_sysfs_ops = {
910 .show = elv_attr_show,
911 .store = elv_attr_store,
914 static struct kobj_type elv_ktype = {
915 .sysfs_ops = &elv_sysfs_ops,
916 .release = elevator_release,
919 int elv_register_queue(struct request_queue *q)
921 struct elevator_queue *e = q->elevator;
922 int error;
924 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
925 if (!error) {
926 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
927 if (attr) {
928 while (attr->attr.name) {
929 if (sysfs_create_file(&e->kobj, &attr->attr))
930 break;
931 attr++;
934 kobject_uevent(&e->kobj, KOBJ_ADD);
936 return error;
938 EXPORT_SYMBOL(elv_register_queue);
940 static void __elv_unregister_queue(struct elevator_queue *e)
942 kobject_uevent(&e->kobj, KOBJ_REMOVE);
943 kobject_del(&e->kobj);
946 void elv_unregister_queue(struct request_queue *q)
948 if (q)
949 __elv_unregister_queue(q->elevator);
951 EXPORT_SYMBOL(elv_unregister_queue);
953 void elv_register(struct elevator_type *e)
955 char *def = "";
957 spin_lock(&elv_list_lock);
958 BUG_ON(elevator_find(e->elevator_name));
959 list_add_tail(&e->list, &elv_list);
960 spin_unlock(&elv_list_lock);
962 if (!strcmp(e->elevator_name, chosen_elevator) ||
963 (!*chosen_elevator &&
964 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
965 def = " (default)";
967 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
968 def);
970 EXPORT_SYMBOL_GPL(elv_register);
972 void elv_unregister(struct elevator_type *e)
974 struct task_struct *g, *p;
977 * Iterate every thread in the process to remove the io contexts.
979 if (e->ops.trim) {
980 read_lock(&tasklist_lock);
981 do_each_thread(g, p) {
982 task_lock(p);
983 if (p->io_context)
984 e->ops.trim(p->io_context);
985 task_unlock(p);
986 } while_each_thread(g, p);
987 read_unlock(&tasklist_lock);
990 spin_lock(&elv_list_lock);
991 list_del_init(&e->list);
992 spin_unlock(&elv_list_lock);
994 EXPORT_SYMBOL_GPL(elv_unregister);
997 * switch to new_e io scheduler. be careful not to introduce deadlocks -
998 * we don't free the old io scheduler, before we have allocated what we
999 * need for the new one. this way we have a chance of going back to the old
1000 * one, if the new one fails init for some reason.
1002 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1004 struct elevator_queue *old_elevator, *e;
1005 void *data;
1008 * Allocate new elevator
1010 e = elevator_alloc(q, new_e);
1011 if (!e)
1012 return 0;
1014 data = elevator_init_queue(q, e);
1015 if (!data) {
1016 kobject_put(&e->kobj);
1017 return 0;
1021 * Turn on BYPASS and drain all requests w/ elevator private data
1023 spin_lock_irq(q->queue_lock);
1024 elv_quiesce_start(q);
1027 * Remember old elevator.
1029 old_elevator = q->elevator;
1032 * attach and start new elevator
1034 elevator_attach(q, e, data);
1036 spin_unlock_irq(q->queue_lock);
1038 __elv_unregister_queue(old_elevator);
1040 if (elv_register_queue(q))
1041 goto fail_register;
1044 * finally exit old elevator and turn off BYPASS.
1046 elevator_exit(old_elevator);
1047 spin_lock_irq(q->queue_lock);
1048 elv_quiesce_end(q);
1049 spin_unlock_irq(q->queue_lock);
1051 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1053 return 1;
1055 fail_register:
1057 * switch failed, exit the new io scheduler and reattach the old
1058 * one again (along with re-adding the sysfs dir)
1060 elevator_exit(e);
1061 q->elevator = old_elevator;
1062 elv_register_queue(q);
1064 spin_lock_irq(q->queue_lock);
1065 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1066 spin_unlock_irq(q->queue_lock);
1068 return 0;
1071 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1072 size_t count)
1074 char elevator_name[ELV_NAME_MAX];
1075 struct elevator_type *e;
1077 if (!q->elevator)
1078 return count;
1080 strlcpy(elevator_name, name, sizeof(elevator_name));
1081 e = elevator_get(strstrip(elevator_name));
1082 if (!e) {
1083 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1084 return -EINVAL;
1087 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1088 elevator_put(e);
1089 return count;
1092 if (!elevator_switch(q, e))
1093 printk(KERN_ERR "elevator: switch to %s failed\n",
1094 elevator_name);
1095 return count;
1098 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1100 struct elevator_queue *e = q->elevator;
1101 struct elevator_type *elv;
1102 struct elevator_type *__e;
1103 int len = 0;
1105 if (!q->elevator || !blk_queue_stackable(q))
1106 return sprintf(name, "none\n");
1108 elv = e->elevator_type;
1110 spin_lock(&elv_list_lock);
1111 list_for_each_entry(__e, &elv_list, list) {
1112 if (!strcmp(elv->elevator_name, __e->elevator_name))
1113 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1114 else
1115 len += sprintf(name+len, "%s ", __e->elevator_name);
1117 spin_unlock(&elv_list_lock);
1119 len += sprintf(len+name, "\n");
1120 return len;
1123 struct request *elv_rb_former_request(struct request_queue *q,
1124 struct request *rq)
1126 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1128 if (rbprev)
1129 return rb_entry_rq(rbprev);
1131 return NULL;
1133 EXPORT_SYMBOL(elv_rb_former_request);
1135 struct request *elv_rb_latter_request(struct request_queue *q,
1136 struct request *rq)
1138 struct rb_node *rbnext = rb_next(&rq->rb_node);
1140 if (rbnext)
1141 return rb_entry_rq(rbnext);
1143 return NULL;
1145 EXPORT_SYMBOL(elv_rb_latter_request);