thp: madvise(MADV_NOHUGEPAGE)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-sff.c
blobaf6141bb1ba3e6fb678f3b54a41846a9135ca865
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
41 #include "libata.h"
43 static struct workqueue_struct *ata_sff_wq;
45 const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
48 .qc_prep = ata_noop_qc_prep,
49 .qc_issue = ata_sff_qc_issue,
50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
54 .prereset = ata_sff_prereset,
55 .softreset = ata_sff_softreset,
56 .hardreset = sata_sff_hardreset,
57 .postreset = ata_sff_postreset,
58 .error_handler = ata_sff_error_handler,
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_drain_fifo = ata_sff_drain_fifo,
68 .lost_interrupt = ata_sff_lost_interrupt,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72 /**
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
80 * LOCKING:
81 * Inherited from caller.
83 u8 ata_sff_check_status(struct ata_port *ap)
85 return ioread8(ap->ioaddr.status_addr);
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89 /**
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
99 * LOCKING:
100 * Inherited from caller.
102 static u8 ata_sff_altstatus(struct ata_port *ap)
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
107 return ioread8(ap->ioaddr.altstatus_addr);
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
119 * LOCKING:
120 * Inherited from caller.
122 static u8 ata_sff_irq_status(struct ata_port *ap)
124 u8 status;
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
130 return status;
132 /* Clear INTRQ latch */
133 status = ap->ops->sff_check_status(ap);
134 return status;
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
145 * LOCKING:
146 * Inherited from caller.
149 static void ata_sff_sync(struct ata_port *ap)
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
165 * LOCKING:
166 * Inherited from caller.
169 void ata_sff_pause(struct ata_port *ap)
171 ata_sff_sync(ap);
172 ndelay(400);
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
184 void ata_sff_dma_pause(struct ata_port *ap)
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
208 * LOCKING:
209 * Kernel thread context (may sleep).
211 * RETURNS:
212 * 0 on success, -errno otherwise.
214 int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
217 unsigned long timer_start, timeout;
218 u8 status;
220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 timer_start = jiffies;
222 timeout = ata_deadline(timer_start, tmout_pat);
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 ata_msleep(ap, 50);
226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
234 timeout = ata_deadline(timer_start, tmout);
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 ata_msleep(ap, 50);
238 status = ap->ops->sff_check_status(ap);
241 if (status == 0xff)
242 return -ENODEV;
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout, 1000), status);
248 return -EBUSY;
251 return 0;
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255 static int ata_sff_check_ready(struct ata_link *link)
257 u8 status = link->ap->ops->sff_check_status(link->ap);
259 return ata_check_ready(status);
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
270 * LOCKING:
271 * Kernel thread context (may sleep).
273 * RETURNS:
274 * 0 on success, -errno otherwise.
276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
287 * Writes ATA taskfile device control register.
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
292 * LOCKING:
293 * Inherited from caller.
295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
312 * May be used as the dev_select() entry in ata_port_operations.
314 * LOCKING:
315 * caller.
317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 u8 tmp;
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326 iowrite8(tmp, ap->ioaddr.device_addr);
327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
346 * LOCKING:
347 * caller.
349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 unsigned int wait, unsigned int can_sleep)
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
356 if (wait)
357 ata_wait_idle(ap);
359 ap->ops->sff_dev_select(ap, device);
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 ata_msleep(ap, 150);
364 ata_wait_idle(ap);
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
378 * LOCKING:
379 * Inherited from caller.
381 void ata_sff_irq_on(struct ata_port *ap)
383 struct ata_ioports *ioaddr = &ap->ioaddr;
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
407 * Outputs ATA taskfile to standard ATA host controller.
409 * LOCKING:
410 * Inherited from caller.
412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
421 ata_wait_idle(ap);
424 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
425 WARN_ON_ONCE(!ioaddr->ctl_addr);
426 iowrite8(tf->hob_feature, ioaddr->feature_addr);
427 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
428 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
429 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
430 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
432 tf->hob_feature,
433 tf->hob_nsect,
434 tf->hob_lbal,
435 tf->hob_lbam,
436 tf->hob_lbah);
439 if (is_addr) {
440 iowrite8(tf->feature, ioaddr->feature_addr);
441 iowrite8(tf->nsect, ioaddr->nsect_addr);
442 iowrite8(tf->lbal, ioaddr->lbal_addr);
443 iowrite8(tf->lbam, ioaddr->lbam_addr);
444 iowrite8(tf->lbah, ioaddr->lbah_addr);
445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
446 tf->feature,
447 tf->nsect,
448 tf->lbal,
449 tf->lbam,
450 tf->lbah);
453 if (tf->flags & ATA_TFLAG_DEVICE) {
454 iowrite8(tf->device, ioaddr->device_addr);
455 VPRINTK("device 0x%X\n", tf->device);
458 ata_wait_idle(ap);
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
463 * ata_sff_tf_read - input device's ATA taskfile shadow registers
464 * @ap: Port from which input is read
465 * @tf: ATA taskfile register set for storing input
467 * Reads ATA taskfile registers for currently-selected device
468 * into @tf. Assumes the device has a fully SFF compliant task file
469 * layout and behaviour. If you device does not (eg has a different
470 * status method) then you will need to provide a replacement tf_read
472 * LOCKING:
473 * Inherited from caller.
475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 struct ata_ioports *ioaddr = &ap->ioaddr;
479 tf->command = ata_sff_check_status(ap);
480 tf->feature = ioread8(ioaddr->error_addr);
481 tf->nsect = ioread8(ioaddr->nsect_addr);
482 tf->lbal = ioread8(ioaddr->lbal_addr);
483 tf->lbam = ioread8(ioaddr->lbam_addr);
484 tf->lbah = ioread8(ioaddr->lbah_addr);
485 tf->device = ioread8(ioaddr->device_addr);
487 if (tf->flags & ATA_TFLAG_LBA48) {
488 if (likely(ioaddr->ctl_addr)) {
489 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
490 tf->hob_feature = ioread8(ioaddr->error_addr);
491 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
492 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
493 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
494 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
495 iowrite8(tf->ctl, ioaddr->ctl_addr);
496 ap->last_ctl = tf->ctl;
497 } else
498 WARN_ON_ONCE(1);
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
504 * ata_sff_exec_command - issue ATA command to host controller
505 * @ap: port to which command is being issued
506 * @tf: ATA taskfile register set
508 * Issues ATA command, with proper synchronization with interrupt
509 * handler / other threads.
511 * LOCKING:
512 * spin_lock_irqsave(host lock)
514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518 iowrite8(tf->command, ap->ioaddr.command_addr);
519 ata_sff_pause(ap);
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
524 * ata_tf_to_host - issue ATA taskfile to host controller
525 * @ap: port to which command is being issued
526 * @tf: ATA taskfile register set
528 * Issues ATA taskfile register set to ATA host controller,
529 * with proper synchronization with interrupt handler and
530 * other threads.
532 * LOCKING:
533 * spin_lock_irqsave(host lock)
535 static inline void ata_tf_to_host(struct ata_port *ap,
536 const struct ata_taskfile *tf)
538 ap->ops->sff_tf_load(ap, tf);
539 ap->ops->sff_exec_command(ap, tf);
543 * ata_sff_data_xfer - Transfer data by PIO
544 * @dev: device to target
545 * @buf: data buffer
546 * @buflen: buffer length
547 * @rw: read/write
549 * Transfer data from/to the device data register by PIO.
551 * LOCKING:
552 * Inherited from caller.
554 * RETURNS:
555 * Bytes consumed.
557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
558 unsigned int buflen, int rw)
560 struct ata_port *ap = dev->link->ap;
561 void __iomem *data_addr = ap->ioaddr.data_addr;
562 unsigned int words = buflen >> 1;
564 /* Transfer multiple of 2 bytes */
565 if (rw == READ)
566 ioread16_rep(data_addr, buf, words);
567 else
568 iowrite16_rep(data_addr, buf, words);
570 /* Transfer trailing byte, if any. */
571 if (unlikely(buflen & 0x01)) {
572 unsigned char pad[2];
574 /* Point buf to the tail of buffer */
575 buf += buflen - 1;
578 * Use io*16_rep() accessors here as well to avoid pointlessly
579 * swapping bytes to and from on the big endian machines...
581 if (rw == READ) {
582 ioread16_rep(data_addr, pad, 1);
583 *buf = pad[0];
584 } else {
585 pad[0] = *buf;
586 iowrite16_rep(data_addr, pad, 1);
588 words++;
591 return words << 1;
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
596 * ata_sff_data_xfer32 - Transfer data by PIO
597 * @dev: device to target
598 * @buf: data buffer
599 * @buflen: buffer length
600 * @rw: read/write
602 * Transfer data from/to the device data register by PIO using 32bit
603 * I/O operations.
605 * LOCKING:
606 * Inherited from caller.
608 * RETURNS:
609 * Bytes consumed.
612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
613 unsigned int buflen, int rw)
615 struct ata_port *ap = dev->link->ap;
616 void __iomem *data_addr = ap->ioaddr.data_addr;
617 unsigned int words = buflen >> 2;
618 int slop = buflen & 3;
620 if (!(ap->pflags & ATA_PFLAG_PIO32))
621 return ata_sff_data_xfer(dev, buf, buflen, rw);
623 /* Transfer multiple of 4 bytes */
624 if (rw == READ)
625 ioread32_rep(data_addr, buf, words);
626 else
627 iowrite32_rep(data_addr, buf, words);
629 /* Transfer trailing bytes, if any */
630 if (unlikely(slop)) {
631 unsigned char pad[4];
633 /* Point buf to the tail of buffer */
634 buf += buflen - slop;
637 * Use io*_rep() accessors here as well to avoid pointlessly
638 * swapping bytes to and from on the big endian machines...
640 if (rw == READ) {
641 if (slop < 3)
642 ioread16_rep(data_addr, pad, 1);
643 else
644 ioread32_rep(data_addr, pad, 1);
645 memcpy(buf, pad, slop);
646 } else {
647 memcpy(pad, buf, slop);
648 if (slop < 3)
649 iowrite16_rep(data_addr, pad, 1);
650 else
651 iowrite32_rep(data_addr, pad, 1);
654 return (buflen + 1) & ~1;
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659 * ata_sff_data_xfer_noirq - Transfer data by PIO
660 * @dev: device to target
661 * @buf: data buffer
662 * @buflen: buffer length
663 * @rw: read/write
665 * Transfer data from/to the device data register by PIO. Do the
666 * transfer with interrupts disabled.
668 * LOCKING:
669 * Inherited from caller.
671 * RETURNS:
672 * Bytes consumed.
674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
675 unsigned int buflen, int rw)
677 unsigned long flags;
678 unsigned int consumed;
680 local_irq_save(flags);
681 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
682 local_irq_restore(flags);
684 return consumed;
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
689 * ata_pio_sector - Transfer a sector of data.
690 * @qc: Command on going
692 * Transfer qc->sect_size bytes of data from/to the ATA device.
694 * LOCKING:
695 * Inherited from caller.
697 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
700 struct ata_port *ap = qc->ap;
701 struct page *page;
702 unsigned int offset;
703 unsigned char *buf;
705 if (qc->curbytes == qc->nbytes - qc->sect_size)
706 ap->hsm_task_state = HSM_ST_LAST;
708 page = sg_page(qc->cursg);
709 offset = qc->cursg->offset + qc->cursg_ofs;
711 /* get the current page and offset */
712 page = nth_page(page, (offset >> PAGE_SHIFT));
713 offset %= PAGE_SIZE;
715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717 if (PageHighMem(page)) {
718 unsigned long flags;
720 /* FIXME: use a bounce buffer */
721 local_irq_save(flags);
722 buf = kmap_atomic(page, KM_IRQ0);
724 /* do the actual data transfer */
725 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
726 do_write);
728 kunmap_atomic(buf, KM_IRQ0);
729 local_irq_restore(flags);
730 } else {
731 buf = page_address(page);
732 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
733 do_write);
736 if (!do_write && !PageSlab(page))
737 flush_dcache_page(page);
739 qc->curbytes += qc->sect_size;
740 qc->cursg_ofs += qc->sect_size;
742 if (qc->cursg_ofs == qc->cursg->length) {
743 qc->cursg = sg_next(qc->cursg);
744 qc->cursg_ofs = 0;
749 * ata_pio_sectors - Transfer one or many sectors.
750 * @qc: Command on going
752 * Transfer one or many sectors of data from/to the
753 * ATA device for the DRQ request.
755 * LOCKING:
756 * Inherited from caller.
758 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 if (is_multi_taskfile(&qc->tf)) {
761 /* READ/WRITE MULTIPLE */
762 unsigned int nsect;
764 WARN_ON_ONCE(qc->dev->multi_count == 0);
766 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
767 qc->dev->multi_count);
768 while (nsect--)
769 ata_pio_sector(qc);
770 } else
771 ata_pio_sector(qc);
773 ata_sff_sync(qc->ap); /* flush */
777 * atapi_send_cdb - Write CDB bytes to hardware
778 * @ap: Port to which ATAPI device is attached.
779 * @qc: Taskfile currently active
781 * When device has indicated its readiness to accept
782 * a CDB, this function is called. Send the CDB.
784 * LOCKING:
785 * caller.
787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 /* send SCSI cdb */
790 DPRINTK("send cdb\n");
791 WARN_ON_ONCE(qc->dev->cdb_len < 12);
793 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
794 ata_sff_sync(ap);
795 /* FIXME: If the CDB is for DMA do we need to do the transition delay
796 or is bmdma_start guaranteed to do it ? */
797 switch (qc->tf.protocol) {
798 case ATAPI_PROT_PIO:
799 ap->hsm_task_state = HSM_ST;
800 break;
801 case ATAPI_PROT_NODATA:
802 ap->hsm_task_state = HSM_ST_LAST;
803 break;
804 #ifdef CONFIG_ATA_BMDMA
805 case ATAPI_PROT_DMA:
806 ap->hsm_task_state = HSM_ST_LAST;
807 /* initiate bmdma */
808 ap->ops->bmdma_start(qc);
809 break;
810 #endif /* CONFIG_ATA_BMDMA */
811 default:
812 BUG();
817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
818 * @qc: Command on going
819 * @bytes: number of bytes
821 * Transfer Transfer data from/to the ATAPI device.
823 * LOCKING:
824 * Inherited from caller.
827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
830 struct ata_port *ap = qc->ap;
831 struct ata_device *dev = qc->dev;
832 struct ata_eh_info *ehi = &dev->link->eh_info;
833 struct scatterlist *sg;
834 struct page *page;
835 unsigned char *buf;
836 unsigned int offset, count, consumed;
838 next_sg:
839 sg = qc->cursg;
840 if (unlikely(!sg)) {
841 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
842 "buf=%u cur=%u bytes=%u",
843 qc->nbytes, qc->curbytes, bytes);
844 return -1;
847 page = sg_page(sg);
848 offset = sg->offset + qc->cursg_ofs;
850 /* get the current page and offset */
851 page = nth_page(page, (offset >> PAGE_SHIFT));
852 offset %= PAGE_SIZE;
854 /* don't overrun current sg */
855 count = min(sg->length - qc->cursg_ofs, bytes);
857 /* don't cross page boundaries */
858 count = min(count, (unsigned int)PAGE_SIZE - offset);
860 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862 if (PageHighMem(page)) {
863 unsigned long flags;
865 /* FIXME: use bounce buffer */
866 local_irq_save(flags);
867 buf = kmap_atomic(page, KM_IRQ0);
869 /* do the actual data transfer */
870 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
871 count, rw);
873 kunmap_atomic(buf, KM_IRQ0);
874 local_irq_restore(flags);
875 } else {
876 buf = page_address(page);
877 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
878 count, rw);
881 bytes -= min(bytes, consumed);
882 qc->curbytes += count;
883 qc->cursg_ofs += count;
885 if (qc->cursg_ofs == sg->length) {
886 qc->cursg = sg_next(qc->cursg);
887 qc->cursg_ofs = 0;
891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 * check correctly as it doesn't know if it is the last request being
894 * made. Somebody should implement a proper sanity check.
896 if (bytes)
897 goto next_sg;
898 return 0;
902 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
903 * @qc: Command on going
905 * Transfer Transfer data from/to the ATAPI device.
907 * LOCKING:
908 * Inherited from caller.
910 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 struct ata_port *ap = qc->ap;
913 struct ata_device *dev = qc->dev;
914 struct ata_eh_info *ehi = &dev->link->eh_info;
915 unsigned int ireason, bc_lo, bc_hi, bytes;
916 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918 /* Abuse qc->result_tf for temp storage of intermediate TF
919 * here to save some kernel stack usage.
920 * For normal completion, qc->result_tf is not relevant. For
921 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 * So, the correctness of qc->result_tf is not affected.
924 ap->ops->sff_tf_read(ap, &qc->result_tf);
925 ireason = qc->result_tf.nsect;
926 bc_lo = qc->result_tf.lbam;
927 bc_hi = qc->result_tf.lbah;
928 bytes = (bc_hi << 8) | bc_lo;
930 /* shall be cleared to zero, indicating xfer of data */
931 if (unlikely(ireason & (1 << 0)))
932 goto atapi_check;
934 /* make sure transfer direction matches expected */
935 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
936 if (unlikely(do_write != i_write))
937 goto atapi_check;
939 if (unlikely(!bytes))
940 goto atapi_check;
942 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944 if (unlikely(__atapi_pio_bytes(qc, bytes)))
945 goto err_out;
946 ata_sff_sync(ap); /* flush */
948 return;
950 atapi_check:
951 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
952 ireason, bytes);
953 err_out:
954 qc->err_mask |= AC_ERR_HSM;
955 ap->hsm_task_state = HSM_ST_ERR;
959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960 * @ap: the target ata_port
961 * @qc: qc on going
963 * RETURNS:
964 * 1 if ok in workqueue, 0 otherwise.
966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
967 struct ata_queued_cmd *qc)
969 if (qc->tf.flags & ATA_TFLAG_POLLING)
970 return 1;
972 if (ap->hsm_task_state == HSM_ST_FIRST) {
973 if (qc->tf.protocol == ATA_PROT_PIO &&
974 (qc->tf.flags & ATA_TFLAG_WRITE))
975 return 1;
977 if (ata_is_atapi(qc->tf.protocol) &&
978 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
979 return 1;
982 return 0;
986 * ata_hsm_qc_complete - finish a qc running on standard HSM
987 * @qc: Command to complete
988 * @in_wq: 1 if called from workqueue, 0 otherwise
990 * Finish @qc which is running on standard HSM.
992 * LOCKING:
993 * If @in_wq is zero, spin_lock_irqsave(host lock).
994 * Otherwise, none on entry and grabs host lock.
996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 struct ata_port *ap = qc->ap;
999 unsigned long flags;
1001 if (ap->ops->error_handler) {
1002 if (in_wq) {
1003 spin_lock_irqsave(ap->lock, flags);
1005 /* EH might have kicked in while host lock is
1006 * released.
1008 qc = ata_qc_from_tag(ap, qc->tag);
1009 if (qc) {
1010 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1011 ata_sff_irq_on(ap);
1012 ata_qc_complete(qc);
1013 } else
1014 ata_port_freeze(ap);
1017 spin_unlock_irqrestore(ap->lock, flags);
1018 } else {
1019 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1020 ata_qc_complete(qc);
1021 else
1022 ata_port_freeze(ap);
1024 } else {
1025 if (in_wq) {
1026 spin_lock_irqsave(ap->lock, flags);
1027 ata_sff_irq_on(ap);
1028 ata_qc_complete(qc);
1029 spin_unlock_irqrestore(ap->lock, flags);
1030 } else
1031 ata_qc_complete(qc);
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1038 * @qc: qc on going
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1042 * RETURNS:
1043 * 1 when poll next status needed, 0 otherwise.
1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 u8 status, int in_wq)
1048 struct ata_link *link = qc->dev->link;
1049 struct ata_eh_info *ehi = &link->eh_info;
1050 unsigned long flags = 0;
1051 int poll_next;
1053 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1055 /* Make sure ata_sff_qc_issue() does not throw things
1056 * like DMA polling into the workqueue. Notice that
1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1061 fsm_start:
1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1065 switch (ap->hsm_task_state) {
1066 case HSM_ST_FIRST:
1067 /* Send first data block or PACKET CDB */
1069 /* If polling, we will stay in the work queue after
1070 * sending the data. Otherwise, interrupt handler
1071 * takes over after sending the data.
1073 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1075 /* check device status */
1076 if (unlikely((status & ATA_DRQ) == 0)) {
1077 /* handle BSY=0, DRQ=0 as error */
1078 if (likely(status & (ATA_ERR | ATA_DF)))
1079 /* device stops HSM for abort/error */
1080 qc->err_mask |= AC_ERR_DEV;
1081 else {
1082 /* HSM violation. Let EH handle this */
1083 ata_ehi_push_desc(ehi,
1084 "ST_FIRST: !(DRQ|ERR|DF)");
1085 qc->err_mask |= AC_ERR_HSM;
1088 ap->hsm_task_state = HSM_ST_ERR;
1089 goto fsm_start;
1092 /* Device should not ask for data transfer (DRQ=1)
1093 * when it finds something wrong.
1094 * We ignore DRQ here and stop the HSM by
1095 * changing hsm_task_state to HSM_ST_ERR and
1096 * let the EH abort the command or reset the device.
1098 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1099 /* Some ATAPI tape drives forget to clear the ERR bit
1100 * when doing the next command (mostly request sense).
1101 * We ignore ERR here to workaround and proceed sending
1102 * the CDB.
1104 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1105 ata_ehi_push_desc(ehi, "ST_FIRST: "
1106 "DRQ=1 with device error, "
1107 "dev_stat 0x%X", status);
1108 qc->err_mask |= AC_ERR_HSM;
1109 ap->hsm_task_state = HSM_ST_ERR;
1110 goto fsm_start;
1114 /* Send the CDB (atapi) or the first data block (ata pio out).
1115 * During the state transition, interrupt handler shouldn't
1116 * be invoked before the data transfer is complete and
1117 * hsm_task_state is changed. Hence, the following locking.
1119 if (in_wq)
1120 spin_lock_irqsave(ap->lock, flags);
1122 if (qc->tf.protocol == ATA_PROT_PIO) {
1123 /* PIO data out protocol.
1124 * send first data block.
1127 /* ata_pio_sectors() might change the state
1128 * to HSM_ST_LAST. so, the state is changed here
1129 * before ata_pio_sectors().
1131 ap->hsm_task_state = HSM_ST;
1132 ata_pio_sectors(qc);
1133 } else
1134 /* send CDB */
1135 atapi_send_cdb(ap, qc);
1137 if (in_wq)
1138 spin_unlock_irqrestore(ap->lock, flags);
1140 /* if polling, ata_sff_pio_task() handles the rest.
1141 * otherwise, interrupt handler takes over from here.
1143 break;
1145 case HSM_ST:
1146 /* complete command or read/write the data register */
1147 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1148 /* ATAPI PIO protocol */
1149 if ((status & ATA_DRQ) == 0) {
1150 /* No more data to transfer or device error.
1151 * Device error will be tagged in HSM_ST_LAST.
1153 ap->hsm_task_state = HSM_ST_LAST;
1154 goto fsm_start;
1157 /* Device should not ask for data transfer (DRQ=1)
1158 * when it finds something wrong.
1159 * We ignore DRQ here and stop the HSM by
1160 * changing hsm_task_state to HSM_ST_ERR and
1161 * let the EH abort the command or reset the device.
1163 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1164 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1165 "DRQ=1 with device error, "
1166 "dev_stat 0x%X", status);
1167 qc->err_mask |= AC_ERR_HSM;
1168 ap->hsm_task_state = HSM_ST_ERR;
1169 goto fsm_start;
1172 atapi_pio_bytes(qc);
1174 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1175 /* bad ireason reported by device */
1176 goto fsm_start;
1178 } else {
1179 /* ATA PIO protocol */
1180 if (unlikely((status & ATA_DRQ) == 0)) {
1181 /* handle BSY=0, DRQ=0 as error */
1182 if (likely(status & (ATA_ERR | ATA_DF))) {
1183 /* device stops HSM for abort/error */
1184 qc->err_mask |= AC_ERR_DEV;
1186 /* If diagnostic failed and this is
1187 * IDENTIFY, it's likely a phantom
1188 * device. Mark hint.
1190 if (qc->dev->horkage &
1191 ATA_HORKAGE_DIAGNOSTIC)
1192 qc->err_mask |=
1193 AC_ERR_NODEV_HINT;
1194 } else {
1195 /* HSM violation. Let EH handle this.
1196 * Phantom devices also trigger this
1197 * condition. Mark hint.
1199 ata_ehi_push_desc(ehi, "ST-ATA: "
1200 "DRQ=0 without device error, "
1201 "dev_stat 0x%X", status);
1202 qc->err_mask |= AC_ERR_HSM |
1203 AC_ERR_NODEV_HINT;
1206 ap->hsm_task_state = HSM_ST_ERR;
1207 goto fsm_start;
1210 /* For PIO reads, some devices may ask for
1211 * data transfer (DRQ=1) alone with ERR=1.
1212 * We respect DRQ here and transfer one
1213 * block of junk data before changing the
1214 * hsm_task_state to HSM_ST_ERR.
1216 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 * sense since the data block has been
1218 * transferred to the device.
1220 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1221 /* data might be corrputed */
1222 qc->err_mask |= AC_ERR_DEV;
1224 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1225 ata_pio_sectors(qc);
1226 status = ata_wait_idle(ap);
1229 if (status & (ATA_BUSY | ATA_DRQ)) {
1230 ata_ehi_push_desc(ehi, "ST-ATA: "
1231 "BUSY|DRQ persists on ERR|DF, "
1232 "dev_stat 0x%X", status);
1233 qc->err_mask |= AC_ERR_HSM;
1236 /* There are oddball controllers with
1237 * status register stuck at 0x7f and
1238 * lbal/m/h at zero which makes it
1239 * pass all other presence detection
1240 * mechanisms we have. Set NODEV_HINT
1241 * for it. Kernel bz#7241.
1243 if (status == 0x7f)
1244 qc->err_mask |= AC_ERR_NODEV_HINT;
1246 /* ata_pio_sectors() might change the
1247 * state to HSM_ST_LAST. so, the state
1248 * is changed after ata_pio_sectors().
1250 ap->hsm_task_state = HSM_ST_ERR;
1251 goto fsm_start;
1254 ata_pio_sectors(qc);
1256 if (ap->hsm_task_state == HSM_ST_LAST &&
1257 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1258 /* all data read */
1259 status = ata_wait_idle(ap);
1260 goto fsm_start;
1264 poll_next = 1;
1265 break;
1267 case HSM_ST_LAST:
1268 if (unlikely(!ata_ok(status))) {
1269 qc->err_mask |= __ac_err_mask(status);
1270 ap->hsm_task_state = HSM_ST_ERR;
1271 goto fsm_start;
1274 /* no more data to transfer */
1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 ap->print_id, qc->dev->devno, status);
1278 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1280 ap->hsm_task_state = HSM_ST_IDLE;
1282 /* complete taskfile transaction */
1283 ata_hsm_qc_complete(qc, in_wq);
1285 poll_next = 0;
1286 break;
1288 case HSM_ST_ERR:
1289 ap->hsm_task_state = HSM_ST_IDLE;
1291 /* complete taskfile transaction */
1292 ata_hsm_qc_complete(qc, in_wq);
1294 poll_next = 0;
1295 break;
1296 default:
1297 poll_next = 0;
1298 BUG();
1301 return poll_next;
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1305 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1307 struct ata_port *ap = link->ap;
1309 WARN_ON((ap->sff_pio_task_link != NULL) &&
1310 (ap->sff_pio_task_link != link));
1311 ap->sff_pio_task_link = link;
1313 /* may fail if ata_sff_flush_pio_task() in progress */
1314 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1315 msecs_to_jiffies(delay));
1317 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1319 void ata_sff_flush_pio_task(struct ata_port *ap)
1321 DPRINTK("ENTER\n");
1323 cancel_delayed_work_sync(&ap->sff_pio_task);
1324 ap->hsm_task_state = HSM_ST_IDLE;
1326 if (ata_msg_ctl(ap))
1327 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1330 static void ata_sff_pio_task(struct work_struct *work)
1332 struct ata_port *ap =
1333 container_of(work, struct ata_port, sff_pio_task.work);
1334 struct ata_link *link = ap->sff_pio_task_link;
1335 struct ata_queued_cmd *qc;
1336 u8 status;
1337 int poll_next;
1339 BUG_ON(ap->sff_pio_task_link == NULL);
1340 /* qc can be NULL if timeout occurred */
1341 qc = ata_qc_from_tag(ap, link->active_tag);
1342 if (!qc) {
1343 ap->sff_pio_task_link = NULL;
1344 return;
1347 fsm_start:
1348 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1351 * This is purely heuristic. This is a fast path.
1352 * Sometimes when we enter, BSY will be cleared in
1353 * a chk-status or two. If not, the drive is probably seeking
1354 * or something. Snooze for a couple msecs, then
1355 * chk-status again. If still busy, queue delayed work.
1357 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1358 if (status & ATA_BUSY) {
1359 ata_msleep(ap, 2);
1360 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1361 if (status & ATA_BUSY) {
1362 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1363 return;
1368 * hsm_move() may trigger another command to be processed.
1369 * clean the link beforehand.
1371 ap->sff_pio_task_link = NULL;
1372 /* move the HSM */
1373 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1375 /* another command or interrupt handler
1376 * may be running at this point.
1378 if (poll_next)
1379 goto fsm_start;
1383 * ata_sff_qc_issue - issue taskfile to a SFF controller
1384 * @qc: command to issue to device
1386 * This function issues a PIO or NODATA command to a SFF
1387 * controller.
1389 * LOCKING:
1390 * spin_lock_irqsave(host lock)
1392 * RETURNS:
1393 * Zero on success, AC_ERR_* mask on failure
1395 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1397 struct ata_port *ap = qc->ap;
1398 struct ata_link *link = qc->dev->link;
1400 /* Use polling pio if the LLD doesn't handle
1401 * interrupt driven pio and atapi CDB interrupt.
1403 if (ap->flags & ATA_FLAG_PIO_POLLING)
1404 qc->tf.flags |= ATA_TFLAG_POLLING;
1406 /* select the device */
1407 ata_dev_select(ap, qc->dev->devno, 1, 0);
1409 /* start the command */
1410 switch (qc->tf.protocol) {
1411 case ATA_PROT_NODATA:
1412 if (qc->tf.flags & ATA_TFLAG_POLLING)
1413 ata_qc_set_polling(qc);
1415 ata_tf_to_host(ap, &qc->tf);
1416 ap->hsm_task_state = HSM_ST_LAST;
1418 if (qc->tf.flags & ATA_TFLAG_POLLING)
1419 ata_sff_queue_pio_task(link, 0);
1421 break;
1423 case ATA_PROT_PIO:
1424 if (qc->tf.flags & ATA_TFLAG_POLLING)
1425 ata_qc_set_polling(qc);
1427 ata_tf_to_host(ap, &qc->tf);
1429 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1430 /* PIO data out protocol */
1431 ap->hsm_task_state = HSM_ST_FIRST;
1432 ata_sff_queue_pio_task(link, 0);
1434 /* always send first data block using the
1435 * ata_sff_pio_task() codepath.
1437 } else {
1438 /* PIO data in protocol */
1439 ap->hsm_task_state = HSM_ST;
1441 if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 ata_sff_queue_pio_task(link, 0);
1444 /* if polling, ata_sff_pio_task() handles the
1445 * rest. otherwise, interrupt handler takes
1446 * over from here.
1450 break;
1452 case ATAPI_PROT_PIO:
1453 case ATAPI_PROT_NODATA:
1454 if (qc->tf.flags & ATA_TFLAG_POLLING)
1455 ata_qc_set_polling(qc);
1457 ata_tf_to_host(ap, &qc->tf);
1459 ap->hsm_task_state = HSM_ST_FIRST;
1461 /* send cdb by polling if no cdb interrupt */
1462 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1463 (qc->tf.flags & ATA_TFLAG_POLLING))
1464 ata_sff_queue_pio_task(link, 0);
1465 break;
1467 default:
1468 WARN_ON_ONCE(1);
1469 return AC_ERR_SYSTEM;
1472 return 0;
1474 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1477 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1478 * @qc: qc to fill result TF for
1480 * @qc is finished and result TF needs to be filled. Fill it
1481 * using ->sff_tf_read.
1483 * LOCKING:
1484 * spin_lock_irqsave(host lock)
1486 * RETURNS:
1487 * true indicating that result TF is successfully filled.
1489 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1491 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1492 return true;
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1496 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1498 ap->stats.idle_irq++;
1500 #ifdef ATA_IRQ_TRAP
1501 if ((ap->stats.idle_irq % 1000) == 0) {
1502 ap->ops->sff_check_status(ap);
1503 if (ap->ops->sff_irq_clear)
1504 ap->ops->sff_irq_clear(ap);
1505 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1506 return 1;
1508 #endif
1509 return 0; /* irq not handled */
1512 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1513 struct ata_queued_cmd *qc,
1514 bool hsmv_on_idle)
1516 u8 status;
1518 VPRINTK("ata%u: protocol %d task_state %d\n",
1519 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1521 /* Check whether we are expecting interrupt in this state */
1522 switch (ap->hsm_task_state) {
1523 case HSM_ST_FIRST:
1524 /* Some pre-ATAPI-4 devices assert INTRQ
1525 * at this state when ready to receive CDB.
1528 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1529 * The flag was turned on only for atapi devices. No
1530 * need to check ata_is_atapi(qc->tf.protocol) again.
1532 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1533 return ata_sff_idle_irq(ap);
1534 break;
1535 case HSM_ST_IDLE:
1536 return ata_sff_idle_irq(ap);
1537 default:
1538 break;
1541 /* check main status, clearing INTRQ if needed */
1542 status = ata_sff_irq_status(ap);
1543 if (status & ATA_BUSY) {
1544 if (hsmv_on_idle) {
1545 /* BMDMA engine is already stopped, we're screwed */
1546 qc->err_mask |= AC_ERR_HSM;
1547 ap->hsm_task_state = HSM_ST_ERR;
1548 } else
1549 return ata_sff_idle_irq(ap);
1552 /* clear irq events */
1553 if (ap->ops->sff_irq_clear)
1554 ap->ops->sff_irq_clear(ap);
1556 ata_sff_hsm_move(ap, qc, status, 0);
1558 return 1; /* irq handled */
1562 * ata_sff_port_intr - Handle SFF port interrupt
1563 * @ap: Port on which interrupt arrived (possibly...)
1564 * @qc: Taskfile currently active in engine
1566 * Handle port interrupt for given queued command.
1568 * LOCKING:
1569 * spin_lock_irqsave(host lock)
1571 * RETURNS:
1572 * One if interrupt was handled, zero if not (shared irq).
1574 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1576 return __ata_sff_port_intr(ap, qc, false);
1578 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1580 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1581 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1583 struct ata_host *host = dev_instance;
1584 bool retried = false;
1585 unsigned int i;
1586 unsigned int handled, idle, polling;
1587 unsigned long flags;
1589 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1590 spin_lock_irqsave(&host->lock, flags);
1592 retry:
1593 handled = idle = polling = 0;
1594 for (i = 0; i < host->n_ports; i++) {
1595 struct ata_port *ap = host->ports[i];
1596 struct ata_queued_cmd *qc;
1598 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1599 if (qc) {
1600 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1601 handled |= port_intr(ap, qc);
1602 else
1603 polling |= 1 << i;
1604 } else
1605 idle |= 1 << i;
1609 * If no port was expecting IRQ but the controller is actually
1610 * asserting IRQ line, nobody cared will ensue. Check IRQ
1611 * pending status if available and clear spurious IRQ.
1613 if (!handled && !retried) {
1614 bool retry = false;
1616 for (i = 0; i < host->n_ports; i++) {
1617 struct ata_port *ap = host->ports[i];
1619 if (polling & (1 << i))
1620 continue;
1622 if (!ap->ops->sff_irq_check ||
1623 !ap->ops->sff_irq_check(ap))
1624 continue;
1626 if (idle & (1 << i)) {
1627 ap->ops->sff_check_status(ap);
1628 if (ap->ops->sff_irq_clear)
1629 ap->ops->sff_irq_clear(ap);
1630 } else {
1631 /* clear INTRQ and check if BUSY cleared */
1632 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1633 retry |= true;
1635 * With command in flight, we can't do
1636 * sff_irq_clear() w/o racing with completion.
1641 if (retry) {
1642 retried = true;
1643 goto retry;
1647 spin_unlock_irqrestore(&host->lock, flags);
1649 return IRQ_RETVAL(handled);
1653 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1654 * @irq: irq line (unused)
1655 * @dev_instance: pointer to our ata_host information structure
1657 * Default interrupt handler for PCI IDE devices. Calls
1658 * ata_sff_port_intr() for each port that is not disabled.
1660 * LOCKING:
1661 * Obtains host lock during operation.
1663 * RETURNS:
1664 * IRQ_NONE or IRQ_HANDLED.
1666 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1668 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1670 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1673 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1674 * @ap: port that appears to have timed out
1676 * Called from the libata error handlers when the core code suspects
1677 * an interrupt has been lost. If it has complete anything we can and
1678 * then return. Interface must support altstatus for this faster
1679 * recovery to occur.
1681 * Locking:
1682 * Caller holds host lock
1685 void ata_sff_lost_interrupt(struct ata_port *ap)
1687 u8 status;
1688 struct ata_queued_cmd *qc;
1690 /* Only one outstanding command per SFF channel */
1691 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1692 /* We cannot lose an interrupt on a non-existent or polled command */
1693 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1694 return;
1695 /* See if the controller thinks it is still busy - if so the command
1696 isn't a lost IRQ but is still in progress */
1697 status = ata_sff_altstatus(ap);
1698 if (status & ATA_BUSY)
1699 return;
1701 /* There was a command running, we are no longer busy and we have
1702 no interrupt. */
1703 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1704 status);
1705 /* Run the host interrupt logic as if the interrupt had not been
1706 lost */
1707 ata_sff_port_intr(ap, qc);
1709 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1712 * ata_sff_freeze - Freeze SFF controller port
1713 * @ap: port to freeze
1715 * Freeze SFF controller port.
1717 * LOCKING:
1718 * Inherited from caller.
1720 void ata_sff_freeze(struct ata_port *ap)
1722 ap->ctl |= ATA_NIEN;
1723 ap->last_ctl = ap->ctl;
1725 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1726 ata_sff_set_devctl(ap, ap->ctl);
1728 /* Under certain circumstances, some controllers raise IRQ on
1729 * ATA_NIEN manipulation. Also, many controllers fail to mask
1730 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1732 ap->ops->sff_check_status(ap);
1734 if (ap->ops->sff_irq_clear)
1735 ap->ops->sff_irq_clear(ap);
1737 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1740 * ata_sff_thaw - Thaw SFF controller port
1741 * @ap: port to thaw
1743 * Thaw SFF controller port.
1745 * LOCKING:
1746 * Inherited from caller.
1748 void ata_sff_thaw(struct ata_port *ap)
1750 /* clear & re-enable interrupts */
1751 ap->ops->sff_check_status(ap);
1752 if (ap->ops->sff_irq_clear)
1753 ap->ops->sff_irq_clear(ap);
1754 ata_sff_irq_on(ap);
1756 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1759 * ata_sff_prereset - prepare SFF link for reset
1760 * @link: SFF link to be reset
1761 * @deadline: deadline jiffies for the operation
1763 * SFF link @link is about to be reset. Initialize it. It first
1764 * calls ata_std_prereset() and wait for !BSY if the port is
1765 * being softreset.
1767 * LOCKING:
1768 * Kernel thread context (may sleep)
1770 * RETURNS:
1771 * 0 on success, -errno otherwise.
1773 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1775 struct ata_eh_context *ehc = &link->eh_context;
1776 int rc;
1778 rc = ata_std_prereset(link, deadline);
1779 if (rc)
1780 return rc;
1782 /* if we're about to do hardreset, nothing more to do */
1783 if (ehc->i.action & ATA_EH_HARDRESET)
1784 return 0;
1786 /* wait for !BSY if we don't know that no device is attached */
1787 if (!ata_link_offline(link)) {
1788 rc = ata_sff_wait_ready(link, deadline);
1789 if (rc && rc != -ENODEV) {
1790 ata_link_printk(link, KERN_WARNING, "device not ready "
1791 "(errno=%d), forcing hardreset\n", rc);
1792 ehc->i.action |= ATA_EH_HARDRESET;
1796 return 0;
1798 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1801 * ata_devchk - PATA device presence detection
1802 * @ap: ATA channel to examine
1803 * @device: Device to examine (starting at zero)
1805 * This technique was originally described in
1806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1807 * later found its way into the ATA/ATAPI spec.
1809 * Write a pattern to the ATA shadow registers,
1810 * and if a device is present, it will respond by
1811 * correctly storing and echoing back the
1812 * ATA shadow register contents.
1814 * LOCKING:
1815 * caller.
1817 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1819 struct ata_ioports *ioaddr = &ap->ioaddr;
1820 u8 nsect, lbal;
1822 ap->ops->sff_dev_select(ap, device);
1824 iowrite8(0x55, ioaddr->nsect_addr);
1825 iowrite8(0xaa, ioaddr->lbal_addr);
1827 iowrite8(0xaa, ioaddr->nsect_addr);
1828 iowrite8(0x55, ioaddr->lbal_addr);
1830 iowrite8(0x55, ioaddr->nsect_addr);
1831 iowrite8(0xaa, ioaddr->lbal_addr);
1833 nsect = ioread8(ioaddr->nsect_addr);
1834 lbal = ioread8(ioaddr->lbal_addr);
1836 if ((nsect == 0x55) && (lbal == 0xaa))
1837 return 1; /* we found a device */
1839 return 0; /* nothing found */
1843 * ata_sff_dev_classify - Parse returned ATA device signature
1844 * @dev: ATA device to classify (starting at zero)
1845 * @present: device seems present
1846 * @r_err: Value of error register on completion
1848 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1849 * an ATA/ATAPI-defined set of values is placed in the ATA
1850 * shadow registers, indicating the results of device detection
1851 * and diagnostics.
1853 * Select the ATA device, and read the values from the ATA shadow
1854 * registers. Then parse according to the Error register value,
1855 * and the spec-defined values examined by ata_dev_classify().
1857 * LOCKING:
1858 * caller.
1860 * RETURNS:
1861 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1863 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1864 u8 *r_err)
1866 struct ata_port *ap = dev->link->ap;
1867 struct ata_taskfile tf;
1868 unsigned int class;
1869 u8 err;
1871 ap->ops->sff_dev_select(ap, dev->devno);
1873 memset(&tf, 0, sizeof(tf));
1875 ap->ops->sff_tf_read(ap, &tf);
1876 err = tf.feature;
1877 if (r_err)
1878 *r_err = err;
1880 /* see if device passed diags: continue and warn later */
1881 if (err == 0)
1882 /* diagnostic fail : do nothing _YET_ */
1883 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1884 else if (err == 1)
1885 /* do nothing */ ;
1886 else if ((dev->devno == 0) && (err == 0x81))
1887 /* do nothing */ ;
1888 else
1889 return ATA_DEV_NONE;
1891 /* determine if device is ATA or ATAPI */
1892 class = ata_dev_classify(&tf);
1894 if (class == ATA_DEV_UNKNOWN) {
1895 /* If the device failed diagnostic, it's likely to
1896 * have reported incorrect device signature too.
1897 * Assume ATA device if the device seems present but
1898 * device signature is invalid with diagnostic
1899 * failure.
1901 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1902 class = ATA_DEV_ATA;
1903 else
1904 class = ATA_DEV_NONE;
1905 } else if ((class == ATA_DEV_ATA) &&
1906 (ap->ops->sff_check_status(ap) == 0))
1907 class = ATA_DEV_NONE;
1909 return class;
1911 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1914 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1915 * @link: SFF link which is just reset
1916 * @devmask: mask of present devices
1917 * @deadline: deadline jiffies for the operation
1919 * Wait devices attached to SFF @link to become ready after
1920 * reset. It contains preceding 150ms wait to avoid accessing TF
1921 * status register too early.
1923 * LOCKING:
1924 * Kernel thread context (may sleep).
1926 * RETURNS:
1927 * 0 on success, -ENODEV if some or all of devices in @devmask
1928 * don't seem to exist. -errno on other errors.
1930 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1931 unsigned long deadline)
1933 struct ata_port *ap = link->ap;
1934 struct ata_ioports *ioaddr = &ap->ioaddr;
1935 unsigned int dev0 = devmask & (1 << 0);
1936 unsigned int dev1 = devmask & (1 << 1);
1937 int rc, ret = 0;
1939 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1941 /* always check readiness of the master device */
1942 rc = ata_sff_wait_ready(link, deadline);
1943 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1944 * and TF status is 0xff, bail out on it too.
1946 if (rc)
1947 return rc;
1949 /* if device 1 was found in ata_devchk, wait for register
1950 * access briefly, then wait for BSY to clear.
1952 if (dev1) {
1953 int i;
1955 ap->ops->sff_dev_select(ap, 1);
1957 /* Wait for register access. Some ATAPI devices fail
1958 * to set nsect/lbal after reset, so don't waste too
1959 * much time on it. We're gonna wait for !BSY anyway.
1961 for (i = 0; i < 2; i++) {
1962 u8 nsect, lbal;
1964 nsect = ioread8(ioaddr->nsect_addr);
1965 lbal = ioread8(ioaddr->lbal_addr);
1966 if ((nsect == 1) && (lbal == 1))
1967 break;
1968 ata_msleep(ap, 50); /* give drive a breather */
1971 rc = ata_sff_wait_ready(link, deadline);
1972 if (rc) {
1973 if (rc != -ENODEV)
1974 return rc;
1975 ret = rc;
1979 /* is all this really necessary? */
1980 ap->ops->sff_dev_select(ap, 0);
1981 if (dev1)
1982 ap->ops->sff_dev_select(ap, 1);
1983 if (dev0)
1984 ap->ops->sff_dev_select(ap, 0);
1986 return ret;
1988 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1990 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1991 unsigned long deadline)
1993 struct ata_ioports *ioaddr = &ap->ioaddr;
1995 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1997 /* software reset. causes dev0 to be selected */
1998 iowrite8(ap->ctl, ioaddr->ctl_addr);
1999 udelay(20); /* FIXME: flush */
2000 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2001 udelay(20); /* FIXME: flush */
2002 iowrite8(ap->ctl, ioaddr->ctl_addr);
2003 ap->last_ctl = ap->ctl;
2005 /* wait the port to become ready */
2006 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2010 * ata_sff_softreset - reset host port via ATA SRST
2011 * @link: ATA link to reset
2012 * @classes: resulting classes of attached devices
2013 * @deadline: deadline jiffies for the operation
2015 * Reset host port using ATA SRST.
2017 * LOCKING:
2018 * Kernel thread context (may sleep)
2020 * RETURNS:
2021 * 0 on success, -errno otherwise.
2023 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2024 unsigned long deadline)
2026 struct ata_port *ap = link->ap;
2027 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2028 unsigned int devmask = 0;
2029 int rc;
2030 u8 err;
2032 DPRINTK("ENTER\n");
2034 /* determine if device 0/1 are present */
2035 if (ata_devchk(ap, 0))
2036 devmask |= (1 << 0);
2037 if (slave_possible && ata_devchk(ap, 1))
2038 devmask |= (1 << 1);
2040 /* select device 0 again */
2041 ap->ops->sff_dev_select(ap, 0);
2043 /* issue bus reset */
2044 DPRINTK("about to softreset, devmask=%x\n", devmask);
2045 rc = ata_bus_softreset(ap, devmask, deadline);
2046 /* if link is occupied, -ENODEV too is an error */
2047 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2048 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2049 return rc;
2052 /* determine by signature whether we have ATA or ATAPI devices */
2053 classes[0] = ata_sff_dev_classify(&link->device[0],
2054 devmask & (1 << 0), &err);
2055 if (slave_possible && err != 0x81)
2056 classes[1] = ata_sff_dev_classify(&link->device[1],
2057 devmask & (1 << 1), &err);
2059 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2060 return 0;
2062 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2065 * sata_sff_hardreset - reset host port via SATA phy reset
2066 * @link: link to reset
2067 * @class: resulting class of attached device
2068 * @deadline: deadline jiffies for the operation
2070 * SATA phy-reset host port using DET bits of SControl register,
2071 * wait for !BSY and classify the attached device.
2073 * LOCKING:
2074 * Kernel thread context (may sleep)
2076 * RETURNS:
2077 * 0 on success, -errno otherwise.
2079 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2080 unsigned long deadline)
2082 struct ata_eh_context *ehc = &link->eh_context;
2083 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2084 bool online;
2085 int rc;
2087 rc = sata_link_hardreset(link, timing, deadline, &online,
2088 ata_sff_check_ready);
2089 if (online)
2090 *class = ata_sff_dev_classify(link->device, 1, NULL);
2092 DPRINTK("EXIT, class=%u\n", *class);
2093 return rc;
2095 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2098 * ata_sff_postreset - SFF postreset callback
2099 * @link: the target SFF ata_link
2100 * @classes: classes of attached devices
2102 * This function is invoked after a successful reset. It first
2103 * calls ata_std_postreset() and performs SFF specific postreset
2104 * processing.
2106 * LOCKING:
2107 * Kernel thread context (may sleep)
2109 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2111 struct ata_port *ap = link->ap;
2113 ata_std_postreset(link, classes);
2115 /* is double-select really necessary? */
2116 if (classes[0] != ATA_DEV_NONE)
2117 ap->ops->sff_dev_select(ap, 1);
2118 if (classes[1] != ATA_DEV_NONE)
2119 ap->ops->sff_dev_select(ap, 0);
2121 /* bail out if no device is present */
2122 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2123 DPRINTK("EXIT, no device\n");
2124 return;
2127 /* set up device control */
2128 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2129 ata_sff_set_devctl(ap, ap->ctl);
2130 ap->last_ctl = ap->ctl;
2133 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2136 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2137 * @qc: command
2139 * Drain the FIFO and device of any stuck data following a command
2140 * failing to complete. In some cases this is necessary before a
2141 * reset will recover the device.
2145 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2147 int count;
2148 struct ata_port *ap;
2150 /* We only need to flush incoming data when a command was running */
2151 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2152 return;
2154 ap = qc->ap;
2155 /* Drain up to 64K of data before we give up this recovery method */
2156 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2157 && count < 65536; count += 2)
2158 ioread16(ap->ioaddr.data_addr);
2160 /* Can become DEBUG later */
2161 if (count)
2162 ata_port_printk(ap, KERN_DEBUG,
2163 "drained %d bytes to clear DRQ.\n", count);
2166 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2169 * ata_sff_error_handler - Stock error handler for SFF controller
2170 * @ap: port to handle error for
2172 * Stock error handler for SFF controller. It can handle both
2173 * PATA and SATA controllers. Many controllers should be able to
2174 * use this EH as-is or with some added handling before and
2175 * after.
2177 * LOCKING:
2178 * Kernel thread context (may sleep)
2180 void ata_sff_error_handler(struct ata_port *ap)
2182 ata_reset_fn_t softreset = ap->ops->softreset;
2183 ata_reset_fn_t hardreset = ap->ops->hardreset;
2184 struct ata_queued_cmd *qc;
2185 unsigned long flags;
2187 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2188 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2189 qc = NULL;
2191 spin_lock_irqsave(ap->lock, flags);
2194 * We *MUST* do FIFO draining before we issue a reset as
2195 * several devices helpfully clear their internal state and
2196 * will lock solid if we touch the data port post reset. Pass
2197 * qc in case anyone wants to do different PIO/DMA recovery or
2198 * has per command fixups
2200 if (ap->ops->sff_drain_fifo)
2201 ap->ops->sff_drain_fifo(qc);
2203 spin_unlock_irqrestore(ap->lock, flags);
2205 /* ignore ata_sff_softreset if ctl isn't accessible */
2206 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2207 softreset = NULL;
2209 /* ignore built-in hardresets if SCR access is not available */
2210 if ((hardreset == sata_std_hardreset ||
2211 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2212 hardreset = NULL;
2214 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2215 ap->ops->postreset);
2217 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2220 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2221 * @ioaddr: IO address structure to be initialized
2223 * Utility function which initializes data_addr, error_addr,
2224 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2225 * device_addr, status_addr, and command_addr to standard offsets
2226 * relative to cmd_addr.
2228 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2230 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2232 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2233 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2234 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2235 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2236 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2237 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2238 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2239 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2240 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2241 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2243 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2245 #ifdef CONFIG_PCI
2247 static int ata_resources_present(struct pci_dev *pdev, int port)
2249 int i;
2251 /* Check the PCI resources for this channel are enabled */
2252 port = port * 2;
2253 for (i = 0; i < 2; i++) {
2254 if (pci_resource_start(pdev, port + i) == 0 ||
2255 pci_resource_len(pdev, port + i) == 0)
2256 return 0;
2258 return 1;
2262 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2263 * @host: target ATA host
2265 * Acquire native PCI ATA resources for @host and initialize the
2266 * first two ports of @host accordingly. Ports marked dummy are
2267 * skipped and allocation failure makes the port dummy.
2269 * Note that native PCI resources are valid even for legacy hosts
2270 * as we fix up pdev resources array early in boot, so this
2271 * function can be used for both native and legacy SFF hosts.
2273 * LOCKING:
2274 * Inherited from calling layer (may sleep).
2276 * RETURNS:
2277 * 0 if at least one port is initialized, -ENODEV if no port is
2278 * available.
2280 int ata_pci_sff_init_host(struct ata_host *host)
2282 struct device *gdev = host->dev;
2283 struct pci_dev *pdev = to_pci_dev(gdev);
2284 unsigned int mask = 0;
2285 int i, rc;
2287 /* request, iomap BARs and init port addresses accordingly */
2288 for (i = 0; i < 2; i++) {
2289 struct ata_port *ap = host->ports[i];
2290 int base = i * 2;
2291 void __iomem * const *iomap;
2293 if (ata_port_is_dummy(ap))
2294 continue;
2296 /* Discard disabled ports. Some controllers show
2297 * their unused channels this way. Disabled ports are
2298 * made dummy.
2300 if (!ata_resources_present(pdev, i)) {
2301 ap->ops = &ata_dummy_port_ops;
2302 continue;
2305 rc = pcim_iomap_regions(pdev, 0x3 << base,
2306 dev_driver_string(gdev));
2307 if (rc) {
2308 dev_printk(KERN_WARNING, gdev,
2309 "failed to request/iomap BARs for port %d "
2310 "(errno=%d)\n", i, rc);
2311 if (rc == -EBUSY)
2312 pcim_pin_device(pdev);
2313 ap->ops = &ata_dummy_port_ops;
2314 continue;
2316 host->iomap = iomap = pcim_iomap_table(pdev);
2318 ap->ioaddr.cmd_addr = iomap[base];
2319 ap->ioaddr.altstatus_addr =
2320 ap->ioaddr.ctl_addr = (void __iomem *)
2321 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2322 ata_sff_std_ports(&ap->ioaddr);
2324 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2325 (unsigned long long)pci_resource_start(pdev, base),
2326 (unsigned long long)pci_resource_start(pdev, base + 1));
2328 mask |= 1 << i;
2331 if (!mask) {
2332 dev_printk(KERN_ERR, gdev, "no available native port\n");
2333 return -ENODEV;
2336 return 0;
2338 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2341 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2342 * @pdev: target PCI device
2343 * @ppi: array of port_info, must be enough for two ports
2344 * @r_host: out argument for the initialized ATA host
2346 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2347 * all PCI resources and initialize it accordingly in one go.
2349 * LOCKING:
2350 * Inherited from calling layer (may sleep).
2352 * RETURNS:
2353 * 0 on success, -errno otherwise.
2355 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2356 const struct ata_port_info * const *ppi,
2357 struct ata_host **r_host)
2359 struct ata_host *host;
2360 int rc;
2362 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2363 return -ENOMEM;
2365 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2366 if (!host) {
2367 dev_printk(KERN_ERR, &pdev->dev,
2368 "failed to allocate ATA host\n");
2369 rc = -ENOMEM;
2370 goto err_out;
2373 rc = ata_pci_sff_init_host(host);
2374 if (rc)
2375 goto err_out;
2377 devres_remove_group(&pdev->dev, NULL);
2378 *r_host = host;
2379 return 0;
2381 err_out:
2382 devres_release_group(&pdev->dev, NULL);
2383 return rc;
2385 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2388 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2389 * @host: target SFF ATA host
2390 * @irq_handler: irq_handler used when requesting IRQ(s)
2391 * @sht: scsi_host_template to use when registering the host
2393 * This is the counterpart of ata_host_activate() for SFF ATA
2394 * hosts. This separate helper is necessary because SFF hosts
2395 * use two separate interrupts in legacy mode.
2397 * LOCKING:
2398 * Inherited from calling layer (may sleep).
2400 * RETURNS:
2401 * 0 on success, -errno otherwise.
2403 int ata_pci_sff_activate_host(struct ata_host *host,
2404 irq_handler_t irq_handler,
2405 struct scsi_host_template *sht)
2407 struct device *dev = host->dev;
2408 struct pci_dev *pdev = to_pci_dev(dev);
2409 const char *drv_name = dev_driver_string(host->dev);
2410 int legacy_mode = 0, rc;
2412 rc = ata_host_start(host);
2413 if (rc)
2414 return rc;
2416 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2417 u8 tmp8, mask;
2419 /* TODO: What if one channel is in native mode ... */
2420 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2421 mask = (1 << 2) | (1 << 0);
2422 if ((tmp8 & mask) != mask)
2423 legacy_mode = 1;
2424 #if defined(CONFIG_NO_ATA_LEGACY)
2425 /* Some platforms with PCI limits cannot address compat
2426 port space. In that case we punt if their firmware has
2427 left a device in compatibility mode */
2428 if (legacy_mode) {
2429 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2430 return -EOPNOTSUPP;
2432 #endif
2435 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2436 return -ENOMEM;
2438 if (!legacy_mode && pdev->irq) {
2439 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2440 IRQF_SHARED, drv_name, host);
2441 if (rc)
2442 goto out;
2444 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2445 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2446 } else if (legacy_mode) {
2447 if (!ata_port_is_dummy(host->ports[0])) {
2448 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2449 irq_handler, IRQF_SHARED,
2450 drv_name, host);
2451 if (rc)
2452 goto out;
2454 ata_port_desc(host->ports[0], "irq %d",
2455 ATA_PRIMARY_IRQ(pdev));
2458 if (!ata_port_is_dummy(host->ports[1])) {
2459 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2460 irq_handler, IRQF_SHARED,
2461 drv_name, host);
2462 if (rc)
2463 goto out;
2465 ata_port_desc(host->ports[1], "irq %d",
2466 ATA_SECONDARY_IRQ(pdev));
2470 rc = ata_host_register(host, sht);
2471 out:
2472 if (rc == 0)
2473 devres_remove_group(dev, NULL);
2474 else
2475 devres_release_group(dev, NULL);
2477 return rc;
2479 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2481 static const struct ata_port_info *ata_sff_find_valid_pi(
2482 const struct ata_port_info * const *ppi)
2484 int i;
2486 /* look up the first valid port_info */
2487 for (i = 0; i < 2 && ppi[i]; i++)
2488 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2489 return ppi[i];
2491 return NULL;
2495 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2496 * @pdev: Controller to be initialized
2497 * @ppi: array of port_info, must be enough for two ports
2498 * @sht: scsi_host_template to use when registering the host
2499 * @host_priv: host private_data
2500 * @hflag: host flags
2502 * This is a helper function which can be called from a driver's
2503 * xxx_init_one() probe function if the hardware uses traditional
2504 * IDE taskfile registers and is PIO only.
2506 * ASSUMPTION:
2507 * Nobody makes a single channel controller that appears solely as
2508 * the secondary legacy port on PCI.
2510 * LOCKING:
2511 * Inherited from PCI layer (may sleep).
2513 * RETURNS:
2514 * Zero on success, negative on errno-based value on error.
2516 int ata_pci_sff_init_one(struct pci_dev *pdev,
2517 const struct ata_port_info * const *ppi,
2518 struct scsi_host_template *sht, void *host_priv, int hflag)
2520 struct device *dev = &pdev->dev;
2521 const struct ata_port_info *pi;
2522 struct ata_host *host = NULL;
2523 int rc;
2525 DPRINTK("ENTER\n");
2527 pi = ata_sff_find_valid_pi(ppi);
2528 if (!pi) {
2529 dev_printk(KERN_ERR, &pdev->dev,
2530 "no valid port_info specified\n");
2531 return -EINVAL;
2534 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2535 return -ENOMEM;
2537 rc = pcim_enable_device(pdev);
2538 if (rc)
2539 goto out;
2541 /* prepare and activate SFF host */
2542 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2543 if (rc)
2544 goto out;
2545 host->private_data = host_priv;
2546 host->flags |= hflag;
2548 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2549 out:
2550 if (rc == 0)
2551 devres_remove_group(&pdev->dev, NULL);
2552 else
2553 devres_release_group(&pdev->dev, NULL);
2555 return rc;
2557 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2559 #endif /* CONFIG_PCI */
2562 * BMDMA support
2565 #ifdef CONFIG_ATA_BMDMA
2567 const struct ata_port_operations ata_bmdma_port_ops = {
2568 .inherits = &ata_sff_port_ops,
2570 .error_handler = ata_bmdma_error_handler,
2571 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2573 .qc_prep = ata_bmdma_qc_prep,
2574 .qc_issue = ata_bmdma_qc_issue,
2576 .sff_irq_clear = ata_bmdma_irq_clear,
2577 .bmdma_setup = ata_bmdma_setup,
2578 .bmdma_start = ata_bmdma_start,
2579 .bmdma_stop = ata_bmdma_stop,
2580 .bmdma_status = ata_bmdma_status,
2582 .port_start = ata_bmdma_port_start,
2584 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2586 const struct ata_port_operations ata_bmdma32_port_ops = {
2587 .inherits = &ata_bmdma_port_ops,
2589 .sff_data_xfer = ata_sff_data_xfer32,
2590 .port_start = ata_bmdma_port_start32,
2592 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2595 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2596 * @qc: Metadata associated with taskfile to be transferred
2598 * Fill PCI IDE PRD (scatter-gather) table with segments
2599 * associated with the current disk command.
2601 * LOCKING:
2602 * spin_lock_irqsave(host lock)
2605 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2607 struct ata_port *ap = qc->ap;
2608 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2609 struct scatterlist *sg;
2610 unsigned int si, pi;
2612 pi = 0;
2613 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2614 u32 addr, offset;
2615 u32 sg_len, len;
2617 /* determine if physical DMA addr spans 64K boundary.
2618 * Note h/w doesn't support 64-bit, so we unconditionally
2619 * truncate dma_addr_t to u32.
2621 addr = (u32) sg_dma_address(sg);
2622 sg_len = sg_dma_len(sg);
2624 while (sg_len) {
2625 offset = addr & 0xffff;
2626 len = sg_len;
2627 if ((offset + sg_len) > 0x10000)
2628 len = 0x10000 - offset;
2630 prd[pi].addr = cpu_to_le32(addr);
2631 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2632 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2634 pi++;
2635 sg_len -= len;
2636 addr += len;
2640 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2644 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2645 * @qc: Metadata associated with taskfile to be transferred
2647 * Fill PCI IDE PRD (scatter-gather) table with segments
2648 * associated with the current disk command. Perform the fill
2649 * so that we avoid writing any length 64K records for
2650 * controllers that don't follow the spec.
2652 * LOCKING:
2653 * spin_lock_irqsave(host lock)
2656 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2658 struct ata_port *ap = qc->ap;
2659 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2660 struct scatterlist *sg;
2661 unsigned int si, pi;
2663 pi = 0;
2664 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2665 u32 addr, offset;
2666 u32 sg_len, len, blen;
2668 /* determine if physical DMA addr spans 64K boundary.
2669 * Note h/w doesn't support 64-bit, so we unconditionally
2670 * truncate dma_addr_t to u32.
2672 addr = (u32) sg_dma_address(sg);
2673 sg_len = sg_dma_len(sg);
2675 while (sg_len) {
2676 offset = addr & 0xffff;
2677 len = sg_len;
2678 if ((offset + sg_len) > 0x10000)
2679 len = 0x10000 - offset;
2681 blen = len & 0xffff;
2682 prd[pi].addr = cpu_to_le32(addr);
2683 if (blen == 0) {
2684 /* Some PATA chipsets like the CS5530 can't
2685 cope with 0x0000 meaning 64K as the spec
2686 says */
2687 prd[pi].flags_len = cpu_to_le32(0x8000);
2688 blen = 0x8000;
2689 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2691 prd[pi].flags_len = cpu_to_le32(blen);
2692 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2694 pi++;
2695 sg_len -= len;
2696 addr += len;
2700 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2704 * ata_bmdma_qc_prep - Prepare taskfile for submission
2705 * @qc: Metadata associated with taskfile to be prepared
2707 * Prepare ATA taskfile for submission.
2709 * LOCKING:
2710 * spin_lock_irqsave(host lock)
2712 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2714 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2715 return;
2717 ata_bmdma_fill_sg(qc);
2719 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2722 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2723 * @qc: Metadata associated with taskfile to be prepared
2725 * Prepare ATA taskfile for submission.
2727 * LOCKING:
2728 * spin_lock_irqsave(host lock)
2730 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2732 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2733 return;
2735 ata_bmdma_fill_sg_dumb(qc);
2737 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2740 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2741 * @qc: command to issue to device
2743 * This function issues a PIO, NODATA or DMA command to a
2744 * SFF/BMDMA controller. PIO and NODATA are handled by
2745 * ata_sff_qc_issue().
2747 * LOCKING:
2748 * spin_lock_irqsave(host lock)
2750 * RETURNS:
2751 * Zero on success, AC_ERR_* mask on failure
2753 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2755 struct ata_port *ap = qc->ap;
2756 struct ata_link *link = qc->dev->link;
2758 /* defer PIO handling to sff_qc_issue */
2759 if (!ata_is_dma(qc->tf.protocol))
2760 return ata_sff_qc_issue(qc);
2762 /* select the device */
2763 ata_dev_select(ap, qc->dev->devno, 1, 0);
2765 /* start the command */
2766 switch (qc->tf.protocol) {
2767 case ATA_PROT_DMA:
2768 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2770 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2771 ap->ops->bmdma_setup(qc); /* set up bmdma */
2772 ap->ops->bmdma_start(qc); /* initiate bmdma */
2773 ap->hsm_task_state = HSM_ST_LAST;
2774 break;
2776 case ATAPI_PROT_DMA:
2777 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2779 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2780 ap->ops->bmdma_setup(qc); /* set up bmdma */
2781 ap->hsm_task_state = HSM_ST_FIRST;
2783 /* send cdb by polling if no cdb interrupt */
2784 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2785 ata_sff_queue_pio_task(link, 0);
2786 break;
2788 default:
2789 WARN_ON(1);
2790 return AC_ERR_SYSTEM;
2793 return 0;
2795 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2798 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2799 * @ap: Port on which interrupt arrived (possibly...)
2800 * @qc: Taskfile currently active in engine
2802 * Handle port interrupt for given queued command.
2804 * LOCKING:
2805 * spin_lock_irqsave(host lock)
2807 * RETURNS:
2808 * One if interrupt was handled, zero if not (shared irq).
2810 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2812 struct ata_eh_info *ehi = &ap->link.eh_info;
2813 u8 host_stat = 0;
2814 bool bmdma_stopped = false;
2815 unsigned int handled;
2817 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2818 /* check status of DMA engine */
2819 host_stat = ap->ops->bmdma_status(ap);
2820 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2822 /* if it's not our irq... */
2823 if (!(host_stat & ATA_DMA_INTR))
2824 return ata_sff_idle_irq(ap);
2826 /* before we do anything else, clear DMA-Start bit */
2827 ap->ops->bmdma_stop(qc);
2828 bmdma_stopped = true;
2830 if (unlikely(host_stat & ATA_DMA_ERR)) {
2831 /* error when transfering data to/from memory */
2832 qc->err_mask |= AC_ERR_HOST_BUS;
2833 ap->hsm_task_state = HSM_ST_ERR;
2837 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2839 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2840 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2842 return handled;
2844 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2847 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2848 * @irq: irq line (unused)
2849 * @dev_instance: pointer to our ata_host information structure
2851 * Default interrupt handler for PCI IDE devices. Calls
2852 * ata_bmdma_port_intr() for each port that is not disabled.
2854 * LOCKING:
2855 * Obtains host lock during operation.
2857 * RETURNS:
2858 * IRQ_NONE or IRQ_HANDLED.
2860 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2862 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2864 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2867 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2868 * @ap: port to handle error for
2870 * Stock error handler for BMDMA controller. It can handle both
2871 * PATA and SATA controllers. Most BMDMA controllers should be
2872 * able to use this EH as-is or with some added handling before
2873 * and after.
2875 * LOCKING:
2876 * Kernel thread context (may sleep)
2878 void ata_bmdma_error_handler(struct ata_port *ap)
2880 struct ata_queued_cmd *qc;
2881 unsigned long flags;
2882 bool thaw = false;
2884 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2885 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2886 qc = NULL;
2888 /* reset PIO HSM and stop DMA engine */
2889 spin_lock_irqsave(ap->lock, flags);
2891 if (qc && ata_is_dma(qc->tf.protocol)) {
2892 u8 host_stat;
2894 host_stat = ap->ops->bmdma_status(ap);
2896 /* BMDMA controllers indicate host bus error by
2897 * setting DMA_ERR bit and timing out. As it wasn't
2898 * really a timeout event, adjust error mask and
2899 * cancel frozen state.
2901 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2902 qc->err_mask = AC_ERR_HOST_BUS;
2903 thaw = true;
2906 ap->ops->bmdma_stop(qc);
2908 /* if we're gonna thaw, make sure IRQ is clear */
2909 if (thaw) {
2910 ap->ops->sff_check_status(ap);
2911 if (ap->ops->sff_irq_clear)
2912 ap->ops->sff_irq_clear(ap);
2916 spin_unlock_irqrestore(ap->lock, flags);
2918 if (thaw)
2919 ata_eh_thaw_port(ap);
2921 ata_sff_error_handler(ap);
2923 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2926 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2927 * @qc: internal command to clean up
2929 * LOCKING:
2930 * Kernel thread context (may sleep)
2932 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2934 struct ata_port *ap = qc->ap;
2935 unsigned long flags;
2937 if (ata_is_dma(qc->tf.protocol)) {
2938 spin_lock_irqsave(ap->lock, flags);
2939 ap->ops->bmdma_stop(qc);
2940 spin_unlock_irqrestore(ap->lock, flags);
2943 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2946 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2947 * @ap: Port associated with this ATA transaction.
2949 * Clear interrupt and error flags in DMA status register.
2951 * May be used as the irq_clear() entry in ata_port_operations.
2953 * LOCKING:
2954 * spin_lock_irqsave(host lock)
2956 void ata_bmdma_irq_clear(struct ata_port *ap)
2958 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2960 if (!mmio)
2961 return;
2963 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2965 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2968 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2969 * @qc: Info associated with this ATA transaction.
2971 * LOCKING:
2972 * spin_lock_irqsave(host lock)
2974 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2976 struct ata_port *ap = qc->ap;
2977 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2978 u8 dmactl;
2980 /* load PRD table addr. */
2981 mb(); /* make sure PRD table writes are visible to controller */
2982 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2984 /* specify data direction, triple-check start bit is clear */
2985 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2986 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2987 if (!rw)
2988 dmactl |= ATA_DMA_WR;
2989 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2991 /* issue r/w command */
2992 ap->ops->sff_exec_command(ap, &qc->tf);
2994 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2997 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2998 * @qc: Info associated with this ATA transaction.
3000 * LOCKING:
3001 * spin_lock_irqsave(host lock)
3003 void ata_bmdma_start(struct ata_queued_cmd *qc)
3005 struct ata_port *ap = qc->ap;
3006 u8 dmactl;
3008 /* start host DMA transaction */
3009 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3010 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3012 /* Strictly, one may wish to issue an ioread8() here, to
3013 * flush the mmio write. However, control also passes
3014 * to the hardware at this point, and it will interrupt
3015 * us when we are to resume control. So, in effect,
3016 * we don't care when the mmio write flushes.
3017 * Further, a read of the DMA status register _immediately_
3018 * following the write may not be what certain flaky hardware
3019 * is expected, so I think it is best to not add a readb()
3020 * without first all the MMIO ATA cards/mobos.
3021 * Or maybe I'm just being paranoid.
3023 * FIXME: The posting of this write means I/O starts are
3024 * unneccessarily delayed for MMIO
3027 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3030 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3031 * @qc: Command we are ending DMA for
3033 * Clears the ATA_DMA_START flag in the dma control register
3035 * May be used as the bmdma_stop() entry in ata_port_operations.
3037 * LOCKING:
3038 * spin_lock_irqsave(host lock)
3040 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3042 struct ata_port *ap = qc->ap;
3043 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3045 /* clear start/stop bit */
3046 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3047 mmio + ATA_DMA_CMD);
3049 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3050 ata_sff_dma_pause(ap);
3052 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3055 * ata_bmdma_status - Read PCI IDE BMDMA status
3056 * @ap: Port associated with this ATA transaction.
3058 * Read and return BMDMA status register.
3060 * May be used as the bmdma_status() entry in ata_port_operations.
3062 * LOCKING:
3063 * spin_lock_irqsave(host lock)
3065 u8 ata_bmdma_status(struct ata_port *ap)
3067 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3069 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3073 * ata_bmdma_port_start - Set port up for bmdma.
3074 * @ap: Port to initialize
3076 * Called just after data structures for each port are
3077 * initialized. Allocates space for PRD table.
3079 * May be used as the port_start() entry in ata_port_operations.
3081 * LOCKING:
3082 * Inherited from caller.
3084 int ata_bmdma_port_start(struct ata_port *ap)
3086 if (ap->mwdma_mask || ap->udma_mask) {
3087 ap->bmdma_prd =
3088 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3089 &ap->bmdma_prd_dma, GFP_KERNEL);
3090 if (!ap->bmdma_prd)
3091 return -ENOMEM;
3094 return 0;
3096 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3099 * ata_bmdma_port_start32 - Set port up for dma.
3100 * @ap: Port to initialize
3102 * Called just after data structures for each port are
3103 * initialized. Enables 32bit PIO and allocates space for PRD
3104 * table.
3106 * May be used as the port_start() entry in ata_port_operations for
3107 * devices that are capable of 32bit PIO.
3109 * LOCKING:
3110 * Inherited from caller.
3112 int ata_bmdma_port_start32(struct ata_port *ap)
3114 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3115 return ata_bmdma_port_start(ap);
3117 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3119 #ifdef CONFIG_PCI
3122 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3123 * @pdev: PCI device
3125 * Some PCI ATA devices report simplex mode but in fact can be told to
3126 * enter non simplex mode. This implements the necessary logic to
3127 * perform the task on such devices. Calling it on other devices will
3128 * have -undefined- behaviour.
3130 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3132 unsigned long bmdma = pci_resource_start(pdev, 4);
3133 u8 simplex;
3135 if (bmdma == 0)
3136 return -ENOENT;
3138 simplex = inb(bmdma + 0x02);
3139 outb(simplex & 0x60, bmdma + 0x02);
3140 simplex = inb(bmdma + 0x02);
3141 if (simplex & 0x80)
3142 return -EOPNOTSUPP;
3143 return 0;
3145 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3147 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3149 int i;
3151 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3152 reason);
3154 for (i = 0; i < 2; i++) {
3155 host->ports[i]->mwdma_mask = 0;
3156 host->ports[i]->udma_mask = 0;
3161 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3162 * @host: target ATA host
3164 * Acquire PCI BMDMA resources and initialize @host accordingly.
3166 * LOCKING:
3167 * Inherited from calling layer (may sleep).
3169 void ata_pci_bmdma_init(struct ata_host *host)
3171 struct device *gdev = host->dev;
3172 struct pci_dev *pdev = to_pci_dev(gdev);
3173 int i, rc;
3175 /* No BAR4 allocation: No DMA */
3176 if (pci_resource_start(pdev, 4) == 0) {
3177 ata_bmdma_nodma(host, "BAR4 is zero");
3178 return;
3182 * Some controllers require BMDMA region to be initialized
3183 * even if DMA is not in use to clear IRQ status via
3184 * ->sff_irq_clear method. Try to initialize bmdma_addr
3185 * regardless of dma masks.
3187 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3188 if (rc)
3189 ata_bmdma_nodma(host, "failed to set dma mask");
3190 if (!rc) {
3191 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3192 if (rc)
3193 ata_bmdma_nodma(host,
3194 "failed to set consistent dma mask");
3197 /* request and iomap DMA region */
3198 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3199 if (rc) {
3200 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3201 return;
3203 host->iomap = pcim_iomap_table(pdev);
3205 for (i = 0; i < 2; i++) {
3206 struct ata_port *ap = host->ports[i];
3207 void __iomem *bmdma = host->iomap[4] + 8 * i;
3209 if (ata_port_is_dummy(ap))
3210 continue;
3212 ap->ioaddr.bmdma_addr = bmdma;
3213 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3214 (ioread8(bmdma + 2) & 0x80))
3215 host->flags |= ATA_HOST_SIMPLEX;
3217 ata_port_desc(ap, "bmdma 0x%llx",
3218 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3221 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3224 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3225 * @pdev: target PCI device
3226 * @ppi: array of port_info, must be enough for two ports
3227 * @r_host: out argument for the initialized ATA host
3229 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3230 * resources and initialize it accordingly in one go.
3232 * LOCKING:
3233 * Inherited from calling layer (may sleep).
3235 * RETURNS:
3236 * 0 on success, -errno otherwise.
3238 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3239 const struct ata_port_info * const * ppi,
3240 struct ata_host **r_host)
3242 int rc;
3244 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3245 if (rc)
3246 return rc;
3248 ata_pci_bmdma_init(*r_host);
3249 return 0;
3251 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3254 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3255 * @pdev: Controller to be initialized
3256 * @ppi: array of port_info, must be enough for two ports
3257 * @sht: scsi_host_template to use when registering the host
3258 * @host_priv: host private_data
3259 * @hflags: host flags
3261 * This function is similar to ata_pci_sff_init_one() but also
3262 * takes care of BMDMA initialization.
3264 * LOCKING:
3265 * Inherited from PCI layer (may sleep).
3267 * RETURNS:
3268 * Zero on success, negative on errno-based value on error.
3270 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3271 const struct ata_port_info * const * ppi,
3272 struct scsi_host_template *sht, void *host_priv,
3273 int hflags)
3275 struct device *dev = &pdev->dev;
3276 const struct ata_port_info *pi;
3277 struct ata_host *host = NULL;
3278 int rc;
3280 DPRINTK("ENTER\n");
3282 pi = ata_sff_find_valid_pi(ppi);
3283 if (!pi) {
3284 dev_printk(KERN_ERR, &pdev->dev,
3285 "no valid port_info specified\n");
3286 return -EINVAL;
3289 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3290 return -ENOMEM;
3292 rc = pcim_enable_device(pdev);
3293 if (rc)
3294 goto out;
3296 /* prepare and activate BMDMA host */
3297 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3298 if (rc)
3299 goto out;
3300 host->private_data = host_priv;
3301 host->flags |= hflags;
3303 pci_set_master(pdev);
3304 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3305 out:
3306 if (rc == 0)
3307 devres_remove_group(&pdev->dev, NULL);
3308 else
3309 devres_release_group(&pdev->dev, NULL);
3311 return rc;
3313 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3315 #endif /* CONFIG_PCI */
3316 #endif /* CONFIG_ATA_BMDMA */
3319 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3320 * @ap: Port to initialize
3322 * Called on port allocation to initialize SFF/BMDMA specific
3323 * fields.
3325 * LOCKING:
3326 * None.
3328 void ata_sff_port_init(struct ata_port *ap)
3330 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3331 ap->ctl = ATA_DEVCTL_OBS;
3332 ap->last_ctl = 0xFF;
3335 int __init ata_sff_init(void)
3337 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3338 if (!ata_sff_wq)
3339 return -ENOMEM;
3341 return 0;
3344 void ata_sff_exit(void)
3346 destroy_workqueue(ata_sff_wq);