net: move sgiseeq's probe function to .devinit.text
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_counter.c
blobd55a50da2347f5c2177d3fd5cb0f7db28a7ff71b
1 /*
2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
47 * perf counter paranoia level:
48 * 0 - not paranoid
49 * 1 - disallow cpu counters to unpriv
50 * 2 - disallow kernel profiling to unpriv
52 int sysctl_perf_counter_paranoid __read_mostly;
54 static inline bool perf_paranoid_cpu(void)
56 return sysctl_perf_counter_paranoid > 0;
59 static inline bool perf_paranoid_kernel(void)
61 return sysctl_perf_counter_paranoid > 1;
64 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
67 * max perf counter sample rate
69 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71 static atomic64_t perf_counter_id;
74 * Lock for (sysadmin-configurable) counter reservations:
76 static DEFINE_SPINLOCK(perf_resource_lock);
79 * Architecture provided APIs - weak aliases:
81 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 return NULL;
86 void __weak hw_perf_disable(void) { barrier(); }
87 void __weak hw_perf_enable(void) { barrier(); }
89 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91 int __weak
92 hw_perf_group_sched_in(struct perf_counter *group_leader,
93 struct perf_cpu_context *cpuctx,
94 struct perf_counter_context *ctx, int cpu)
96 return 0;
99 void __weak perf_counter_print_debug(void) { }
101 static DEFINE_PER_CPU(int, disable_count);
103 void __perf_disable(void)
105 __get_cpu_var(disable_count)++;
108 bool __perf_enable(void)
110 return !--__get_cpu_var(disable_count);
113 void perf_disable(void)
115 __perf_disable();
116 hw_perf_disable();
119 void perf_enable(void)
121 if (__perf_enable())
122 hw_perf_enable();
125 static void get_ctx(struct perf_counter_context *ctx)
127 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 static void free_ctx(struct rcu_head *head)
132 struct perf_counter_context *ctx;
134 ctx = container_of(head, struct perf_counter_context, rcu_head);
135 kfree(ctx);
138 static void put_ctx(struct perf_counter_context *ctx)
140 if (atomic_dec_and_test(&ctx->refcount)) {
141 if (ctx->parent_ctx)
142 put_ctx(ctx->parent_ctx);
143 if (ctx->task)
144 put_task_struct(ctx->task);
145 call_rcu(&ctx->rcu_head, free_ctx);
150 * Get the perf_counter_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
154 static struct perf_counter_context *
155 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
157 struct perf_counter_context *ctx;
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_counter_ctxp);
162 if (ctx) {
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_counter_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
173 spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
175 spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
184 rcu_read_unlock();
185 return ctx;
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
193 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
195 struct perf_counter_context *ctx;
196 unsigned long flags;
198 ctx = perf_lock_task_context(task, &flags);
199 if (ctx) {
200 ++ctx->pin_count;
201 spin_unlock_irqrestore(&ctx->lock, flags);
203 return ctx;
206 static void perf_unpin_context(struct perf_counter_context *ctx)
208 unsigned long flags;
210 spin_lock_irqsave(&ctx->lock, flags);
211 --ctx->pin_count;
212 spin_unlock_irqrestore(&ctx->lock, flags);
213 put_ctx(ctx);
217 * Add a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
220 static void
221 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
223 struct perf_counter *group_leader = counter->group_leader;
226 * Depending on whether it is a standalone or sibling counter,
227 * add it straight to the context's counter list, or to the group
228 * leader's sibling list:
230 if (group_leader == counter)
231 list_add_tail(&counter->list_entry, &ctx->counter_list);
232 else {
233 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
234 group_leader->nr_siblings++;
237 list_add_rcu(&counter->event_entry, &ctx->event_list);
238 ctx->nr_counters++;
239 if (counter->attr.inherit_stat)
240 ctx->nr_stat++;
244 * Remove a counter from the lists for its context.
245 * Must be called with ctx->mutex and ctx->lock held.
247 static void
248 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
250 struct perf_counter *sibling, *tmp;
252 if (list_empty(&counter->list_entry))
253 return;
254 ctx->nr_counters--;
255 if (counter->attr.inherit_stat)
256 ctx->nr_stat--;
258 list_del_init(&counter->list_entry);
259 list_del_rcu(&counter->event_entry);
261 if (counter->group_leader != counter)
262 counter->group_leader->nr_siblings--;
265 * If this was a group counter with sibling counters then
266 * upgrade the siblings to singleton counters by adding them
267 * to the context list directly:
269 list_for_each_entry_safe(sibling, tmp,
270 &counter->sibling_list, list_entry) {
272 list_move_tail(&sibling->list_entry, &ctx->counter_list);
273 sibling->group_leader = sibling;
277 static void
278 counter_sched_out(struct perf_counter *counter,
279 struct perf_cpu_context *cpuctx,
280 struct perf_counter_context *ctx)
282 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
283 return;
285 counter->state = PERF_COUNTER_STATE_INACTIVE;
286 counter->tstamp_stopped = ctx->time;
287 counter->pmu->disable(counter);
288 counter->oncpu = -1;
290 if (!is_software_counter(counter))
291 cpuctx->active_oncpu--;
292 ctx->nr_active--;
293 if (counter->attr.exclusive || !cpuctx->active_oncpu)
294 cpuctx->exclusive = 0;
297 static void
298 group_sched_out(struct perf_counter *group_counter,
299 struct perf_cpu_context *cpuctx,
300 struct perf_counter_context *ctx)
302 struct perf_counter *counter;
304 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
305 return;
307 counter_sched_out(group_counter, cpuctx, ctx);
310 * Schedule out siblings (if any):
312 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
313 counter_sched_out(counter, cpuctx, ctx);
315 if (group_counter->attr.exclusive)
316 cpuctx->exclusive = 0;
320 * Cross CPU call to remove a performance counter
322 * We disable the counter on the hardware level first. After that we
323 * remove it from the context list.
325 static void __perf_counter_remove_from_context(void *info)
327 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
328 struct perf_counter *counter = info;
329 struct perf_counter_context *ctx = counter->ctx;
332 * If this is a task context, we need to check whether it is
333 * the current task context of this cpu. If not it has been
334 * scheduled out before the smp call arrived.
336 if (ctx->task && cpuctx->task_ctx != ctx)
337 return;
339 spin_lock(&ctx->lock);
341 * Protect the list operation against NMI by disabling the
342 * counters on a global level.
344 perf_disable();
346 counter_sched_out(counter, cpuctx, ctx);
348 list_del_counter(counter, ctx);
350 if (!ctx->task) {
352 * Allow more per task counters with respect to the
353 * reservation:
355 cpuctx->max_pertask =
356 min(perf_max_counters - ctx->nr_counters,
357 perf_max_counters - perf_reserved_percpu);
360 perf_enable();
361 spin_unlock(&ctx->lock);
366 * Remove the counter from a task's (or a CPU's) list of counters.
368 * Must be called with ctx->mutex held.
370 * CPU counters are removed with a smp call. For task counters we only
371 * call when the task is on a CPU.
373 * If counter->ctx is a cloned context, callers must make sure that
374 * every task struct that counter->ctx->task could possibly point to
375 * remains valid. This is OK when called from perf_release since
376 * that only calls us on the top-level context, which can't be a clone.
377 * When called from perf_counter_exit_task, it's OK because the
378 * context has been detached from its task.
380 static void perf_counter_remove_from_context(struct perf_counter *counter)
382 struct perf_counter_context *ctx = counter->ctx;
383 struct task_struct *task = ctx->task;
385 if (!task) {
387 * Per cpu counters are removed via an smp call and
388 * the removal is always sucessful.
390 smp_call_function_single(counter->cpu,
391 __perf_counter_remove_from_context,
392 counter, 1);
393 return;
396 retry:
397 task_oncpu_function_call(task, __perf_counter_remove_from_context,
398 counter);
400 spin_lock_irq(&ctx->lock);
402 * If the context is active we need to retry the smp call.
404 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
405 spin_unlock_irq(&ctx->lock);
406 goto retry;
410 * The lock prevents that this context is scheduled in so we
411 * can remove the counter safely, if the call above did not
412 * succeed.
414 if (!list_empty(&counter->list_entry)) {
415 list_del_counter(counter, ctx);
417 spin_unlock_irq(&ctx->lock);
420 static inline u64 perf_clock(void)
422 return cpu_clock(smp_processor_id());
426 * Update the record of the current time in a context.
428 static void update_context_time(struct perf_counter_context *ctx)
430 u64 now = perf_clock();
432 ctx->time += now - ctx->timestamp;
433 ctx->timestamp = now;
437 * Update the total_time_enabled and total_time_running fields for a counter.
439 static void update_counter_times(struct perf_counter *counter)
441 struct perf_counter_context *ctx = counter->ctx;
442 u64 run_end;
444 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
445 return;
447 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
449 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
450 run_end = counter->tstamp_stopped;
451 else
452 run_end = ctx->time;
454 counter->total_time_running = run_end - counter->tstamp_running;
458 * Update total_time_enabled and total_time_running for all counters in a group.
460 static void update_group_times(struct perf_counter *leader)
462 struct perf_counter *counter;
464 update_counter_times(leader);
465 list_for_each_entry(counter, &leader->sibling_list, list_entry)
466 update_counter_times(counter);
470 * Cross CPU call to disable a performance counter
472 static void __perf_counter_disable(void *info)
474 struct perf_counter *counter = info;
475 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
476 struct perf_counter_context *ctx = counter->ctx;
479 * If this is a per-task counter, need to check whether this
480 * counter's task is the current task on this cpu.
482 if (ctx->task && cpuctx->task_ctx != ctx)
483 return;
485 spin_lock(&ctx->lock);
488 * If the counter is on, turn it off.
489 * If it is in error state, leave it in error state.
491 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
492 update_context_time(ctx);
493 update_counter_times(counter);
494 if (counter == counter->group_leader)
495 group_sched_out(counter, cpuctx, ctx);
496 else
497 counter_sched_out(counter, cpuctx, ctx);
498 counter->state = PERF_COUNTER_STATE_OFF;
501 spin_unlock(&ctx->lock);
505 * Disable a counter.
507 * If counter->ctx is a cloned context, callers must make sure that
508 * every task struct that counter->ctx->task could possibly point to
509 * remains valid. This condition is satisifed when called through
510 * perf_counter_for_each_child or perf_counter_for_each because they
511 * hold the top-level counter's child_mutex, so any descendant that
512 * goes to exit will block in sync_child_counter.
513 * When called from perf_pending_counter it's OK because counter->ctx
514 * is the current context on this CPU and preemption is disabled,
515 * hence we can't get into perf_counter_task_sched_out for this context.
517 static void perf_counter_disable(struct perf_counter *counter)
519 struct perf_counter_context *ctx = counter->ctx;
520 struct task_struct *task = ctx->task;
522 if (!task) {
524 * Disable the counter on the cpu that it's on
526 smp_call_function_single(counter->cpu, __perf_counter_disable,
527 counter, 1);
528 return;
531 retry:
532 task_oncpu_function_call(task, __perf_counter_disable, counter);
534 spin_lock_irq(&ctx->lock);
536 * If the counter is still active, we need to retry the cross-call.
538 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
539 spin_unlock_irq(&ctx->lock);
540 goto retry;
544 * Since we have the lock this context can't be scheduled
545 * in, so we can change the state safely.
547 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
548 update_counter_times(counter);
549 counter->state = PERF_COUNTER_STATE_OFF;
552 spin_unlock_irq(&ctx->lock);
555 static int
556 counter_sched_in(struct perf_counter *counter,
557 struct perf_cpu_context *cpuctx,
558 struct perf_counter_context *ctx,
559 int cpu)
561 if (counter->state <= PERF_COUNTER_STATE_OFF)
562 return 0;
564 counter->state = PERF_COUNTER_STATE_ACTIVE;
565 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
567 * The new state must be visible before we turn it on in the hardware:
569 smp_wmb();
571 if (counter->pmu->enable(counter)) {
572 counter->state = PERF_COUNTER_STATE_INACTIVE;
573 counter->oncpu = -1;
574 return -EAGAIN;
577 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
579 if (!is_software_counter(counter))
580 cpuctx->active_oncpu++;
581 ctx->nr_active++;
583 if (counter->attr.exclusive)
584 cpuctx->exclusive = 1;
586 return 0;
589 static int
590 group_sched_in(struct perf_counter *group_counter,
591 struct perf_cpu_context *cpuctx,
592 struct perf_counter_context *ctx,
593 int cpu)
595 struct perf_counter *counter, *partial_group;
596 int ret;
598 if (group_counter->state == PERF_COUNTER_STATE_OFF)
599 return 0;
601 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
602 if (ret)
603 return ret < 0 ? ret : 0;
605 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
606 return -EAGAIN;
609 * Schedule in siblings as one group (if any):
611 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
612 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
613 partial_group = counter;
614 goto group_error;
618 return 0;
620 group_error:
622 * Groups can be scheduled in as one unit only, so undo any
623 * partial group before returning:
625 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
626 if (counter == partial_group)
627 break;
628 counter_sched_out(counter, cpuctx, ctx);
630 counter_sched_out(group_counter, cpuctx, ctx);
632 return -EAGAIN;
636 * Return 1 for a group consisting entirely of software counters,
637 * 0 if the group contains any hardware counters.
639 static int is_software_only_group(struct perf_counter *leader)
641 struct perf_counter *counter;
643 if (!is_software_counter(leader))
644 return 0;
646 list_for_each_entry(counter, &leader->sibling_list, list_entry)
647 if (!is_software_counter(counter))
648 return 0;
650 return 1;
654 * Work out whether we can put this counter group on the CPU now.
656 static int group_can_go_on(struct perf_counter *counter,
657 struct perf_cpu_context *cpuctx,
658 int can_add_hw)
661 * Groups consisting entirely of software counters can always go on.
663 if (is_software_only_group(counter))
664 return 1;
666 * If an exclusive group is already on, no other hardware
667 * counters can go on.
669 if (cpuctx->exclusive)
670 return 0;
672 * If this group is exclusive and there are already
673 * counters on the CPU, it can't go on.
675 if (counter->attr.exclusive && cpuctx->active_oncpu)
676 return 0;
678 * Otherwise, try to add it if all previous groups were able
679 * to go on.
681 return can_add_hw;
684 static void add_counter_to_ctx(struct perf_counter *counter,
685 struct perf_counter_context *ctx)
687 list_add_counter(counter, ctx);
688 counter->tstamp_enabled = ctx->time;
689 counter->tstamp_running = ctx->time;
690 counter->tstamp_stopped = ctx->time;
694 * Cross CPU call to install and enable a performance counter
696 * Must be called with ctx->mutex held
698 static void __perf_install_in_context(void *info)
700 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
701 struct perf_counter *counter = info;
702 struct perf_counter_context *ctx = counter->ctx;
703 struct perf_counter *leader = counter->group_leader;
704 int cpu = smp_processor_id();
705 int err;
708 * If this is a task context, we need to check whether it is
709 * the current task context of this cpu. If not it has been
710 * scheduled out before the smp call arrived.
711 * Or possibly this is the right context but it isn't
712 * on this cpu because it had no counters.
714 if (ctx->task && cpuctx->task_ctx != ctx) {
715 if (cpuctx->task_ctx || ctx->task != current)
716 return;
717 cpuctx->task_ctx = ctx;
720 spin_lock(&ctx->lock);
721 ctx->is_active = 1;
722 update_context_time(ctx);
725 * Protect the list operation against NMI by disabling the
726 * counters on a global level. NOP for non NMI based counters.
728 perf_disable();
730 add_counter_to_ctx(counter, ctx);
733 * Don't put the counter on if it is disabled or if
734 * it is in a group and the group isn't on.
736 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
737 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
738 goto unlock;
741 * An exclusive counter can't go on if there are already active
742 * hardware counters, and no hardware counter can go on if there
743 * is already an exclusive counter on.
745 if (!group_can_go_on(counter, cpuctx, 1))
746 err = -EEXIST;
747 else
748 err = counter_sched_in(counter, cpuctx, ctx, cpu);
750 if (err) {
752 * This counter couldn't go on. If it is in a group
753 * then we have to pull the whole group off.
754 * If the counter group is pinned then put it in error state.
756 if (leader != counter)
757 group_sched_out(leader, cpuctx, ctx);
758 if (leader->attr.pinned) {
759 update_group_times(leader);
760 leader->state = PERF_COUNTER_STATE_ERROR;
764 if (!err && !ctx->task && cpuctx->max_pertask)
765 cpuctx->max_pertask--;
767 unlock:
768 perf_enable();
770 spin_unlock(&ctx->lock);
774 * Attach a performance counter to a context
776 * First we add the counter to the list with the hardware enable bit
777 * in counter->hw_config cleared.
779 * If the counter is attached to a task which is on a CPU we use a smp
780 * call to enable it in the task context. The task might have been
781 * scheduled away, but we check this in the smp call again.
783 * Must be called with ctx->mutex held.
785 static void
786 perf_install_in_context(struct perf_counter_context *ctx,
787 struct perf_counter *counter,
788 int cpu)
790 struct task_struct *task = ctx->task;
792 if (!task) {
794 * Per cpu counters are installed via an smp call and
795 * the install is always sucessful.
797 smp_call_function_single(cpu, __perf_install_in_context,
798 counter, 1);
799 return;
802 retry:
803 task_oncpu_function_call(task, __perf_install_in_context,
804 counter);
806 spin_lock_irq(&ctx->lock);
808 * we need to retry the smp call.
810 if (ctx->is_active && list_empty(&counter->list_entry)) {
811 spin_unlock_irq(&ctx->lock);
812 goto retry;
816 * The lock prevents that this context is scheduled in so we
817 * can add the counter safely, if it the call above did not
818 * succeed.
820 if (list_empty(&counter->list_entry))
821 add_counter_to_ctx(counter, ctx);
822 spin_unlock_irq(&ctx->lock);
826 * Cross CPU call to enable a performance counter
828 static void __perf_counter_enable(void *info)
830 struct perf_counter *counter = info;
831 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
832 struct perf_counter_context *ctx = counter->ctx;
833 struct perf_counter *leader = counter->group_leader;
834 int err;
837 * If this is a per-task counter, need to check whether this
838 * counter's task is the current task on this cpu.
840 if (ctx->task && cpuctx->task_ctx != ctx) {
841 if (cpuctx->task_ctx || ctx->task != current)
842 return;
843 cpuctx->task_ctx = ctx;
846 spin_lock(&ctx->lock);
847 ctx->is_active = 1;
848 update_context_time(ctx);
850 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
851 goto unlock;
852 counter->state = PERF_COUNTER_STATE_INACTIVE;
853 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
856 * If the counter is in a group and isn't the group leader,
857 * then don't put it on unless the group is on.
859 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
860 goto unlock;
862 if (!group_can_go_on(counter, cpuctx, 1)) {
863 err = -EEXIST;
864 } else {
865 perf_disable();
866 if (counter == leader)
867 err = group_sched_in(counter, cpuctx, ctx,
868 smp_processor_id());
869 else
870 err = counter_sched_in(counter, cpuctx, ctx,
871 smp_processor_id());
872 perf_enable();
875 if (err) {
877 * If this counter can't go on and it's part of a
878 * group, then the whole group has to come off.
880 if (leader != counter)
881 group_sched_out(leader, cpuctx, ctx);
882 if (leader->attr.pinned) {
883 update_group_times(leader);
884 leader->state = PERF_COUNTER_STATE_ERROR;
888 unlock:
889 spin_unlock(&ctx->lock);
893 * Enable a counter.
895 * If counter->ctx is a cloned context, callers must make sure that
896 * every task struct that counter->ctx->task could possibly point to
897 * remains valid. This condition is satisfied when called through
898 * perf_counter_for_each_child or perf_counter_for_each as described
899 * for perf_counter_disable.
901 static void perf_counter_enable(struct perf_counter *counter)
903 struct perf_counter_context *ctx = counter->ctx;
904 struct task_struct *task = ctx->task;
906 if (!task) {
908 * Enable the counter on the cpu that it's on
910 smp_call_function_single(counter->cpu, __perf_counter_enable,
911 counter, 1);
912 return;
915 spin_lock_irq(&ctx->lock);
916 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
917 goto out;
920 * If the counter is in error state, clear that first.
921 * That way, if we see the counter in error state below, we
922 * know that it has gone back into error state, as distinct
923 * from the task having been scheduled away before the
924 * cross-call arrived.
926 if (counter->state == PERF_COUNTER_STATE_ERROR)
927 counter->state = PERF_COUNTER_STATE_OFF;
929 retry:
930 spin_unlock_irq(&ctx->lock);
931 task_oncpu_function_call(task, __perf_counter_enable, counter);
933 spin_lock_irq(&ctx->lock);
936 * If the context is active and the counter is still off,
937 * we need to retry the cross-call.
939 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
940 goto retry;
943 * Since we have the lock this context can't be scheduled
944 * in, so we can change the state safely.
946 if (counter->state == PERF_COUNTER_STATE_OFF) {
947 counter->state = PERF_COUNTER_STATE_INACTIVE;
948 counter->tstamp_enabled =
949 ctx->time - counter->total_time_enabled;
951 out:
952 spin_unlock_irq(&ctx->lock);
955 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
958 * not supported on inherited counters
960 if (counter->attr.inherit)
961 return -EINVAL;
963 atomic_add(refresh, &counter->event_limit);
964 perf_counter_enable(counter);
966 return 0;
969 void __perf_counter_sched_out(struct perf_counter_context *ctx,
970 struct perf_cpu_context *cpuctx)
972 struct perf_counter *counter;
974 spin_lock(&ctx->lock);
975 ctx->is_active = 0;
976 if (likely(!ctx->nr_counters))
977 goto out;
978 update_context_time(ctx);
980 perf_disable();
981 if (ctx->nr_active) {
982 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
983 if (counter != counter->group_leader)
984 counter_sched_out(counter, cpuctx, ctx);
985 else
986 group_sched_out(counter, cpuctx, ctx);
989 perf_enable();
990 out:
991 spin_unlock(&ctx->lock);
995 * Test whether two contexts are equivalent, i.e. whether they
996 * have both been cloned from the same version of the same context
997 * and they both have the same number of enabled counters.
998 * If the number of enabled counters is the same, then the set
999 * of enabled counters should be the same, because these are both
1000 * inherited contexts, therefore we can't access individual counters
1001 * in them directly with an fd; we can only enable/disable all
1002 * counters via prctl, or enable/disable all counters in a family
1003 * via ioctl, which will have the same effect on both contexts.
1005 static int context_equiv(struct perf_counter_context *ctx1,
1006 struct perf_counter_context *ctx2)
1008 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1009 && ctx1->parent_gen == ctx2->parent_gen
1010 && !ctx1->pin_count && !ctx2->pin_count;
1013 static void __perf_counter_read(void *counter);
1015 static void __perf_counter_sync_stat(struct perf_counter *counter,
1016 struct perf_counter *next_counter)
1018 u64 value;
1020 if (!counter->attr.inherit_stat)
1021 return;
1024 * Update the counter value, we cannot use perf_counter_read()
1025 * because we're in the middle of a context switch and have IRQs
1026 * disabled, which upsets smp_call_function_single(), however
1027 * we know the counter must be on the current CPU, therefore we
1028 * don't need to use it.
1030 switch (counter->state) {
1031 case PERF_COUNTER_STATE_ACTIVE:
1032 __perf_counter_read(counter);
1033 break;
1035 case PERF_COUNTER_STATE_INACTIVE:
1036 update_counter_times(counter);
1037 break;
1039 default:
1040 break;
1044 * In order to keep per-task stats reliable we need to flip the counter
1045 * values when we flip the contexts.
1047 value = atomic64_read(&next_counter->count);
1048 value = atomic64_xchg(&counter->count, value);
1049 atomic64_set(&next_counter->count, value);
1051 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1052 swap(counter->total_time_running, next_counter->total_time_running);
1055 * Since we swizzled the values, update the user visible data too.
1057 perf_counter_update_userpage(counter);
1058 perf_counter_update_userpage(next_counter);
1061 #define list_next_entry(pos, member) \
1062 list_entry(pos->member.next, typeof(*pos), member)
1064 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1065 struct perf_counter_context *next_ctx)
1067 struct perf_counter *counter, *next_counter;
1069 if (!ctx->nr_stat)
1070 return;
1072 counter = list_first_entry(&ctx->event_list,
1073 struct perf_counter, event_entry);
1075 next_counter = list_first_entry(&next_ctx->event_list,
1076 struct perf_counter, event_entry);
1078 while (&counter->event_entry != &ctx->event_list &&
1079 &next_counter->event_entry != &next_ctx->event_list) {
1081 __perf_counter_sync_stat(counter, next_counter);
1083 counter = list_next_entry(counter, event_entry);
1084 next_counter = list_next_entry(counter, event_entry);
1089 * Called from scheduler to remove the counters of the current task,
1090 * with interrupts disabled.
1092 * We stop each counter and update the counter value in counter->count.
1094 * This does not protect us against NMI, but disable()
1095 * sets the disabled bit in the control field of counter _before_
1096 * accessing the counter control register. If a NMI hits, then it will
1097 * not restart the counter.
1099 void perf_counter_task_sched_out(struct task_struct *task,
1100 struct task_struct *next, int cpu)
1102 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1103 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1104 struct perf_counter_context *next_ctx;
1105 struct perf_counter_context *parent;
1106 struct pt_regs *regs;
1107 int do_switch = 1;
1109 regs = task_pt_regs(task);
1110 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1112 if (likely(!ctx || !cpuctx->task_ctx))
1113 return;
1115 update_context_time(ctx);
1117 rcu_read_lock();
1118 parent = rcu_dereference(ctx->parent_ctx);
1119 next_ctx = next->perf_counter_ctxp;
1120 if (parent && next_ctx &&
1121 rcu_dereference(next_ctx->parent_ctx) == parent) {
1123 * Looks like the two contexts are clones, so we might be
1124 * able to optimize the context switch. We lock both
1125 * contexts and check that they are clones under the
1126 * lock (including re-checking that neither has been
1127 * uncloned in the meantime). It doesn't matter which
1128 * order we take the locks because no other cpu could
1129 * be trying to lock both of these tasks.
1131 spin_lock(&ctx->lock);
1132 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1133 if (context_equiv(ctx, next_ctx)) {
1135 * XXX do we need a memory barrier of sorts
1136 * wrt to rcu_dereference() of perf_counter_ctxp
1138 task->perf_counter_ctxp = next_ctx;
1139 next->perf_counter_ctxp = ctx;
1140 ctx->task = next;
1141 next_ctx->task = task;
1142 do_switch = 0;
1144 perf_counter_sync_stat(ctx, next_ctx);
1146 spin_unlock(&next_ctx->lock);
1147 spin_unlock(&ctx->lock);
1149 rcu_read_unlock();
1151 if (do_switch) {
1152 __perf_counter_sched_out(ctx, cpuctx);
1153 cpuctx->task_ctx = NULL;
1158 * Called with IRQs disabled
1160 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1162 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 if (!cpuctx->task_ctx)
1165 return;
1167 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1168 return;
1170 __perf_counter_sched_out(ctx, cpuctx);
1171 cpuctx->task_ctx = NULL;
1175 * Called with IRQs disabled
1177 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1179 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1182 static void
1183 __perf_counter_sched_in(struct perf_counter_context *ctx,
1184 struct perf_cpu_context *cpuctx, int cpu)
1186 struct perf_counter *counter;
1187 int can_add_hw = 1;
1189 spin_lock(&ctx->lock);
1190 ctx->is_active = 1;
1191 if (likely(!ctx->nr_counters))
1192 goto out;
1194 ctx->timestamp = perf_clock();
1196 perf_disable();
1199 * First go through the list and put on any pinned groups
1200 * in order to give them the best chance of going on.
1202 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1203 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1204 !counter->attr.pinned)
1205 continue;
1206 if (counter->cpu != -1 && counter->cpu != cpu)
1207 continue;
1209 if (counter != counter->group_leader)
1210 counter_sched_in(counter, cpuctx, ctx, cpu);
1211 else {
1212 if (group_can_go_on(counter, cpuctx, 1))
1213 group_sched_in(counter, cpuctx, ctx, cpu);
1217 * If this pinned group hasn't been scheduled,
1218 * put it in error state.
1220 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1221 update_group_times(counter);
1222 counter->state = PERF_COUNTER_STATE_ERROR;
1226 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1228 * Ignore counters in OFF or ERROR state, and
1229 * ignore pinned counters since we did them already.
1231 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232 counter->attr.pinned)
1233 continue;
1236 * Listen to the 'cpu' scheduling filter constraint
1237 * of counters:
1239 if (counter->cpu != -1 && counter->cpu != cpu)
1240 continue;
1242 if (counter != counter->group_leader) {
1243 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1244 can_add_hw = 0;
1245 } else {
1246 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1247 if (group_sched_in(counter, cpuctx, ctx, cpu))
1248 can_add_hw = 0;
1252 perf_enable();
1253 out:
1254 spin_unlock(&ctx->lock);
1258 * Called from scheduler to add the counters of the current task
1259 * with interrupts disabled.
1261 * We restore the counter value and then enable it.
1263 * This does not protect us against NMI, but enable()
1264 * sets the enabled bit in the control field of counter _before_
1265 * accessing the counter control register. If a NMI hits, then it will
1266 * keep the counter running.
1268 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1270 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1271 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1273 if (likely(!ctx))
1274 return;
1275 if (cpuctx->task_ctx == ctx)
1276 return;
1277 __perf_counter_sched_in(ctx, cpuctx, cpu);
1278 cpuctx->task_ctx = ctx;
1281 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1283 struct perf_counter_context *ctx = &cpuctx->ctx;
1285 __perf_counter_sched_in(ctx, cpuctx, cpu);
1288 #define MAX_INTERRUPTS (~0ULL)
1290 static void perf_log_throttle(struct perf_counter *counter, int enable);
1291 static void perf_log_period(struct perf_counter *counter, u64 period);
1293 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1295 struct hw_perf_counter *hwc = &counter->hw;
1296 u64 period, sample_period;
1297 s64 delta;
1299 events *= hwc->sample_period;
1300 period = div64_u64(events, counter->attr.sample_freq);
1302 delta = (s64)(period - hwc->sample_period);
1303 delta = (delta + 7) / 8; /* low pass filter */
1305 sample_period = hwc->sample_period + delta;
1307 if (!sample_period)
1308 sample_period = 1;
1310 perf_log_period(counter, sample_period);
1312 hwc->sample_period = sample_period;
1315 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1317 struct perf_counter *counter;
1318 struct hw_perf_counter *hwc;
1319 u64 interrupts, freq;
1321 spin_lock(&ctx->lock);
1322 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1323 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1324 continue;
1326 hwc = &counter->hw;
1328 interrupts = hwc->interrupts;
1329 hwc->interrupts = 0;
1332 * unthrottle counters on the tick
1334 if (interrupts == MAX_INTERRUPTS) {
1335 perf_log_throttle(counter, 1);
1336 counter->pmu->unthrottle(counter);
1337 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1340 if (!counter->attr.freq || !counter->attr.sample_freq)
1341 continue;
1344 * if the specified freq < HZ then we need to skip ticks
1346 if (counter->attr.sample_freq < HZ) {
1347 freq = counter->attr.sample_freq;
1349 hwc->freq_count += freq;
1350 hwc->freq_interrupts += interrupts;
1352 if (hwc->freq_count < HZ)
1353 continue;
1355 interrupts = hwc->freq_interrupts;
1356 hwc->freq_interrupts = 0;
1357 hwc->freq_count -= HZ;
1358 } else
1359 freq = HZ;
1361 perf_adjust_period(counter, freq * interrupts);
1364 * In order to avoid being stalled by an (accidental) huge
1365 * sample period, force reset the sample period if we didn't
1366 * get any events in this freq period.
1368 if (!interrupts) {
1369 perf_disable();
1370 counter->pmu->disable(counter);
1371 atomic64_set(&hwc->period_left, 0);
1372 counter->pmu->enable(counter);
1373 perf_enable();
1376 spin_unlock(&ctx->lock);
1380 * Round-robin a context's counters:
1382 static void rotate_ctx(struct perf_counter_context *ctx)
1384 struct perf_counter *counter;
1386 if (!ctx->nr_counters)
1387 return;
1389 spin_lock(&ctx->lock);
1391 * Rotate the first entry last (works just fine for group counters too):
1393 perf_disable();
1394 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1395 list_move_tail(&counter->list_entry, &ctx->counter_list);
1396 break;
1398 perf_enable();
1400 spin_unlock(&ctx->lock);
1403 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1405 struct perf_cpu_context *cpuctx;
1406 struct perf_counter_context *ctx;
1408 if (!atomic_read(&nr_counters))
1409 return;
1411 cpuctx = &per_cpu(perf_cpu_context, cpu);
1412 ctx = curr->perf_counter_ctxp;
1414 perf_ctx_adjust_freq(&cpuctx->ctx);
1415 if (ctx)
1416 perf_ctx_adjust_freq(ctx);
1418 perf_counter_cpu_sched_out(cpuctx);
1419 if (ctx)
1420 __perf_counter_task_sched_out(ctx);
1422 rotate_ctx(&cpuctx->ctx);
1423 if (ctx)
1424 rotate_ctx(ctx);
1426 perf_counter_cpu_sched_in(cpuctx, cpu);
1427 if (ctx)
1428 perf_counter_task_sched_in(curr, cpu);
1432 * Enable all of a task's counters that have been marked enable-on-exec.
1433 * This expects task == current.
1435 static void perf_counter_enable_on_exec(struct task_struct *task)
1437 struct perf_counter_context *ctx;
1438 struct perf_counter *counter;
1439 unsigned long flags;
1440 int enabled = 0;
1442 local_irq_save(flags);
1443 ctx = task->perf_counter_ctxp;
1444 if (!ctx || !ctx->nr_counters)
1445 goto out;
1447 __perf_counter_task_sched_out(ctx);
1449 spin_lock(&ctx->lock);
1451 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1452 if (!counter->attr.enable_on_exec)
1453 continue;
1454 counter->attr.enable_on_exec = 0;
1455 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1456 continue;
1457 counter->state = PERF_COUNTER_STATE_INACTIVE;
1458 counter->tstamp_enabled =
1459 ctx->time - counter->total_time_enabled;
1460 enabled = 1;
1464 * Unclone this context if we enabled any counter.
1466 if (enabled && ctx->parent_ctx) {
1467 put_ctx(ctx->parent_ctx);
1468 ctx->parent_ctx = NULL;
1471 spin_unlock(&ctx->lock);
1473 perf_counter_task_sched_in(task, smp_processor_id());
1474 out:
1475 local_irq_restore(flags);
1479 * Cross CPU call to read the hardware counter
1481 static void __perf_counter_read(void *info)
1483 struct perf_counter *counter = info;
1484 struct perf_counter_context *ctx = counter->ctx;
1485 unsigned long flags;
1487 local_irq_save(flags);
1488 if (ctx->is_active)
1489 update_context_time(ctx);
1490 counter->pmu->read(counter);
1491 update_counter_times(counter);
1492 local_irq_restore(flags);
1495 static u64 perf_counter_read(struct perf_counter *counter)
1498 * If counter is enabled and currently active on a CPU, update the
1499 * value in the counter structure:
1501 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1502 smp_call_function_single(counter->oncpu,
1503 __perf_counter_read, counter, 1);
1504 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1505 update_counter_times(counter);
1508 return atomic64_read(&counter->count);
1512 * Initialize the perf_counter context in a task_struct:
1514 static void
1515 __perf_counter_init_context(struct perf_counter_context *ctx,
1516 struct task_struct *task)
1518 memset(ctx, 0, sizeof(*ctx));
1519 spin_lock_init(&ctx->lock);
1520 mutex_init(&ctx->mutex);
1521 INIT_LIST_HEAD(&ctx->counter_list);
1522 INIT_LIST_HEAD(&ctx->event_list);
1523 atomic_set(&ctx->refcount, 1);
1524 ctx->task = task;
1527 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1529 struct perf_counter_context *parent_ctx;
1530 struct perf_counter_context *ctx;
1531 struct perf_cpu_context *cpuctx;
1532 struct task_struct *task;
1533 unsigned long flags;
1534 int err;
1537 * If cpu is not a wildcard then this is a percpu counter:
1539 if (cpu != -1) {
1540 /* Must be root to operate on a CPU counter: */
1541 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1542 return ERR_PTR(-EACCES);
1544 if (cpu < 0 || cpu > num_possible_cpus())
1545 return ERR_PTR(-EINVAL);
1548 * We could be clever and allow to attach a counter to an
1549 * offline CPU and activate it when the CPU comes up, but
1550 * that's for later.
1552 if (!cpu_isset(cpu, cpu_online_map))
1553 return ERR_PTR(-ENODEV);
1555 cpuctx = &per_cpu(perf_cpu_context, cpu);
1556 ctx = &cpuctx->ctx;
1557 get_ctx(ctx);
1559 return ctx;
1562 rcu_read_lock();
1563 if (!pid)
1564 task = current;
1565 else
1566 task = find_task_by_vpid(pid);
1567 if (task)
1568 get_task_struct(task);
1569 rcu_read_unlock();
1571 if (!task)
1572 return ERR_PTR(-ESRCH);
1575 * Can't attach counters to a dying task.
1577 err = -ESRCH;
1578 if (task->flags & PF_EXITING)
1579 goto errout;
1581 /* Reuse ptrace permission checks for now. */
1582 err = -EACCES;
1583 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1584 goto errout;
1586 retry:
1587 ctx = perf_lock_task_context(task, &flags);
1588 if (ctx) {
1589 parent_ctx = ctx->parent_ctx;
1590 if (parent_ctx) {
1591 put_ctx(parent_ctx);
1592 ctx->parent_ctx = NULL; /* no longer a clone */
1594 spin_unlock_irqrestore(&ctx->lock, flags);
1597 if (!ctx) {
1598 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1599 err = -ENOMEM;
1600 if (!ctx)
1601 goto errout;
1602 __perf_counter_init_context(ctx, task);
1603 get_ctx(ctx);
1604 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1606 * We raced with some other task; use
1607 * the context they set.
1609 kfree(ctx);
1610 goto retry;
1612 get_task_struct(task);
1615 put_task_struct(task);
1616 return ctx;
1618 errout:
1619 put_task_struct(task);
1620 return ERR_PTR(err);
1623 static void free_counter_rcu(struct rcu_head *head)
1625 struct perf_counter *counter;
1627 counter = container_of(head, struct perf_counter, rcu_head);
1628 if (counter->ns)
1629 put_pid_ns(counter->ns);
1630 kfree(counter);
1633 static void perf_pending_sync(struct perf_counter *counter);
1635 static void free_counter(struct perf_counter *counter)
1637 perf_pending_sync(counter);
1639 if (!counter->parent) {
1640 atomic_dec(&nr_counters);
1641 if (counter->attr.mmap)
1642 atomic_dec(&nr_mmap_counters);
1643 if (counter->attr.comm)
1644 atomic_dec(&nr_comm_counters);
1647 if (counter->destroy)
1648 counter->destroy(counter);
1650 put_ctx(counter->ctx);
1651 call_rcu(&counter->rcu_head, free_counter_rcu);
1655 * Called when the last reference to the file is gone.
1657 static int perf_release(struct inode *inode, struct file *file)
1659 struct perf_counter *counter = file->private_data;
1660 struct perf_counter_context *ctx = counter->ctx;
1662 file->private_data = NULL;
1664 WARN_ON_ONCE(ctx->parent_ctx);
1665 mutex_lock(&ctx->mutex);
1666 perf_counter_remove_from_context(counter);
1667 mutex_unlock(&ctx->mutex);
1669 mutex_lock(&counter->owner->perf_counter_mutex);
1670 list_del_init(&counter->owner_entry);
1671 mutex_unlock(&counter->owner->perf_counter_mutex);
1672 put_task_struct(counter->owner);
1674 free_counter(counter);
1676 return 0;
1680 * Read the performance counter - simple non blocking version for now
1682 static ssize_t
1683 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1685 u64 values[4];
1686 int n;
1689 * Return end-of-file for a read on a counter that is in
1690 * error state (i.e. because it was pinned but it couldn't be
1691 * scheduled on to the CPU at some point).
1693 if (counter->state == PERF_COUNTER_STATE_ERROR)
1694 return 0;
1696 WARN_ON_ONCE(counter->ctx->parent_ctx);
1697 mutex_lock(&counter->child_mutex);
1698 values[0] = perf_counter_read(counter);
1699 n = 1;
1700 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1701 values[n++] = counter->total_time_enabled +
1702 atomic64_read(&counter->child_total_time_enabled);
1703 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1704 values[n++] = counter->total_time_running +
1705 atomic64_read(&counter->child_total_time_running);
1706 if (counter->attr.read_format & PERF_FORMAT_ID)
1707 values[n++] = counter->id;
1708 mutex_unlock(&counter->child_mutex);
1710 if (count < n * sizeof(u64))
1711 return -EINVAL;
1712 count = n * sizeof(u64);
1714 if (copy_to_user(buf, values, count))
1715 return -EFAULT;
1717 return count;
1720 static ssize_t
1721 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1723 struct perf_counter *counter = file->private_data;
1725 return perf_read_hw(counter, buf, count);
1728 static unsigned int perf_poll(struct file *file, poll_table *wait)
1730 struct perf_counter *counter = file->private_data;
1731 struct perf_mmap_data *data;
1732 unsigned int events = POLL_HUP;
1734 rcu_read_lock();
1735 data = rcu_dereference(counter->data);
1736 if (data)
1737 events = atomic_xchg(&data->poll, 0);
1738 rcu_read_unlock();
1740 poll_wait(file, &counter->waitq, wait);
1742 return events;
1745 static void perf_counter_reset(struct perf_counter *counter)
1747 (void)perf_counter_read(counter);
1748 atomic64_set(&counter->count, 0);
1749 perf_counter_update_userpage(counter);
1753 * Holding the top-level counter's child_mutex means that any
1754 * descendant process that has inherited this counter will block
1755 * in sync_child_counter if it goes to exit, thus satisfying the
1756 * task existence requirements of perf_counter_enable/disable.
1758 static void perf_counter_for_each_child(struct perf_counter *counter,
1759 void (*func)(struct perf_counter *))
1761 struct perf_counter *child;
1763 WARN_ON_ONCE(counter->ctx->parent_ctx);
1764 mutex_lock(&counter->child_mutex);
1765 func(counter);
1766 list_for_each_entry(child, &counter->child_list, child_list)
1767 func(child);
1768 mutex_unlock(&counter->child_mutex);
1771 static void perf_counter_for_each(struct perf_counter *counter,
1772 void (*func)(struct perf_counter *))
1774 struct perf_counter_context *ctx = counter->ctx;
1775 struct perf_counter *sibling;
1777 WARN_ON_ONCE(ctx->parent_ctx);
1778 mutex_lock(&ctx->mutex);
1779 counter = counter->group_leader;
1781 perf_counter_for_each_child(counter, func);
1782 func(counter);
1783 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1784 perf_counter_for_each_child(counter, func);
1785 mutex_unlock(&ctx->mutex);
1788 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1790 struct perf_counter_context *ctx = counter->ctx;
1791 unsigned long size;
1792 int ret = 0;
1793 u64 value;
1795 if (!counter->attr.sample_period)
1796 return -EINVAL;
1798 size = copy_from_user(&value, arg, sizeof(value));
1799 if (size != sizeof(value))
1800 return -EFAULT;
1802 if (!value)
1803 return -EINVAL;
1805 spin_lock_irq(&ctx->lock);
1806 if (counter->attr.freq) {
1807 if (value > sysctl_perf_counter_sample_rate) {
1808 ret = -EINVAL;
1809 goto unlock;
1812 counter->attr.sample_freq = value;
1813 } else {
1814 perf_log_period(counter, value);
1816 counter->attr.sample_period = value;
1817 counter->hw.sample_period = value;
1819 unlock:
1820 spin_unlock_irq(&ctx->lock);
1822 return ret;
1825 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1827 struct perf_counter *counter = file->private_data;
1828 void (*func)(struct perf_counter *);
1829 u32 flags = arg;
1831 switch (cmd) {
1832 case PERF_COUNTER_IOC_ENABLE:
1833 func = perf_counter_enable;
1834 break;
1835 case PERF_COUNTER_IOC_DISABLE:
1836 func = perf_counter_disable;
1837 break;
1838 case PERF_COUNTER_IOC_RESET:
1839 func = perf_counter_reset;
1840 break;
1842 case PERF_COUNTER_IOC_REFRESH:
1843 return perf_counter_refresh(counter, arg);
1845 case PERF_COUNTER_IOC_PERIOD:
1846 return perf_counter_period(counter, (u64 __user *)arg);
1848 default:
1849 return -ENOTTY;
1852 if (flags & PERF_IOC_FLAG_GROUP)
1853 perf_counter_for_each(counter, func);
1854 else
1855 perf_counter_for_each_child(counter, func);
1857 return 0;
1860 int perf_counter_task_enable(void)
1862 struct perf_counter *counter;
1864 mutex_lock(&current->perf_counter_mutex);
1865 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1866 perf_counter_for_each_child(counter, perf_counter_enable);
1867 mutex_unlock(&current->perf_counter_mutex);
1869 return 0;
1872 int perf_counter_task_disable(void)
1874 struct perf_counter *counter;
1876 mutex_lock(&current->perf_counter_mutex);
1877 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1878 perf_counter_for_each_child(counter, perf_counter_disable);
1879 mutex_unlock(&current->perf_counter_mutex);
1881 return 0;
1884 static int perf_counter_index(struct perf_counter *counter)
1886 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1887 return 0;
1889 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1893 * Callers need to ensure there can be no nesting of this function, otherwise
1894 * the seqlock logic goes bad. We can not serialize this because the arch
1895 * code calls this from NMI context.
1897 void perf_counter_update_userpage(struct perf_counter *counter)
1899 struct perf_counter_mmap_page *userpg;
1900 struct perf_mmap_data *data;
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (!data)
1905 goto unlock;
1907 userpg = data->user_page;
1910 * Disable preemption so as to not let the corresponding user-space
1911 * spin too long if we get preempted.
1913 preempt_disable();
1914 ++userpg->lock;
1915 barrier();
1916 userpg->index = perf_counter_index(counter);
1917 userpg->offset = atomic64_read(&counter->count);
1918 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1919 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1921 userpg->time_enabled = counter->total_time_enabled +
1922 atomic64_read(&counter->child_total_time_enabled);
1924 userpg->time_running = counter->total_time_running +
1925 atomic64_read(&counter->child_total_time_running);
1927 barrier();
1928 ++userpg->lock;
1929 preempt_enable();
1930 unlock:
1931 rcu_read_unlock();
1934 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1936 struct perf_counter *counter = vma->vm_file->private_data;
1937 struct perf_mmap_data *data;
1938 int ret = VM_FAULT_SIGBUS;
1940 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1941 if (vmf->pgoff == 0)
1942 ret = 0;
1943 return ret;
1946 rcu_read_lock();
1947 data = rcu_dereference(counter->data);
1948 if (!data)
1949 goto unlock;
1951 if (vmf->pgoff == 0) {
1952 vmf->page = virt_to_page(data->user_page);
1953 } else {
1954 int nr = vmf->pgoff - 1;
1956 if ((unsigned)nr > data->nr_pages)
1957 goto unlock;
1959 if (vmf->flags & FAULT_FLAG_WRITE)
1960 goto unlock;
1962 vmf->page = virt_to_page(data->data_pages[nr]);
1965 get_page(vmf->page);
1966 vmf->page->mapping = vma->vm_file->f_mapping;
1967 vmf->page->index = vmf->pgoff;
1969 ret = 0;
1970 unlock:
1971 rcu_read_unlock();
1973 return ret;
1976 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1978 struct perf_mmap_data *data;
1979 unsigned long size;
1980 int i;
1982 WARN_ON(atomic_read(&counter->mmap_count));
1984 size = sizeof(struct perf_mmap_data);
1985 size += nr_pages * sizeof(void *);
1987 data = kzalloc(size, GFP_KERNEL);
1988 if (!data)
1989 goto fail;
1991 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1992 if (!data->user_page)
1993 goto fail_user_page;
1995 for (i = 0; i < nr_pages; i++) {
1996 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1997 if (!data->data_pages[i])
1998 goto fail_data_pages;
2001 data->nr_pages = nr_pages;
2002 atomic_set(&data->lock, -1);
2004 rcu_assign_pointer(counter->data, data);
2006 return 0;
2008 fail_data_pages:
2009 for (i--; i >= 0; i--)
2010 free_page((unsigned long)data->data_pages[i]);
2012 free_page((unsigned long)data->user_page);
2014 fail_user_page:
2015 kfree(data);
2017 fail:
2018 return -ENOMEM;
2021 static void perf_mmap_free_page(unsigned long addr)
2023 struct page *page = virt_to_page(addr);
2025 page->mapping = NULL;
2026 __free_page(page);
2029 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2031 struct perf_mmap_data *data;
2032 int i;
2034 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2036 perf_mmap_free_page((unsigned long)data->user_page);
2037 for (i = 0; i < data->nr_pages; i++)
2038 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2040 kfree(data);
2043 static void perf_mmap_data_free(struct perf_counter *counter)
2045 struct perf_mmap_data *data = counter->data;
2047 WARN_ON(atomic_read(&counter->mmap_count));
2049 rcu_assign_pointer(counter->data, NULL);
2050 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2053 static void perf_mmap_open(struct vm_area_struct *vma)
2055 struct perf_counter *counter = vma->vm_file->private_data;
2057 atomic_inc(&counter->mmap_count);
2060 static void perf_mmap_close(struct vm_area_struct *vma)
2062 struct perf_counter *counter = vma->vm_file->private_data;
2064 WARN_ON_ONCE(counter->ctx->parent_ctx);
2065 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2066 struct user_struct *user = current_user();
2068 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2069 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2070 perf_mmap_data_free(counter);
2071 mutex_unlock(&counter->mmap_mutex);
2075 static struct vm_operations_struct perf_mmap_vmops = {
2076 .open = perf_mmap_open,
2077 .close = perf_mmap_close,
2078 .fault = perf_mmap_fault,
2079 .page_mkwrite = perf_mmap_fault,
2082 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2084 struct perf_counter *counter = file->private_data;
2085 unsigned long user_locked, user_lock_limit;
2086 struct user_struct *user = current_user();
2087 unsigned long locked, lock_limit;
2088 unsigned long vma_size;
2089 unsigned long nr_pages;
2090 long user_extra, extra;
2091 int ret = 0;
2093 if (!(vma->vm_flags & VM_SHARED))
2094 return -EINVAL;
2096 vma_size = vma->vm_end - vma->vm_start;
2097 nr_pages = (vma_size / PAGE_SIZE) - 1;
2100 * If we have data pages ensure they're a power-of-two number, so we
2101 * can do bitmasks instead of modulo.
2103 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2104 return -EINVAL;
2106 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2107 return -EINVAL;
2109 if (vma->vm_pgoff != 0)
2110 return -EINVAL;
2112 WARN_ON_ONCE(counter->ctx->parent_ctx);
2113 mutex_lock(&counter->mmap_mutex);
2114 if (atomic_inc_not_zero(&counter->mmap_count)) {
2115 if (nr_pages != counter->data->nr_pages)
2116 ret = -EINVAL;
2117 goto unlock;
2120 user_extra = nr_pages + 1;
2121 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2124 * Increase the limit linearly with more CPUs:
2126 user_lock_limit *= num_online_cpus();
2128 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2130 extra = 0;
2131 if (user_locked > user_lock_limit)
2132 extra = user_locked - user_lock_limit;
2134 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2135 lock_limit >>= PAGE_SHIFT;
2136 locked = vma->vm_mm->locked_vm + extra;
2138 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2139 ret = -EPERM;
2140 goto unlock;
2143 WARN_ON(counter->data);
2144 ret = perf_mmap_data_alloc(counter, nr_pages);
2145 if (ret)
2146 goto unlock;
2148 atomic_set(&counter->mmap_count, 1);
2149 atomic_long_add(user_extra, &user->locked_vm);
2150 vma->vm_mm->locked_vm += extra;
2151 counter->data->nr_locked = extra;
2152 if (vma->vm_flags & VM_WRITE)
2153 counter->data->writable = 1;
2155 unlock:
2156 mutex_unlock(&counter->mmap_mutex);
2158 vma->vm_flags |= VM_RESERVED;
2159 vma->vm_ops = &perf_mmap_vmops;
2161 return ret;
2164 static int perf_fasync(int fd, struct file *filp, int on)
2166 struct inode *inode = filp->f_path.dentry->d_inode;
2167 struct perf_counter *counter = filp->private_data;
2168 int retval;
2170 mutex_lock(&inode->i_mutex);
2171 retval = fasync_helper(fd, filp, on, &counter->fasync);
2172 mutex_unlock(&inode->i_mutex);
2174 if (retval < 0)
2175 return retval;
2177 return 0;
2180 static const struct file_operations perf_fops = {
2181 .release = perf_release,
2182 .read = perf_read,
2183 .poll = perf_poll,
2184 .unlocked_ioctl = perf_ioctl,
2185 .compat_ioctl = perf_ioctl,
2186 .mmap = perf_mmap,
2187 .fasync = perf_fasync,
2191 * Perf counter wakeup
2193 * If there's data, ensure we set the poll() state and publish everything
2194 * to user-space before waking everybody up.
2197 void perf_counter_wakeup(struct perf_counter *counter)
2199 wake_up_all(&counter->waitq);
2201 if (counter->pending_kill) {
2202 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2203 counter->pending_kill = 0;
2208 * Pending wakeups
2210 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2212 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2213 * single linked list and use cmpxchg() to add entries lockless.
2216 static void perf_pending_counter(struct perf_pending_entry *entry)
2218 struct perf_counter *counter = container_of(entry,
2219 struct perf_counter, pending);
2221 if (counter->pending_disable) {
2222 counter->pending_disable = 0;
2223 perf_counter_disable(counter);
2226 if (counter->pending_wakeup) {
2227 counter->pending_wakeup = 0;
2228 perf_counter_wakeup(counter);
2232 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2234 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2235 PENDING_TAIL,
2238 static void perf_pending_queue(struct perf_pending_entry *entry,
2239 void (*func)(struct perf_pending_entry *))
2241 struct perf_pending_entry **head;
2243 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2244 return;
2246 entry->func = func;
2248 head = &get_cpu_var(perf_pending_head);
2250 do {
2251 entry->next = *head;
2252 } while (cmpxchg(head, entry->next, entry) != entry->next);
2254 set_perf_counter_pending();
2256 put_cpu_var(perf_pending_head);
2259 static int __perf_pending_run(void)
2261 struct perf_pending_entry *list;
2262 int nr = 0;
2264 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2265 while (list != PENDING_TAIL) {
2266 void (*func)(struct perf_pending_entry *);
2267 struct perf_pending_entry *entry = list;
2269 list = list->next;
2271 func = entry->func;
2272 entry->next = NULL;
2274 * Ensure we observe the unqueue before we issue the wakeup,
2275 * so that we won't be waiting forever.
2276 * -- see perf_not_pending().
2278 smp_wmb();
2280 func(entry);
2281 nr++;
2284 return nr;
2287 static inline int perf_not_pending(struct perf_counter *counter)
2290 * If we flush on whatever cpu we run, there is a chance we don't
2291 * need to wait.
2293 get_cpu();
2294 __perf_pending_run();
2295 put_cpu();
2298 * Ensure we see the proper queue state before going to sleep
2299 * so that we do not miss the wakeup. -- see perf_pending_handle()
2301 smp_rmb();
2302 return counter->pending.next == NULL;
2305 static void perf_pending_sync(struct perf_counter *counter)
2307 wait_event(counter->waitq, perf_not_pending(counter));
2310 void perf_counter_do_pending(void)
2312 __perf_pending_run();
2316 * Callchain support -- arch specific
2319 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2321 return NULL;
2325 * Output
2328 struct perf_output_handle {
2329 struct perf_counter *counter;
2330 struct perf_mmap_data *data;
2331 unsigned long head;
2332 unsigned long offset;
2333 int nmi;
2334 int sample;
2335 int locked;
2336 unsigned long flags;
2339 static bool perf_output_space(struct perf_mmap_data *data,
2340 unsigned int offset, unsigned int head)
2342 unsigned long tail;
2343 unsigned long mask;
2345 if (!data->writable)
2346 return true;
2348 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2350 * Userspace could choose to issue a mb() before updating the tail
2351 * pointer. So that all reads will be completed before the write is
2352 * issued.
2354 tail = ACCESS_ONCE(data->user_page->data_tail);
2355 smp_rmb();
2357 offset = (offset - tail) & mask;
2358 head = (head - tail) & mask;
2360 if ((int)(head - offset) < 0)
2361 return false;
2363 return true;
2366 static void perf_output_wakeup(struct perf_output_handle *handle)
2368 atomic_set(&handle->data->poll, POLL_IN);
2370 if (handle->nmi) {
2371 handle->counter->pending_wakeup = 1;
2372 perf_pending_queue(&handle->counter->pending,
2373 perf_pending_counter);
2374 } else
2375 perf_counter_wakeup(handle->counter);
2379 * Curious locking construct.
2381 * We need to ensure a later event doesn't publish a head when a former
2382 * event isn't done writing. However since we need to deal with NMIs we
2383 * cannot fully serialize things.
2385 * What we do is serialize between CPUs so we only have to deal with NMI
2386 * nesting on a single CPU.
2388 * We only publish the head (and generate a wakeup) when the outer-most
2389 * event completes.
2391 static void perf_output_lock(struct perf_output_handle *handle)
2393 struct perf_mmap_data *data = handle->data;
2394 int cpu;
2396 handle->locked = 0;
2398 local_irq_save(handle->flags);
2399 cpu = smp_processor_id();
2401 if (in_nmi() && atomic_read(&data->lock) == cpu)
2402 return;
2404 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2405 cpu_relax();
2407 handle->locked = 1;
2410 static void perf_output_unlock(struct perf_output_handle *handle)
2412 struct perf_mmap_data *data = handle->data;
2413 unsigned long head;
2414 int cpu;
2416 data->done_head = data->head;
2418 if (!handle->locked)
2419 goto out;
2421 again:
2423 * The xchg implies a full barrier that ensures all writes are done
2424 * before we publish the new head, matched by a rmb() in userspace when
2425 * reading this position.
2427 while ((head = atomic_long_xchg(&data->done_head, 0)))
2428 data->user_page->data_head = head;
2431 * NMI can happen here, which means we can miss a done_head update.
2434 cpu = atomic_xchg(&data->lock, -1);
2435 WARN_ON_ONCE(cpu != smp_processor_id());
2438 * Therefore we have to validate we did not indeed do so.
2440 if (unlikely(atomic_long_read(&data->done_head))) {
2442 * Since we had it locked, we can lock it again.
2444 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2445 cpu_relax();
2447 goto again;
2450 if (atomic_xchg(&data->wakeup, 0))
2451 perf_output_wakeup(handle);
2452 out:
2453 local_irq_restore(handle->flags);
2456 static void perf_output_copy(struct perf_output_handle *handle,
2457 const void *buf, unsigned int len)
2459 unsigned int pages_mask;
2460 unsigned int offset;
2461 unsigned int size;
2462 void **pages;
2464 offset = handle->offset;
2465 pages_mask = handle->data->nr_pages - 1;
2466 pages = handle->data->data_pages;
2468 do {
2469 unsigned int page_offset;
2470 int nr;
2472 nr = (offset >> PAGE_SHIFT) & pages_mask;
2473 page_offset = offset & (PAGE_SIZE - 1);
2474 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2476 memcpy(pages[nr] + page_offset, buf, size);
2478 len -= size;
2479 buf += size;
2480 offset += size;
2481 } while (len);
2483 handle->offset = offset;
2486 * Check we didn't copy past our reservation window, taking the
2487 * possible unsigned int wrap into account.
2489 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2492 #define perf_output_put(handle, x) \
2493 perf_output_copy((handle), &(x), sizeof(x))
2495 static int perf_output_begin(struct perf_output_handle *handle,
2496 struct perf_counter *counter, unsigned int size,
2497 int nmi, int sample)
2499 struct perf_mmap_data *data;
2500 unsigned int offset, head;
2501 int have_lost;
2502 struct {
2503 struct perf_event_header header;
2504 u64 id;
2505 u64 lost;
2506 } lost_event;
2509 * For inherited counters we send all the output towards the parent.
2511 if (counter->parent)
2512 counter = counter->parent;
2514 rcu_read_lock();
2515 data = rcu_dereference(counter->data);
2516 if (!data)
2517 goto out;
2519 handle->data = data;
2520 handle->counter = counter;
2521 handle->nmi = nmi;
2522 handle->sample = sample;
2524 if (!data->nr_pages)
2525 goto fail;
2527 have_lost = atomic_read(&data->lost);
2528 if (have_lost)
2529 size += sizeof(lost_event);
2531 perf_output_lock(handle);
2533 do {
2534 offset = head = atomic_long_read(&data->head);
2535 head += size;
2536 if (unlikely(!perf_output_space(data, offset, head)))
2537 goto fail;
2538 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2540 handle->offset = offset;
2541 handle->head = head;
2543 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2544 atomic_set(&data->wakeup, 1);
2546 if (have_lost) {
2547 lost_event.header.type = PERF_EVENT_LOST;
2548 lost_event.header.misc = 0;
2549 lost_event.header.size = sizeof(lost_event);
2550 lost_event.id = counter->id;
2551 lost_event.lost = atomic_xchg(&data->lost, 0);
2553 perf_output_put(handle, lost_event);
2556 return 0;
2558 fail:
2559 atomic_inc(&data->lost);
2560 perf_output_unlock(handle);
2561 out:
2562 rcu_read_unlock();
2564 return -ENOSPC;
2567 static void perf_output_end(struct perf_output_handle *handle)
2569 struct perf_counter *counter = handle->counter;
2570 struct perf_mmap_data *data = handle->data;
2572 int wakeup_events = counter->attr.wakeup_events;
2574 if (handle->sample && wakeup_events) {
2575 int events = atomic_inc_return(&data->events);
2576 if (events >= wakeup_events) {
2577 atomic_sub(wakeup_events, &data->events);
2578 atomic_set(&data->wakeup, 1);
2582 perf_output_unlock(handle);
2583 rcu_read_unlock();
2586 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2589 * only top level counters have the pid namespace they were created in
2591 if (counter->parent)
2592 counter = counter->parent;
2594 return task_tgid_nr_ns(p, counter->ns);
2597 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2600 * only top level counters have the pid namespace they were created in
2602 if (counter->parent)
2603 counter = counter->parent;
2605 return task_pid_nr_ns(p, counter->ns);
2608 static void perf_counter_output(struct perf_counter *counter, int nmi,
2609 struct perf_sample_data *data)
2611 int ret;
2612 u64 sample_type = counter->attr.sample_type;
2613 struct perf_output_handle handle;
2614 struct perf_event_header header;
2615 u64 ip;
2616 struct {
2617 u32 pid, tid;
2618 } tid_entry;
2619 struct {
2620 u64 id;
2621 u64 counter;
2622 } group_entry;
2623 struct perf_callchain_entry *callchain = NULL;
2624 int callchain_size = 0;
2625 u64 time;
2626 struct {
2627 u32 cpu, reserved;
2628 } cpu_entry;
2630 header.type = PERF_EVENT_SAMPLE;
2631 header.size = sizeof(header);
2633 header.misc = 0;
2634 header.misc |= perf_misc_flags(data->regs);
2636 if (sample_type & PERF_SAMPLE_IP) {
2637 ip = perf_instruction_pointer(data->regs);
2638 header.size += sizeof(ip);
2641 if (sample_type & PERF_SAMPLE_TID) {
2642 /* namespace issues */
2643 tid_entry.pid = perf_counter_pid(counter, current);
2644 tid_entry.tid = perf_counter_tid(counter, current);
2646 header.size += sizeof(tid_entry);
2649 if (sample_type & PERF_SAMPLE_TIME) {
2651 * Maybe do better on x86 and provide cpu_clock_nmi()
2653 time = sched_clock();
2655 header.size += sizeof(u64);
2658 if (sample_type & PERF_SAMPLE_ADDR)
2659 header.size += sizeof(u64);
2661 if (sample_type & PERF_SAMPLE_ID)
2662 header.size += sizeof(u64);
2664 if (sample_type & PERF_SAMPLE_CPU) {
2665 header.size += sizeof(cpu_entry);
2667 cpu_entry.cpu = raw_smp_processor_id();
2670 if (sample_type & PERF_SAMPLE_PERIOD)
2671 header.size += sizeof(u64);
2673 if (sample_type & PERF_SAMPLE_GROUP) {
2674 header.size += sizeof(u64) +
2675 counter->nr_siblings * sizeof(group_entry);
2678 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2679 callchain = perf_callchain(data->regs);
2681 if (callchain) {
2682 callchain_size = (1 + callchain->nr) * sizeof(u64);
2683 header.size += callchain_size;
2684 } else
2685 header.size += sizeof(u64);
2688 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2689 if (ret)
2690 return;
2692 perf_output_put(&handle, header);
2694 if (sample_type & PERF_SAMPLE_IP)
2695 perf_output_put(&handle, ip);
2697 if (sample_type & PERF_SAMPLE_TID)
2698 perf_output_put(&handle, tid_entry);
2700 if (sample_type & PERF_SAMPLE_TIME)
2701 perf_output_put(&handle, time);
2703 if (sample_type & PERF_SAMPLE_ADDR)
2704 perf_output_put(&handle, data->addr);
2706 if (sample_type & PERF_SAMPLE_ID)
2707 perf_output_put(&handle, counter->id);
2709 if (sample_type & PERF_SAMPLE_CPU)
2710 perf_output_put(&handle, cpu_entry);
2712 if (sample_type & PERF_SAMPLE_PERIOD)
2713 perf_output_put(&handle, data->period);
2716 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2718 if (sample_type & PERF_SAMPLE_GROUP) {
2719 struct perf_counter *leader, *sub;
2720 u64 nr = counter->nr_siblings;
2722 perf_output_put(&handle, nr);
2724 leader = counter->group_leader;
2725 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2726 if (sub != counter)
2727 sub->pmu->read(sub);
2729 group_entry.id = sub->id;
2730 group_entry.counter = atomic64_read(&sub->count);
2732 perf_output_put(&handle, group_entry);
2736 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2737 if (callchain)
2738 perf_output_copy(&handle, callchain, callchain_size);
2739 else {
2740 u64 nr = 0;
2741 perf_output_put(&handle, nr);
2745 perf_output_end(&handle);
2749 * read event
2752 struct perf_read_event {
2753 struct perf_event_header header;
2755 u32 pid;
2756 u32 tid;
2757 u64 value;
2758 u64 format[3];
2761 static void
2762 perf_counter_read_event(struct perf_counter *counter,
2763 struct task_struct *task)
2765 struct perf_output_handle handle;
2766 struct perf_read_event event = {
2767 .header = {
2768 .type = PERF_EVENT_READ,
2769 .misc = 0,
2770 .size = sizeof(event) - sizeof(event.format),
2772 .pid = perf_counter_pid(counter, task),
2773 .tid = perf_counter_tid(counter, task),
2774 .value = atomic64_read(&counter->count),
2776 int ret, i = 0;
2778 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2779 event.header.size += sizeof(u64);
2780 event.format[i++] = counter->total_time_enabled;
2783 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2784 event.header.size += sizeof(u64);
2785 event.format[i++] = counter->total_time_running;
2788 if (counter->attr.read_format & PERF_FORMAT_ID) {
2789 u64 id;
2791 event.header.size += sizeof(u64);
2792 if (counter->parent)
2793 id = counter->parent->id;
2794 else
2795 id = counter->id;
2797 event.format[i++] = id;
2800 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2801 if (ret)
2802 return;
2804 perf_output_copy(&handle, &event, event.header.size);
2805 perf_output_end(&handle);
2809 * fork tracking
2812 struct perf_fork_event {
2813 struct task_struct *task;
2815 struct {
2816 struct perf_event_header header;
2818 u32 pid;
2819 u32 ppid;
2820 } event;
2823 static void perf_counter_fork_output(struct perf_counter *counter,
2824 struct perf_fork_event *fork_event)
2826 struct perf_output_handle handle;
2827 int size = fork_event->event.header.size;
2828 struct task_struct *task = fork_event->task;
2829 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2831 if (ret)
2832 return;
2834 fork_event->event.pid = perf_counter_pid(counter, task);
2835 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2837 perf_output_put(&handle, fork_event->event);
2838 perf_output_end(&handle);
2841 static int perf_counter_fork_match(struct perf_counter *counter)
2843 if (counter->attr.comm || counter->attr.mmap)
2844 return 1;
2846 return 0;
2849 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2850 struct perf_fork_event *fork_event)
2852 struct perf_counter *counter;
2854 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2855 return;
2857 rcu_read_lock();
2858 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2859 if (perf_counter_fork_match(counter))
2860 perf_counter_fork_output(counter, fork_event);
2862 rcu_read_unlock();
2865 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2867 struct perf_cpu_context *cpuctx;
2868 struct perf_counter_context *ctx;
2870 cpuctx = &get_cpu_var(perf_cpu_context);
2871 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2872 put_cpu_var(perf_cpu_context);
2874 rcu_read_lock();
2876 * doesn't really matter which of the child contexts the
2877 * events ends up in.
2879 ctx = rcu_dereference(current->perf_counter_ctxp);
2880 if (ctx)
2881 perf_counter_fork_ctx(ctx, fork_event);
2882 rcu_read_unlock();
2885 void perf_counter_fork(struct task_struct *task)
2887 struct perf_fork_event fork_event;
2889 if (!atomic_read(&nr_comm_counters) &&
2890 !atomic_read(&nr_mmap_counters))
2891 return;
2893 fork_event = (struct perf_fork_event){
2894 .task = task,
2895 .event = {
2896 .header = {
2897 .type = PERF_EVENT_FORK,
2898 .size = sizeof(fork_event.event),
2903 perf_counter_fork_event(&fork_event);
2907 * comm tracking
2910 struct perf_comm_event {
2911 struct task_struct *task;
2912 char *comm;
2913 int comm_size;
2915 struct {
2916 struct perf_event_header header;
2918 u32 pid;
2919 u32 tid;
2920 } event;
2923 static void perf_counter_comm_output(struct perf_counter *counter,
2924 struct perf_comm_event *comm_event)
2926 struct perf_output_handle handle;
2927 int size = comm_event->event.header.size;
2928 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2930 if (ret)
2931 return;
2933 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2934 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2936 perf_output_put(&handle, comm_event->event);
2937 perf_output_copy(&handle, comm_event->comm,
2938 comm_event->comm_size);
2939 perf_output_end(&handle);
2942 static int perf_counter_comm_match(struct perf_counter *counter)
2944 if (counter->attr.comm)
2945 return 1;
2947 return 0;
2950 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2951 struct perf_comm_event *comm_event)
2953 struct perf_counter *counter;
2955 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2956 return;
2958 rcu_read_lock();
2959 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2960 if (perf_counter_comm_match(counter))
2961 perf_counter_comm_output(counter, comm_event);
2963 rcu_read_unlock();
2966 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2968 struct perf_cpu_context *cpuctx;
2969 struct perf_counter_context *ctx;
2970 unsigned int size;
2971 char *comm = comm_event->task->comm;
2973 size = ALIGN(strlen(comm)+1, sizeof(u64));
2975 comm_event->comm = comm;
2976 comm_event->comm_size = size;
2978 comm_event->event.header.size = sizeof(comm_event->event) + size;
2980 cpuctx = &get_cpu_var(perf_cpu_context);
2981 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2982 put_cpu_var(perf_cpu_context);
2984 rcu_read_lock();
2986 * doesn't really matter which of the child contexts the
2987 * events ends up in.
2989 ctx = rcu_dereference(current->perf_counter_ctxp);
2990 if (ctx)
2991 perf_counter_comm_ctx(ctx, comm_event);
2992 rcu_read_unlock();
2995 void perf_counter_comm(struct task_struct *task)
2997 struct perf_comm_event comm_event;
2999 if (task->perf_counter_ctxp)
3000 perf_counter_enable_on_exec(task);
3002 if (!atomic_read(&nr_comm_counters))
3003 return;
3005 comm_event = (struct perf_comm_event){
3006 .task = task,
3007 .event = {
3008 .header = { .type = PERF_EVENT_COMM, },
3012 perf_counter_comm_event(&comm_event);
3016 * mmap tracking
3019 struct perf_mmap_event {
3020 struct vm_area_struct *vma;
3022 const char *file_name;
3023 int file_size;
3025 struct {
3026 struct perf_event_header header;
3028 u32 pid;
3029 u32 tid;
3030 u64 start;
3031 u64 len;
3032 u64 pgoff;
3033 } event;
3036 static void perf_counter_mmap_output(struct perf_counter *counter,
3037 struct perf_mmap_event *mmap_event)
3039 struct perf_output_handle handle;
3040 int size = mmap_event->event.header.size;
3041 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3043 if (ret)
3044 return;
3046 mmap_event->event.pid = perf_counter_pid(counter, current);
3047 mmap_event->event.tid = perf_counter_tid(counter, current);
3049 perf_output_put(&handle, mmap_event->event);
3050 perf_output_copy(&handle, mmap_event->file_name,
3051 mmap_event->file_size);
3052 perf_output_end(&handle);
3055 static int perf_counter_mmap_match(struct perf_counter *counter,
3056 struct perf_mmap_event *mmap_event)
3058 if (counter->attr.mmap)
3059 return 1;
3061 return 0;
3064 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3065 struct perf_mmap_event *mmap_event)
3067 struct perf_counter *counter;
3069 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3070 return;
3072 rcu_read_lock();
3073 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3074 if (perf_counter_mmap_match(counter, mmap_event))
3075 perf_counter_mmap_output(counter, mmap_event);
3077 rcu_read_unlock();
3080 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3082 struct perf_cpu_context *cpuctx;
3083 struct perf_counter_context *ctx;
3084 struct vm_area_struct *vma = mmap_event->vma;
3085 struct file *file = vma->vm_file;
3086 unsigned int size;
3087 char tmp[16];
3088 char *buf = NULL;
3089 const char *name;
3091 if (file) {
3092 buf = kzalloc(PATH_MAX, GFP_KERNEL);
3093 if (!buf) {
3094 name = strncpy(tmp, "//enomem", sizeof(tmp));
3095 goto got_name;
3097 name = d_path(&file->f_path, buf, PATH_MAX);
3098 if (IS_ERR(name)) {
3099 name = strncpy(tmp, "//toolong", sizeof(tmp));
3100 goto got_name;
3102 } else {
3103 name = arch_vma_name(mmap_event->vma);
3104 if (name)
3105 goto got_name;
3107 if (!vma->vm_mm) {
3108 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3109 goto got_name;
3112 name = strncpy(tmp, "//anon", sizeof(tmp));
3113 goto got_name;
3116 got_name:
3117 size = ALIGN(strlen(name)+1, sizeof(u64));
3119 mmap_event->file_name = name;
3120 mmap_event->file_size = size;
3122 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3124 cpuctx = &get_cpu_var(perf_cpu_context);
3125 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3126 put_cpu_var(perf_cpu_context);
3128 rcu_read_lock();
3130 * doesn't really matter which of the child contexts the
3131 * events ends up in.
3133 ctx = rcu_dereference(current->perf_counter_ctxp);
3134 if (ctx)
3135 perf_counter_mmap_ctx(ctx, mmap_event);
3136 rcu_read_unlock();
3138 kfree(buf);
3141 void __perf_counter_mmap(struct vm_area_struct *vma)
3143 struct perf_mmap_event mmap_event;
3145 if (!atomic_read(&nr_mmap_counters))
3146 return;
3148 mmap_event = (struct perf_mmap_event){
3149 .vma = vma,
3150 .event = {
3151 .header = { .type = PERF_EVENT_MMAP, },
3152 .start = vma->vm_start,
3153 .len = vma->vm_end - vma->vm_start,
3154 .pgoff = vma->vm_pgoff,
3158 perf_counter_mmap_event(&mmap_event);
3162 * Log sample_period changes so that analyzing tools can re-normalize the
3163 * event flow.
3166 struct freq_event {
3167 struct perf_event_header header;
3168 u64 time;
3169 u64 id;
3170 u64 period;
3173 static void perf_log_period(struct perf_counter *counter, u64 period)
3175 struct perf_output_handle handle;
3176 struct freq_event event;
3177 int ret;
3179 if (counter->hw.sample_period == period)
3180 return;
3182 if (counter->attr.sample_type & PERF_SAMPLE_PERIOD)
3183 return;
3185 event = (struct freq_event) {
3186 .header = {
3187 .type = PERF_EVENT_PERIOD,
3188 .misc = 0,
3189 .size = sizeof(event),
3191 .time = sched_clock(),
3192 .id = counter->id,
3193 .period = period,
3196 ret = perf_output_begin(&handle, counter, sizeof(event), 1, 0);
3197 if (ret)
3198 return;
3200 perf_output_put(&handle, event);
3201 perf_output_end(&handle);
3205 * IRQ throttle logging
3208 static void perf_log_throttle(struct perf_counter *counter, int enable)
3210 struct perf_output_handle handle;
3211 int ret;
3213 struct {
3214 struct perf_event_header header;
3215 u64 time;
3216 u64 id;
3217 } throttle_event = {
3218 .header = {
3219 .type = PERF_EVENT_THROTTLE + 1,
3220 .misc = 0,
3221 .size = sizeof(throttle_event),
3223 .time = sched_clock(),
3224 .id = counter->id,
3227 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3228 if (ret)
3229 return;
3231 perf_output_put(&handle, throttle_event);
3232 perf_output_end(&handle);
3236 * Generic counter overflow handling, sampling.
3239 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3240 struct perf_sample_data *data)
3242 int events = atomic_read(&counter->event_limit);
3243 int throttle = counter->pmu->unthrottle != NULL;
3244 struct hw_perf_counter *hwc = &counter->hw;
3245 int ret = 0;
3247 if (!throttle) {
3248 hwc->interrupts++;
3249 } else {
3250 if (hwc->interrupts != MAX_INTERRUPTS) {
3251 hwc->interrupts++;
3252 if (HZ * hwc->interrupts >
3253 (u64)sysctl_perf_counter_sample_rate) {
3254 hwc->interrupts = MAX_INTERRUPTS;
3255 perf_log_throttle(counter, 0);
3256 ret = 1;
3258 } else {
3260 * Keep re-disabling counters even though on the previous
3261 * pass we disabled it - just in case we raced with a
3262 * sched-in and the counter got enabled again:
3264 ret = 1;
3268 if (counter->attr.freq) {
3269 u64 now = sched_clock();
3270 s64 delta = now - hwc->freq_stamp;
3272 hwc->freq_stamp = now;
3274 if (delta > 0 && delta < TICK_NSEC)
3275 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3279 * XXX event_limit might not quite work as expected on inherited
3280 * counters
3283 counter->pending_kill = POLL_IN;
3284 if (events && atomic_dec_and_test(&counter->event_limit)) {
3285 ret = 1;
3286 counter->pending_kill = POLL_HUP;
3287 if (nmi) {
3288 counter->pending_disable = 1;
3289 perf_pending_queue(&counter->pending,
3290 perf_pending_counter);
3291 } else
3292 perf_counter_disable(counter);
3295 perf_counter_output(counter, nmi, data);
3296 return ret;
3300 * Generic software counter infrastructure
3303 static void perf_swcounter_update(struct perf_counter *counter)
3305 struct hw_perf_counter *hwc = &counter->hw;
3306 u64 prev, now;
3307 s64 delta;
3309 again:
3310 prev = atomic64_read(&hwc->prev_count);
3311 now = atomic64_read(&hwc->count);
3312 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3313 goto again;
3315 delta = now - prev;
3317 atomic64_add(delta, &counter->count);
3318 atomic64_sub(delta, &hwc->period_left);
3321 static void perf_swcounter_set_period(struct perf_counter *counter)
3323 struct hw_perf_counter *hwc = &counter->hw;
3324 s64 left = atomic64_read(&hwc->period_left);
3325 s64 period = hwc->sample_period;
3327 if (unlikely(left <= -period)) {
3328 left = period;
3329 atomic64_set(&hwc->period_left, left);
3330 hwc->last_period = period;
3333 if (unlikely(left <= 0)) {
3334 left += period;
3335 atomic64_add(period, &hwc->period_left);
3336 hwc->last_period = period;
3339 atomic64_set(&hwc->prev_count, -left);
3340 atomic64_set(&hwc->count, -left);
3343 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3345 enum hrtimer_restart ret = HRTIMER_RESTART;
3346 struct perf_sample_data data;
3347 struct perf_counter *counter;
3348 u64 period;
3350 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3351 counter->pmu->read(counter);
3353 data.addr = 0;
3354 data.regs = get_irq_regs();
3356 * In case we exclude kernel IPs or are somehow not in interrupt
3357 * context, provide the next best thing, the user IP.
3359 if ((counter->attr.exclude_kernel || !data.regs) &&
3360 !counter->attr.exclude_user)
3361 data.regs = task_pt_regs(current);
3363 if (data.regs) {
3364 if (perf_counter_overflow(counter, 0, &data))
3365 ret = HRTIMER_NORESTART;
3368 period = max_t(u64, 10000, counter->hw.sample_period);
3369 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3371 return ret;
3374 static void perf_swcounter_overflow(struct perf_counter *counter,
3375 int nmi, struct perf_sample_data *data)
3377 data->period = counter->hw.last_period;
3379 perf_swcounter_update(counter);
3380 perf_swcounter_set_period(counter);
3381 if (perf_counter_overflow(counter, nmi, data))
3382 /* soft-disable the counter */
3386 static int perf_swcounter_is_counting(struct perf_counter *counter)
3388 struct perf_counter_context *ctx;
3389 unsigned long flags;
3390 int count;
3392 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3393 return 1;
3395 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3396 return 0;
3399 * If the counter is inactive, it could be just because
3400 * its task is scheduled out, or because it's in a group
3401 * which could not go on the PMU. We want to count in
3402 * the first case but not the second. If the context is
3403 * currently active then an inactive software counter must
3404 * be the second case. If it's not currently active then
3405 * we need to know whether the counter was active when the
3406 * context was last active, which we can determine by
3407 * comparing counter->tstamp_stopped with ctx->time.
3409 * We are within an RCU read-side critical section,
3410 * which protects the existence of *ctx.
3412 ctx = counter->ctx;
3413 spin_lock_irqsave(&ctx->lock, flags);
3414 count = 1;
3415 /* Re-check state now we have the lock */
3416 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3417 counter->ctx->is_active ||
3418 counter->tstamp_stopped < ctx->time)
3419 count = 0;
3420 spin_unlock_irqrestore(&ctx->lock, flags);
3421 return count;
3424 static int perf_swcounter_match(struct perf_counter *counter,
3425 enum perf_type_id type,
3426 u32 event, struct pt_regs *regs)
3428 if (!perf_swcounter_is_counting(counter))
3429 return 0;
3431 if (counter->attr.type != type)
3432 return 0;
3433 if (counter->attr.config != event)
3434 return 0;
3436 if (regs) {
3437 if (counter->attr.exclude_user && user_mode(regs))
3438 return 0;
3440 if (counter->attr.exclude_kernel && !user_mode(regs))
3441 return 0;
3444 return 1;
3447 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3448 int nmi, struct perf_sample_data *data)
3450 int neg = atomic64_add_negative(nr, &counter->hw.count);
3452 if (counter->hw.sample_period && !neg && data->regs)
3453 perf_swcounter_overflow(counter, nmi, data);
3456 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3457 enum perf_type_id type,
3458 u32 event, u64 nr, int nmi,
3459 struct perf_sample_data *data)
3461 struct perf_counter *counter;
3463 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3464 return;
3466 rcu_read_lock();
3467 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3468 if (perf_swcounter_match(counter, type, event, data->regs))
3469 perf_swcounter_add(counter, nr, nmi, data);
3471 rcu_read_unlock();
3474 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3476 if (in_nmi())
3477 return &cpuctx->recursion[3];
3479 if (in_irq())
3480 return &cpuctx->recursion[2];
3482 if (in_softirq())
3483 return &cpuctx->recursion[1];
3485 return &cpuctx->recursion[0];
3488 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3489 u64 nr, int nmi,
3490 struct perf_sample_data *data)
3492 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3493 int *recursion = perf_swcounter_recursion_context(cpuctx);
3494 struct perf_counter_context *ctx;
3496 if (*recursion)
3497 goto out;
3499 (*recursion)++;
3500 barrier();
3502 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3503 nr, nmi, data);
3504 rcu_read_lock();
3506 * doesn't really matter which of the child contexts the
3507 * events ends up in.
3509 ctx = rcu_dereference(current->perf_counter_ctxp);
3510 if (ctx)
3511 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3512 rcu_read_unlock();
3514 barrier();
3515 (*recursion)--;
3517 out:
3518 put_cpu_var(perf_cpu_context);
3521 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3522 struct pt_regs *regs, u64 addr)
3524 struct perf_sample_data data = {
3525 .regs = regs,
3526 .addr = addr,
3529 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3532 static void perf_swcounter_read(struct perf_counter *counter)
3534 perf_swcounter_update(counter);
3537 static int perf_swcounter_enable(struct perf_counter *counter)
3539 perf_swcounter_set_period(counter);
3540 return 0;
3543 static void perf_swcounter_disable(struct perf_counter *counter)
3545 perf_swcounter_update(counter);
3548 static const struct pmu perf_ops_generic = {
3549 .enable = perf_swcounter_enable,
3550 .disable = perf_swcounter_disable,
3551 .read = perf_swcounter_read,
3555 * Software counter: cpu wall time clock
3558 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3560 int cpu = raw_smp_processor_id();
3561 s64 prev;
3562 u64 now;
3564 now = cpu_clock(cpu);
3565 prev = atomic64_read(&counter->hw.prev_count);
3566 atomic64_set(&counter->hw.prev_count, now);
3567 atomic64_add(now - prev, &counter->count);
3570 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3572 struct hw_perf_counter *hwc = &counter->hw;
3573 int cpu = raw_smp_processor_id();
3575 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3576 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3577 hwc->hrtimer.function = perf_swcounter_hrtimer;
3578 if (hwc->sample_period) {
3579 u64 period = max_t(u64, 10000, hwc->sample_period);
3580 __hrtimer_start_range_ns(&hwc->hrtimer,
3581 ns_to_ktime(period), 0,
3582 HRTIMER_MODE_REL, 0);
3585 return 0;
3588 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3590 if (counter->hw.sample_period)
3591 hrtimer_cancel(&counter->hw.hrtimer);
3592 cpu_clock_perf_counter_update(counter);
3595 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3597 cpu_clock_perf_counter_update(counter);
3600 static const struct pmu perf_ops_cpu_clock = {
3601 .enable = cpu_clock_perf_counter_enable,
3602 .disable = cpu_clock_perf_counter_disable,
3603 .read = cpu_clock_perf_counter_read,
3607 * Software counter: task time clock
3610 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3612 u64 prev;
3613 s64 delta;
3615 prev = atomic64_xchg(&counter->hw.prev_count, now);
3616 delta = now - prev;
3617 atomic64_add(delta, &counter->count);
3620 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3622 struct hw_perf_counter *hwc = &counter->hw;
3623 u64 now;
3625 now = counter->ctx->time;
3627 atomic64_set(&hwc->prev_count, now);
3628 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3629 hwc->hrtimer.function = perf_swcounter_hrtimer;
3630 if (hwc->sample_period) {
3631 u64 period = max_t(u64, 10000, hwc->sample_period);
3632 __hrtimer_start_range_ns(&hwc->hrtimer,
3633 ns_to_ktime(period), 0,
3634 HRTIMER_MODE_REL, 0);
3637 return 0;
3640 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3642 if (counter->hw.sample_period)
3643 hrtimer_cancel(&counter->hw.hrtimer);
3644 task_clock_perf_counter_update(counter, counter->ctx->time);
3648 static void task_clock_perf_counter_read(struct perf_counter *counter)
3650 u64 time;
3652 if (!in_nmi()) {
3653 update_context_time(counter->ctx);
3654 time = counter->ctx->time;
3655 } else {
3656 u64 now = perf_clock();
3657 u64 delta = now - counter->ctx->timestamp;
3658 time = counter->ctx->time + delta;
3661 task_clock_perf_counter_update(counter, time);
3664 static const struct pmu perf_ops_task_clock = {
3665 .enable = task_clock_perf_counter_enable,
3666 .disable = task_clock_perf_counter_disable,
3667 .read = task_clock_perf_counter_read,
3670 #ifdef CONFIG_EVENT_PROFILE
3671 void perf_tpcounter_event(int event_id)
3673 struct perf_sample_data data = {
3674 .regs = get_irq_regs();
3675 .addr = 0,
3678 if (!data.regs)
3679 data.regs = task_pt_regs(current);
3681 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data);
3683 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3685 extern int ftrace_profile_enable(int);
3686 extern void ftrace_profile_disable(int);
3688 static void tp_perf_counter_destroy(struct perf_counter *counter)
3690 ftrace_profile_disable(perf_event_id(&counter->attr));
3693 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3695 int event_id = perf_event_id(&counter->attr);
3696 int ret;
3698 ret = ftrace_profile_enable(event_id);
3699 if (ret)
3700 return NULL;
3702 counter->destroy = tp_perf_counter_destroy;
3704 return &perf_ops_generic;
3706 #else
3707 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3709 return NULL;
3711 #endif
3713 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3715 static void sw_perf_counter_destroy(struct perf_counter *counter)
3717 u64 event = counter->attr.config;
3719 WARN_ON(counter->parent);
3721 atomic_dec(&perf_swcounter_enabled[event]);
3724 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3726 const struct pmu *pmu = NULL;
3727 u64 event = counter->attr.config;
3730 * Software counters (currently) can't in general distinguish
3731 * between user, kernel and hypervisor events.
3732 * However, context switches and cpu migrations are considered
3733 * to be kernel events, and page faults are never hypervisor
3734 * events.
3736 switch (event) {
3737 case PERF_COUNT_SW_CPU_CLOCK:
3738 pmu = &perf_ops_cpu_clock;
3740 break;
3741 case PERF_COUNT_SW_TASK_CLOCK:
3743 * If the user instantiates this as a per-cpu counter,
3744 * use the cpu_clock counter instead.
3746 if (counter->ctx->task)
3747 pmu = &perf_ops_task_clock;
3748 else
3749 pmu = &perf_ops_cpu_clock;
3751 break;
3752 case PERF_COUNT_SW_PAGE_FAULTS:
3753 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3754 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3755 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3756 case PERF_COUNT_SW_CPU_MIGRATIONS:
3757 if (!counter->parent) {
3758 atomic_inc(&perf_swcounter_enabled[event]);
3759 counter->destroy = sw_perf_counter_destroy;
3761 pmu = &perf_ops_generic;
3762 break;
3765 return pmu;
3769 * Allocate and initialize a counter structure
3771 static struct perf_counter *
3772 perf_counter_alloc(struct perf_counter_attr *attr,
3773 int cpu,
3774 struct perf_counter_context *ctx,
3775 struct perf_counter *group_leader,
3776 struct perf_counter *parent_counter,
3777 gfp_t gfpflags)
3779 const struct pmu *pmu;
3780 struct perf_counter *counter;
3781 struct hw_perf_counter *hwc;
3782 long err;
3784 counter = kzalloc(sizeof(*counter), gfpflags);
3785 if (!counter)
3786 return ERR_PTR(-ENOMEM);
3789 * Single counters are their own group leaders, with an
3790 * empty sibling list:
3792 if (!group_leader)
3793 group_leader = counter;
3795 mutex_init(&counter->child_mutex);
3796 INIT_LIST_HEAD(&counter->child_list);
3798 INIT_LIST_HEAD(&counter->list_entry);
3799 INIT_LIST_HEAD(&counter->event_entry);
3800 INIT_LIST_HEAD(&counter->sibling_list);
3801 init_waitqueue_head(&counter->waitq);
3803 mutex_init(&counter->mmap_mutex);
3805 counter->cpu = cpu;
3806 counter->attr = *attr;
3807 counter->group_leader = group_leader;
3808 counter->pmu = NULL;
3809 counter->ctx = ctx;
3810 counter->oncpu = -1;
3812 counter->parent = parent_counter;
3814 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3815 counter->id = atomic64_inc_return(&perf_counter_id);
3817 counter->state = PERF_COUNTER_STATE_INACTIVE;
3819 if (attr->disabled)
3820 counter->state = PERF_COUNTER_STATE_OFF;
3822 pmu = NULL;
3824 hwc = &counter->hw;
3825 hwc->sample_period = attr->sample_period;
3826 if (attr->freq && attr->sample_freq)
3827 hwc->sample_period = 1;
3829 atomic64_set(&hwc->period_left, hwc->sample_period);
3832 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3834 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3835 goto done;
3837 switch (attr->type) {
3838 case PERF_TYPE_RAW:
3839 case PERF_TYPE_HARDWARE:
3840 case PERF_TYPE_HW_CACHE:
3841 pmu = hw_perf_counter_init(counter);
3842 break;
3844 case PERF_TYPE_SOFTWARE:
3845 pmu = sw_perf_counter_init(counter);
3846 break;
3848 case PERF_TYPE_TRACEPOINT:
3849 pmu = tp_perf_counter_init(counter);
3850 break;
3852 default:
3853 break;
3855 done:
3856 err = 0;
3857 if (!pmu)
3858 err = -EINVAL;
3859 else if (IS_ERR(pmu))
3860 err = PTR_ERR(pmu);
3862 if (err) {
3863 if (counter->ns)
3864 put_pid_ns(counter->ns);
3865 kfree(counter);
3866 return ERR_PTR(err);
3869 counter->pmu = pmu;
3871 if (!counter->parent) {
3872 atomic_inc(&nr_counters);
3873 if (counter->attr.mmap)
3874 atomic_inc(&nr_mmap_counters);
3875 if (counter->attr.comm)
3876 atomic_inc(&nr_comm_counters);
3879 return counter;
3882 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3883 struct perf_counter_attr *attr)
3885 int ret;
3886 u32 size;
3888 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3889 return -EFAULT;
3892 * zero the full structure, so that a short copy will be nice.
3894 memset(attr, 0, sizeof(*attr));
3896 ret = get_user(size, &uattr->size);
3897 if (ret)
3898 return ret;
3900 if (size > PAGE_SIZE) /* silly large */
3901 goto err_size;
3903 if (!size) /* abi compat */
3904 size = PERF_ATTR_SIZE_VER0;
3906 if (size < PERF_ATTR_SIZE_VER0)
3907 goto err_size;
3910 * If we're handed a bigger struct than we know of,
3911 * ensure all the unknown bits are 0.
3913 if (size > sizeof(*attr)) {
3914 unsigned long val;
3915 unsigned long __user *addr;
3916 unsigned long __user *end;
3918 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3919 sizeof(unsigned long));
3920 end = PTR_ALIGN((void __user *)uattr + size,
3921 sizeof(unsigned long));
3923 for (; addr < end; addr += sizeof(unsigned long)) {
3924 ret = get_user(val, addr);
3925 if (ret)
3926 return ret;
3927 if (val)
3928 goto err_size;
3932 ret = copy_from_user(attr, uattr, size);
3933 if (ret)
3934 return -EFAULT;
3937 * If the type exists, the corresponding creation will verify
3938 * the attr->config.
3940 if (attr->type >= PERF_TYPE_MAX)
3941 return -EINVAL;
3943 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3944 return -EINVAL;
3946 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3947 return -EINVAL;
3949 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3950 return -EINVAL;
3952 out:
3953 return ret;
3955 err_size:
3956 put_user(sizeof(*attr), &uattr->size);
3957 ret = -E2BIG;
3958 goto out;
3962 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3964 * @attr_uptr: event type attributes for monitoring/sampling
3965 * @pid: target pid
3966 * @cpu: target cpu
3967 * @group_fd: group leader counter fd
3969 SYSCALL_DEFINE5(perf_counter_open,
3970 struct perf_counter_attr __user *, attr_uptr,
3971 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3973 struct perf_counter *counter, *group_leader;
3974 struct perf_counter_attr attr;
3975 struct perf_counter_context *ctx;
3976 struct file *counter_file = NULL;
3977 struct file *group_file = NULL;
3978 int fput_needed = 0;
3979 int fput_needed2 = 0;
3980 int ret;
3982 /* for future expandability... */
3983 if (flags)
3984 return -EINVAL;
3986 ret = perf_copy_attr(attr_uptr, &attr);
3987 if (ret)
3988 return ret;
3990 if (!attr.exclude_kernel) {
3991 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
3992 return -EACCES;
3995 if (attr.freq) {
3996 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
3997 return -EINVAL;
4001 * Get the target context (task or percpu):
4003 ctx = find_get_context(pid, cpu);
4004 if (IS_ERR(ctx))
4005 return PTR_ERR(ctx);
4008 * Look up the group leader (we will attach this counter to it):
4010 group_leader = NULL;
4011 if (group_fd != -1) {
4012 ret = -EINVAL;
4013 group_file = fget_light(group_fd, &fput_needed);
4014 if (!group_file)
4015 goto err_put_context;
4016 if (group_file->f_op != &perf_fops)
4017 goto err_put_context;
4019 group_leader = group_file->private_data;
4021 * Do not allow a recursive hierarchy (this new sibling
4022 * becoming part of another group-sibling):
4024 if (group_leader->group_leader != group_leader)
4025 goto err_put_context;
4027 * Do not allow to attach to a group in a different
4028 * task or CPU context:
4030 if (group_leader->ctx != ctx)
4031 goto err_put_context;
4033 * Only a group leader can be exclusive or pinned
4035 if (attr.exclusive || attr.pinned)
4036 goto err_put_context;
4039 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4040 NULL, GFP_KERNEL);
4041 ret = PTR_ERR(counter);
4042 if (IS_ERR(counter))
4043 goto err_put_context;
4045 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4046 if (ret < 0)
4047 goto err_free_put_context;
4049 counter_file = fget_light(ret, &fput_needed2);
4050 if (!counter_file)
4051 goto err_free_put_context;
4053 counter->filp = counter_file;
4054 WARN_ON_ONCE(ctx->parent_ctx);
4055 mutex_lock(&ctx->mutex);
4056 perf_install_in_context(ctx, counter, cpu);
4057 ++ctx->generation;
4058 mutex_unlock(&ctx->mutex);
4060 counter->owner = current;
4061 get_task_struct(current);
4062 mutex_lock(&current->perf_counter_mutex);
4063 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4064 mutex_unlock(&current->perf_counter_mutex);
4066 fput_light(counter_file, fput_needed2);
4068 out_fput:
4069 fput_light(group_file, fput_needed);
4071 return ret;
4073 err_free_put_context:
4074 kfree(counter);
4076 err_put_context:
4077 put_ctx(ctx);
4079 goto out_fput;
4083 * inherit a counter from parent task to child task:
4085 static struct perf_counter *
4086 inherit_counter(struct perf_counter *parent_counter,
4087 struct task_struct *parent,
4088 struct perf_counter_context *parent_ctx,
4089 struct task_struct *child,
4090 struct perf_counter *group_leader,
4091 struct perf_counter_context *child_ctx)
4093 struct perf_counter *child_counter;
4096 * Instead of creating recursive hierarchies of counters,
4097 * we link inherited counters back to the original parent,
4098 * which has a filp for sure, which we use as the reference
4099 * count:
4101 if (parent_counter->parent)
4102 parent_counter = parent_counter->parent;
4104 child_counter = perf_counter_alloc(&parent_counter->attr,
4105 parent_counter->cpu, child_ctx,
4106 group_leader, parent_counter,
4107 GFP_KERNEL);
4108 if (IS_ERR(child_counter))
4109 return child_counter;
4110 get_ctx(child_ctx);
4113 * Make the child state follow the state of the parent counter,
4114 * not its attr.disabled bit. We hold the parent's mutex,
4115 * so we won't race with perf_counter_{en, dis}able_family.
4117 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4118 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4119 else
4120 child_counter->state = PERF_COUNTER_STATE_OFF;
4122 if (parent_counter->attr.freq)
4123 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4126 * Link it up in the child's context:
4128 add_counter_to_ctx(child_counter, child_ctx);
4131 * Get a reference to the parent filp - we will fput it
4132 * when the child counter exits. This is safe to do because
4133 * we are in the parent and we know that the filp still
4134 * exists and has a nonzero count:
4136 atomic_long_inc(&parent_counter->filp->f_count);
4139 * Link this into the parent counter's child list
4141 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4142 mutex_lock(&parent_counter->child_mutex);
4143 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4144 mutex_unlock(&parent_counter->child_mutex);
4146 return child_counter;
4149 static int inherit_group(struct perf_counter *parent_counter,
4150 struct task_struct *parent,
4151 struct perf_counter_context *parent_ctx,
4152 struct task_struct *child,
4153 struct perf_counter_context *child_ctx)
4155 struct perf_counter *leader;
4156 struct perf_counter *sub;
4157 struct perf_counter *child_ctr;
4159 leader = inherit_counter(parent_counter, parent, parent_ctx,
4160 child, NULL, child_ctx);
4161 if (IS_ERR(leader))
4162 return PTR_ERR(leader);
4163 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4164 child_ctr = inherit_counter(sub, parent, parent_ctx,
4165 child, leader, child_ctx);
4166 if (IS_ERR(child_ctr))
4167 return PTR_ERR(child_ctr);
4169 return 0;
4172 static void sync_child_counter(struct perf_counter *child_counter,
4173 struct task_struct *child)
4175 struct perf_counter *parent_counter = child_counter->parent;
4176 u64 child_val;
4178 if (child_counter->attr.inherit_stat)
4179 perf_counter_read_event(child_counter, child);
4181 child_val = atomic64_read(&child_counter->count);
4184 * Add back the child's count to the parent's count:
4186 atomic64_add(child_val, &parent_counter->count);
4187 atomic64_add(child_counter->total_time_enabled,
4188 &parent_counter->child_total_time_enabled);
4189 atomic64_add(child_counter->total_time_running,
4190 &parent_counter->child_total_time_running);
4193 * Remove this counter from the parent's list
4195 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4196 mutex_lock(&parent_counter->child_mutex);
4197 list_del_init(&child_counter->child_list);
4198 mutex_unlock(&parent_counter->child_mutex);
4201 * Release the parent counter, if this was the last
4202 * reference to it.
4204 fput(parent_counter->filp);
4207 static void
4208 __perf_counter_exit_task(struct perf_counter *child_counter,
4209 struct perf_counter_context *child_ctx,
4210 struct task_struct *child)
4212 struct perf_counter *parent_counter;
4214 update_counter_times(child_counter);
4215 perf_counter_remove_from_context(child_counter);
4217 parent_counter = child_counter->parent;
4219 * It can happen that parent exits first, and has counters
4220 * that are still around due to the child reference. These
4221 * counters need to be zapped - but otherwise linger.
4223 if (parent_counter) {
4224 sync_child_counter(child_counter, child);
4225 free_counter(child_counter);
4230 * When a child task exits, feed back counter values to parent counters.
4232 void perf_counter_exit_task(struct task_struct *child)
4234 struct perf_counter *child_counter, *tmp;
4235 struct perf_counter_context *child_ctx;
4236 unsigned long flags;
4238 if (likely(!child->perf_counter_ctxp))
4239 return;
4241 local_irq_save(flags);
4243 * We can't reschedule here because interrupts are disabled,
4244 * and either child is current or it is a task that can't be
4245 * scheduled, so we are now safe from rescheduling changing
4246 * our context.
4248 child_ctx = child->perf_counter_ctxp;
4249 __perf_counter_task_sched_out(child_ctx);
4252 * Take the context lock here so that if find_get_context is
4253 * reading child->perf_counter_ctxp, we wait until it has
4254 * incremented the context's refcount before we do put_ctx below.
4256 spin_lock(&child_ctx->lock);
4257 child->perf_counter_ctxp = NULL;
4258 if (child_ctx->parent_ctx) {
4260 * This context is a clone; unclone it so it can't get
4261 * swapped to another process while we're removing all
4262 * the counters from it.
4264 put_ctx(child_ctx->parent_ctx);
4265 child_ctx->parent_ctx = NULL;
4267 spin_unlock(&child_ctx->lock);
4268 local_irq_restore(flags);
4271 * We can recurse on the same lock type through:
4273 * __perf_counter_exit_task()
4274 * sync_child_counter()
4275 * fput(parent_counter->filp)
4276 * perf_release()
4277 * mutex_lock(&ctx->mutex)
4279 * But since its the parent context it won't be the same instance.
4281 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4283 again:
4284 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4285 list_entry)
4286 __perf_counter_exit_task(child_counter, child_ctx, child);
4289 * If the last counter was a group counter, it will have appended all
4290 * its siblings to the list, but we obtained 'tmp' before that which
4291 * will still point to the list head terminating the iteration.
4293 if (!list_empty(&child_ctx->counter_list))
4294 goto again;
4296 mutex_unlock(&child_ctx->mutex);
4298 put_ctx(child_ctx);
4302 * free an unexposed, unused context as created by inheritance by
4303 * init_task below, used by fork() in case of fail.
4305 void perf_counter_free_task(struct task_struct *task)
4307 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4308 struct perf_counter *counter, *tmp;
4310 if (!ctx)
4311 return;
4313 mutex_lock(&ctx->mutex);
4314 again:
4315 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4316 struct perf_counter *parent = counter->parent;
4318 if (WARN_ON_ONCE(!parent))
4319 continue;
4321 mutex_lock(&parent->child_mutex);
4322 list_del_init(&counter->child_list);
4323 mutex_unlock(&parent->child_mutex);
4325 fput(parent->filp);
4327 list_del_counter(counter, ctx);
4328 free_counter(counter);
4331 if (!list_empty(&ctx->counter_list))
4332 goto again;
4334 mutex_unlock(&ctx->mutex);
4336 put_ctx(ctx);
4340 * Initialize the perf_counter context in task_struct
4342 int perf_counter_init_task(struct task_struct *child)
4344 struct perf_counter_context *child_ctx, *parent_ctx;
4345 struct perf_counter_context *cloned_ctx;
4346 struct perf_counter *counter;
4347 struct task_struct *parent = current;
4348 int inherited_all = 1;
4349 int ret = 0;
4351 child->perf_counter_ctxp = NULL;
4353 mutex_init(&child->perf_counter_mutex);
4354 INIT_LIST_HEAD(&child->perf_counter_list);
4356 if (likely(!parent->perf_counter_ctxp))
4357 return 0;
4360 * This is executed from the parent task context, so inherit
4361 * counters that have been marked for cloning.
4362 * First allocate and initialize a context for the child.
4365 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4366 if (!child_ctx)
4367 return -ENOMEM;
4369 __perf_counter_init_context(child_ctx, child);
4370 child->perf_counter_ctxp = child_ctx;
4371 get_task_struct(child);
4374 * If the parent's context is a clone, pin it so it won't get
4375 * swapped under us.
4377 parent_ctx = perf_pin_task_context(parent);
4380 * No need to check if parent_ctx != NULL here; since we saw
4381 * it non-NULL earlier, the only reason for it to become NULL
4382 * is if we exit, and since we're currently in the middle of
4383 * a fork we can't be exiting at the same time.
4387 * Lock the parent list. No need to lock the child - not PID
4388 * hashed yet and not running, so nobody can access it.
4390 mutex_lock(&parent_ctx->mutex);
4393 * We dont have to disable NMIs - we are only looking at
4394 * the list, not manipulating it:
4396 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4397 if (counter != counter->group_leader)
4398 continue;
4400 if (!counter->attr.inherit) {
4401 inherited_all = 0;
4402 continue;
4405 ret = inherit_group(counter, parent, parent_ctx,
4406 child, child_ctx);
4407 if (ret) {
4408 inherited_all = 0;
4409 break;
4413 if (inherited_all) {
4415 * Mark the child context as a clone of the parent
4416 * context, or of whatever the parent is a clone of.
4417 * Note that if the parent is a clone, it could get
4418 * uncloned at any point, but that doesn't matter
4419 * because the list of counters and the generation
4420 * count can't have changed since we took the mutex.
4422 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4423 if (cloned_ctx) {
4424 child_ctx->parent_ctx = cloned_ctx;
4425 child_ctx->parent_gen = parent_ctx->parent_gen;
4426 } else {
4427 child_ctx->parent_ctx = parent_ctx;
4428 child_ctx->parent_gen = parent_ctx->generation;
4430 get_ctx(child_ctx->parent_ctx);
4433 mutex_unlock(&parent_ctx->mutex);
4435 perf_unpin_context(parent_ctx);
4437 return ret;
4440 static void __cpuinit perf_counter_init_cpu(int cpu)
4442 struct perf_cpu_context *cpuctx;
4444 cpuctx = &per_cpu(perf_cpu_context, cpu);
4445 __perf_counter_init_context(&cpuctx->ctx, NULL);
4447 spin_lock(&perf_resource_lock);
4448 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4449 spin_unlock(&perf_resource_lock);
4451 hw_perf_counter_setup(cpu);
4454 #ifdef CONFIG_HOTPLUG_CPU
4455 static void __perf_counter_exit_cpu(void *info)
4457 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4458 struct perf_counter_context *ctx = &cpuctx->ctx;
4459 struct perf_counter *counter, *tmp;
4461 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4462 __perf_counter_remove_from_context(counter);
4464 static void perf_counter_exit_cpu(int cpu)
4466 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4467 struct perf_counter_context *ctx = &cpuctx->ctx;
4469 mutex_lock(&ctx->mutex);
4470 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4471 mutex_unlock(&ctx->mutex);
4473 #else
4474 static inline void perf_counter_exit_cpu(int cpu) { }
4475 #endif
4477 static int __cpuinit
4478 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4480 unsigned int cpu = (long)hcpu;
4482 switch (action) {
4484 case CPU_UP_PREPARE:
4485 case CPU_UP_PREPARE_FROZEN:
4486 perf_counter_init_cpu(cpu);
4487 break;
4489 case CPU_DOWN_PREPARE:
4490 case CPU_DOWN_PREPARE_FROZEN:
4491 perf_counter_exit_cpu(cpu);
4492 break;
4494 default:
4495 break;
4498 return NOTIFY_OK;
4502 * This has to have a higher priority than migration_notifier in sched.c.
4504 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4505 .notifier_call = perf_cpu_notify,
4506 .priority = 20,
4509 void __init perf_counter_init(void)
4511 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4512 (void *)(long)smp_processor_id());
4513 register_cpu_notifier(&perf_cpu_nb);
4516 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4518 return sprintf(buf, "%d\n", perf_reserved_percpu);
4521 static ssize_t
4522 perf_set_reserve_percpu(struct sysdev_class *class,
4523 const char *buf,
4524 size_t count)
4526 struct perf_cpu_context *cpuctx;
4527 unsigned long val;
4528 int err, cpu, mpt;
4530 err = strict_strtoul(buf, 10, &val);
4531 if (err)
4532 return err;
4533 if (val > perf_max_counters)
4534 return -EINVAL;
4536 spin_lock(&perf_resource_lock);
4537 perf_reserved_percpu = val;
4538 for_each_online_cpu(cpu) {
4539 cpuctx = &per_cpu(perf_cpu_context, cpu);
4540 spin_lock_irq(&cpuctx->ctx.lock);
4541 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4542 perf_max_counters - perf_reserved_percpu);
4543 cpuctx->max_pertask = mpt;
4544 spin_unlock_irq(&cpuctx->ctx.lock);
4546 spin_unlock(&perf_resource_lock);
4548 return count;
4551 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4553 return sprintf(buf, "%d\n", perf_overcommit);
4556 static ssize_t
4557 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4559 unsigned long val;
4560 int err;
4562 err = strict_strtoul(buf, 10, &val);
4563 if (err)
4564 return err;
4565 if (val > 1)
4566 return -EINVAL;
4568 spin_lock(&perf_resource_lock);
4569 perf_overcommit = val;
4570 spin_unlock(&perf_resource_lock);
4572 return count;
4575 static SYSDEV_CLASS_ATTR(
4576 reserve_percpu,
4577 0644,
4578 perf_show_reserve_percpu,
4579 perf_set_reserve_percpu
4582 static SYSDEV_CLASS_ATTR(
4583 overcommit,
4584 0644,
4585 perf_show_overcommit,
4586 perf_set_overcommit
4589 static struct attribute *perfclass_attrs[] = {
4590 &attr_reserve_percpu.attr,
4591 &attr_overcommit.attr,
4592 NULL
4595 static struct attribute_group perfclass_attr_group = {
4596 .attrs = perfclass_attrs,
4597 .name = "perf_counters",
4600 static int __init perf_counter_sysfs_init(void)
4602 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4603 &perfclass_attr_group);
4605 device_initcall(perf_counter_sysfs_init);