rt2x00: Add dynamic detection of eFuse EEPROM in rt2800pci.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000 / e1000_main.c
blobc938114a34ab757fa39d67d7d7fe639ee50bba36
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217 * e1000_init_module - Driver Registration Routine
219 * e1000_init_module is the first routine called when the driver is
220 * loaded. All it does is register with the PCI subsystem.
223 static int __init e1000_init_module(void)
225 int ret;
226 printk(KERN_INFO "%s - version %s\n",
227 e1000_driver_string, e1000_driver_version);
229 printk(KERN_INFO "%s\n", e1000_copyright);
231 ret = pci_register_driver(&e1000_driver);
232 if (copybreak != COPYBREAK_DEFAULT) {
233 if (copybreak == 0)
234 printk(KERN_INFO "e1000: copybreak disabled\n");
235 else
236 printk(KERN_INFO "e1000: copybreak enabled for "
237 "packets <= %u bytes\n", copybreak);
239 return ret;
242 module_init(e1000_init_module);
245 * e1000_exit_module - Driver Exit Cleanup Routine
247 * e1000_exit_module is called just before the driver is removed
248 * from memory.
251 static void __exit e1000_exit_module(void)
253 pci_unregister_driver(&e1000_driver);
256 module_exit(e1000_exit_module);
258 static int e1000_request_irq(struct e1000_adapter *adapter)
260 struct net_device *netdev = adapter->netdev;
261 irq_handler_t handler = e1000_intr;
262 int irq_flags = IRQF_SHARED;
263 int err;
265 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266 netdev);
267 if (err) {
268 DPRINTK(PROBE, ERR,
269 "Unable to allocate interrupt Error: %d\n", err);
272 return err;
275 static void e1000_free_irq(struct e1000_adapter *adapter)
277 struct net_device *netdev = adapter->netdev;
279 free_irq(adapter->pdev->irq, netdev);
283 * e1000_irq_disable - Mask off interrupt generation on the NIC
284 * @adapter: board private structure
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
289 struct e1000_hw *hw = &adapter->hw;
291 ew32(IMC, ~0);
292 E1000_WRITE_FLUSH();
293 synchronize_irq(adapter->pdev->irq);
297 * e1000_irq_enable - Enable default interrupt generation settings
298 * @adapter: board private structure
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
303 struct e1000_hw *hw = &adapter->hw;
305 ew32(IMS, IMS_ENABLE_MASK);
306 E1000_WRITE_FLUSH();
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
312 struct net_device *netdev = adapter->netdev;
313 u16 vid = hw->mng_cookie.vlan_id;
314 u16 old_vid = adapter->mng_vlan_id;
315 if (adapter->vlgrp) {
316 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317 if (hw->mng_cookie.status &
318 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319 e1000_vlan_rx_add_vid(netdev, vid);
320 adapter->mng_vlan_id = vid;
321 } else
322 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
324 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325 (vid != old_vid) &&
326 !vlan_group_get_device(adapter->vlgrp, old_vid))
327 e1000_vlan_rx_kill_vid(netdev, old_vid);
328 } else
329 adapter->mng_vlan_id = vid;
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
335 struct e1000_hw *hw = &adapter->hw;
337 if (adapter->en_mng_pt) {
338 u32 manc = er32(MANC);
340 /* disable hardware interception of ARP */
341 manc &= ~(E1000_MANC_ARP_EN);
343 ew32(MANC, manc);
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
349 struct e1000_hw *hw = &adapter->hw;
351 if (adapter->en_mng_pt) {
352 u32 manc = er32(MANC);
354 /* re-enable hardware interception of ARP */
355 manc |= E1000_MANC_ARP_EN;
357 ew32(MANC, manc);
362 * e1000_configure - configure the hardware for RX and TX
363 * @adapter = private board structure
365 static void e1000_configure(struct e1000_adapter *adapter)
367 struct net_device *netdev = adapter->netdev;
368 int i;
370 e1000_set_rx_mode(netdev);
372 e1000_restore_vlan(adapter);
373 e1000_init_manageability(adapter);
375 e1000_configure_tx(adapter);
376 e1000_setup_rctl(adapter);
377 e1000_configure_rx(adapter);
378 /* call E1000_DESC_UNUSED which always leaves
379 * at least 1 descriptor unused to make sure
380 * next_to_use != next_to_clean */
381 for (i = 0; i < adapter->num_rx_queues; i++) {
382 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383 adapter->alloc_rx_buf(adapter, ring,
384 E1000_DESC_UNUSED(ring));
387 adapter->tx_queue_len = netdev->tx_queue_len;
390 int e1000_up(struct e1000_adapter *adapter)
392 struct e1000_hw *hw = &adapter->hw;
394 /* hardware has been reset, we need to reload some things */
395 e1000_configure(adapter);
397 clear_bit(__E1000_DOWN, &adapter->flags);
399 napi_enable(&adapter->napi);
401 e1000_irq_enable(adapter);
403 netif_wake_queue(adapter->netdev);
405 /* fire a link change interrupt to start the watchdog */
406 ew32(ICS, E1000_ICS_LSC);
407 return 0;
411 * e1000_power_up_phy - restore link in case the phy was powered down
412 * @adapter: address of board private structure
414 * The phy may be powered down to save power and turn off link when the
415 * driver is unloaded and wake on lan is not enabled (among others)
416 * *** this routine MUST be followed by a call to e1000_reset ***
420 void e1000_power_up_phy(struct e1000_adapter *adapter)
422 struct e1000_hw *hw = &adapter->hw;
423 u16 mii_reg = 0;
425 /* Just clear the power down bit to wake the phy back up */
426 if (hw->media_type == e1000_media_type_copper) {
427 /* according to the manual, the phy will retain its
428 * settings across a power-down/up cycle */
429 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
430 mii_reg &= ~MII_CR_POWER_DOWN;
431 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
435 static void e1000_power_down_phy(struct e1000_adapter *adapter)
437 struct e1000_hw *hw = &adapter->hw;
439 /* Power down the PHY so no link is implied when interface is down *
440 * The PHY cannot be powered down if any of the following is true *
441 * (a) WoL is enabled
442 * (b) AMT is active
443 * (c) SoL/IDER session is active */
444 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
445 hw->media_type == e1000_media_type_copper) {
446 u16 mii_reg = 0;
448 switch (hw->mac_type) {
449 case e1000_82540:
450 case e1000_82545:
451 case e1000_82545_rev_3:
452 case e1000_82546:
453 case e1000_82546_rev_3:
454 case e1000_82541:
455 case e1000_82541_rev_2:
456 case e1000_82547:
457 case e1000_82547_rev_2:
458 if (er32(MANC) & E1000_MANC_SMBUS_EN)
459 goto out;
460 break;
461 default:
462 goto out;
464 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
465 mii_reg |= MII_CR_POWER_DOWN;
466 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
467 mdelay(1);
469 out:
470 return;
473 void e1000_down(struct e1000_adapter *adapter)
475 struct e1000_hw *hw = &adapter->hw;
476 struct net_device *netdev = adapter->netdev;
477 u32 rctl, tctl;
479 /* signal that we're down so the interrupt handler does not
480 * reschedule our watchdog timer */
481 set_bit(__E1000_DOWN, &adapter->flags);
483 /* disable receives in the hardware */
484 rctl = er32(RCTL);
485 ew32(RCTL, rctl & ~E1000_RCTL_EN);
486 /* flush and sleep below */
488 netif_tx_disable(netdev);
490 /* disable transmits in the hardware */
491 tctl = er32(TCTL);
492 tctl &= ~E1000_TCTL_EN;
493 ew32(TCTL, tctl);
494 /* flush both disables and wait for them to finish */
495 E1000_WRITE_FLUSH();
496 msleep(10);
498 napi_disable(&adapter->napi);
500 e1000_irq_disable(adapter);
502 del_timer_sync(&adapter->tx_fifo_stall_timer);
503 del_timer_sync(&adapter->watchdog_timer);
504 del_timer_sync(&adapter->phy_info_timer);
506 netdev->tx_queue_len = adapter->tx_queue_len;
507 adapter->link_speed = 0;
508 adapter->link_duplex = 0;
509 netif_carrier_off(netdev);
511 e1000_reset(adapter);
512 e1000_clean_all_tx_rings(adapter);
513 e1000_clean_all_rx_rings(adapter);
516 void e1000_reinit_locked(struct e1000_adapter *adapter)
518 WARN_ON(in_interrupt());
519 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
520 msleep(1);
521 e1000_down(adapter);
522 e1000_up(adapter);
523 clear_bit(__E1000_RESETTING, &adapter->flags);
526 void e1000_reset(struct e1000_adapter *adapter)
528 struct e1000_hw *hw = &adapter->hw;
529 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
530 bool legacy_pba_adjust = false;
531 u16 hwm;
533 /* Repartition Pba for greater than 9k mtu
534 * To take effect CTRL.RST is required.
537 switch (hw->mac_type) {
538 case e1000_82542_rev2_0:
539 case e1000_82542_rev2_1:
540 case e1000_82543:
541 case e1000_82544:
542 case e1000_82540:
543 case e1000_82541:
544 case e1000_82541_rev_2:
545 legacy_pba_adjust = true;
546 pba = E1000_PBA_48K;
547 break;
548 case e1000_82545:
549 case e1000_82545_rev_3:
550 case e1000_82546:
551 case e1000_82546_rev_3:
552 pba = E1000_PBA_48K;
553 break;
554 case e1000_82547:
555 case e1000_82547_rev_2:
556 legacy_pba_adjust = true;
557 pba = E1000_PBA_30K;
558 break;
559 case e1000_undefined:
560 case e1000_num_macs:
561 break;
564 if (legacy_pba_adjust) {
565 if (hw->max_frame_size > E1000_RXBUFFER_8192)
566 pba -= 8; /* allocate more FIFO for Tx */
568 if (hw->mac_type == e1000_82547) {
569 adapter->tx_fifo_head = 0;
570 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
571 adapter->tx_fifo_size =
572 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
573 atomic_set(&adapter->tx_fifo_stall, 0);
575 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
576 /* adjust PBA for jumbo frames */
577 ew32(PBA, pba);
579 /* To maintain wire speed transmits, the Tx FIFO should be
580 * large enough to accommodate two full transmit packets,
581 * rounded up to the next 1KB and expressed in KB. Likewise,
582 * the Rx FIFO should be large enough to accommodate at least
583 * one full receive packet and is similarly rounded up and
584 * expressed in KB. */
585 pba = er32(PBA);
586 /* upper 16 bits has Tx packet buffer allocation size in KB */
587 tx_space = pba >> 16;
588 /* lower 16 bits has Rx packet buffer allocation size in KB */
589 pba &= 0xffff;
591 * the tx fifo also stores 16 bytes of information about the tx
592 * but don't include ethernet FCS because hardware appends it
594 min_tx_space = (hw->max_frame_size +
595 sizeof(struct e1000_tx_desc) -
596 ETH_FCS_LEN) * 2;
597 min_tx_space = ALIGN(min_tx_space, 1024);
598 min_tx_space >>= 10;
599 /* software strips receive CRC, so leave room for it */
600 min_rx_space = hw->max_frame_size;
601 min_rx_space = ALIGN(min_rx_space, 1024);
602 min_rx_space >>= 10;
604 /* If current Tx allocation is less than the min Tx FIFO size,
605 * and the min Tx FIFO size is less than the current Rx FIFO
606 * allocation, take space away from current Rx allocation */
607 if (tx_space < min_tx_space &&
608 ((min_tx_space - tx_space) < pba)) {
609 pba = pba - (min_tx_space - tx_space);
611 /* PCI/PCIx hardware has PBA alignment constraints */
612 switch (hw->mac_type) {
613 case e1000_82545 ... e1000_82546_rev_3:
614 pba &= ~(E1000_PBA_8K - 1);
615 break;
616 default:
617 break;
620 /* if short on rx space, rx wins and must trump tx
621 * adjustment or use Early Receive if available */
622 if (pba < min_rx_space)
623 pba = min_rx_space;
627 ew32(PBA, pba);
630 * flow control settings:
631 * The high water mark must be low enough to fit one full frame
632 * (or the size used for early receive) above it in the Rx FIFO.
633 * Set it to the lower of:
634 * - 90% of the Rx FIFO size, and
635 * - the full Rx FIFO size minus the early receive size (for parts
636 * with ERT support assuming ERT set to E1000_ERT_2048), or
637 * - the full Rx FIFO size minus one full frame
639 hwm = min(((pba << 10) * 9 / 10),
640 ((pba << 10) - hw->max_frame_size));
642 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
643 hw->fc_low_water = hw->fc_high_water - 8;
644 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
645 hw->fc_send_xon = 1;
646 hw->fc = hw->original_fc;
648 /* Allow time for pending master requests to run */
649 e1000_reset_hw(hw);
650 if (hw->mac_type >= e1000_82544)
651 ew32(WUC, 0);
653 if (e1000_init_hw(hw))
654 DPRINTK(PROBE, ERR, "Hardware Error\n");
655 e1000_update_mng_vlan(adapter);
657 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
658 if (hw->mac_type >= e1000_82544 &&
659 hw->autoneg == 1 &&
660 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
661 u32 ctrl = er32(CTRL);
662 /* clear phy power management bit if we are in gig only mode,
663 * which if enabled will attempt negotiation to 100Mb, which
664 * can cause a loss of link at power off or driver unload */
665 ctrl &= ~E1000_CTRL_SWDPIN3;
666 ew32(CTRL, ctrl);
669 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
670 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
672 e1000_reset_adaptive(hw);
673 e1000_phy_get_info(hw, &adapter->phy_info);
675 e1000_release_manageability(adapter);
679 * Dump the eeprom for users having checksum issues
681 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
683 struct net_device *netdev = adapter->netdev;
684 struct ethtool_eeprom eeprom;
685 const struct ethtool_ops *ops = netdev->ethtool_ops;
686 u8 *data;
687 int i;
688 u16 csum_old, csum_new = 0;
690 eeprom.len = ops->get_eeprom_len(netdev);
691 eeprom.offset = 0;
693 data = kmalloc(eeprom.len, GFP_KERNEL);
694 if (!data) {
695 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
696 " data\n");
697 return;
700 ops->get_eeprom(netdev, &eeprom, data);
702 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
703 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
704 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
705 csum_new += data[i] + (data[i + 1] << 8);
706 csum_new = EEPROM_SUM - csum_new;
708 printk(KERN_ERR "/*********************/\n");
709 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
710 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
712 printk(KERN_ERR "Offset Values\n");
713 printk(KERN_ERR "======== ======\n");
714 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
716 printk(KERN_ERR "Include this output when contacting your support "
717 "provider.\n");
718 printk(KERN_ERR "This is not a software error! Something bad "
719 "happened to your hardware or\n");
720 printk(KERN_ERR "EEPROM image. Ignoring this "
721 "problem could result in further problems,\n");
722 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
723 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
724 "which is invalid\n");
725 printk(KERN_ERR "and requires you to set the proper MAC "
726 "address manually before continuing\n");
727 printk(KERN_ERR "to enable this network device.\n");
728 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
729 "to your hardware vendor\n");
730 printk(KERN_ERR "or Intel Customer Support.\n");
731 printk(KERN_ERR "/*********************/\n");
733 kfree(data);
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
740 * Return true if an adapter needs ioport resources
742 static int e1000_is_need_ioport(struct pci_dev *pdev)
744 switch (pdev->device) {
745 case E1000_DEV_ID_82540EM:
746 case E1000_DEV_ID_82540EM_LOM:
747 case E1000_DEV_ID_82540EP:
748 case E1000_DEV_ID_82540EP_LOM:
749 case E1000_DEV_ID_82540EP_LP:
750 case E1000_DEV_ID_82541EI:
751 case E1000_DEV_ID_82541EI_MOBILE:
752 case E1000_DEV_ID_82541ER:
753 case E1000_DEV_ID_82541ER_LOM:
754 case E1000_DEV_ID_82541GI:
755 case E1000_DEV_ID_82541GI_LF:
756 case E1000_DEV_ID_82541GI_MOBILE:
757 case E1000_DEV_ID_82544EI_COPPER:
758 case E1000_DEV_ID_82544EI_FIBER:
759 case E1000_DEV_ID_82544GC_COPPER:
760 case E1000_DEV_ID_82544GC_LOM:
761 case E1000_DEV_ID_82545EM_COPPER:
762 case E1000_DEV_ID_82545EM_FIBER:
763 case E1000_DEV_ID_82546EB_COPPER:
764 case E1000_DEV_ID_82546EB_FIBER:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER:
766 return true;
767 default:
768 return false;
772 static const struct net_device_ops e1000_netdev_ops = {
773 .ndo_open = e1000_open,
774 .ndo_stop = e1000_close,
775 .ndo_start_xmit = e1000_xmit_frame,
776 .ndo_get_stats = e1000_get_stats,
777 .ndo_set_rx_mode = e1000_set_rx_mode,
778 .ndo_set_mac_address = e1000_set_mac,
779 .ndo_tx_timeout = e1000_tx_timeout,
780 .ndo_change_mtu = e1000_change_mtu,
781 .ndo_do_ioctl = e1000_ioctl,
782 .ndo_validate_addr = eth_validate_addr,
784 .ndo_vlan_rx_register = e1000_vlan_rx_register,
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller = e1000_netpoll,
789 #endif
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
797 * Returns 0 on success, negative on failure
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
803 static int __devinit e1000_probe(struct pci_dev *pdev,
804 const struct pci_device_id *ent)
806 struct net_device *netdev;
807 struct e1000_adapter *adapter;
808 struct e1000_hw *hw;
810 static int cards_found = 0;
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */
812 int i, err, pci_using_dac;
813 u16 eeprom_data = 0;
814 u16 eeprom_apme_mask = E1000_EEPROM_APME;
815 int bars, need_ioport;
817 /* do not allocate ioport bars when not needed */
818 need_ioport = e1000_is_need_ioport(pdev);
819 if (need_ioport) {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
821 err = pci_enable_device(pdev);
822 } else {
823 bars = pci_select_bars(pdev, IORESOURCE_MEM);
824 err = pci_enable_device_mem(pdev);
826 if (err)
827 return err;
829 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
830 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
831 pci_using_dac = 1;
832 } else {
833 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
834 if (err) {
835 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
836 if (err) {
837 E1000_ERR("No usable DMA configuration, "
838 "aborting\n");
839 goto err_dma;
842 pci_using_dac = 0;
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
846 if (err)
847 goto err_pci_reg;
849 pci_set_master(pdev);
851 err = -ENOMEM;
852 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
853 if (!netdev)
854 goto err_alloc_etherdev;
856 SET_NETDEV_DEV(netdev, &pdev->dev);
858 pci_set_drvdata(pdev, netdev);
859 adapter = netdev_priv(netdev);
860 adapter->netdev = netdev;
861 adapter->pdev = pdev;
862 adapter->msg_enable = (1 << debug) - 1;
863 adapter->bars = bars;
864 adapter->need_ioport = need_ioport;
866 hw = &adapter->hw;
867 hw->back = adapter;
869 err = -EIO;
870 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
871 if (!hw->hw_addr)
872 goto err_ioremap;
874 if (adapter->need_ioport) {
875 for (i = BAR_1; i <= BAR_5; i++) {
876 if (pci_resource_len(pdev, i) == 0)
877 continue;
878 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
879 hw->io_base = pci_resource_start(pdev, i);
880 break;
885 netdev->netdev_ops = &e1000_netdev_ops;
886 e1000_set_ethtool_ops(netdev);
887 netdev->watchdog_timeo = 5 * HZ;
888 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
890 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
892 adapter->bd_number = cards_found;
894 /* setup the private structure */
896 err = e1000_sw_init(adapter);
897 if (err)
898 goto err_sw_init;
900 err = -EIO;
902 if (hw->mac_type >= e1000_82543) {
903 netdev->features = NETIF_F_SG |
904 NETIF_F_HW_CSUM |
905 NETIF_F_HW_VLAN_TX |
906 NETIF_F_HW_VLAN_RX |
907 NETIF_F_HW_VLAN_FILTER;
910 if ((hw->mac_type >= e1000_82544) &&
911 (hw->mac_type != e1000_82547))
912 netdev->features |= NETIF_F_TSO;
914 if (pci_using_dac)
915 netdev->features |= NETIF_F_HIGHDMA;
917 netdev->vlan_features |= NETIF_F_TSO;
918 netdev->vlan_features |= NETIF_F_HW_CSUM;
919 netdev->vlan_features |= NETIF_F_SG;
921 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
923 /* initialize eeprom parameters */
924 if (e1000_init_eeprom_params(hw)) {
925 E1000_ERR("EEPROM initialization failed\n");
926 goto err_eeprom;
929 /* before reading the EEPROM, reset the controller to
930 * put the device in a known good starting state */
932 e1000_reset_hw(hw);
934 /* make sure the EEPROM is good */
935 if (e1000_validate_eeprom_checksum(hw) < 0) {
936 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
937 e1000_dump_eeprom(adapter);
939 * set MAC address to all zeroes to invalidate and temporary
940 * disable this device for the user. This blocks regular
941 * traffic while still permitting ethtool ioctls from reaching
942 * the hardware as well as allowing the user to run the
943 * interface after manually setting a hw addr using
944 * `ip set address`
946 memset(hw->mac_addr, 0, netdev->addr_len);
947 } else {
948 /* copy the MAC address out of the EEPROM */
949 if (e1000_read_mac_addr(hw))
950 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
952 /* don't block initalization here due to bad MAC address */
953 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
954 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
956 if (!is_valid_ether_addr(netdev->perm_addr))
957 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
959 e1000_get_bus_info(hw);
961 init_timer(&adapter->tx_fifo_stall_timer);
962 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
963 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
965 init_timer(&adapter->watchdog_timer);
966 adapter->watchdog_timer.function = &e1000_watchdog;
967 adapter->watchdog_timer.data = (unsigned long) adapter;
969 init_timer(&adapter->phy_info_timer);
970 adapter->phy_info_timer.function = &e1000_update_phy_info;
971 adapter->phy_info_timer.data = (unsigned long)adapter;
973 INIT_WORK(&adapter->reset_task, e1000_reset_task);
975 e1000_check_options(adapter);
977 /* Initial Wake on LAN setting
978 * If APM wake is enabled in the EEPROM,
979 * enable the ACPI Magic Packet filter
982 switch (hw->mac_type) {
983 case e1000_82542_rev2_0:
984 case e1000_82542_rev2_1:
985 case e1000_82543:
986 break;
987 case e1000_82544:
988 e1000_read_eeprom(hw,
989 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
990 eeprom_apme_mask = E1000_EEPROM_82544_APM;
991 break;
992 case e1000_82546:
993 case e1000_82546_rev_3:
994 if (er32(STATUS) & E1000_STATUS_FUNC_1){
995 e1000_read_eeprom(hw,
996 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
997 break;
999 /* Fall Through */
1000 default:
1001 e1000_read_eeprom(hw,
1002 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1003 break;
1005 if (eeprom_data & eeprom_apme_mask)
1006 adapter->eeprom_wol |= E1000_WUFC_MAG;
1008 /* now that we have the eeprom settings, apply the special cases
1009 * where the eeprom may be wrong or the board simply won't support
1010 * wake on lan on a particular port */
1011 switch (pdev->device) {
1012 case E1000_DEV_ID_82546GB_PCIE:
1013 adapter->eeprom_wol = 0;
1014 break;
1015 case E1000_DEV_ID_82546EB_FIBER:
1016 case E1000_DEV_ID_82546GB_FIBER:
1017 /* Wake events only supported on port A for dual fiber
1018 * regardless of eeprom setting */
1019 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1020 adapter->eeprom_wol = 0;
1021 break;
1022 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1023 /* if quad port adapter, disable WoL on all but port A */
1024 if (global_quad_port_a != 0)
1025 adapter->eeprom_wol = 0;
1026 else
1027 adapter->quad_port_a = 1;
1028 /* Reset for multiple quad port adapters */
1029 if (++global_quad_port_a == 4)
1030 global_quad_port_a = 0;
1031 break;
1034 /* initialize the wol settings based on the eeprom settings */
1035 adapter->wol = adapter->eeprom_wol;
1036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1038 /* print bus type/speed/width info */
1039 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1040 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1041 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1042 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1043 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1044 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1045 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1047 printk("%pM\n", netdev->dev_addr);
1049 /* reset the hardware with the new settings */
1050 e1000_reset(adapter);
1052 strcpy(netdev->name, "eth%d");
1053 err = register_netdev(netdev);
1054 if (err)
1055 goto err_register;
1057 /* carrier off reporting is important to ethtool even BEFORE open */
1058 netif_carrier_off(netdev);
1060 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1062 cards_found++;
1063 return 0;
1065 err_register:
1066 err_eeprom:
1067 e1000_phy_hw_reset(hw);
1069 if (hw->flash_address)
1070 iounmap(hw->flash_address);
1071 kfree(adapter->tx_ring);
1072 kfree(adapter->rx_ring);
1073 err_sw_init:
1074 iounmap(hw->hw_addr);
1075 err_ioremap:
1076 free_netdev(netdev);
1077 err_alloc_etherdev:
1078 pci_release_selected_regions(pdev, bars);
1079 err_pci_reg:
1080 err_dma:
1081 pci_disable_device(pdev);
1082 return err;
1086 * e1000_remove - Device Removal Routine
1087 * @pdev: PCI device information struct
1089 * e1000_remove is called by the PCI subsystem to alert the driver
1090 * that it should release a PCI device. The could be caused by a
1091 * Hot-Plug event, or because the driver is going to be removed from
1092 * memory.
1095 static void __devexit e1000_remove(struct pci_dev *pdev)
1097 struct net_device *netdev = pci_get_drvdata(pdev);
1098 struct e1000_adapter *adapter = netdev_priv(netdev);
1099 struct e1000_hw *hw = &adapter->hw;
1101 set_bit(__E1000_DOWN, &adapter->flags);
1102 del_timer_sync(&adapter->tx_fifo_stall_timer);
1103 del_timer_sync(&adapter->watchdog_timer);
1104 del_timer_sync(&adapter->phy_info_timer);
1106 cancel_work_sync(&adapter->reset_task);
1108 e1000_release_manageability(adapter);
1110 unregister_netdev(netdev);
1112 e1000_phy_hw_reset(hw);
1114 kfree(adapter->tx_ring);
1115 kfree(adapter->rx_ring);
1117 iounmap(hw->hw_addr);
1118 if (hw->flash_address)
1119 iounmap(hw->flash_address);
1120 pci_release_selected_regions(pdev, adapter->bars);
1122 free_netdev(netdev);
1124 pci_disable_device(pdev);
1128 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129 * @adapter: board private structure to initialize
1131 * e1000_sw_init initializes the Adapter private data structure.
1132 * Fields are initialized based on PCI device information and
1133 * OS network device settings (MTU size).
1136 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct net_device *netdev = adapter->netdev;
1140 struct pci_dev *pdev = adapter->pdev;
1142 /* PCI config space info */
1144 hw->vendor_id = pdev->vendor;
1145 hw->device_id = pdev->device;
1146 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1147 hw->subsystem_id = pdev->subsystem_device;
1148 hw->revision_id = pdev->revision;
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1161 return -EIO;
1164 switch (hw->mac_type) {
1165 default:
1166 break;
1167 case e1000_82541:
1168 case e1000_82547:
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1172 break;
1175 e1000_set_media_type(hw);
1177 hw->wait_autoneg_complete = false;
1178 hw->tbi_compatibility_en = true;
1179 hw->adaptive_ifs = true;
1181 /* Copper options */
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = false;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1194 return -ENOMEM;
1197 /* Explicitly disable IRQ since the NIC can be in any state. */
1198 e1000_irq_disable(adapter);
1200 spin_lock_init(&adapter->stats_lock);
1202 set_bit(__E1000_DOWN, &adapter->flags);
1204 return 0;
1208 * e1000_alloc_queues - Allocate memory for all rings
1209 * @adapter: board private structure to initialize
1211 * We allocate one ring per queue at run-time since we don't know the
1212 * number of queues at compile-time.
1215 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1218 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1219 if (!adapter->tx_ring)
1220 return -ENOMEM;
1222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1223 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1224 if (!adapter->rx_ring) {
1225 kfree(adapter->tx_ring);
1226 return -ENOMEM;
1229 return E1000_SUCCESS;
1233 * e1000_open - Called when a network interface is made active
1234 * @netdev: network interface device structure
1236 * Returns 0 on success, negative value on failure
1238 * The open entry point is called when a network interface is made
1239 * active by the system (IFF_UP). At this point all resources needed
1240 * for transmit and receive operations are allocated, the interrupt
1241 * handler is registered with the OS, the watchdog timer is started,
1242 * and the stack is notified that the interface is ready.
1245 static int e1000_open(struct net_device *netdev)
1247 struct e1000_adapter *adapter = netdev_priv(netdev);
1248 struct e1000_hw *hw = &adapter->hw;
1249 int err;
1251 /* disallow open during test */
1252 if (test_bit(__E1000_TESTING, &adapter->flags))
1253 return -EBUSY;
1255 netif_carrier_off(netdev);
1257 /* allocate transmit descriptors */
1258 err = e1000_setup_all_tx_resources(adapter);
1259 if (err)
1260 goto err_setup_tx;
1262 /* allocate receive descriptors */
1263 err = e1000_setup_all_rx_resources(adapter);
1264 if (err)
1265 goto err_setup_rx;
1267 e1000_power_up_phy(adapter);
1269 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1270 if ((hw->mng_cookie.status &
1271 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1272 e1000_update_mng_vlan(adapter);
1275 /* before we allocate an interrupt, we must be ready to handle it.
1276 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1277 * as soon as we call pci_request_irq, so we have to setup our
1278 * clean_rx handler before we do so. */
1279 e1000_configure(adapter);
1281 err = e1000_request_irq(adapter);
1282 if (err)
1283 goto err_req_irq;
1285 /* From here on the code is the same as e1000_up() */
1286 clear_bit(__E1000_DOWN, &adapter->flags);
1288 napi_enable(&adapter->napi);
1290 e1000_irq_enable(adapter);
1292 netif_start_queue(netdev);
1294 /* fire a link status change interrupt to start the watchdog */
1295 ew32(ICS, E1000_ICS_LSC);
1297 return E1000_SUCCESS;
1299 err_req_irq:
1300 e1000_power_down_phy(adapter);
1301 e1000_free_all_rx_resources(adapter);
1302 err_setup_rx:
1303 e1000_free_all_tx_resources(adapter);
1304 err_setup_tx:
1305 e1000_reset(adapter);
1307 return err;
1311 * e1000_close - Disables a network interface
1312 * @netdev: network interface device structure
1314 * Returns 0, this is not allowed to fail
1316 * The close entry point is called when an interface is de-activated
1317 * by the OS. The hardware is still under the drivers control, but
1318 * needs to be disabled. A global MAC reset is issued to stop the
1319 * hardware, and all transmit and receive resources are freed.
1322 static int e1000_close(struct net_device *netdev)
1324 struct e1000_adapter *adapter = netdev_priv(netdev);
1325 struct e1000_hw *hw = &adapter->hw;
1327 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1328 e1000_down(adapter);
1329 e1000_power_down_phy(adapter);
1330 e1000_free_irq(adapter);
1332 e1000_free_all_tx_resources(adapter);
1333 e1000_free_all_rx_resources(adapter);
1335 /* kill manageability vlan ID if supported, but not if a vlan with
1336 * the same ID is registered on the host OS (let 8021q kill it) */
1337 if ((hw->mng_cookie.status &
1338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1339 !(adapter->vlgrp &&
1340 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1341 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1344 return 0;
1348 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1349 * @adapter: address of board private structure
1350 * @start: address of beginning of memory
1351 * @len: length of memory
1353 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1354 unsigned long len)
1356 struct e1000_hw *hw = &adapter->hw;
1357 unsigned long begin = (unsigned long)start;
1358 unsigned long end = begin + len;
1360 /* First rev 82545 and 82546 need to not allow any memory
1361 * write location to cross 64k boundary due to errata 23 */
1362 if (hw->mac_type == e1000_82545 ||
1363 hw->mac_type == e1000_82546) {
1364 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1367 return true;
1371 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1372 * @adapter: board private structure
1373 * @txdr: tx descriptor ring (for a specific queue) to setup
1375 * Return 0 on success, negative on failure
1378 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1379 struct e1000_tx_ring *txdr)
1381 struct pci_dev *pdev = adapter->pdev;
1382 int size;
1384 size = sizeof(struct e1000_buffer) * txdr->count;
1385 txdr->buffer_info = vmalloc(size);
1386 if (!txdr->buffer_info) {
1387 DPRINTK(PROBE, ERR,
1388 "Unable to allocate memory for the transmit descriptor ring\n");
1389 return -ENOMEM;
1391 memset(txdr->buffer_info, 0, size);
1393 /* round up to nearest 4K */
1395 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1396 txdr->size = ALIGN(txdr->size, 4096);
1398 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1399 if (!txdr->desc) {
1400 setup_tx_desc_die:
1401 vfree(txdr->buffer_info);
1402 DPRINTK(PROBE, ERR,
1403 "Unable to allocate memory for the transmit descriptor ring\n");
1404 return -ENOMEM;
1407 /* Fix for errata 23, can't cross 64kB boundary */
1408 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1409 void *olddesc = txdr->desc;
1410 dma_addr_t olddma = txdr->dma;
1411 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1412 "at %p\n", txdr->size, txdr->desc);
1413 /* Try again, without freeing the previous */
1414 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1415 /* Failed allocation, critical failure */
1416 if (!txdr->desc) {
1417 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1418 goto setup_tx_desc_die;
1421 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1422 /* give up */
1423 pci_free_consistent(pdev, txdr->size, txdr->desc,
1424 txdr->dma);
1425 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1426 DPRINTK(PROBE, ERR,
1427 "Unable to allocate aligned memory "
1428 "for the transmit descriptor ring\n");
1429 vfree(txdr->buffer_info);
1430 return -ENOMEM;
1431 } else {
1432 /* Free old allocation, new allocation was successful */
1433 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1436 memset(txdr->desc, 0, txdr->size);
1438 txdr->next_to_use = 0;
1439 txdr->next_to_clean = 0;
1441 return 0;
1445 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1446 * (Descriptors) for all queues
1447 * @adapter: board private structure
1449 * Return 0 on success, negative on failure
1452 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1454 int i, err = 0;
1456 for (i = 0; i < adapter->num_tx_queues; i++) {
1457 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1458 if (err) {
1459 DPRINTK(PROBE, ERR,
1460 "Allocation for Tx Queue %u failed\n", i);
1461 for (i-- ; i >= 0; i--)
1462 e1000_free_tx_resources(adapter,
1463 &adapter->tx_ring[i]);
1464 break;
1468 return err;
1472 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1473 * @adapter: board private structure
1475 * Configure the Tx unit of the MAC after a reset.
1478 static void e1000_configure_tx(struct e1000_adapter *adapter)
1480 u64 tdba;
1481 struct e1000_hw *hw = &adapter->hw;
1482 u32 tdlen, tctl, tipg;
1483 u32 ipgr1, ipgr2;
1485 /* Setup the HW Tx Head and Tail descriptor pointers */
1487 switch (adapter->num_tx_queues) {
1488 case 1:
1489 default:
1490 tdba = adapter->tx_ring[0].dma;
1491 tdlen = adapter->tx_ring[0].count *
1492 sizeof(struct e1000_tx_desc);
1493 ew32(TDLEN, tdlen);
1494 ew32(TDBAH, (tdba >> 32));
1495 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1496 ew32(TDT, 0);
1497 ew32(TDH, 0);
1498 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1499 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1500 break;
1503 /* Set the default values for the Tx Inter Packet Gap timer */
1504 if ((hw->media_type == e1000_media_type_fiber ||
1505 hw->media_type == e1000_media_type_internal_serdes))
1506 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1507 else
1508 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1510 switch (hw->mac_type) {
1511 case e1000_82542_rev2_0:
1512 case e1000_82542_rev2_1:
1513 tipg = DEFAULT_82542_TIPG_IPGT;
1514 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1515 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1516 break;
1517 default:
1518 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1520 break;
1522 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1523 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1524 ew32(TIPG, tipg);
1526 /* Set the Tx Interrupt Delay register */
1528 ew32(TIDV, adapter->tx_int_delay);
1529 if (hw->mac_type >= e1000_82540)
1530 ew32(TADV, adapter->tx_abs_int_delay);
1532 /* Program the Transmit Control Register */
1534 tctl = er32(TCTL);
1535 tctl &= ~E1000_TCTL_CT;
1536 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1537 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1539 e1000_config_collision_dist(hw);
1541 /* Setup Transmit Descriptor Settings for eop descriptor */
1542 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1544 /* only set IDE if we are delaying interrupts using the timers */
1545 if (adapter->tx_int_delay)
1546 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1548 if (hw->mac_type < e1000_82543)
1549 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1550 else
1551 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1553 /* Cache if we're 82544 running in PCI-X because we'll
1554 * need this to apply a workaround later in the send path. */
1555 if (hw->mac_type == e1000_82544 &&
1556 hw->bus_type == e1000_bus_type_pcix)
1557 adapter->pcix_82544 = 1;
1559 ew32(TCTL, tctl);
1564 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1565 * @adapter: board private structure
1566 * @rxdr: rx descriptor ring (for a specific queue) to setup
1568 * Returns 0 on success, negative on failure
1571 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1572 struct e1000_rx_ring *rxdr)
1574 struct pci_dev *pdev = adapter->pdev;
1575 int size, desc_len;
1577 size = sizeof(struct e1000_buffer) * rxdr->count;
1578 rxdr->buffer_info = vmalloc(size);
1579 if (!rxdr->buffer_info) {
1580 DPRINTK(PROBE, ERR,
1581 "Unable to allocate memory for the receive descriptor ring\n");
1582 return -ENOMEM;
1584 memset(rxdr->buffer_info, 0, size);
1586 desc_len = sizeof(struct e1000_rx_desc);
1588 /* Round up to nearest 4K */
1590 rxdr->size = rxdr->count * desc_len;
1591 rxdr->size = ALIGN(rxdr->size, 4096);
1593 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1595 if (!rxdr->desc) {
1596 DPRINTK(PROBE, ERR,
1597 "Unable to allocate memory for the receive descriptor ring\n");
1598 setup_rx_desc_die:
1599 vfree(rxdr->buffer_info);
1600 return -ENOMEM;
1603 /* Fix for errata 23, can't cross 64kB boundary */
1604 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1605 void *olddesc = rxdr->desc;
1606 dma_addr_t olddma = rxdr->dma;
1607 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1608 "at %p\n", rxdr->size, rxdr->desc);
1609 /* Try again, without freeing the previous */
1610 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1611 /* Failed allocation, critical failure */
1612 if (!rxdr->desc) {
1613 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1614 DPRINTK(PROBE, ERR,
1615 "Unable to allocate memory "
1616 "for the receive descriptor ring\n");
1617 goto setup_rx_desc_die;
1620 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1621 /* give up */
1622 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1623 rxdr->dma);
1624 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1625 DPRINTK(PROBE, ERR,
1626 "Unable to allocate aligned memory "
1627 "for the receive descriptor ring\n");
1628 goto setup_rx_desc_die;
1629 } else {
1630 /* Free old allocation, new allocation was successful */
1631 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1634 memset(rxdr->desc, 0, rxdr->size);
1636 rxdr->next_to_clean = 0;
1637 rxdr->next_to_use = 0;
1638 rxdr->rx_skb_top = NULL;
1640 return 0;
1644 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1645 * (Descriptors) for all queues
1646 * @adapter: board private structure
1648 * Return 0 on success, negative on failure
1651 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1653 int i, err = 0;
1655 for (i = 0; i < adapter->num_rx_queues; i++) {
1656 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1657 if (err) {
1658 DPRINTK(PROBE, ERR,
1659 "Allocation for Rx Queue %u failed\n", i);
1660 for (i-- ; i >= 0; i--)
1661 e1000_free_rx_resources(adapter,
1662 &adapter->rx_ring[i]);
1663 break;
1667 return err;
1671 * e1000_setup_rctl - configure the receive control registers
1672 * @adapter: Board private structure
1674 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1676 struct e1000_hw *hw = &adapter->hw;
1677 u32 rctl;
1679 rctl = er32(RCTL);
1681 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1683 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1684 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1685 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1687 if (hw->tbi_compatibility_on == 1)
1688 rctl |= E1000_RCTL_SBP;
1689 else
1690 rctl &= ~E1000_RCTL_SBP;
1692 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1693 rctl &= ~E1000_RCTL_LPE;
1694 else
1695 rctl |= E1000_RCTL_LPE;
1697 /* Setup buffer sizes */
1698 rctl &= ~E1000_RCTL_SZ_4096;
1699 rctl |= E1000_RCTL_BSEX;
1700 switch (adapter->rx_buffer_len) {
1701 case E1000_RXBUFFER_256:
1702 rctl |= E1000_RCTL_SZ_256;
1703 rctl &= ~E1000_RCTL_BSEX;
1704 break;
1705 case E1000_RXBUFFER_512:
1706 rctl |= E1000_RCTL_SZ_512;
1707 rctl &= ~E1000_RCTL_BSEX;
1708 break;
1709 case E1000_RXBUFFER_1024:
1710 rctl |= E1000_RCTL_SZ_1024;
1711 rctl &= ~E1000_RCTL_BSEX;
1712 break;
1713 case E1000_RXBUFFER_2048:
1714 default:
1715 rctl |= E1000_RCTL_SZ_2048;
1716 rctl &= ~E1000_RCTL_BSEX;
1717 break;
1718 case E1000_RXBUFFER_4096:
1719 rctl |= E1000_RCTL_SZ_4096;
1720 break;
1721 case E1000_RXBUFFER_8192:
1722 rctl |= E1000_RCTL_SZ_8192;
1723 break;
1724 case E1000_RXBUFFER_16384:
1725 rctl |= E1000_RCTL_SZ_16384;
1726 break;
1729 ew32(RCTL, rctl);
1733 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1734 * @adapter: board private structure
1736 * Configure the Rx unit of the MAC after a reset.
1739 static void e1000_configure_rx(struct e1000_adapter *adapter)
1741 u64 rdba;
1742 struct e1000_hw *hw = &adapter->hw;
1743 u32 rdlen, rctl, rxcsum;
1745 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1746 rdlen = adapter->rx_ring[0].count *
1747 sizeof(struct e1000_rx_desc);
1748 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1749 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1750 } else {
1751 rdlen = adapter->rx_ring[0].count *
1752 sizeof(struct e1000_rx_desc);
1753 adapter->clean_rx = e1000_clean_rx_irq;
1754 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1757 /* disable receives while setting up the descriptors */
1758 rctl = er32(RCTL);
1759 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1761 /* set the Receive Delay Timer Register */
1762 ew32(RDTR, adapter->rx_int_delay);
1764 if (hw->mac_type >= e1000_82540) {
1765 ew32(RADV, adapter->rx_abs_int_delay);
1766 if (adapter->itr_setting != 0)
1767 ew32(ITR, 1000000000 / (adapter->itr * 256));
1770 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1771 * the Base and Length of the Rx Descriptor Ring */
1772 switch (adapter->num_rx_queues) {
1773 case 1:
1774 default:
1775 rdba = adapter->rx_ring[0].dma;
1776 ew32(RDLEN, rdlen);
1777 ew32(RDBAH, (rdba >> 32));
1778 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1779 ew32(RDT, 0);
1780 ew32(RDH, 0);
1781 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1782 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1783 break;
1786 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1787 if (hw->mac_type >= e1000_82543) {
1788 rxcsum = er32(RXCSUM);
1789 if (adapter->rx_csum)
1790 rxcsum |= E1000_RXCSUM_TUOFL;
1791 else
1792 /* don't need to clear IPPCSE as it defaults to 0 */
1793 rxcsum &= ~E1000_RXCSUM_TUOFL;
1794 ew32(RXCSUM, rxcsum);
1797 /* Enable Receives */
1798 ew32(RCTL, rctl);
1802 * e1000_free_tx_resources - Free Tx Resources per Queue
1803 * @adapter: board private structure
1804 * @tx_ring: Tx descriptor ring for a specific queue
1806 * Free all transmit software resources
1809 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1810 struct e1000_tx_ring *tx_ring)
1812 struct pci_dev *pdev = adapter->pdev;
1814 e1000_clean_tx_ring(adapter, tx_ring);
1816 vfree(tx_ring->buffer_info);
1817 tx_ring->buffer_info = NULL;
1819 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1821 tx_ring->desc = NULL;
1825 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826 * @adapter: board private structure
1828 * Free all transmit software resources
1831 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1833 int i;
1835 for (i = 0; i < adapter->num_tx_queues; i++)
1836 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1839 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1840 struct e1000_buffer *buffer_info)
1842 buffer_info->dma = 0;
1843 if (buffer_info->skb) {
1844 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
1845 DMA_TO_DEVICE);
1846 dev_kfree_skb_any(buffer_info->skb);
1847 buffer_info->skb = NULL;
1849 buffer_info->time_stamp = 0;
1850 /* buffer_info must be completely set up in the transmit path */
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1859 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1860 struct e1000_tx_ring *tx_ring)
1862 struct e1000_hw *hw = &adapter->hw;
1863 struct e1000_buffer *buffer_info;
1864 unsigned long size;
1865 unsigned int i;
1867 /* Free all the Tx ring sk_buffs */
1869 for (i = 0; i < tx_ring->count; i++) {
1870 buffer_info = &tx_ring->buffer_info[i];
1871 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1874 size = sizeof(struct e1000_buffer) * tx_ring->count;
1875 memset(tx_ring->buffer_info, 0, size);
1877 /* Zero out the descriptor ring */
1879 memset(tx_ring->desc, 0, tx_ring->size);
1881 tx_ring->next_to_use = 0;
1882 tx_ring->next_to_clean = 0;
1883 tx_ring->last_tx_tso = 0;
1885 writel(0, hw->hw_addr + tx_ring->tdh);
1886 writel(0, hw->hw_addr + tx_ring->tdt);
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1894 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1896 int i;
1898 for (i = 0; i < adapter->num_tx_queues; i++)
1899 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1907 * Free all receive software resources
1910 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1911 struct e1000_rx_ring *rx_ring)
1913 struct pci_dev *pdev = adapter->pdev;
1915 e1000_clean_rx_ring(adapter, rx_ring);
1917 vfree(rx_ring->buffer_info);
1918 rx_ring->buffer_info = NULL;
1920 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1922 rx_ring->desc = NULL;
1926 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1927 * @adapter: board private structure
1929 * Free all receive software resources
1932 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1934 int i;
1936 for (i = 0; i < adapter->num_rx_queues; i++)
1937 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1941 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1942 * @adapter: board private structure
1943 * @rx_ring: ring to free buffers from
1946 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1947 struct e1000_rx_ring *rx_ring)
1949 struct e1000_hw *hw = &adapter->hw;
1950 struct e1000_buffer *buffer_info;
1951 struct pci_dev *pdev = adapter->pdev;
1952 unsigned long size;
1953 unsigned int i;
1955 /* Free all the Rx ring sk_buffs */
1956 for (i = 0; i < rx_ring->count; i++) {
1957 buffer_info = &rx_ring->buffer_info[i];
1958 if (buffer_info->dma &&
1959 adapter->clean_rx == e1000_clean_rx_irq) {
1960 pci_unmap_single(pdev, buffer_info->dma,
1961 buffer_info->length,
1962 PCI_DMA_FROMDEVICE);
1963 } else if (buffer_info->dma &&
1964 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1965 pci_unmap_page(pdev, buffer_info->dma,
1966 buffer_info->length,
1967 PCI_DMA_FROMDEVICE);
1970 buffer_info->dma = 0;
1971 if (buffer_info->page) {
1972 put_page(buffer_info->page);
1973 buffer_info->page = NULL;
1975 if (buffer_info->skb) {
1976 dev_kfree_skb(buffer_info->skb);
1977 buffer_info->skb = NULL;
1981 /* there also may be some cached data from a chained receive */
1982 if (rx_ring->rx_skb_top) {
1983 dev_kfree_skb(rx_ring->rx_skb_top);
1984 rx_ring->rx_skb_top = NULL;
1987 size = sizeof(struct e1000_buffer) * rx_ring->count;
1988 memset(rx_ring->buffer_info, 0, size);
1990 /* Zero out the descriptor ring */
1991 memset(rx_ring->desc, 0, rx_ring->size);
1993 rx_ring->next_to_clean = 0;
1994 rx_ring->next_to_use = 0;
1996 writel(0, hw->hw_addr + rx_ring->rdh);
1997 writel(0, hw->hw_addr + rx_ring->rdt);
2001 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2002 * @adapter: board private structure
2005 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2007 int i;
2009 for (i = 0; i < adapter->num_rx_queues; i++)
2010 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2013 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2014 * and memory write and invalidate disabled for certain operations
2016 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2018 struct e1000_hw *hw = &adapter->hw;
2019 struct net_device *netdev = adapter->netdev;
2020 u32 rctl;
2022 e1000_pci_clear_mwi(hw);
2024 rctl = er32(RCTL);
2025 rctl |= E1000_RCTL_RST;
2026 ew32(RCTL, rctl);
2027 E1000_WRITE_FLUSH();
2028 mdelay(5);
2030 if (netif_running(netdev))
2031 e1000_clean_all_rx_rings(adapter);
2034 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2036 struct e1000_hw *hw = &adapter->hw;
2037 struct net_device *netdev = adapter->netdev;
2038 u32 rctl;
2040 rctl = er32(RCTL);
2041 rctl &= ~E1000_RCTL_RST;
2042 ew32(RCTL, rctl);
2043 E1000_WRITE_FLUSH();
2044 mdelay(5);
2046 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2047 e1000_pci_set_mwi(hw);
2049 if (netif_running(netdev)) {
2050 /* No need to loop, because 82542 supports only 1 queue */
2051 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2052 e1000_configure_rx(adapter);
2053 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2058 * e1000_set_mac - Change the Ethernet Address of the NIC
2059 * @netdev: network interface device structure
2060 * @p: pointer to an address structure
2062 * Returns 0 on success, negative on failure
2065 static int e1000_set_mac(struct net_device *netdev, void *p)
2067 struct e1000_adapter *adapter = netdev_priv(netdev);
2068 struct e1000_hw *hw = &adapter->hw;
2069 struct sockaddr *addr = p;
2071 if (!is_valid_ether_addr(addr->sa_data))
2072 return -EADDRNOTAVAIL;
2074 /* 82542 2.0 needs to be in reset to write receive address registers */
2076 if (hw->mac_type == e1000_82542_rev2_0)
2077 e1000_enter_82542_rst(adapter);
2079 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2080 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2082 e1000_rar_set(hw, hw->mac_addr, 0);
2084 if (hw->mac_type == e1000_82542_rev2_0)
2085 e1000_leave_82542_rst(adapter);
2087 return 0;
2091 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2092 * @netdev: network interface device structure
2094 * The set_rx_mode entry point is called whenever the unicast or multicast
2095 * address lists or the network interface flags are updated. This routine is
2096 * responsible for configuring the hardware for proper unicast, multicast,
2097 * promiscuous mode, and all-multi behavior.
2100 static void e1000_set_rx_mode(struct net_device *netdev)
2102 struct e1000_adapter *adapter = netdev_priv(netdev);
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct netdev_hw_addr *ha;
2105 bool use_uc = false;
2106 struct dev_addr_list *mc_ptr;
2107 u32 rctl;
2108 u32 hash_value;
2109 int i, rar_entries = E1000_RAR_ENTRIES;
2110 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2111 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2113 if (!mcarray) {
2114 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2115 return;
2118 /* Check for Promiscuous and All Multicast modes */
2120 rctl = er32(RCTL);
2122 if (netdev->flags & IFF_PROMISC) {
2123 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2124 rctl &= ~E1000_RCTL_VFE;
2125 } else {
2126 if (netdev->flags & IFF_ALLMULTI)
2127 rctl |= E1000_RCTL_MPE;
2128 else
2129 rctl &= ~E1000_RCTL_MPE;
2130 /* Enable VLAN filter if there is a VLAN */
2131 if (adapter->vlgrp)
2132 rctl |= E1000_RCTL_VFE;
2135 if (netdev->uc.count > rar_entries - 1) {
2136 rctl |= E1000_RCTL_UPE;
2137 } else if (!(netdev->flags & IFF_PROMISC)) {
2138 rctl &= ~E1000_RCTL_UPE;
2139 use_uc = true;
2142 ew32(RCTL, rctl);
2144 /* 82542 2.0 needs to be in reset to write receive address registers */
2146 if (hw->mac_type == e1000_82542_rev2_0)
2147 e1000_enter_82542_rst(adapter);
2149 /* load the first 14 addresses into the exact filters 1-14. Unicast
2150 * addresses take precedence to avoid disabling unicast filtering
2151 * when possible.
2153 * RAR 0 is used for the station MAC adddress
2154 * if there are not 14 addresses, go ahead and clear the filters
2156 i = 1;
2157 if (use_uc)
2158 list_for_each_entry(ha, &netdev->uc.list, list) {
2159 if (i == rar_entries)
2160 break;
2161 e1000_rar_set(hw, ha->addr, i++);
2164 WARN_ON(i == rar_entries);
2166 mc_ptr = netdev->mc_list;
2168 for (; i < rar_entries; i++) {
2169 if (mc_ptr) {
2170 e1000_rar_set(hw, mc_ptr->da_addr, i);
2171 mc_ptr = mc_ptr->next;
2172 } else {
2173 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2174 E1000_WRITE_FLUSH();
2175 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2176 E1000_WRITE_FLUSH();
2180 /* load any remaining addresses into the hash table */
2182 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2183 u32 hash_reg, hash_bit, mta;
2184 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2185 hash_reg = (hash_value >> 5) & 0x7F;
2186 hash_bit = hash_value & 0x1F;
2187 mta = (1 << hash_bit);
2188 mcarray[hash_reg] |= mta;
2191 /* write the hash table completely, write from bottom to avoid
2192 * both stupid write combining chipsets, and flushing each write */
2193 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2195 * If we are on an 82544 has an errata where writing odd
2196 * offsets overwrites the previous even offset, but writing
2197 * backwards over the range solves the issue by always
2198 * writing the odd offset first
2200 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2202 E1000_WRITE_FLUSH();
2204 if (hw->mac_type == e1000_82542_rev2_0)
2205 e1000_leave_82542_rst(adapter);
2207 kfree(mcarray);
2210 /* Need to wait a few seconds after link up to get diagnostic information from
2211 * the phy */
2213 static void e1000_update_phy_info(unsigned long data)
2215 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2216 struct e1000_hw *hw = &adapter->hw;
2217 e1000_phy_get_info(hw, &adapter->phy_info);
2221 * e1000_82547_tx_fifo_stall - Timer Call-back
2222 * @data: pointer to adapter cast into an unsigned long
2225 static void e1000_82547_tx_fifo_stall(unsigned long data)
2227 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct net_device *netdev = adapter->netdev;
2230 u32 tctl;
2232 if (atomic_read(&adapter->tx_fifo_stall)) {
2233 if ((er32(TDT) == er32(TDH)) &&
2234 (er32(TDFT) == er32(TDFH)) &&
2235 (er32(TDFTS) == er32(TDFHS))) {
2236 tctl = er32(TCTL);
2237 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2238 ew32(TDFT, adapter->tx_head_addr);
2239 ew32(TDFH, adapter->tx_head_addr);
2240 ew32(TDFTS, adapter->tx_head_addr);
2241 ew32(TDFHS, adapter->tx_head_addr);
2242 ew32(TCTL, tctl);
2243 E1000_WRITE_FLUSH();
2245 adapter->tx_fifo_head = 0;
2246 atomic_set(&adapter->tx_fifo_stall, 0);
2247 netif_wake_queue(netdev);
2248 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2249 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2254 static bool e1000_has_link(struct e1000_adapter *adapter)
2256 struct e1000_hw *hw = &adapter->hw;
2257 bool link_active = false;
2259 /* get_link_status is set on LSC (link status) interrupt or
2260 * rx sequence error interrupt. get_link_status will stay
2261 * false until the e1000_check_for_link establishes link
2262 * for copper adapters ONLY
2264 switch (hw->media_type) {
2265 case e1000_media_type_copper:
2266 if (hw->get_link_status) {
2267 e1000_check_for_link(hw);
2268 link_active = !hw->get_link_status;
2269 } else {
2270 link_active = true;
2272 break;
2273 case e1000_media_type_fiber:
2274 e1000_check_for_link(hw);
2275 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2276 break;
2277 case e1000_media_type_internal_serdes:
2278 e1000_check_for_link(hw);
2279 link_active = hw->serdes_has_link;
2280 break;
2281 default:
2282 break;
2285 return link_active;
2289 * e1000_watchdog - Timer Call-back
2290 * @data: pointer to adapter cast into an unsigned long
2292 static void e1000_watchdog(unsigned long data)
2294 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2295 struct e1000_hw *hw = &adapter->hw;
2296 struct net_device *netdev = adapter->netdev;
2297 struct e1000_tx_ring *txdr = adapter->tx_ring;
2298 u32 link, tctl;
2300 link = e1000_has_link(adapter);
2301 if ((netif_carrier_ok(netdev)) && link)
2302 goto link_up;
2304 if (link) {
2305 if (!netif_carrier_ok(netdev)) {
2306 u32 ctrl;
2307 bool txb2b = true;
2308 /* update snapshot of PHY registers on LSC */
2309 e1000_get_speed_and_duplex(hw,
2310 &adapter->link_speed,
2311 &adapter->link_duplex);
2313 ctrl = er32(CTRL);
2314 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2315 "Flow Control: %s\n",
2316 netdev->name,
2317 adapter->link_speed,
2318 adapter->link_duplex == FULL_DUPLEX ?
2319 "Full Duplex" : "Half Duplex",
2320 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2321 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2322 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2323 E1000_CTRL_TFCE) ? "TX" : "None" )));
2325 /* tweak tx_queue_len according to speed/duplex
2326 * and adjust the timeout factor */
2327 netdev->tx_queue_len = adapter->tx_queue_len;
2328 adapter->tx_timeout_factor = 1;
2329 switch (adapter->link_speed) {
2330 case SPEED_10:
2331 txb2b = false;
2332 netdev->tx_queue_len = 10;
2333 adapter->tx_timeout_factor = 16;
2334 break;
2335 case SPEED_100:
2336 txb2b = false;
2337 netdev->tx_queue_len = 100;
2338 /* maybe add some timeout factor ? */
2339 break;
2342 /* enable transmits in the hardware */
2343 tctl = er32(TCTL);
2344 tctl |= E1000_TCTL_EN;
2345 ew32(TCTL, tctl);
2347 netif_carrier_on(netdev);
2348 if (!test_bit(__E1000_DOWN, &adapter->flags))
2349 mod_timer(&adapter->phy_info_timer,
2350 round_jiffies(jiffies + 2 * HZ));
2351 adapter->smartspeed = 0;
2353 } else {
2354 if (netif_carrier_ok(netdev)) {
2355 adapter->link_speed = 0;
2356 adapter->link_duplex = 0;
2357 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2358 netdev->name);
2359 netif_carrier_off(netdev);
2361 if (!test_bit(__E1000_DOWN, &adapter->flags))
2362 mod_timer(&adapter->phy_info_timer,
2363 round_jiffies(jiffies + 2 * HZ));
2366 e1000_smartspeed(adapter);
2369 link_up:
2370 e1000_update_stats(adapter);
2372 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2373 adapter->tpt_old = adapter->stats.tpt;
2374 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2375 adapter->colc_old = adapter->stats.colc;
2377 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2378 adapter->gorcl_old = adapter->stats.gorcl;
2379 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2380 adapter->gotcl_old = adapter->stats.gotcl;
2382 e1000_update_adaptive(hw);
2384 if (!netif_carrier_ok(netdev)) {
2385 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2386 /* We've lost link, so the controller stops DMA,
2387 * but we've got queued Tx work that's never going
2388 * to get done, so reset controller to flush Tx.
2389 * (Do the reset outside of interrupt context). */
2390 adapter->tx_timeout_count++;
2391 schedule_work(&adapter->reset_task);
2392 /* return immediately since reset is imminent */
2393 return;
2397 /* Cause software interrupt to ensure rx ring is cleaned */
2398 ew32(ICS, E1000_ICS_RXDMT0);
2400 /* Force detection of hung controller every watchdog period */
2401 adapter->detect_tx_hung = true;
2403 /* Reset the timer */
2404 if (!test_bit(__E1000_DOWN, &adapter->flags))
2405 mod_timer(&adapter->watchdog_timer,
2406 round_jiffies(jiffies + 2 * HZ));
2409 enum latency_range {
2410 lowest_latency = 0,
2411 low_latency = 1,
2412 bulk_latency = 2,
2413 latency_invalid = 255
2417 * e1000_update_itr - update the dynamic ITR value based on statistics
2418 * @adapter: pointer to adapter
2419 * @itr_setting: current adapter->itr
2420 * @packets: the number of packets during this measurement interval
2421 * @bytes: the number of bytes during this measurement interval
2423 * Stores a new ITR value based on packets and byte
2424 * counts during the last interrupt. The advantage of per interrupt
2425 * computation is faster updates and more accurate ITR for the current
2426 * traffic pattern. Constants in this function were computed
2427 * based on theoretical maximum wire speed and thresholds were set based
2428 * on testing data as well as attempting to minimize response time
2429 * while increasing bulk throughput.
2430 * this functionality is controlled by the InterruptThrottleRate module
2431 * parameter (see e1000_param.c)
2433 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2434 u16 itr_setting, int packets, int bytes)
2436 unsigned int retval = itr_setting;
2437 struct e1000_hw *hw = &adapter->hw;
2439 if (unlikely(hw->mac_type < e1000_82540))
2440 goto update_itr_done;
2442 if (packets == 0)
2443 goto update_itr_done;
2445 switch (itr_setting) {
2446 case lowest_latency:
2447 /* jumbo frames get bulk treatment*/
2448 if (bytes/packets > 8000)
2449 retval = bulk_latency;
2450 else if ((packets < 5) && (bytes > 512))
2451 retval = low_latency;
2452 break;
2453 case low_latency: /* 50 usec aka 20000 ints/s */
2454 if (bytes > 10000) {
2455 /* jumbo frames need bulk latency setting */
2456 if (bytes/packets > 8000)
2457 retval = bulk_latency;
2458 else if ((packets < 10) || ((bytes/packets) > 1200))
2459 retval = bulk_latency;
2460 else if ((packets > 35))
2461 retval = lowest_latency;
2462 } else if (bytes/packets > 2000)
2463 retval = bulk_latency;
2464 else if (packets <= 2 && bytes < 512)
2465 retval = lowest_latency;
2466 break;
2467 case bulk_latency: /* 250 usec aka 4000 ints/s */
2468 if (bytes > 25000) {
2469 if (packets > 35)
2470 retval = low_latency;
2471 } else if (bytes < 6000) {
2472 retval = low_latency;
2474 break;
2477 update_itr_done:
2478 return retval;
2481 static void e1000_set_itr(struct e1000_adapter *adapter)
2483 struct e1000_hw *hw = &adapter->hw;
2484 u16 current_itr;
2485 u32 new_itr = adapter->itr;
2487 if (unlikely(hw->mac_type < e1000_82540))
2488 return;
2490 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2491 if (unlikely(adapter->link_speed != SPEED_1000)) {
2492 current_itr = 0;
2493 new_itr = 4000;
2494 goto set_itr_now;
2497 adapter->tx_itr = e1000_update_itr(adapter,
2498 adapter->tx_itr,
2499 adapter->total_tx_packets,
2500 adapter->total_tx_bytes);
2501 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2502 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2503 adapter->tx_itr = low_latency;
2505 adapter->rx_itr = e1000_update_itr(adapter,
2506 adapter->rx_itr,
2507 adapter->total_rx_packets,
2508 adapter->total_rx_bytes);
2509 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2510 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2511 adapter->rx_itr = low_latency;
2513 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2515 switch (current_itr) {
2516 /* counts and packets in update_itr are dependent on these numbers */
2517 case lowest_latency:
2518 new_itr = 70000;
2519 break;
2520 case low_latency:
2521 new_itr = 20000; /* aka hwitr = ~200 */
2522 break;
2523 case bulk_latency:
2524 new_itr = 4000;
2525 break;
2526 default:
2527 break;
2530 set_itr_now:
2531 if (new_itr != adapter->itr) {
2532 /* this attempts to bias the interrupt rate towards Bulk
2533 * by adding intermediate steps when interrupt rate is
2534 * increasing */
2535 new_itr = new_itr > adapter->itr ?
2536 min(adapter->itr + (new_itr >> 2), new_itr) :
2537 new_itr;
2538 adapter->itr = new_itr;
2539 ew32(ITR, 1000000000 / (new_itr * 256));
2542 return;
2545 #define E1000_TX_FLAGS_CSUM 0x00000001
2546 #define E1000_TX_FLAGS_VLAN 0x00000002
2547 #define E1000_TX_FLAGS_TSO 0x00000004
2548 #define E1000_TX_FLAGS_IPV4 0x00000008
2549 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2550 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2552 static int e1000_tso(struct e1000_adapter *adapter,
2553 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2555 struct e1000_context_desc *context_desc;
2556 struct e1000_buffer *buffer_info;
2557 unsigned int i;
2558 u32 cmd_length = 0;
2559 u16 ipcse = 0, tucse, mss;
2560 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2561 int err;
2563 if (skb_is_gso(skb)) {
2564 if (skb_header_cloned(skb)) {
2565 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2566 if (err)
2567 return err;
2570 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2571 mss = skb_shinfo(skb)->gso_size;
2572 if (skb->protocol == htons(ETH_P_IP)) {
2573 struct iphdr *iph = ip_hdr(skb);
2574 iph->tot_len = 0;
2575 iph->check = 0;
2576 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2577 iph->daddr, 0,
2578 IPPROTO_TCP,
2580 cmd_length = E1000_TXD_CMD_IP;
2581 ipcse = skb_transport_offset(skb) - 1;
2582 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2583 ipv6_hdr(skb)->payload_len = 0;
2584 tcp_hdr(skb)->check =
2585 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2586 &ipv6_hdr(skb)->daddr,
2587 0, IPPROTO_TCP, 0);
2588 ipcse = 0;
2590 ipcss = skb_network_offset(skb);
2591 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2592 tucss = skb_transport_offset(skb);
2593 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2594 tucse = 0;
2596 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2597 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2599 i = tx_ring->next_to_use;
2600 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2601 buffer_info = &tx_ring->buffer_info[i];
2603 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2604 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2605 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2606 context_desc->upper_setup.tcp_fields.tucss = tucss;
2607 context_desc->upper_setup.tcp_fields.tucso = tucso;
2608 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2609 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2610 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2611 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2613 buffer_info->time_stamp = jiffies;
2614 buffer_info->next_to_watch = i;
2616 if (++i == tx_ring->count) i = 0;
2617 tx_ring->next_to_use = i;
2619 return true;
2621 return false;
2624 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2625 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2627 struct e1000_context_desc *context_desc;
2628 struct e1000_buffer *buffer_info;
2629 unsigned int i;
2630 u8 css;
2631 u32 cmd_len = E1000_TXD_CMD_DEXT;
2633 if (skb->ip_summed != CHECKSUM_PARTIAL)
2634 return false;
2636 switch (skb->protocol) {
2637 case cpu_to_be16(ETH_P_IP):
2638 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2639 cmd_len |= E1000_TXD_CMD_TCP;
2640 break;
2641 case cpu_to_be16(ETH_P_IPV6):
2642 /* XXX not handling all IPV6 headers */
2643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2644 cmd_len |= E1000_TXD_CMD_TCP;
2645 break;
2646 default:
2647 if (unlikely(net_ratelimit()))
2648 DPRINTK(DRV, WARNING,
2649 "checksum_partial proto=%x!\n", skb->protocol);
2650 break;
2653 css = skb_transport_offset(skb);
2655 i = tx_ring->next_to_use;
2656 buffer_info = &tx_ring->buffer_info[i];
2657 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2659 context_desc->lower_setup.ip_config = 0;
2660 context_desc->upper_setup.tcp_fields.tucss = css;
2661 context_desc->upper_setup.tcp_fields.tucso =
2662 css + skb->csum_offset;
2663 context_desc->upper_setup.tcp_fields.tucse = 0;
2664 context_desc->tcp_seg_setup.data = 0;
2665 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2667 buffer_info->time_stamp = jiffies;
2668 buffer_info->next_to_watch = i;
2670 if (unlikely(++i == tx_ring->count)) i = 0;
2671 tx_ring->next_to_use = i;
2673 return true;
2676 #define E1000_MAX_TXD_PWR 12
2677 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2679 static int e1000_tx_map(struct e1000_adapter *adapter,
2680 struct e1000_tx_ring *tx_ring,
2681 struct sk_buff *skb, unsigned int first,
2682 unsigned int max_per_txd, unsigned int nr_frags,
2683 unsigned int mss)
2685 struct e1000_hw *hw = &adapter->hw;
2686 struct e1000_buffer *buffer_info;
2687 unsigned int len = skb_headlen(skb);
2688 unsigned int offset, size, count = 0, i;
2689 unsigned int f;
2690 dma_addr_t *map;
2692 i = tx_ring->next_to_use;
2694 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2695 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2696 return 0;
2699 map = skb_shinfo(skb)->dma_maps;
2700 offset = 0;
2702 while (len) {
2703 buffer_info = &tx_ring->buffer_info[i];
2704 size = min(len, max_per_txd);
2705 /* Workaround for Controller erratum --
2706 * descriptor for non-tso packet in a linear SKB that follows a
2707 * tso gets written back prematurely before the data is fully
2708 * DMA'd to the controller */
2709 if (!skb->data_len && tx_ring->last_tx_tso &&
2710 !skb_is_gso(skb)) {
2711 tx_ring->last_tx_tso = 0;
2712 size -= 4;
2715 /* Workaround for premature desc write-backs
2716 * in TSO mode. Append 4-byte sentinel desc */
2717 if (unlikely(mss && !nr_frags && size == len && size > 8))
2718 size -= 4;
2719 /* work-around for errata 10 and it applies
2720 * to all controllers in PCI-X mode
2721 * The fix is to make sure that the first descriptor of a
2722 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2724 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2725 (size > 2015) && count == 0))
2726 size = 2015;
2728 /* Workaround for potential 82544 hang in PCI-X. Avoid
2729 * terminating buffers within evenly-aligned dwords. */
2730 if (unlikely(adapter->pcix_82544 &&
2731 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2732 size > 4))
2733 size -= 4;
2735 buffer_info->length = size;
2736 /* set time_stamp *before* dma to help avoid a possible race */
2737 buffer_info->time_stamp = jiffies;
2738 buffer_info->dma = skb_shinfo(skb)->dma_head + offset;
2739 buffer_info->next_to_watch = i;
2741 len -= size;
2742 offset += size;
2743 count++;
2744 if (len) {
2745 i++;
2746 if (unlikely(i == tx_ring->count))
2747 i = 0;
2751 for (f = 0; f < nr_frags; f++) {
2752 struct skb_frag_struct *frag;
2754 frag = &skb_shinfo(skb)->frags[f];
2755 len = frag->size;
2756 offset = 0;
2758 while (len) {
2759 i++;
2760 if (unlikely(i == tx_ring->count))
2761 i = 0;
2763 buffer_info = &tx_ring->buffer_info[i];
2764 size = min(len, max_per_txd);
2765 /* Workaround for premature desc write-backs
2766 * in TSO mode. Append 4-byte sentinel desc */
2767 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2768 size -= 4;
2769 /* Workaround for potential 82544 hang in PCI-X.
2770 * Avoid terminating buffers within evenly-aligned
2771 * dwords. */
2772 if (unlikely(adapter->pcix_82544 &&
2773 !((unsigned long)(page_to_phys(frag->page) + offset
2774 + size - 1) & 4) &&
2775 size > 4))
2776 size -= 4;
2778 buffer_info->length = size;
2779 buffer_info->time_stamp = jiffies;
2780 buffer_info->dma = map[f] + offset;
2781 buffer_info->next_to_watch = i;
2783 len -= size;
2784 offset += size;
2785 count++;
2789 tx_ring->buffer_info[i].skb = skb;
2790 tx_ring->buffer_info[first].next_to_watch = i;
2792 return count;
2795 static void e1000_tx_queue(struct e1000_adapter *adapter,
2796 struct e1000_tx_ring *tx_ring, int tx_flags,
2797 int count)
2799 struct e1000_hw *hw = &adapter->hw;
2800 struct e1000_tx_desc *tx_desc = NULL;
2801 struct e1000_buffer *buffer_info;
2802 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2803 unsigned int i;
2805 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2806 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2807 E1000_TXD_CMD_TSE;
2808 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2810 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2811 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2814 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2815 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2816 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2819 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2820 txd_lower |= E1000_TXD_CMD_VLE;
2821 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2824 i = tx_ring->next_to_use;
2826 while (count--) {
2827 buffer_info = &tx_ring->buffer_info[i];
2828 tx_desc = E1000_TX_DESC(*tx_ring, i);
2829 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2830 tx_desc->lower.data =
2831 cpu_to_le32(txd_lower | buffer_info->length);
2832 tx_desc->upper.data = cpu_to_le32(txd_upper);
2833 if (unlikely(++i == tx_ring->count)) i = 0;
2836 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2838 /* Force memory writes to complete before letting h/w
2839 * know there are new descriptors to fetch. (Only
2840 * applicable for weak-ordered memory model archs,
2841 * such as IA-64). */
2842 wmb();
2844 tx_ring->next_to_use = i;
2845 writel(i, hw->hw_addr + tx_ring->tdt);
2846 /* we need this if more than one processor can write to our tail
2847 * at a time, it syncronizes IO on IA64/Altix systems */
2848 mmiowb();
2852 * 82547 workaround to avoid controller hang in half-duplex environment.
2853 * The workaround is to avoid queuing a large packet that would span
2854 * the internal Tx FIFO ring boundary by notifying the stack to resend
2855 * the packet at a later time. This gives the Tx FIFO an opportunity to
2856 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2857 * to the beginning of the Tx FIFO.
2860 #define E1000_FIFO_HDR 0x10
2861 #define E1000_82547_PAD_LEN 0x3E0
2863 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2864 struct sk_buff *skb)
2866 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2867 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2869 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2871 if (adapter->link_duplex != HALF_DUPLEX)
2872 goto no_fifo_stall_required;
2874 if (atomic_read(&adapter->tx_fifo_stall))
2875 return 1;
2877 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2878 atomic_set(&adapter->tx_fifo_stall, 1);
2879 return 1;
2882 no_fifo_stall_required:
2883 adapter->tx_fifo_head += skb_fifo_len;
2884 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2885 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2886 return 0;
2889 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2891 struct e1000_adapter *adapter = netdev_priv(netdev);
2892 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2894 netif_stop_queue(netdev);
2895 /* Herbert's original patch had:
2896 * smp_mb__after_netif_stop_queue();
2897 * but since that doesn't exist yet, just open code it. */
2898 smp_mb();
2900 /* We need to check again in a case another CPU has just
2901 * made room available. */
2902 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2903 return -EBUSY;
2905 /* A reprieve! */
2906 netif_start_queue(netdev);
2907 ++adapter->restart_queue;
2908 return 0;
2911 static int e1000_maybe_stop_tx(struct net_device *netdev,
2912 struct e1000_tx_ring *tx_ring, int size)
2914 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2915 return 0;
2916 return __e1000_maybe_stop_tx(netdev, size);
2919 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2920 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2921 struct net_device *netdev)
2923 struct e1000_adapter *adapter = netdev_priv(netdev);
2924 struct e1000_hw *hw = &adapter->hw;
2925 struct e1000_tx_ring *tx_ring;
2926 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2927 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2928 unsigned int tx_flags = 0;
2929 unsigned int len = skb->len - skb->data_len;
2930 unsigned int nr_frags;
2931 unsigned int mss;
2932 int count = 0;
2933 int tso;
2934 unsigned int f;
2936 /* This goes back to the question of how to logically map a tx queue
2937 * to a flow. Right now, performance is impacted slightly negatively
2938 * if using multiple tx queues. If the stack breaks away from a
2939 * single qdisc implementation, we can look at this again. */
2940 tx_ring = adapter->tx_ring;
2942 if (unlikely(skb->len <= 0)) {
2943 dev_kfree_skb_any(skb);
2944 return NETDEV_TX_OK;
2947 mss = skb_shinfo(skb)->gso_size;
2948 /* The controller does a simple calculation to
2949 * make sure there is enough room in the FIFO before
2950 * initiating the DMA for each buffer. The calc is:
2951 * 4 = ceil(buffer len/mss). To make sure we don't
2952 * overrun the FIFO, adjust the max buffer len if mss
2953 * drops. */
2954 if (mss) {
2955 u8 hdr_len;
2956 max_per_txd = min(mss << 2, max_per_txd);
2957 max_txd_pwr = fls(max_per_txd) - 1;
2959 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2960 if (skb->data_len && hdr_len == len) {
2961 switch (hw->mac_type) {
2962 unsigned int pull_size;
2963 case e1000_82544:
2964 /* Make sure we have room to chop off 4 bytes,
2965 * and that the end alignment will work out to
2966 * this hardware's requirements
2967 * NOTE: this is a TSO only workaround
2968 * if end byte alignment not correct move us
2969 * into the next dword */
2970 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2971 break;
2972 /* fall through */
2973 pull_size = min((unsigned int)4, skb->data_len);
2974 if (!__pskb_pull_tail(skb, pull_size)) {
2975 DPRINTK(DRV, ERR,
2976 "__pskb_pull_tail failed.\n");
2977 dev_kfree_skb_any(skb);
2978 return NETDEV_TX_OK;
2980 len = skb->len - skb->data_len;
2981 break;
2982 default:
2983 /* do nothing */
2984 break;
2989 /* reserve a descriptor for the offload context */
2990 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
2991 count++;
2992 count++;
2994 /* Controller Erratum workaround */
2995 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2996 count++;
2998 count += TXD_USE_COUNT(len, max_txd_pwr);
3000 if (adapter->pcix_82544)
3001 count++;
3003 /* work-around for errata 10 and it applies to all controllers
3004 * in PCI-X mode, so add one more descriptor to the count
3006 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3007 (len > 2015)))
3008 count++;
3010 nr_frags = skb_shinfo(skb)->nr_frags;
3011 for (f = 0; f < nr_frags; f++)
3012 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3013 max_txd_pwr);
3014 if (adapter->pcix_82544)
3015 count += nr_frags;
3017 /* need: count + 2 desc gap to keep tail from touching
3018 * head, otherwise try next time */
3019 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3020 return NETDEV_TX_BUSY;
3022 if (unlikely(hw->mac_type == e1000_82547)) {
3023 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3024 netif_stop_queue(netdev);
3025 if (!test_bit(__E1000_DOWN, &adapter->flags))
3026 mod_timer(&adapter->tx_fifo_stall_timer,
3027 jiffies + 1);
3028 return NETDEV_TX_BUSY;
3032 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3033 tx_flags |= E1000_TX_FLAGS_VLAN;
3034 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3037 first = tx_ring->next_to_use;
3039 tso = e1000_tso(adapter, tx_ring, skb);
3040 if (tso < 0) {
3041 dev_kfree_skb_any(skb);
3042 return NETDEV_TX_OK;
3045 if (likely(tso)) {
3046 if (likely(hw->mac_type != e1000_82544))
3047 tx_ring->last_tx_tso = 1;
3048 tx_flags |= E1000_TX_FLAGS_TSO;
3049 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3050 tx_flags |= E1000_TX_FLAGS_CSUM;
3052 if (likely(skb->protocol == htons(ETH_P_IP)))
3053 tx_flags |= E1000_TX_FLAGS_IPV4;
3055 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3056 nr_frags, mss);
3058 if (count) {
3059 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3060 /* Make sure there is space in the ring for the next send. */
3061 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3063 } else {
3064 dev_kfree_skb_any(skb);
3065 tx_ring->buffer_info[first].time_stamp = 0;
3066 tx_ring->next_to_use = first;
3069 return NETDEV_TX_OK;
3073 * e1000_tx_timeout - Respond to a Tx Hang
3074 * @netdev: network interface device structure
3077 static void e1000_tx_timeout(struct net_device *netdev)
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3081 /* Do the reset outside of interrupt context */
3082 adapter->tx_timeout_count++;
3083 schedule_work(&adapter->reset_task);
3086 static void e1000_reset_task(struct work_struct *work)
3088 struct e1000_adapter *adapter =
3089 container_of(work, struct e1000_adapter, reset_task);
3091 e1000_reinit_locked(adapter);
3095 * e1000_get_stats - Get System Network Statistics
3096 * @netdev: network interface device structure
3098 * Returns the address of the device statistics structure.
3099 * The statistics are actually updated from the timer callback.
3102 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3104 /* only return the current stats */
3105 return &netdev->stats;
3109 * e1000_change_mtu - Change the Maximum Transfer Unit
3110 * @netdev: network interface device structure
3111 * @new_mtu: new value for maximum frame size
3113 * Returns 0 on success, negative on failure
3116 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3118 struct e1000_adapter *adapter = netdev_priv(netdev);
3119 struct e1000_hw *hw = &adapter->hw;
3120 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3122 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3123 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3124 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3125 return -EINVAL;
3128 /* Adapter-specific max frame size limits. */
3129 switch (hw->mac_type) {
3130 case e1000_undefined ... e1000_82542_rev2_1:
3131 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3132 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3133 return -EINVAL;
3135 break;
3136 default:
3137 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3138 break;
3141 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3142 msleep(1);
3143 /* e1000_down has a dependency on max_frame_size */
3144 hw->max_frame_size = max_frame;
3145 if (netif_running(netdev))
3146 e1000_down(adapter);
3148 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3149 * means we reserve 2 more, this pushes us to allocate from the next
3150 * larger slab size.
3151 * i.e. RXBUFFER_2048 --> size-4096 slab
3152 * however with the new *_jumbo_rx* routines, jumbo receives will use
3153 * fragmented skbs */
3155 if (max_frame <= E1000_RXBUFFER_256)
3156 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3157 else if (max_frame <= E1000_RXBUFFER_512)
3158 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3159 else if (max_frame <= E1000_RXBUFFER_1024)
3160 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3161 else if (max_frame <= E1000_RXBUFFER_2048)
3162 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3163 else
3164 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3165 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3166 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3167 adapter->rx_buffer_len = PAGE_SIZE;
3168 #endif
3170 /* adjust allocation if LPE protects us, and we aren't using SBP */
3171 if (!hw->tbi_compatibility_on &&
3172 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3173 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3174 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3176 printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3177 netdev->name, netdev->mtu, new_mtu);
3178 netdev->mtu = new_mtu;
3180 if (netif_running(netdev))
3181 e1000_up(adapter);
3182 else
3183 e1000_reset(adapter);
3185 clear_bit(__E1000_RESETTING, &adapter->flags);
3187 return 0;
3191 * e1000_update_stats - Update the board statistics counters
3192 * @adapter: board private structure
3195 void e1000_update_stats(struct e1000_adapter *adapter)
3197 struct net_device *netdev = adapter->netdev;
3198 struct e1000_hw *hw = &adapter->hw;
3199 struct pci_dev *pdev = adapter->pdev;
3200 unsigned long flags;
3201 u16 phy_tmp;
3203 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3206 * Prevent stats update while adapter is being reset, or if the pci
3207 * connection is down.
3209 if (adapter->link_speed == 0)
3210 return;
3211 if (pci_channel_offline(pdev))
3212 return;
3214 spin_lock_irqsave(&adapter->stats_lock, flags);
3216 /* these counters are modified from e1000_tbi_adjust_stats,
3217 * called from the interrupt context, so they must only
3218 * be written while holding adapter->stats_lock
3221 adapter->stats.crcerrs += er32(CRCERRS);
3222 adapter->stats.gprc += er32(GPRC);
3223 adapter->stats.gorcl += er32(GORCL);
3224 adapter->stats.gorch += er32(GORCH);
3225 adapter->stats.bprc += er32(BPRC);
3226 adapter->stats.mprc += er32(MPRC);
3227 adapter->stats.roc += er32(ROC);
3229 adapter->stats.prc64 += er32(PRC64);
3230 adapter->stats.prc127 += er32(PRC127);
3231 adapter->stats.prc255 += er32(PRC255);
3232 adapter->stats.prc511 += er32(PRC511);
3233 adapter->stats.prc1023 += er32(PRC1023);
3234 adapter->stats.prc1522 += er32(PRC1522);
3236 adapter->stats.symerrs += er32(SYMERRS);
3237 adapter->stats.mpc += er32(MPC);
3238 adapter->stats.scc += er32(SCC);
3239 adapter->stats.ecol += er32(ECOL);
3240 adapter->stats.mcc += er32(MCC);
3241 adapter->stats.latecol += er32(LATECOL);
3242 adapter->stats.dc += er32(DC);
3243 adapter->stats.sec += er32(SEC);
3244 adapter->stats.rlec += er32(RLEC);
3245 adapter->stats.xonrxc += er32(XONRXC);
3246 adapter->stats.xontxc += er32(XONTXC);
3247 adapter->stats.xoffrxc += er32(XOFFRXC);
3248 adapter->stats.xofftxc += er32(XOFFTXC);
3249 adapter->stats.fcruc += er32(FCRUC);
3250 adapter->stats.gptc += er32(GPTC);
3251 adapter->stats.gotcl += er32(GOTCL);
3252 adapter->stats.gotch += er32(GOTCH);
3253 adapter->stats.rnbc += er32(RNBC);
3254 adapter->stats.ruc += er32(RUC);
3255 adapter->stats.rfc += er32(RFC);
3256 adapter->stats.rjc += er32(RJC);
3257 adapter->stats.torl += er32(TORL);
3258 adapter->stats.torh += er32(TORH);
3259 adapter->stats.totl += er32(TOTL);
3260 adapter->stats.toth += er32(TOTH);
3261 adapter->stats.tpr += er32(TPR);
3263 adapter->stats.ptc64 += er32(PTC64);
3264 adapter->stats.ptc127 += er32(PTC127);
3265 adapter->stats.ptc255 += er32(PTC255);
3266 adapter->stats.ptc511 += er32(PTC511);
3267 adapter->stats.ptc1023 += er32(PTC1023);
3268 adapter->stats.ptc1522 += er32(PTC1522);
3270 adapter->stats.mptc += er32(MPTC);
3271 adapter->stats.bptc += er32(BPTC);
3273 /* used for adaptive IFS */
3275 hw->tx_packet_delta = er32(TPT);
3276 adapter->stats.tpt += hw->tx_packet_delta;
3277 hw->collision_delta = er32(COLC);
3278 adapter->stats.colc += hw->collision_delta;
3280 if (hw->mac_type >= e1000_82543) {
3281 adapter->stats.algnerrc += er32(ALGNERRC);
3282 adapter->stats.rxerrc += er32(RXERRC);
3283 adapter->stats.tncrs += er32(TNCRS);
3284 adapter->stats.cexterr += er32(CEXTERR);
3285 adapter->stats.tsctc += er32(TSCTC);
3286 adapter->stats.tsctfc += er32(TSCTFC);
3289 /* Fill out the OS statistics structure */
3290 netdev->stats.multicast = adapter->stats.mprc;
3291 netdev->stats.collisions = adapter->stats.colc;
3293 /* Rx Errors */
3295 /* RLEC on some newer hardware can be incorrect so build
3296 * our own version based on RUC and ROC */
3297 netdev->stats.rx_errors = adapter->stats.rxerrc +
3298 adapter->stats.crcerrs + adapter->stats.algnerrc +
3299 adapter->stats.ruc + adapter->stats.roc +
3300 adapter->stats.cexterr;
3301 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3302 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3303 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3304 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3305 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3307 /* Tx Errors */
3308 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3309 netdev->stats.tx_errors = adapter->stats.txerrc;
3310 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3311 netdev->stats.tx_window_errors = adapter->stats.latecol;
3312 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3313 if (hw->bad_tx_carr_stats_fd &&
3314 adapter->link_duplex == FULL_DUPLEX) {
3315 netdev->stats.tx_carrier_errors = 0;
3316 adapter->stats.tncrs = 0;
3319 /* Tx Dropped needs to be maintained elsewhere */
3321 /* Phy Stats */
3322 if (hw->media_type == e1000_media_type_copper) {
3323 if ((adapter->link_speed == SPEED_1000) &&
3324 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3325 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3326 adapter->phy_stats.idle_errors += phy_tmp;
3329 if ((hw->mac_type <= e1000_82546) &&
3330 (hw->phy_type == e1000_phy_m88) &&
3331 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3332 adapter->phy_stats.receive_errors += phy_tmp;
3335 /* Management Stats */
3336 if (hw->has_smbus) {
3337 adapter->stats.mgptc += er32(MGTPTC);
3338 adapter->stats.mgprc += er32(MGTPRC);
3339 adapter->stats.mgpdc += er32(MGTPDC);
3342 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3346 * e1000_intr - Interrupt Handler
3347 * @irq: interrupt number
3348 * @data: pointer to a network interface device structure
3351 static irqreturn_t e1000_intr(int irq, void *data)
3353 struct net_device *netdev = data;
3354 struct e1000_adapter *adapter = netdev_priv(netdev);
3355 struct e1000_hw *hw = &adapter->hw;
3356 u32 icr = er32(ICR);
3358 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3359 return IRQ_NONE; /* Not our interrupt */
3361 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3362 hw->get_link_status = 1;
3363 /* guard against interrupt when we're going down */
3364 if (!test_bit(__E1000_DOWN, &adapter->flags))
3365 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3368 /* disable interrupts, without the synchronize_irq bit */
3369 ew32(IMC, ~0);
3370 E1000_WRITE_FLUSH();
3372 if (likely(napi_schedule_prep(&adapter->napi))) {
3373 adapter->total_tx_bytes = 0;
3374 adapter->total_tx_packets = 0;
3375 adapter->total_rx_bytes = 0;
3376 adapter->total_rx_packets = 0;
3377 __napi_schedule(&adapter->napi);
3378 } else {
3379 /* this really should not happen! if it does it is basically a
3380 * bug, but not a hard error, so enable ints and continue */
3381 if (!test_bit(__E1000_DOWN, &adapter->flags))
3382 e1000_irq_enable(adapter);
3385 return IRQ_HANDLED;
3389 * e1000_clean - NAPI Rx polling callback
3390 * @adapter: board private structure
3392 static int e1000_clean(struct napi_struct *napi, int budget)
3394 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3395 int tx_clean_complete = 0, work_done = 0;
3397 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3399 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3401 if (!tx_clean_complete)
3402 work_done = budget;
3404 /* If budget not fully consumed, exit the polling mode */
3405 if (work_done < budget) {
3406 if (likely(adapter->itr_setting & 3))
3407 e1000_set_itr(adapter);
3408 napi_complete(napi);
3409 if (!test_bit(__E1000_DOWN, &adapter->flags))
3410 e1000_irq_enable(adapter);
3413 return work_done;
3417 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3418 * @adapter: board private structure
3420 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3421 struct e1000_tx_ring *tx_ring)
3423 struct e1000_hw *hw = &adapter->hw;
3424 struct net_device *netdev = adapter->netdev;
3425 struct e1000_tx_desc *tx_desc, *eop_desc;
3426 struct e1000_buffer *buffer_info;
3427 unsigned int i, eop;
3428 unsigned int count = 0;
3429 unsigned int total_tx_bytes=0, total_tx_packets=0;
3431 i = tx_ring->next_to_clean;
3432 eop = tx_ring->buffer_info[i].next_to_watch;
3433 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3435 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3436 (count < tx_ring->count)) {
3437 bool cleaned = false;
3438 for ( ; !cleaned; count++) {
3439 tx_desc = E1000_TX_DESC(*tx_ring, i);
3440 buffer_info = &tx_ring->buffer_info[i];
3441 cleaned = (i == eop);
3443 if (cleaned) {
3444 struct sk_buff *skb = buffer_info->skb;
3445 unsigned int segs, bytecount;
3446 segs = skb_shinfo(skb)->gso_segs ?: 1;
3447 /* multiply data chunks by size of headers */
3448 bytecount = ((segs - 1) * skb_headlen(skb)) +
3449 skb->len;
3450 total_tx_packets += segs;
3451 total_tx_bytes += bytecount;
3453 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3454 tx_desc->upper.data = 0;
3456 if (unlikely(++i == tx_ring->count)) i = 0;
3459 eop = tx_ring->buffer_info[i].next_to_watch;
3460 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3463 tx_ring->next_to_clean = i;
3465 #define TX_WAKE_THRESHOLD 32
3466 if (unlikely(count && netif_carrier_ok(netdev) &&
3467 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3468 /* Make sure that anybody stopping the queue after this
3469 * sees the new next_to_clean.
3471 smp_mb();
3473 if (netif_queue_stopped(netdev) &&
3474 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3475 netif_wake_queue(netdev);
3476 ++adapter->restart_queue;
3480 if (adapter->detect_tx_hung) {
3481 /* Detect a transmit hang in hardware, this serializes the
3482 * check with the clearing of time_stamp and movement of i */
3483 adapter->detect_tx_hung = false;
3484 if (tx_ring->buffer_info[eop].time_stamp &&
3485 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3486 (adapter->tx_timeout_factor * HZ))
3487 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3489 /* detected Tx unit hang */
3490 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3491 " Tx Queue <%lu>\n"
3492 " TDH <%x>\n"
3493 " TDT <%x>\n"
3494 " next_to_use <%x>\n"
3495 " next_to_clean <%x>\n"
3496 "buffer_info[next_to_clean]\n"
3497 " time_stamp <%lx>\n"
3498 " next_to_watch <%x>\n"
3499 " jiffies <%lx>\n"
3500 " next_to_watch.status <%x>\n",
3501 (unsigned long)((tx_ring - adapter->tx_ring) /
3502 sizeof(struct e1000_tx_ring)),
3503 readl(hw->hw_addr + tx_ring->tdh),
3504 readl(hw->hw_addr + tx_ring->tdt),
3505 tx_ring->next_to_use,
3506 tx_ring->next_to_clean,
3507 tx_ring->buffer_info[eop].time_stamp,
3508 eop,
3509 jiffies,
3510 eop_desc->upper.fields.status);
3511 netif_stop_queue(netdev);
3514 adapter->total_tx_bytes += total_tx_bytes;
3515 adapter->total_tx_packets += total_tx_packets;
3516 netdev->stats.tx_bytes += total_tx_bytes;
3517 netdev->stats.tx_packets += total_tx_packets;
3518 return (count < tx_ring->count);
3522 * e1000_rx_checksum - Receive Checksum Offload for 82543
3523 * @adapter: board private structure
3524 * @status_err: receive descriptor status and error fields
3525 * @csum: receive descriptor csum field
3526 * @sk_buff: socket buffer with received data
3529 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3530 u32 csum, struct sk_buff *skb)
3532 struct e1000_hw *hw = &adapter->hw;
3533 u16 status = (u16)status_err;
3534 u8 errors = (u8)(status_err >> 24);
3535 skb->ip_summed = CHECKSUM_NONE;
3537 /* 82543 or newer only */
3538 if (unlikely(hw->mac_type < e1000_82543)) return;
3539 /* Ignore Checksum bit is set */
3540 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3541 /* TCP/UDP checksum error bit is set */
3542 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3543 /* let the stack verify checksum errors */
3544 adapter->hw_csum_err++;
3545 return;
3547 /* TCP/UDP Checksum has not been calculated */
3548 if (!(status & E1000_RXD_STAT_TCPCS))
3549 return;
3551 /* It must be a TCP or UDP packet with a valid checksum */
3552 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3553 /* TCP checksum is good */
3554 skb->ip_summed = CHECKSUM_UNNECESSARY;
3556 adapter->hw_csum_good++;
3560 * e1000_consume_page - helper function
3562 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3563 u16 length)
3565 bi->page = NULL;
3566 skb->len += length;
3567 skb->data_len += length;
3568 skb->truesize += length;
3572 * e1000_receive_skb - helper function to handle rx indications
3573 * @adapter: board private structure
3574 * @status: descriptor status field as written by hardware
3575 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3576 * @skb: pointer to sk_buff to be indicated to stack
3578 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3579 __le16 vlan, struct sk_buff *skb)
3581 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3582 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3583 le16_to_cpu(vlan) &
3584 E1000_RXD_SPC_VLAN_MASK);
3585 } else {
3586 netif_receive_skb(skb);
3591 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3592 * @adapter: board private structure
3593 * @rx_ring: ring to clean
3594 * @work_done: amount of napi work completed this call
3595 * @work_to_do: max amount of work allowed for this call to do
3597 * the return value indicates whether actual cleaning was done, there
3598 * is no guarantee that everything was cleaned
3600 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3601 struct e1000_rx_ring *rx_ring,
3602 int *work_done, int work_to_do)
3604 struct e1000_hw *hw = &adapter->hw;
3605 struct net_device *netdev = adapter->netdev;
3606 struct pci_dev *pdev = adapter->pdev;
3607 struct e1000_rx_desc *rx_desc, *next_rxd;
3608 struct e1000_buffer *buffer_info, *next_buffer;
3609 unsigned long irq_flags;
3610 u32 length;
3611 unsigned int i;
3612 int cleaned_count = 0;
3613 bool cleaned = false;
3614 unsigned int total_rx_bytes=0, total_rx_packets=0;
3616 i = rx_ring->next_to_clean;
3617 rx_desc = E1000_RX_DESC(*rx_ring, i);
3618 buffer_info = &rx_ring->buffer_info[i];
3620 while (rx_desc->status & E1000_RXD_STAT_DD) {
3621 struct sk_buff *skb;
3622 u8 status;
3624 if (*work_done >= work_to_do)
3625 break;
3626 (*work_done)++;
3628 status = rx_desc->status;
3629 skb = buffer_info->skb;
3630 buffer_info->skb = NULL;
3632 if (++i == rx_ring->count) i = 0;
3633 next_rxd = E1000_RX_DESC(*rx_ring, i);
3634 prefetch(next_rxd);
3636 next_buffer = &rx_ring->buffer_info[i];
3638 cleaned = true;
3639 cleaned_count++;
3640 pci_unmap_page(pdev, buffer_info->dma, buffer_info->length,
3641 PCI_DMA_FROMDEVICE);
3642 buffer_info->dma = 0;
3644 length = le16_to_cpu(rx_desc->length);
3646 /* errors is only valid for DD + EOP descriptors */
3647 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3648 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3649 u8 last_byte = *(skb->data + length - 1);
3650 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3651 last_byte)) {
3652 spin_lock_irqsave(&adapter->stats_lock,
3653 irq_flags);
3654 e1000_tbi_adjust_stats(hw, &adapter->stats,
3655 length, skb->data);
3656 spin_unlock_irqrestore(&adapter->stats_lock,
3657 irq_flags);
3658 length--;
3659 } else {
3660 /* recycle both page and skb */
3661 buffer_info->skb = skb;
3662 /* an error means any chain goes out the window
3663 * too */
3664 if (rx_ring->rx_skb_top)
3665 dev_kfree_skb(rx_ring->rx_skb_top);
3666 rx_ring->rx_skb_top = NULL;
3667 goto next_desc;
3671 #define rxtop rx_ring->rx_skb_top
3672 if (!(status & E1000_RXD_STAT_EOP)) {
3673 /* this descriptor is only the beginning (or middle) */
3674 if (!rxtop) {
3675 /* this is the beginning of a chain */
3676 rxtop = skb;
3677 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3678 0, length);
3679 } else {
3680 /* this is the middle of a chain */
3681 skb_fill_page_desc(rxtop,
3682 skb_shinfo(rxtop)->nr_frags,
3683 buffer_info->page, 0, length);
3684 /* re-use the skb, only consumed the page */
3685 buffer_info->skb = skb;
3687 e1000_consume_page(buffer_info, rxtop, length);
3688 goto next_desc;
3689 } else {
3690 if (rxtop) {
3691 /* end of the chain */
3692 skb_fill_page_desc(rxtop,
3693 skb_shinfo(rxtop)->nr_frags,
3694 buffer_info->page, 0, length);
3695 /* re-use the current skb, we only consumed the
3696 * page */
3697 buffer_info->skb = skb;
3698 skb = rxtop;
3699 rxtop = NULL;
3700 e1000_consume_page(buffer_info, skb, length);
3701 } else {
3702 /* no chain, got EOP, this buf is the packet
3703 * copybreak to save the put_page/alloc_page */
3704 if (length <= copybreak &&
3705 skb_tailroom(skb) >= length) {
3706 u8 *vaddr;
3707 vaddr = kmap_atomic(buffer_info->page,
3708 KM_SKB_DATA_SOFTIRQ);
3709 memcpy(skb_tail_pointer(skb), vaddr, length);
3710 kunmap_atomic(vaddr,
3711 KM_SKB_DATA_SOFTIRQ);
3712 /* re-use the page, so don't erase
3713 * buffer_info->page */
3714 skb_put(skb, length);
3715 } else {
3716 skb_fill_page_desc(skb, 0,
3717 buffer_info->page, 0,
3718 length);
3719 e1000_consume_page(buffer_info, skb,
3720 length);
3725 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3726 e1000_rx_checksum(adapter,
3727 (u32)(status) |
3728 ((u32)(rx_desc->errors) << 24),
3729 le16_to_cpu(rx_desc->csum), skb);
3731 pskb_trim(skb, skb->len - 4);
3733 /* probably a little skewed due to removing CRC */
3734 total_rx_bytes += skb->len;
3735 total_rx_packets++;
3737 /* eth type trans needs skb->data to point to something */
3738 if (!pskb_may_pull(skb, ETH_HLEN)) {
3739 DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3740 dev_kfree_skb(skb);
3741 goto next_desc;
3744 skb->protocol = eth_type_trans(skb, netdev);
3746 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3748 next_desc:
3749 rx_desc->status = 0;
3751 /* return some buffers to hardware, one at a time is too slow */
3752 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3753 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3754 cleaned_count = 0;
3757 /* use prefetched values */
3758 rx_desc = next_rxd;
3759 buffer_info = next_buffer;
3761 rx_ring->next_to_clean = i;
3763 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3764 if (cleaned_count)
3765 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3767 adapter->total_rx_packets += total_rx_packets;
3768 adapter->total_rx_bytes += total_rx_bytes;
3769 netdev->stats.rx_bytes += total_rx_bytes;
3770 netdev->stats.rx_packets += total_rx_packets;
3771 return cleaned;
3775 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3776 * @adapter: board private structure
3777 * @rx_ring: ring to clean
3778 * @work_done: amount of napi work completed this call
3779 * @work_to_do: max amount of work allowed for this call to do
3781 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3782 struct e1000_rx_ring *rx_ring,
3783 int *work_done, int work_to_do)
3785 struct e1000_hw *hw = &adapter->hw;
3786 struct net_device *netdev = adapter->netdev;
3787 struct pci_dev *pdev = adapter->pdev;
3788 struct e1000_rx_desc *rx_desc, *next_rxd;
3789 struct e1000_buffer *buffer_info, *next_buffer;
3790 unsigned long flags;
3791 u32 length;
3792 unsigned int i;
3793 int cleaned_count = 0;
3794 bool cleaned = false;
3795 unsigned int total_rx_bytes=0, total_rx_packets=0;
3797 i = rx_ring->next_to_clean;
3798 rx_desc = E1000_RX_DESC(*rx_ring, i);
3799 buffer_info = &rx_ring->buffer_info[i];
3801 while (rx_desc->status & E1000_RXD_STAT_DD) {
3802 struct sk_buff *skb;
3803 u8 status;
3805 if (*work_done >= work_to_do)
3806 break;
3807 (*work_done)++;
3809 status = rx_desc->status;
3810 skb = buffer_info->skb;
3811 buffer_info->skb = NULL;
3813 prefetch(skb->data - NET_IP_ALIGN);
3815 if (++i == rx_ring->count) i = 0;
3816 next_rxd = E1000_RX_DESC(*rx_ring, i);
3817 prefetch(next_rxd);
3819 next_buffer = &rx_ring->buffer_info[i];
3821 cleaned = true;
3822 cleaned_count++;
3823 pci_unmap_single(pdev, buffer_info->dma, buffer_info->length,
3824 PCI_DMA_FROMDEVICE);
3825 buffer_info->dma = 0;
3827 length = le16_to_cpu(rx_desc->length);
3828 /* !EOP means multiple descriptors were used to store a single
3829 * packet, also make sure the frame isn't just CRC only */
3830 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
3831 /* All receives must fit into a single buffer */
3832 E1000_DBG("%s: Receive packet consumed multiple"
3833 " buffers\n", netdev->name);
3834 /* recycle */
3835 buffer_info->skb = skb;
3836 goto next_desc;
3839 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3840 u8 last_byte = *(skb->data + length - 1);
3841 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3842 last_byte)) {
3843 spin_lock_irqsave(&adapter->stats_lock, flags);
3844 e1000_tbi_adjust_stats(hw, &adapter->stats,
3845 length, skb->data);
3846 spin_unlock_irqrestore(&adapter->stats_lock,
3847 flags);
3848 length--;
3849 } else {
3850 /* recycle */
3851 buffer_info->skb = skb;
3852 goto next_desc;
3856 /* adjust length to remove Ethernet CRC, this must be
3857 * done after the TBI_ACCEPT workaround above */
3858 length -= 4;
3860 /* probably a little skewed due to removing CRC */
3861 total_rx_bytes += length;
3862 total_rx_packets++;
3864 /* code added for copybreak, this should improve
3865 * performance for small packets with large amounts
3866 * of reassembly being done in the stack */
3867 if (length < copybreak) {
3868 struct sk_buff *new_skb =
3869 netdev_alloc_skb_ip_align(netdev, length);
3870 if (new_skb) {
3871 skb_copy_to_linear_data_offset(new_skb,
3872 -NET_IP_ALIGN,
3873 (skb->data -
3874 NET_IP_ALIGN),
3875 (length +
3876 NET_IP_ALIGN));
3877 /* save the skb in buffer_info as good */
3878 buffer_info->skb = skb;
3879 skb = new_skb;
3881 /* else just continue with the old one */
3883 /* end copybreak code */
3884 skb_put(skb, length);
3886 /* Receive Checksum Offload */
3887 e1000_rx_checksum(adapter,
3888 (u32)(status) |
3889 ((u32)(rx_desc->errors) << 24),
3890 le16_to_cpu(rx_desc->csum), skb);
3892 skb->protocol = eth_type_trans(skb, netdev);
3894 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3896 next_desc:
3897 rx_desc->status = 0;
3899 /* return some buffers to hardware, one at a time is too slow */
3900 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3901 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3902 cleaned_count = 0;
3905 /* use prefetched values */
3906 rx_desc = next_rxd;
3907 buffer_info = next_buffer;
3909 rx_ring->next_to_clean = i;
3911 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3912 if (cleaned_count)
3913 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3915 adapter->total_rx_packets += total_rx_packets;
3916 adapter->total_rx_bytes += total_rx_bytes;
3917 netdev->stats.rx_bytes += total_rx_bytes;
3918 netdev->stats.rx_packets += total_rx_packets;
3919 return cleaned;
3923 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3924 * @adapter: address of board private structure
3925 * @rx_ring: pointer to receive ring structure
3926 * @cleaned_count: number of buffers to allocate this pass
3929 static void
3930 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3931 struct e1000_rx_ring *rx_ring, int cleaned_count)
3933 struct net_device *netdev = adapter->netdev;
3934 struct pci_dev *pdev = adapter->pdev;
3935 struct e1000_rx_desc *rx_desc;
3936 struct e1000_buffer *buffer_info;
3937 struct sk_buff *skb;
3938 unsigned int i;
3939 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3941 i = rx_ring->next_to_use;
3942 buffer_info = &rx_ring->buffer_info[i];
3944 while (cleaned_count--) {
3945 skb = buffer_info->skb;
3946 if (skb) {
3947 skb_trim(skb, 0);
3948 goto check_page;
3951 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3952 if (unlikely(!skb)) {
3953 /* Better luck next round */
3954 adapter->alloc_rx_buff_failed++;
3955 break;
3958 /* Fix for errata 23, can't cross 64kB boundary */
3959 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3960 struct sk_buff *oldskb = skb;
3961 DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3962 "at %p\n", bufsz, skb->data);
3963 /* Try again, without freeing the previous */
3964 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3965 /* Failed allocation, critical failure */
3966 if (!skb) {
3967 dev_kfree_skb(oldskb);
3968 adapter->alloc_rx_buff_failed++;
3969 break;
3972 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3973 /* give up */
3974 dev_kfree_skb(skb);
3975 dev_kfree_skb(oldskb);
3976 break; /* while (cleaned_count--) */
3979 /* Use new allocation */
3980 dev_kfree_skb(oldskb);
3982 buffer_info->skb = skb;
3983 buffer_info->length = adapter->rx_buffer_len;
3984 check_page:
3985 /* allocate a new page if necessary */
3986 if (!buffer_info->page) {
3987 buffer_info->page = alloc_page(GFP_ATOMIC);
3988 if (unlikely(!buffer_info->page)) {
3989 adapter->alloc_rx_buff_failed++;
3990 break;
3994 if (!buffer_info->dma)
3995 buffer_info->dma = pci_map_page(pdev,
3996 buffer_info->page, 0,
3997 buffer_info->length,
3998 PCI_DMA_FROMDEVICE);
4000 rx_desc = E1000_RX_DESC(*rx_ring, i);
4001 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4003 if (unlikely(++i == rx_ring->count))
4004 i = 0;
4005 buffer_info = &rx_ring->buffer_info[i];
4008 if (likely(rx_ring->next_to_use != i)) {
4009 rx_ring->next_to_use = i;
4010 if (unlikely(i-- == 0))
4011 i = (rx_ring->count - 1);
4013 /* Force memory writes to complete before letting h/w
4014 * know there are new descriptors to fetch. (Only
4015 * applicable for weak-ordered memory model archs,
4016 * such as IA-64). */
4017 wmb();
4018 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4023 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4024 * @adapter: address of board private structure
4027 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4028 struct e1000_rx_ring *rx_ring,
4029 int cleaned_count)
4031 struct e1000_hw *hw = &adapter->hw;
4032 struct net_device *netdev = adapter->netdev;
4033 struct pci_dev *pdev = adapter->pdev;
4034 struct e1000_rx_desc *rx_desc;
4035 struct e1000_buffer *buffer_info;
4036 struct sk_buff *skb;
4037 unsigned int i;
4038 unsigned int bufsz = adapter->rx_buffer_len;
4040 i = rx_ring->next_to_use;
4041 buffer_info = &rx_ring->buffer_info[i];
4043 while (cleaned_count--) {
4044 skb = buffer_info->skb;
4045 if (skb) {
4046 skb_trim(skb, 0);
4047 goto map_skb;
4050 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4051 if (unlikely(!skb)) {
4052 /* Better luck next round */
4053 adapter->alloc_rx_buff_failed++;
4054 break;
4057 /* Fix for errata 23, can't cross 64kB boundary */
4058 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4059 struct sk_buff *oldskb = skb;
4060 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4061 "at %p\n", bufsz, skb->data);
4062 /* Try again, without freeing the previous */
4063 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4064 /* Failed allocation, critical failure */
4065 if (!skb) {
4066 dev_kfree_skb(oldskb);
4067 adapter->alloc_rx_buff_failed++;
4068 break;
4071 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4072 /* give up */
4073 dev_kfree_skb(skb);
4074 dev_kfree_skb(oldskb);
4075 adapter->alloc_rx_buff_failed++;
4076 break; /* while !buffer_info->skb */
4079 /* Use new allocation */
4080 dev_kfree_skb(oldskb);
4082 buffer_info->skb = skb;
4083 buffer_info->length = adapter->rx_buffer_len;
4084 map_skb:
4085 buffer_info->dma = pci_map_single(pdev,
4086 skb->data,
4087 buffer_info->length,
4088 PCI_DMA_FROMDEVICE);
4091 * XXX if it was allocated cleanly it will never map to a
4092 * boundary crossing
4095 /* Fix for errata 23, can't cross 64kB boundary */
4096 if (!e1000_check_64k_bound(adapter,
4097 (void *)(unsigned long)buffer_info->dma,
4098 adapter->rx_buffer_len)) {
4099 DPRINTK(RX_ERR, ERR,
4100 "dma align check failed: %u bytes at %p\n",
4101 adapter->rx_buffer_len,
4102 (void *)(unsigned long)buffer_info->dma);
4103 dev_kfree_skb(skb);
4104 buffer_info->skb = NULL;
4106 pci_unmap_single(pdev, buffer_info->dma,
4107 adapter->rx_buffer_len,
4108 PCI_DMA_FROMDEVICE);
4109 buffer_info->dma = 0;
4111 adapter->alloc_rx_buff_failed++;
4112 break; /* while !buffer_info->skb */
4114 rx_desc = E1000_RX_DESC(*rx_ring, i);
4115 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4117 if (unlikely(++i == rx_ring->count))
4118 i = 0;
4119 buffer_info = &rx_ring->buffer_info[i];
4122 if (likely(rx_ring->next_to_use != i)) {
4123 rx_ring->next_to_use = i;
4124 if (unlikely(i-- == 0))
4125 i = (rx_ring->count - 1);
4127 /* Force memory writes to complete before letting h/w
4128 * know there are new descriptors to fetch. (Only
4129 * applicable for weak-ordered memory model archs,
4130 * such as IA-64). */
4131 wmb();
4132 writel(i, hw->hw_addr + rx_ring->rdt);
4137 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4138 * @adapter:
4141 static void e1000_smartspeed(struct e1000_adapter *adapter)
4143 struct e1000_hw *hw = &adapter->hw;
4144 u16 phy_status;
4145 u16 phy_ctrl;
4147 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4148 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4149 return;
4151 if (adapter->smartspeed == 0) {
4152 /* If Master/Slave config fault is asserted twice,
4153 * we assume back-to-back */
4154 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4155 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4156 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4157 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4158 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4159 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4160 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4161 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4162 phy_ctrl);
4163 adapter->smartspeed++;
4164 if (!e1000_phy_setup_autoneg(hw) &&
4165 !e1000_read_phy_reg(hw, PHY_CTRL,
4166 &phy_ctrl)) {
4167 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4168 MII_CR_RESTART_AUTO_NEG);
4169 e1000_write_phy_reg(hw, PHY_CTRL,
4170 phy_ctrl);
4173 return;
4174 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4175 /* If still no link, perhaps using 2/3 pair cable */
4176 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4177 phy_ctrl |= CR_1000T_MS_ENABLE;
4178 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4179 if (!e1000_phy_setup_autoneg(hw) &&
4180 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4181 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4182 MII_CR_RESTART_AUTO_NEG);
4183 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4186 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4187 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4188 adapter->smartspeed = 0;
4192 * e1000_ioctl -
4193 * @netdev:
4194 * @ifreq:
4195 * @cmd:
4198 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4200 switch (cmd) {
4201 case SIOCGMIIPHY:
4202 case SIOCGMIIREG:
4203 case SIOCSMIIREG:
4204 return e1000_mii_ioctl(netdev, ifr, cmd);
4205 default:
4206 return -EOPNOTSUPP;
4211 * e1000_mii_ioctl -
4212 * @netdev:
4213 * @ifreq:
4214 * @cmd:
4217 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4218 int cmd)
4220 struct e1000_adapter *adapter = netdev_priv(netdev);
4221 struct e1000_hw *hw = &adapter->hw;
4222 struct mii_ioctl_data *data = if_mii(ifr);
4223 int retval;
4224 u16 mii_reg;
4225 u16 spddplx;
4226 unsigned long flags;
4228 if (hw->media_type != e1000_media_type_copper)
4229 return -EOPNOTSUPP;
4231 switch (cmd) {
4232 case SIOCGMIIPHY:
4233 data->phy_id = hw->phy_addr;
4234 break;
4235 case SIOCGMIIREG:
4236 spin_lock_irqsave(&adapter->stats_lock, flags);
4237 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4238 &data->val_out)) {
4239 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4240 return -EIO;
4242 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4243 break;
4244 case SIOCSMIIREG:
4245 if (data->reg_num & ~(0x1F))
4246 return -EFAULT;
4247 mii_reg = data->val_in;
4248 spin_lock_irqsave(&adapter->stats_lock, flags);
4249 if (e1000_write_phy_reg(hw, data->reg_num,
4250 mii_reg)) {
4251 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4252 return -EIO;
4254 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4255 if (hw->media_type == e1000_media_type_copper) {
4256 switch (data->reg_num) {
4257 case PHY_CTRL:
4258 if (mii_reg & MII_CR_POWER_DOWN)
4259 break;
4260 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4261 hw->autoneg = 1;
4262 hw->autoneg_advertised = 0x2F;
4263 } else {
4264 if (mii_reg & 0x40)
4265 spddplx = SPEED_1000;
4266 else if (mii_reg & 0x2000)
4267 spddplx = SPEED_100;
4268 else
4269 spddplx = SPEED_10;
4270 spddplx += (mii_reg & 0x100)
4271 ? DUPLEX_FULL :
4272 DUPLEX_HALF;
4273 retval = e1000_set_spd_dplx(adapter,
4274 spddplx);
4275 if (retval)
4276 return retval;
4278 if (netif_running(adapter->netdev))
4279 e1000_reinit_locked(adapter);
4280 else
4281 e1000_reset(adapter);
4282 break;
4283 case M88E1000_PHY_SPEC_CTRL:
4284 case M88E1000_EXT_PHY_SPEC_CTRL:
4285 if (e1000_phy_reset(hw))
4286 return -EIO;
4287 break;
4289 } else {
4290 switch (data->reg_num) {
4291 case PHY_CTRL:
4292 if (mii_reg & MII_CR_POWER_DOWN)
4293 break;
4294 if (netif_running(adapter->netdev))
4295 e1000_reinit_locked(adapter);
4296 else
4297 e1000_reset(adapter);
4298 break;
4301 break;
4302 default:
4303 return -EOPNOTSUPP;
4305 return E1000_SUCCESS;
4308 void e1000_pci_set_mwi(struct e1000_hw *hw)
4310 struct e1000_adapter *adapter = hw->back;
4311 int ret_val = pci_set_mwi(adapter->pdev);
4313 if (ret_val)
4314 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4317 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4319 struct e1000_adapter *adapter = hw->back;
4321 pci_clear_mwi(adapter->pdev);
4324 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4326 struct e1000_adapter *adapter = hw->back;
4327 return pcix_get_mmrbc(adapter->pdev);
4330 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4332 struct e1000_adapter *adapter = hw->back;
4333 pcix_set_mmrbc(adapter->pdev, mmrbc);
4336 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4338 outl(value, port);
4341 static void e1000_vlan_rx_register(struct net_device *netdev,
4342 struct vlan_group *grp)
4344 struct e1000_adapter *adapter = netdev_priv(netdev);
4345 struct e1000_hw *hw = &adapter->hw;
4346 u32 ctrl, rctl;
4348 if (!test_bit(__E1000_DOWN, &adapter->flags))
4349 e1000_irq_disable(adapter);
4350 adapter->vlgrp = grp;
4352 if (grp) {
4353 /* enable VLAN tag insert/strip */
4354 ctrl = er32(CTRL);
4355 ctrl |= E1000_CTRL_VME;
4356 ew32(CTRL, ctrl);
4358 /* enable VLAN receive filtering */
4359 rctl = er32(RCTL);
4360 rctl &= ~E1000_RCTL_CFIEN;
4361 if (!(netdev->flags & IFF_PROMISC))
4362 rctl |= E1000_RCTL_VFE;
4363 ew32(RCTL, rctl);
4364 e1000_update_mng_vlan(adapter);
4365 } else {
4366 /* disable VLAN tag insert/strip */
4367 ctrl = er32(CTRL);
4368 ctrl &= ~E1000_CTRL_VME;
4369 ew32(CTRL, ctrl);
4371 /* disable VLAN receive filtering */
4372 rctl = er32(RCTL);
4373 rctl &= ~E1000_RCTL_VFE;
4374 ew32(RCTL, rctl);
4376 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4377 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4382 if (!test_bit(__E1000_DOWN, &adapter->flags))
4383 e1000_irq_enable(adapter);
4386 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4388 struct e1000_adapter *adapter = netdev_priv(netdev);
4389 struct e1000_hw *hw = &adapter->hw;
4390 u32 vfta, index;
4392 if ((hw->mng_cookie.status &
4393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4394 (vid == adapter->mng_vlan_id))
4395 return;
4396 /* add VID to filter table */
4397 index = (vid >> 5) & 0x7F;
4398 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4399 vfta |= (1 << (vid & 0x1F));
4400 e1000_write_vfta(hw, index, vfta);
4403 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4405 struct e1000_adapter *adapter = netdev_priv(netdev);
4406 struct e1000_hw *hw = &adapter->hw;
4407 u32 vfta, index;
4409 if (!test_bit(__E1000_DOWN, &adapter->flags))
4410 e1000_irq_disable(adapter);
4411 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4412 if (!test_bit(__E1000_DOWN, &adapter->flags))
4413 e1000_irq_enable(adapter);
4415 /* remove VID from filter table */
4416 index = (vid >> 5) & 0x7F;
4417 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4418 vfta &= ~(1 << (vid & 0x1F));
4419 e1000_write_vfta(hw, index, vfta);
4422 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4424 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4426 if (adapter->vlgrp) {
4427 u16 vid;
4428 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4429 if (!vlan_group_get_device(adapter->vlgrp, vid))
4430 continue;
4431 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4436 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4438 struct e1000_hw *hw = &adapter->hw;
4440 hw->autoneg = 0;
4442 /* Fiber NICs only allow 1000 gbps Full duplex */
4443 if ((hw->media_type == e1000_media_type_fiber) &&
4444 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4445 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4446 return -EINVAL;
4449 switch (spddplx) {
4450 case SPEED_10 + DUPLEX_HALF:
4451 hw->forced_speed_duplex = e1000_10_half;
4452 break;
4453 case SPEED_10 + DUPLEX_FULL:
4454 hw->forced_speed_duplex = e1000_10_full;
4455 break;
4456 case SPEED_100 + DUPLEX_HALF:
4457 hw->forced_speed_duplex = e1000_100_half;
4458 break;
4459 case SPEED_100 + DUPLEX_FULL:
4460 hw->forced_speed_duplex = e1000_100_full;
4461 break;
4462 case SPEED_1000 + DUPLEX_FULL:
4463 hw->autoneg = 1;
4464 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4465 break;
4466 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4467 default:
4468 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4469 return -EINVAL;
4471 return 0;
4474 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4476 struct net_device *netdev = pci_get_drvdata(pdev);
4477 struct e1000_adapter *adapter = netdev_priv(netdev);
4478 struct e1000_hw *hw = &adapter->hw;
4479 u32 ctrl, ctrl_ext, rctl, status;
4480 u32 wufc = adapter->wol;
4481 #ifdef CONFIG_PM
4482 int retval = 0;
4483 #endif
4485 netif_device_detach(netdev);
4487 if (netif_running(netdev)) {
4488 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4489 e1000_down(adapter);
4492 #ifdef CONFIG_PM
4493 retval = pci_save_state(pdev);
4494 if (retval)
4495 return retval;
4496 #endif
4498 status = er32(STATUS);
4499 if (status & E1000_STATUS_LU)
4500 wufc &= ~E1000_WUFC_LNKC;
4502 if (wufc) {
4503 e1000_setup_rctl(adapter);
4504 e1000_set_rx_mode(netdev);
4506 /* turn on all-multi mode if wake on multicast is enabled */
4507 if (wufc & E1000_WUFC_MC) {
4508 rctl = er32(RCTL);
4509 rctl |= E1000_RCTL_MPE;
4510 ew32(RCTL, rctl);
4513 if (hw->mac_type >= e1000_82540) {
4514 ctrl = er32(CTRL);
4515 /* advertise wake from D3Cold */
4516 #define E1000_CTRL_ADVD3WUC 0x00100000
4517 /* phy power management enable */
4518 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4519 ctrl |= E1000_CTRL_ADVD3WUC |
4520 E1000_CTRL_EN_PHY_PWR_MGMT;
4521 ew32(CTRL, ctrl);
4524 if (hw->media_type == e1000_media_type_fiber ||
4525 hw->media_type == e1000_media_type_internal_serdes) {
4526 /* keep the laser running in D3 */
4527 ctrl_ext = er32(CTRL_EXT);
4528 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4529 ew32(CTRL_EXT, ctrl_ext);
4532 ew32(WUC, E1000_WUC_PME_EN);
4533 ew32(WUFC, wufc);
4534 } else {
4535 ew32(WUC, 0);
4536 ew32(WUFC, 0);
4539 e1000_release_manageability(adapter);
4541 *enable_wake = !!wufc;
4543 /* make sure adapter isn't asleep if manageability is enabled */
4544 if (adapter->en_mng_pt)
4545 *enable_wake = true;
4547 if (netif_running(netdev))
4548 e1000_free_irq(adapter);
4550 pci_disable_device(pdev);
4552 return 0;
4555 #ifdef CONFIG_PM
4556 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4558 int retval;
4559 bool wake;
4561 retval = __e1000_shutdown(pdev, &wake);
4562 if (retval)
4563 return retval;
4565 if (wake) {
4566 pci_prepare_to_sleep(pdev);
4567 } else {
4568 pci_wake_from_d3(pdev, false);
4569 pci_set_power_state(pdev, PCI_D3hot);
4572 return 0;
4575 static int e1000_resume(struct pci_dev *pdev)
4577 struct net_device *netdev = pci_get_drvdata(pdev);
4578 struct e1000_adapter *adapter = netdev_priv(netdev);
4579 struct e1000_hw *hw = &adapter->hw;
4580 u32 err;
4582 pci_set_power_state(pdev, PCI_D0);
4583 pci_restore_state(pdev);
4585 if (adapter->need_ioport)
4586 err = pci_enable_device(pdev);
4587 else
4588 err = pci_enable_device_mem(pdev);
4589 if (err) {
4590 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4591 return err;
4593 pci_set_master(pdev);
4595 pci_enable_wake(pdev, PCI_D3hot, 0);
4596 pci_enable_wake(pdev, PCI_D3cold, 0);
4598 if (netif_running(netdev)) {
4599 err = e1000_request_irq(adapter);
4600 if (err)
4601 return err;
4604 e1000_power_up_phy(adapter);
4605 e1000_reset(adapter);
4606 ew32(WUS, ~0);
4608 e1000_init_manageability(adapter);
4610 if (netif_running(netdev))
4611 e1000_up(adapter);
4613 netif_device_attach(netdev);
4615 return 0;
4617 #endif
4619 static void e1000_shutdown(struct pci_dev *pdev)
4621 bool wake;
4623 __e1000_shutdown(pdev, &wake);
4625 if (system_state == SYSTEM_POWER_OFF) {
4626 pci_wake_from_d3(pdev, wake);
4627 pci_set_power_state(pdev, PCI_D3hot);
4631 #ifdef CONFIG_NET_POLL_CONTROLLER
4633 * Polling 'interrupt' - used by things like netconsole to send skbs
4634 * without having to re-enable interrupts. It's not called while
4635 * the interrupt routine is executing.
4637 static void e1000_netpoll(struct net_device *netdev)
4639 struct e1000_adapter *adapter = netdev_priv(netdev);
4641 disable_irq(adapter->pdev->irq);
4642 e1000_intr(adapter->pdev->irq, netdev);
4643 enable_irq(adapter->pdev->irq);
4645 #endif
4648 * e1000_io_error_detected - called when PCI error is detected
4649 * @pdev: Pointer to PCI device
4650 * @state: The current pci connection state
4652 * This function is called after a PCI bus error affecting
4653 * this device has been detected.
4655 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4656 pci_channel_state_t state)
4658 struct net_device *netdev = pci_get_drvdata(pdev);
4659 struct e1000_adapter *adapter = netdev_priv(netdev);
4661 netif_device_detach(netdev);
4663 if (state == pci_channel_io_perm_failure)
4664 return PCI_ERS_RESULT_DISCONNECT;
4666 if (netif_running(netdev))
4667 e1000_down(adapter);
4668 pci_disable_device(pdev);
4670 /* Request a slot slot reset. */
4671 return PCI_ERS_RESULT_NEED_RESET;
4675 * e1000_io_slot_reset - called after the pci bus has been reset.
4676 * @pdev: Pointer to PCI device
4678 * Restart the card from scratch, as if from a cold-boot. Implementation
4679 * resembles the first-half of the e1000_resume routine.
4681 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4683 struct net_device *netdev = pci_get_drvdata(pdev);
4684 struct e1000_adapter *adapter = netdev_priv(netdev);
4685 struct e1000_hw *hw = &adapter->hw;
4686 int err;
4688 if (adapter->need_ioport)
4689 err = pci_enable_device(pdev);
4690 else
4691 err = pci_enable_device_mem(pdev);
4692 if (err) {
4693 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4694 return PCI_ERS_RESULT_DISCONNECT;
4696 pci_set_master(pdev);
4698 pci_enable_wake(pdev, PCI_D3hot, 0);
4699 pci_enable_wake(pdev, PCI_D3cold, 0);
4701 e1000_reset(adapter);
4702 ew32(WUS, ~0);
4704 return PCI_ERS_RESULT_RECOVERED;
4708 * e1000_io_resume - called when traffic can start flowing again.
4709 * @pdev: Pointer to PCI device
4711 * This callback is called when the error recovery driver tells us that
4712 * its OK to resume normal operation. Implementation resembles the
4713 * second-half of the e1000_resume routine.
4715 static void e1000_io_resume(struct pci_dev *pdev)
4717 struct net_device *netdev = pci_get_drvdata(pdev);
4718 struct e1000_adapter *adapter = netdev_priv(netdev);
4720 e1000_init_manageability(adapter);
4722 if (netif_running(netdev)) {
4723 if (e1000_up(adapter)) {
4724 printk("e1000: can't bring device back up after reset\n");
4725 return;
4729 netif_device_attach(netdev);
4732 /* e1000_main.c */