1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS
, E1000_STATS
};
37 char stat_string
[ETH_GSTRING_LEN
];
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats
[] = {
51 { "rx_packets", E1000_STAT(stats
.gprc
) },
52 { "tx_packets", E1000_STAT(stats
.gptc
) },
53 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
54 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
55 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
56 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
57 { "rx_multicast", E1000_STAT(stats
.mprc
) },
58 { "tx_multicast", E1000_STAT(stats
.mptc
) },
59 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
60 { "tx_errors", E1000_STAT(stats
.txerrc
) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
62 { "multicast", E1000_STAT(stats
.mprc
) },
63 { "collisions", E1000_STAT(stats
.colc
) },
64 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
66 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
68 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
69 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
70 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
71 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
74 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
75 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
76 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
77 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
78 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
80 { "tx_restart_queue", E1000_STAT(restart_queue
) },
81 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
82 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
83 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
84 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
86 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
87 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
88 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
89 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
90 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
94 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
95 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
96 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device
*netdev
,
110 struct ethtool_cmd
*ecmd
)
112 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
113 struct e1000_hw
*hw
= &adapter
->hw
;
115 if (hw
->media_type
== e1000_media_type_copper
) {
117 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
118 SUPPORTED_10baseT_Full
|
119 SUPPORTED_100baseT_Half
|
120 SUPPORTED_100baseT_Full
|
121 SUPPORTED_1000baseT_Full
|
124 ecmd
->advertising
= ADVERTISED_TP
;
126 if (hw
->autoneg
== 1) {
127 ecmd
->advertising
|= ADVERTISED_Autoneg
;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd
->advertising
|= hw
->autoneg_advertised
;
132 ecmd
->port
= PORT_TP
;
133 ecmd
->phy_address
= hw
->phy_addr
;
135 if (hw
->mac_type
== e1000_82543
)
136 ecmd
->transceiver
= XCVR_EXTERNAL
;
138 ecmd
->transceiver
= XCVR_INTERNAL
;
141 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
145 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
149 ecmd
->port
= PORT_FIBRE
;
151 if (hw
->mac_type
>= e1000_82545
)
152 ecmd
->transceiver
= XCVR_INTERNAL
;
154 ecmd
->transceiver
= XCVR_EXTERNAL
;
157 if (er32(STATUS
) & E1000_STATUS_LU
) {
159 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
160 &adapter
->link_duplex
);
161 ecmd
->speed
= adapter
->link_speed
;
163 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter
->link_duplex
== FULL_DUPLEX
)
167 ecmd
->duplex
= DUPLEX_FULL
;
169 ecmd
->duplex
= DUPLEX_HALF
;
175 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
176 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
180 static int e1000_set_settings(struct net_device
*netdev
,
181 struct ethtool_cmd
*ecmd
)
183 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
184 struct e1000_hw
*hw
= &adapter
->hw
;
186 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
189 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
191 if (hw
->media_type
== e1000_media_type_fiber
)
192 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
196 hw
->autoneg_advertised
= ecmd
->advertising
|
199 ecmd
->advertising
= hw
->autoneg_advertised
;
201 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
202 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
208 if (netif_running(adapter
->netdev
)) {
212 e1000_reset(adapter
);
214 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
218 static void e1000_get_pauseparam(struct net_device
*netdev
,
219 struct ethtool_pauseparam
*pause
)
221 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
222 struct e1000_hw
*hw
= &adapter
->hw
;
225 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
227 if (hw
->fc
== E1000_FC_RX_PAUSE
)
229 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
231 else if (hw
->fc
== E1000_FC_FULL
) {
237 static int e1000_set_pauseparam(struct net_device
*netdev
,
238 struct ethtool_pauseparam
*pause
)
240 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
241 struct e1000_hw
*hw
= &adapter
->hw
;
244 adapter
->fc_autoneg
= pause
->autoneg
;
246 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
249 if (pause
->rx_pause
&& pause
->tx_pause
)
250 hw
->fc
= E1000_FC_FULL
;
251 else if (pause
->rx_pause
&& !pause
->tx_pause
)
252 hw
->fc
= E1000_FC_RX_PAUSE
;
253 else if (!pause
->rx_pause
&& pause
->tx_pause
)
254 hw
->fc
= E1000_FC_TX_PAUSE
;
255 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
256 hw
->fc
= E1000_FC_NONE
;
258 hw
->original_fc
= hw
->fc
;
260 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
261 if (netif_running(adapter
->netdev
)) {
265 e1000_reset(adapter
);
267 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
268 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
270 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
274 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
277 return adapter
->rx_csum
;
280 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
282 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
283 adapter
->rx_csum
= data
;
285 if (netif_running(netdev
))
286 e1000_reinit_locked(adapter
);
288 e1000_reset(adapter
);
292 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
294 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
297 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
299 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
300 struct e1000_hw
*hw
= &adapter
->hw
;
302 if (hw
->mac_type
< e1000_82543
) {
309 netdev
->features
|= NETIF_F_HW_CSUM
;
311 netdev
->features
&= ~NETIF_F_HW_CSUM
;
316 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
318 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
319 struct e1000_hw
*hw
= &adapter
->hw
;
321 if ((hw
->mac_type
< e1000_82544
) ||
322 (hw
->mac_type
== e1000_82547
))
323 return data
? -EINVAL
: 0;
326 netdev
->features
|= NETIF_F_TSO
;
328 netdev
->features
&= ~NETIF_F_TSO
;
330 netdev
->features
&= ~NETIF_F_TSO6
;
332 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
333 adapter
->tso_force
= true;
337 static u32
e1000_get_msglevel(struct net_device
*netdev
)
339 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
340 return adapter
->msg_enable
;
343 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
345 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
346 adapter
->msg_enable
= data
;
349 static int e1000_get_regs_len(struct net_device
*netdev
)
351 #define E1000_REGS_LEN 32
352 return E1000_REGS_LEN
* sizeof(u32
);
355 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
358 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
359 struct e1000_hw
*hw
= &adapter
->hw
;
363 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
365 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
367 regs_buff
[0] = er32(CTRL
);
368 regs_buff
[1] = er32(STATUS
);
370 regs_buff
[2] = er32(RCTL
);
371 regs_buff
[3] = er32(RDLEN
);
372 regs_buff
[4] = er32(RDH
);
373 regs_buff
[5] = er32(RDT
);
374 regs_buff
[6] = er32(RDTR
);
376 regs_buff
[7] = er32(TCTL
);
377 regs_buff
[8] = er32(TDLEN
);
378 regs_buff
[9] = er32(TDH
);
379 regs_buff
[10] = er32(TDT
);
380 regs_buff
[11] = er32(TIDV
);
382 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
383 if (hw
->phy_type
== e1000_phy_igp
) {
384 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
385 IGP01E1000_PHY_AGC_A
);
386 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
387 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
388 regs_buff
[13] = (u32
)phy_data
; /* cable length */
389 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
390 IGP01E1000_PHY_AGC_B
);
391 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
392 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
393 regs_buff
[14] = (u32
)phy_data
; /* cable length */
394 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
395 IGP01E1000_PHY_AGC_C
);
396 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
397 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
398 regs_buff
[15] = (u32
)phy_data
; /* cable length */
399 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
400 IGP01E1000_PHY_AGC_D
);
401 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
402 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
403 regs_buff
[16] = (u32
)phy_data
; /* cable length */
404 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
405 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
406 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
407 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
408 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
409 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
410 IGP01E1000_PHY_PCS_INIT_REG
);
411 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
412 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
413 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
414 regs_buff
[20] = 0; /* polarity correction enabled (always) */
415 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
416 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
417 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
419 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
420 regs_buff
[13] = (u32
)phy_data
; /* cable length */
421 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
422 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
425 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
426 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
427 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
429 /* phy receive errors */
430 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
431 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
433 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
434 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
435 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
436 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
437 if (hw
->mac_type
>= e1000_82540
&&
438 hw
->media_type
== e1000_media_type_copper
) {
439 regs_buff
[26] = er32(MANC
);
443 static int e1000_get_eeprom_len(struct net_device
*netdev
)
445 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
446 struct e1000_hw
*hw
= &adapter
->hw
;
448 return hw
->eeprom
.word_size
* 2;
451 static int e1000_get_eeprom(struct net_device
*netdev
,
452 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
454 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
455 struct e1000_hw
*hw
= &adapter
->hw
;
457 int first_word
, last_word
;
461 if (eeprom
->len
== 0)
464 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
466 first_word
= eeprom
->offset
>> 1;
467 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
469 eeprom_buff
= kmalloc(sizeof(u16
) *
470 (last_word
- first_word
+ 1), GFP_KERNEL
);
474 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
475 ret_val
= e1000_read_eeprom(hw
, first_word
,
476 last_word
- first_word
+ 1,
479 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
480 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
487 /* Device's eeprom is always little-endian, word addressable */
488 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
489 le16_to_cpus(&eeprom_buff
[i
]);
491 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
498 static int e1000_set_eeprom(struct net_device
*netdev
,
499 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
501 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
502 struct e1000_hw
*hw
= &adapter
->hw
;
505 int max_len
, first_word
, last_word
, ret_val
= 0;
508 if (eeprom
->len
== 0)
511 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
514 max_len
= hw
->eeprom
.word_size
* 2;
516 first_word
= eeprom
->offset
>> 1;
517 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
518 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
522 ptr
= (void *)eeprom_buff
;
524 if (eeprom
->offset
& 1) {
525 /* need read/modify/write of first changed EEPROM word */
526 /* only the second byte of the word is being modified */
527 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
531 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
532 /* need read/modify/write of last changed EEPROM word */
533 /* only the first byte of the word is being modified */
534 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
535 &eeprom_buff
[last_word
- first_word
]);
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
540 le16_to_cpus(&eeprom_buff
[i
]);
542 memcpy(ptr
, bytes
, eeprom
->len
);
544 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
545 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
547 ret_val
= e1000_write_eeprom(hw
, first_word
,
548 last_word
- first_word
+ 1, eeprom_buff
);
550 /* Update the checksum over the first part of the EEPROM if needed */
551 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
552 e1000_update_eeprom_checksum(hw
);
558 static void e1000_get_drvinfo(struct net_device
*netdev
,
559 struct ethtool_drvinfo
*drvinfo
)
561 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
562 char firmware_version
[32];
564 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
565 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
567 sprintf(firmware_version
, "N/A");
568 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
569 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
570 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
571 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
574 static void e1000_get_ringparam(struct net_device
*netdev
,
575 struct ethtool_ringparam
*ring
)
577 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
578 struct e1000_hw
*hw
= &adapter
->hw
;
579 e1000_mac_type mac_type
= hw
->mac_type
;
580 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
581 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
583 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
585 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
587 ring
->rx_mini_max_pending
= 0;
588 ring
->rx_jumbo_max_pending
= 0;
589 ring
->rx_pending
= rxdr
->count
;
590 ring
->tx_pending
= txdr
->count
;
591 ring
->rx_mini_pending
= 0;
592 ring
->rx_jumbo_pending
= 0;
595 static int e1000_set_ringparam(struct net_device
*netdev
,
596 struct ethtool_ringparam
*ring
)
598 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
599 struct e1000_hw
*hw
= &adapter
->hw
;
600 e1000_mac_type mac_type
= hw
->mac_type
;
601 struct e1000_tx_ring
*txdr
, *tx_old
;
602 struct e1000_rx_ring
*rxdr
, *rx_old
;
605 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
608 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
611 if (netif_running(adapter
->netdev
))
614 tx_old
= adapter
->tx_ring
;
615 rx_old
= adapter
->rx_ring
;
618 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
622 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
626 adapter
->tx_ring
= txdr
;
627 adapter
->rx_ring
= rxdr
;
629 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
630 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
631 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
632 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
634 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
635 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
636 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
637 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
639 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
640 txdr
[i
].count
= txdr
->count
;
641 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
642 rxdr
[i
].count
= rxdr
->count
;
644 if (netif_running(adapter
->netdev
)) {
645 /* Try to get new resources before deleting old */
646 err
= e1000_setup_all_rx_resources(adapter
);
649 err
= e1000_setup_all_tx_resources(adapter
);
653 /* save the new, restore the old in order to free it,
654 * then restore the new back again */
656 adapter
->rx_ring
= rx_old
;
657 adapter
->tx_ring
= tx_old
;
658 e1000_free_all_rx_resources(adapter
);
659 e1000_free_all_tx_resources(adapter
);
662 adapter
->rx_ring
= rxdr
;
663 adapter
->tx_ring
= txdr
;
664 err
= e1000_up(adapter
);
669 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
672 e1000_free_all_rx_resources(adapter
);
674 adapter
->rx_ring
= rx_old
;
675 adapter
->tx_ring
= tx_old
;
682 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
686 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
689 struct e1000_hw
*hw
= &adapter
->hw
;
690 static const u32 test
[] =
691 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
692 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
696 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
697 writel(write
& test
[i
], address
);
698 read
= readl(address
);
699 if (read
!= (write
& test
[i
] & mask
)) {
700 DPRINTK(DRV
, ERR
, "pattern test reg %04X failed: "
701 "got 0x%08X expected 0x%08X\n",
702 reg
, read
, (write
& test
[i
] & mask
));
710 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
713 struct e1000_hw
*hw
= &adapter
->hw
;
714 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
717 writel(write
& mask
, address
);
718 read
= readl(address
);
719 if ((read
& mask
) != (write
& mask
)) {
720 DPRINTK(DRV
, ERR
, "set/check reg %04X test failed: "
721 "got 0x%08X expected 0x%08X\n",
722 reg
, (read
& mask
), (write
& mask
));
729 #define REG_PATTERN_TEST(reg, mask, write) \
731 if (reg_pattern_test(adapter, data, \
732 (hw->mac_type >= e1000_82543) \
733 ? E1000_##reg : E1000_82542_##reg, \
738 #define REG_SET_AND_CHECK(reg, mask, write) \
740 if (reg_set_and_check(adapter, data, \
741 (hw->mac_type >= e1000_82543) \
742 ? E1000_##reg : E1000_82542_##reg, \
747 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
749 u32 value
, before
, after
;
751 struct e1000_hw
*hw
= &adapter
->hw
;
753 /* The status register is Read Only, so a write should fail.
754 * Some bits that get toggled are ignored.
757 /* there are several bits on newer hardware that are r/w */
760 before
= er32(STATUS
);
761 value
= (er32(STATUS
) & toggle
);
762 ew32(STATUS
, toggle
);
763 after
= er32(STATUS
) & toggle
;
764 if (value
!= after
) {
765 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
766 "0x%08X expected: 0x%08X\n", after
, value
);
770 /* restore previous status */
771 ew32(STATUS
, before
);
773 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
774 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
775 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
781 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
782 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
783 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
784 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
786 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
789 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
792 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
793 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
795 if (hw
->mac_type
>= e1000_82543
) {
797 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
798 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
799 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
800 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
801 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
802 value
= E1000_RAR_ENTRIES
;
803 for (i
= 0; i
< value
; i
++) {
804 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
810 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
811 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
812 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
813 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
817 value
= E1000_MC_TBL_SIZE
;
818 for (i
= 0; i
< value
; i
++)
819 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
825 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
827 struct e1000_hw
*hw
= &adapter
->hw
;
833 /* Read and add up the contents of the EEPROM */
834 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
835 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
842 /* If Checksum is not Correct return error else test passed */
843 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
849 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
851 struct net_device
*netdev
= (struct net_device
*)data
;
852 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
853 struct e1000_hw
*hw
= &adapter
->hw
;
855 adapter
->test_icr
|= er32(ICR
);
860 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
862 struct net_device
*netdev
= adapter
->netdev
;
864 bool shared_int
= true;
865 u32 irq
= adapter
->pdev
->irq
;
866 struct e1000_hw
*hw
= &adapter
->hw
;
870 /* NOTE: we don't test MSI interrupts here, yet */
871 /* Hook up test interrupt handler just for this test */
872 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
875 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
876 netdev
->name
, netdev
)) {
880 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
881 (shared_int
? "shared" : "unshared"));
883 /* Disable all the interrupts */
884 ew32(IMC
, 0xFFFFFFFF);
887 /* Test each interrupt */
888 for (; i
< 10; i
++) {
890 /* Interrupt to test */
894 /* Disable the interrupt to be reported in
895 * the cause register and then force the same
896 * interrupt and see if one gets posted. If
897 * an interrupt was posted to the bus, the
900 adapter
->test_icr
= 0;
905 if (adapter
->test_icr
& mask
) {
911 /* Enable the interrupt to be reported in
912 * the cause register and then force the same
913 * interrupt and see if one gets posted. If
914 * an interrupt was not posted to the bus, the
917 adapter
->test_icr
= 0;
922 if (!(adapter
->test_icr
& mask
)) {
928 /* Disable the other interrupts to be reported in
929 * the cause register and then force the other
930 * interrupts and see if any get posted. If
931 * an interrupt was posted to the bus, the
934 adapter
->test_icr
= 0;
935 ew32(IMC
, ~mask
& 0x00007FFF);
936 ew32(ICS
, ~mask
& 0x00007FFF);
939 if (adapter
->test_icr
) {
946 /* Disable all the interrupts */
947 ew32(IMC
, 0xFFFFFFFF);
950 /* Unhook test interrupt handler */
951 free_irq(irq
, netdev
);
956 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
958 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
959 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
960 struct pci_dev
*pdev
= adapter
->pdev
;
963 if (txdr
->desc
&& txdr
->buffer_info
) {
964 for (i
= 0; i
< txdr
->count
; i
++) {
965 if (txdr
->buffer_info
[i
].dma
)
966 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
967 txdr
->buffer_info
[i
].length
,
969 if (txdr
->buffer_info
[i
].skb
)
970 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
974 if (rxdr
->desc
&& rxdr
->buffer_info
) {
975 for (i
= 0; i
< rxdr
->count
; i
++) {
976 if (rxdr
->buffer_info
[i
].dma
)
977 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
978 rxdr
->buffer_info
[i
].length
,
980 if (rxdr
->buffer_info
[i
].skb
)
981 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
986 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
990 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
994 kfree(txdr
->buffer_info
);
995 txdr
->buffer_info
= NULL
;
996 kfree(rxdr
->buffer_info
);
997 rxdr
->buffer_info
= NULL
;
1002 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1004 struct e1000_hw
*hw
= &adapter
->hw
;
1005 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1006 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1007 struct pci_dev
*pdev
= adapter
->pdev
;
1011 /* Setup Tx descriptor ring and Tx buffers */
1014 txdr
->count
= E1000_DEFAULT_TXD
;
1016 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1018 if (!txdr
->buffer_info
) {
1023 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1024 txdr
->size
= ALIGN(txdr
->size
, 4096);
1025 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1030 memset(txdr
->desc
, 0, txdr
->size
);
1031 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1033 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1034 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1035 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1038 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1039 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1040 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1042 for (i
= 0; i
< txdr
->count
; i
++) {
1043 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1044 struct sk_buff
*skb
;
1045 unsigned int size
= 1024;
1047 skb
= alloc_skb(size
, GFP_KERNEL
);
1053 txdr
->buffer_info
[i
].skb
= skb
;
1054 txdr
->buffer_info
[i
].length
= skb
->len
;
1055 txdr
->buffer_info
[i
].dma
=
1056 pci_map_single(pdev
, skb
->data
, skb
->len
,
1058 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1059 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1060 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1061 E1000_TXD_CMD_IFCS
|
1063 tx_desc
->upper
.data
= 0;
1066 /* Setup Rx descriptor ring and Rx buffers */
1069 rxdr
->count
= E1000_DEFAULT_RXD
;
1071 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1073 if (!rxdr
->buffer_info
) {
1078 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1079 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1084 memset(rxdr
->desc
, 0, rxdr
->size
);
1085 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1088 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1089 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1090 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1091 ew32(RDLEN
, rxdr
->size
);
1094 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1095 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1096 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1099 for (i
= 0; i
< rxdr
->count
; i
++) {
1100 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1101 struct sk_buff
*skb
;
1103 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1108 skb_reserve(skb
, NET_IP_ALIGN
);
1109 rxdr
->buffer_info
[i
].skb
= skb
;
1110 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1111 rxdr
->buffer_info
[i
].dma
=
1112 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1113 PCI_DMA_FROMDEVICE
);
1114 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1115 memset(skb
->data
, 0x00, skb
->len
);
1121 e1000_free_desc_rings(adapter
);
1125 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1127 struct e1000_hw
*hw
= &adapter
->hw
;
1129 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130 e1000_write_phy_reg(hw
, 29, 0x001F);
1131 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1132 e1000_write_phy_reg(hw
, 29, 0x001A);
1133 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1138 struct e1000_hw
*hw
= &adapter
->hw
;
1141 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1142 * Extended PHY Specific Control Register to 25MHz clock. This
1143 * value defaults back to a 2.5MHz clock when the PHY is reset.
1145 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1146 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1147 e1000_write_phy_reg(hw
,
1148 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1150 /* In addition, because of the s/w reset above, we need to enable
1151 * CRS on TX. This must be set for both full and half duplex
1154 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1155 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1156 e1000_write_phy_reg(hw
,
1157 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1162 struct e1000_hw
*hw
= &adapter
->hw
;
1166 /* Setup the Device Control Register for PHY loopback test. */
1168 ctrl_reg
= er32(CTRL
);
1169 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1170 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1171 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1172 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1173 E1000_CTRL_FD
); /* Force Duplex to FULL */
1175 ew32(CTRL
, ctrl_reg
);
1177 /* Read the PHY Specific Control Register (0x10) */
1178 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1180 /* Clear Auto-Crossover bits in PHY Specific Control Register
1183 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1184 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1186 /* Perform software reset on the PHY */
1187 e1000_phy_reset(hw
);
1189 /* Have to setup TX_CLK and TX_CRS after software reset */
1190 e1000_phy_reset_clk_and_crs(adapter
);
1192 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1194 /* Wait for reset to complete. */
1197 /* Have to setup TX_CLK and TX_CRS after software reset */
1198 e1000_phy_reset_clk_and_crs(adapter
);
1200 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201 e1000_phy_disable_receiver(adapter
);
1203 /* Set the loopback bit in the PHY control register. */
1204 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1205 phy_reg
|= MII_CR_LOOPBACK
;
1206 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1208 /* Setup TX_CLK and TX_CRS one more time. */
1209 e1000_phy_reset_clk_and_crs(adapter
);
1211 /* Check Phy Configuration */
1212 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1213 if (phy_reg
!= 0x4100)
1216 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1217 if (phy_reg
!= 0x0070)
1220 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1221 if (phy_reg
!= 0x001A)
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1229 struct e1000_hw
*hw
= &adapter
->hw
;
1233 hw
->autoneg
= false;
1235 if (hw
->phy_type
== e1000_phy_m88
) {
1236 /* Auto-MDI/MDIX Off */
1237 e1000_write_phy_reg(hw
,
1238 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1239 /* reset to update Auto-MDI/MDIX */
1240 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1242 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1245 ctrl_reg
= er32(CTRL
);
1247 /* force 1000, set loopback */
1248 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1250 /* Now set up the MAC to the same speed/duplex as the PHY. */
1251 ctrl_reg
= er32(CTRL
);
1252 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1253 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1254 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1255 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1256 E1000_CTRL_FD
); /* Force Duplex to FULL */
1258 if (hw
->media_type
== e1000_media_type_copper
&&
1259 hw
->phy_type
== e1000_phy_m88
)
1260 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1262 /* Set the ILOS bit on the fiber Nic is half
1263 * duplex link is detected. */
1264 stat_reg
= er32(STATUS
);
1265 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1266 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1269 ew32(CTRL
, ctrl_reg
);
1271 /* Disable the receiver on the PHY so when a cable is plugged in, the
1272 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1274 if (hw
->phy_type
== e1000_phy_m88
)
1275 e1000_phy_disable_receiver(adapter
);
1282 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1284 struct e1000_hw
*hw
= &adapter
->hw
;
1288 switch (hw
->mac_type
) {
1290 if (hw
->media_type
== e1000_media_type_copper
) {
1291 /* Attempt to setup Loopback mode on Non-integrated PHY.
1292 * Some PHY registers get corrupted at random, so
1293 * attempt this 10 times.
1295 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1305 case e1000_82545_rev_3
:
1307 case e1000_82546_rev_3
:
1309 case e1000_82541_rev_2
:
1311 case e1000_82547_rev_2
:
1312 return e1000_integrated_phy_loopback(adapter
);
1315 /* Default PHY loopback work is to read the MII
1316 * control register and assert bit 14 (loopback mode).
1318 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1319 phy_reg
|= MII_CR_LOOPBACK
;
1320 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1328 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1330 struct e1000_hw
*hw
= &adapter
->hw
;
1333 if (hw
->media_type
== e1000_media_type_fiber
||
1334 hw
->media_type
== e1000_media_type_internal_serdes
) {
1335 switch (hw
->mac_type
) {
1338 case e1000_82545_rev_3
:
1339 case e1000_82546_rev_3
:
1340 return e1000_set_phy_loopback(adapter
);
1344 rctl
|= E1000_RCTL_LBM_TCVR
;
1348 } else if (hw
->media_type
== e1000_media_type_copper
)
1349 return e1000_set_phy_loopback(adapter
);
1354 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1356 struct e1000_hw
*hw
= &adapter
->hw
;
1361 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1364 switch (hw
->mac_type
) {
1367 case e1000_82545_rev_3
:
1368 case e1000_82546_rev_3
:
1371 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1372 if (phy_reg
& MII_CR_LOOPBACK
) {
1373 phy_reg
&= ~MII_CR_LOOPBACK
;
1374 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1375 e1000_phy_reset(hw
);
1381 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1382 unsigned int frame_size
)
1384 memset(skb
->data
, 0xFF, frame_size
);
1386 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1387 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1388 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1391 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1392 unsigned int frame_size
)
1395 if (*(skb
->data
+ 3) == 0xFF) {
1396 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1397 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1404 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1406 struct e1000_hw
*hw
= &adapter
->hw
;
1407 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1408 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1409 struct pci_dev
*pdev
= adapter
->pdev
;
1410 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1413 ew32(RDT
, rxdr
->count
- 1);
1415 /* Calculate the loop count based on the largest descriptor ring
1416 * The idea is to wrap the largest ring a number of times using 64
1417 * send/receive pairs during each loop
1420 if (rxdr
->count
<= txdr
->count
)
1421 lc
= ((txdr
->count
/ 64) * 2) + 1;
1423 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1426 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1427 for (i
= 0; i
< 64; i
++) { /* send the packets */
1428 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1430 pci_dma_sync_single_for_device(pdev
,
1431 txdr
->buffer_info
[k
].dma
,
1432 txdr
->buffer_info
[k
].length
,
1434 if (unlikely(++k
== txdr
->count
)) k
= 0;
1438 time
= jiffies
; /* set the start time for the receive */
1440 do { /* receive the sent packets */
1441 pci_dma_sync_single_for_cpu(pdev
,
1442 rxdr
->buffer_info
[l
].dma
,
1443 rxdr
->buffer_info
[l
].length
,
1444 PCI_DMA_FROMDEVICE
);
1446 ret_val
= e1000_check_lbtest_frame(
1447 rxdr
->buffer_info
[l
].skb
,
1451 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1456 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1457 if (good_cnt
!= 64) {
1458 ret_val
= 13; /* ret_val is the same as mis-compare */
1461 if (jiffies
>= (time
+ 2)) {
1462 ret_val
= 14; /* error code for time out error */
1465 } /* end loop count loop */
1469 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1471 *data
= e1000_setup_desc_rings(adapter
);
1474 *data
= e1000_setup_loopback_test(adapter
);
1477 *data
= e1000_run_loopback_test(adapter
);
1478 e1000_loopback_cleanup(adapter
);
1481 e1000_free_desc_rings(adapter
);
1486 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1488 struct e1000_hw
*hw
= &adapter
->hw
;
1490 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1492 hw
->serdes_has_link
= false;
1494 /* On some blade server designs, link establishment
1495 * could take as long as 2-3 minutes */
1497 e1000_check_for_link(hw
);
1498 if (hw
->serdes_has_link
)
1501 } while (i
++ < 3750);
1505 e1000_check_for_link(hw
);
1506 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1509 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1516 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1520 return E1000_TEST_LEN
;
1522 return E1000_STATS_LEN
;
1528 static void e1000_diag_test(struct net_device
*netdev
,
1529 struct ethtool_test
*eth_test
, u64
*data
)
1531 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1532 struct e1000_hw
*hw
= &adapter
->hw
;
1533 bool if_running
= netif_running(netdev
);
1535 set_bit(__E1000_TESTING
, &adapter
->flags
);
1536 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1539 /* save speed, duplex, autoneg settings */
1540 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1541 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1542 u8 autoneg
= hw
->autoneg
;
1544 DPRINTK(HW
, INFO
, "offline testing starting\n");
1546 /* Link test performed before hardware reset so autoneg doesn't
1547 * interfere with test result */
1548 if (e1000_link_test(adapter
, &data
[4]))
1549 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1552 /* indicate we're in test mode */
1555 e1000_reset(adapter
);
1557 if (e1000_reg_test(adapter
, &data
[0]))
1558 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1560 e1000_reset(adapter
);
1561 if (e1000_eeprom_test(adapter
, &data
[1]))
1562 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1564 e1000_reset(adapter
);
1565 if (e1000_intr_test(adapter
, &data
[2]))
1566 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1568 e1000_reset(adapter
);
1569 /* make sure the phy is powered up */
1570 e1000_power_up_phy(adapter
);
1571 if (e1000_loopback_test(adapter
, &data
[3]))
1572 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1574 /* restore speed, duplex, autoneg settings */
1575 hw
->autoneg_advertised
= autoneg_advertised
;
1576 hw
->forced_speed_duplex
= forced_speed_duplex
;
1577 hw
->autoneg
= autoneg
;
1579 e1000_reset(adapter
);
1580 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1584 DPRINTK(HW
, INFO
, "online testing starting\n");
1586 if (e1000_link_test(adapter
, &data
[4]))
1587 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1589 /* Online tests aren't run; pass by default */
1595 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1597 msleep_interruptible(4 * 1000);
1600 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1601 struct ethtool_wolinfo
*wol
)
1603 struct e1000_hw
*hw
= &adapter
->hw
;
1604 int retval
= 1; /* fail by default */
1606 switch (hw
->device_id
) {
1607 case E1000_DEV_ID_82542
:
1608 case E1000_DEV_ID_82543GC_FIBER
:
1609 case E1000_DEV_ID_82543GC_COPPER
:
1610 case E1000_DEV_ID_82544EI_FIBER
:
1611 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1612 case E1000_DEV_ID_82545EM_FIBER
:
1613 case E1000_DEV_ID_82545EM_COPPER
:
1614 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1615 case E1000_DEV_ID_82546GB_PCIE
:
1616 /* these don't support WoL at all */
1619 case E1000_DEV_ID_82546EB_FIBER
:
1620 case E1000_DEV_ID_82546GB_FIBER
:
1621 /* Wake events not supported on port B */
1622 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1626 /* return success for non excluded adapter ports */
1629 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1630 /* quad port adapters only support WoL on port A */
1631 if (!adapter
->quad_port_a
) {
1635 /* return success for non excluded adapter ports */
1639 /* dual port cards only support WoL on port A from now on
1640 * unless it was enabled in the eeprom for port B
1641 * so exclude FUNC_1 ports from having WoL enabled */
1642 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1643 !adapter
->eeprom_wol
) {
1654 static void e1000_get_wol(struct net_device
*netdev
,
1655 struct ethtool_wolinfo
*wol
)
1657 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1658 struct e1000_hw
*hw
= &adapter
->hw
;
1660 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1661 WAKE_BCAST
| WAKE_MAGIC
;
1664 /* this function will set ->supported = 0 and return 1 if wol is not
1665 * supported by this hardware */
1666 if (e1000_wol_exclusion(adapter
, wol
) ||
1667 !device_can_wakeup(&adapter
->pdev
->dev
))
1670 /* apply any specific unsupported masks here */
1671 switch (hw
->device_id
) {
1672 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1673 /* KSP3 does not suppport UCAST wake-ups */
1674 wol
->supported
&= ~WAKE_UCAST
;
1676 if (adapter
->wol
& E1000_WUFC_EX
)
1677 DPRINTK(DRV
, ERR
, "Interface does not support "
1678 "directed (unicast) frame wake-up packets\n");
1684 if (adapter
->wol
& E1000_WUFC_EX
)
1685 wol
->wolopts
|= WAKE_UCAST
;
1686 if (adapter
->wol
& E1000_WUFC_MC
)
1687 wol
->wolopts
|= WAKE_MCAST
;
1688 if (adapter
->wol
& E1000_WUFC_BC
)
1689 wol
->wolopts
|= WAKE_BCAST
;
1690 if (adapter
->wol
& E1000_WUFC_MAG
)
1691 wol
->wolopts
|= WAKE_MAGIC
;
1696 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1698 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1699 struct e1000_hw
*hw
= &adapter
->hw
;
1701 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1704 if (e1000_wol_exclusion(adapter
, wol
) ||
1705 !device_can_wakeup(&adapter
->pdev
->dev
))
1706 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1708 switch (hw
->device_id
) {
1709 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1710 if (wol
->wolopts
& WAKE_UCAST
) {
1711 DPRINTK(DRV
, ERR
, "Interface does not support "
1712 "directed (unicast) frame wake-up packets\n");
1720 /* these settings will always override what we currently have */
1723 if (wol
->wolopts
& WAKE_UCAST
)
1724 adapter
->wol
|= E1000_WUFC_EX
;
1725 if (wol
->wolopts
& WAKE_MCAST
)
1726 adapter
->wol
|= E1000_WUFC_MC
;
1727 if (wol
->wolopts
& WAKE_BCAST
)
1728 adapter
->wol
|= E1000_WUFC_BC
;
1729 if (wol
->wolopts
& WAKE_MAGIC
)
1730 adapter
->wol
|= E1000_WUFC_MAG
;
1732 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1737 /* toggle LED 4 times per second = 2 "blinks" per second */
1738 #define E1000_ID_INTERVAL (HZ/4)
1740 /* bit defines for adapter->led_status */
1741 #define E1000_LED_ON 0
1743 static void e1000_led_blink_callback(unsigned long data
)
1745 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1746 struct e1000_hw
*hw
= &adapter
->hw
;
1748 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1753 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1756 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1758 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1759 struct e1000_hw
*hw
= &adapter
->hw
;
1764 if (!adapter
->blink_timer
.function
) {
1765 init_timer(&adapter
->blink_timer
);
1766 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1767 adapter
->blink_timer
.data
= (unsigned long)adapter
;
1769 e1000_setup_led(hw
);
1770 mod_timer(&adapter
->blink_timer
, jiffies
);
1771 msleep_interruptible(data
* 1000);
1772 del_timer_sync(&adapter
->blink_timer
);
1775 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1776 e1000_cleanup_led(hw
);
1781 static int e1000_get_coalesce(struct net_device
*netdev
,
1782 struct ethtool_coalesce
*ec
)
1784 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1786 if (adapter
->hw
.mac_type
< e1000_82545
)
1789 if (adapter
->itr_setting
<= 3)
1790 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1792 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1797 static int e1000_set_coalesce(struct net_device
*netdev
,
1798 struct ethtool_coalesce
*ec
)
1800 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1801 struct e1000_hw
*hw
= &adapter
->hw
;
1803 if (hw
->mac_type
< e1000_82545
)
1806 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1807 ((ec
->rx_coalesce_usecs
> 3) &&
1808 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1809 (ec
->rx_coalesce_usecs
== 2))
1812 if (ec
->rx_coalesce_usecs
<= 3) {
1813 adapter
->itr
= 20000;
1814 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1816 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1817 adapter
->itr_setting
= adapter
->itr
& ~3;
1820 if (adapter
->itr_setting
!= 0)
1821 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1828 static int e1000_nway_reset(struct net_device
*netdev
)
1830 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1831 if (netif_running(netdev
))
1832 e1000_reinit_locked(adapter
);
1836 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1837 struct ethtool_stats
*stats
, u64
*data
)
1839 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1843 e1000_update_stats(adapter
);
1844 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1845 switch (e1000_gstrings_stats
[i
].type
) {
1847 p
= (char *) netdev
+
1848 e1000_gstrings_stats
[i
].stat_offset
;
1851 p
= (char *) adapter
+
1852 e1000_gstrings_stats
[i
].stat_offset
;
1856 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1857 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1859 /* BUG_ON(i != E1000_STATS_LEN); */
1862 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1868 switch (stringset
) {
1870 memcpy(data
, *e1000_gstrings_test
,
1871 sizeof(e1000_gstrings_test
));
1874 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1875 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1877 p
+= ETH_GSTRING_LEN
;
1879 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1884 static const struct ethtool_ops e1000_ethtool_ops
= {
1885 .get_settings
= e1000_get_settings
,
1886 .set_settings
= e1000_set_settings
,
1887 .get_drvinfo
= e1000_get_drvinfo
,
1888 .get_regs_len
= e1000_get_regs_len
,
1889 .get_regs
= e1000_get_regs
,
1890 .get_wol
= e1000_get_wol
,
1891 .set_wol
= e1000_set_wol
,
1892 .get_msglevel
= e1000_get_msglevel
,
1893 .set_msglevel
= e1000_set_msglevel
,
1894 .nway_reset
= e1000_nway_reset
,
1895 .get_link
= ethtool_op_get_link
,
1896 .get_eeprom_len
= e1000_get_eeprom_len
,
1897 .get_eeprom
= e1000_get_eeprom
,
1898 .set_eeprom
= e1000_set_eeprom
,
1899 .get_ringparam
= e1000_get_ringparam
,
1900 .set_ringparam
= e1000_set_ringparam
,
1901 .get_pauseparam
= e1000_get_pauseparam
,
1902 .set_pauseparam
= e1000_set_pauseparam
,
1903 .get_rx_csum
= e1000_get_rx_csum
,
1904 .set_rx_csum
= e1000_set_rx_csum
,
1905 .get_tx_csum
= e1000_get_tx_csum
,
1906 .set_tx_csum
= e1000_set_tx_csum
,
1907 .set_sg
= ethtool_op_set_sg
,
1908 .set_tso
= e1000_set_tso
,
1909 .self_test
= e1000_diag_test
,
1910 .get_strings
= e1000_get_strings
,
1911 .phys_id
= e1000_phys_id
,
1912 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1913 .get_sset_count
= e1000_get_sset_count
,
1914 .get_coalesce
= e1000_get_coalesce
,
1915 .set_coalesce
= e1000_set_coalesce
,
1918 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1920 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);