2 * raid6main.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-6 management functions. This code is derived from raid5.c.
8 * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1).
10 * Thanks to Penguin Computing for making the RAID-6 development possible
11 * by donating a test server!
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * You should have received a copy of the GNU General Public License
19 * (for example /usr/src/linux/COPYING); if not, write to the Free
20 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/highmem.h>
28 #include <linux/bitops.h>
29 #include <asm/atomic.h>
36 #define NR_STRIPES 256
37 #define STRIPE_SIZE PAGE_SIZE
38 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
39 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
40 #define IO_THRESHOLD 1
42 #define HASH_PAGES_ORDER 0
43 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *))
44 #define HASH_MASK (NR_HASH - 1)
46 #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])
48 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
49 * order without overlap. There may be several bio's per stripe+device, and
50 * a bio could span several devices.
51 * When walking this list for a particular stripe+device, we must never proceed
52 * beyond a bio that extends past this device, as the next bio might no longer
54 * This macro is used to determine the 'next' bio in the list, given the sector
55 * of the current stripe+device
57 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
59 * The following can be used to debug the driver
61 #define RAID6_DEBUG 0 /* Extremely verbose printk */
62 #define RAID6_PARANOIA 1 /* Check spinlocks */
63 #define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */
64 #if RAID6_PARANOIA && defined(CONFIG_SMP)
65 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
67 # define CHECK_DEVLOCK()
70 #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x)))
78 #if !RAID6_USE_EMPTY_ZERO_PAGE
79 /* In .bss so it's zeroed */
80 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
83 static inline int raid6_next_disk(int disk
, int raid_disks
)
86 return (disk
< raid_disks
) ? disk
: 0;
89 static void print_raid6_conf (raid6_conf_t
*conf
);
91 static inline void __release_stripe(raid6_conf_t
*conf
, struct stripe_head
*sh
)
93 if (atomic_dec_and_test(&sh
->count
)) {
94 if (!list_empty(&sh
->lru
))
96 if (atomic_read(&conf
->active_stripes
)==0)
98 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
99 if (test_bit(STRIPE_DELAYED
, &sh
->state
))
100 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
102 list_add_tail(&sh
->lru
, &conf
->handle_list
);
103 md_wakeup_thread(conf
->mddev
->thread
);
105 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
106 atomic_dec(&conf
->preread_active_stripes
);
107 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
108 md_wakeup_thread(conf
->mddev
->thread
);
110 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
111 atomic_dec(&conf
->active_stripes
);
112 if (!conf
->inactive_blocked
||
113 atomic_read(&conf
->active_stripes
) < (NR_STRIPES
*3/4))
114 wake_up(&conf
->wait_for_stripe
);
118 static void release_stripe(struct stripe_head
*sh
)
120 raid6_conf_t
*conf
= sh
->raid_conf
;
123 spin_lock_irqsave(&conf
->device_lock
, flags
);
124 __release_stripe(conf
, sh
);
125 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
128 static void remove_hash(struct stripe_head
*sh
)
130 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
132 if (sh
->hash_pprev
) {
134 sh
->hash_next
->hash_pprev
= sh
->hash_pprev
;
135 *sh
->hash_pprev
= sh
->hash_next
;
136 sh
->hash_pprev
= NULL
;
140 static __inline__
void insert_hash(raid6_conf_t
*conf
, struct stripe_head
*sh
)
142 struct stripe_head
**shp
= &stripe_hash(conf
, sh
->sector
);
144 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh
->sector
);
147 if ((sh
->hash_next
= *shp
) != NULL
)
148 (*shp
)->hash_pprev
= &sh
->hash_next
;
150 sh
->hash_pprev
= shp
;
154 /* find an idle stripe, make sure it is unhashed, and return it. */
155 static struct stripe_head
*get_free_stripe(raid6_conf_t
*conf
)
157 struct stripe_head
*sh
= NULL
;
158 struct list_head
*first
;
161 if (list_empty(&conf
->inactive_list
))
163 first
= conf
->inactive_list
.next
;
164 sh
= list_entry(first
, struct stripe_head
, lru
);
165 list_del_init(first
);
167 atomic_inc(&conf
->active_stripes
);
172 static void shrink_buffers(struct stripe_head
*sh
, int num
)
177 for (i
=0; i
<num
; i
++) {
181 sh
->dev
[i
].page
= NULL
;
182 page_cache_release(p
);
186 static int grow_buffers(struct stripe_head
*sh
, int num
)
190 for (i
=0; i
<num
; i
++) {
193 if (!(page
= alloc_page(GFP_KERNEL
))) {
196 sh
->dev
[i
].page
= page
;
201 static void raid6_build_block (struct stripe_head
*sh
, int i
);
203 static inline void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
)
205 raid6_conf_t
*conf
= sh
->raid_conf
;
206 int disks
= conf
->raid_disks
, i
;
208 if (atomic_read(&sh
->count
) != 0)
210 if (test_bit(STRIPE_HANDLE
, &sh
->state
))
214 PRINTK("init_stripe called, stripe %llu\n",
215 (unsigned long long)sh
->sector
);
223 for (i
=disks
; i
--; ) {
224 struct r5dev
*dev
= &sh
->dev
[i
];
226 if (dev
->toread
|| dev
->towrite
|| dev
->written
||
227 test_bit(R5_LOCKED
, &dev
->flags
)) {
228 PRINTK("sector=%llx i=%d %p %p %p %d\n",
229 (unsigned long long)sh
->sector
, i
, dev
->toread
,
230 dev
->towrite
, dev
->written
,
231 test_bit(R5_LOCKED
, &dev
->flags
));
235 raid6_build_block(sh
, i
);
237 insert_hash(conf
, sh
);
240 static struct stripe_head
*__find_stripe(raid6_conf_t
*conf
, sector_t sector
)
242 struct stripe_head
*sh
;
245 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector
);
246 for (sh
= stripe_hash(conf
, sector
); sh
; sh
= sh
->hash_next
)
247 if (sh
->sector
== sector
)
249 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector
);
253 static void unplug_slaves(mddev_t
*mddev
);
255 static struct stripe_head
*get_active_stripe(raid6_conf_t
*conf
, sector_t sector
,
256 int pd_idx
, int noblock
)
258 struct stripe_head
*sh
;
260 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector
);
262 spin_lock_irq(&conf
->device_lock
);
265 sh
= __find_stripe(conf
, sector
);
267 if (!conf
->inactive_blocked
)
268 sh
= get_free_stripe(conf
);
269 if (noblock
&& sh
== NULL
)
272 conf
->inactive_blocked
= 1;
273 wait_event_lock_irq(conf
->wait_for_stripe
,
274 !list_empty(&conf
->inactive_list
) &&
275 (atomic_read(&conf
->active_stripes
) < (NR_STRIPES
*3/4)
276 || !conf
->inactive_blocked
),
278 unplug_slaves(conf
->mddev
);
280 conf
->inactive_blocked
= 0;
282 init_stripe(sh
, sector
, pd_idx
);
284 if (atomic_read(&sh
->count
)) {
285 if (!list_empty(&sh
->lru
))
288 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
289 atomic_inc(&conf
->active_stripes
);
290 if (list_empty(&sh
->lru
))
292 list_del_init(&sh
->lru
);
295 } while (sh
== NULL
);
298 atomic_inc(&sh
->count
);
300 spin_unlock_irq(&conf
->device_lock
);
304 static int grow_stripes(raid6_conf_t
*conf
, int num
)
306 struct stripe_head
*sh
;
308 int devs
= conf
->raid_disks
;
310 sprintf(conf
->cache_name
, "raid6/%s", mdname(conf
->mddev
));
312 sc
= kmem_cache_create(conf
->cache_name
,
313 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
317 conf
->slab_cache
= sc
;
319 sh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
322 memset(sh
, 0, sizeof(*sh
) + (devs
-1)*sizeof(struct r5dev
));
323 sh
->raid_conf
= conf
;
324 spin_lock_init(&sh
->lock
);
326 if (grow_buffers(sh
, conf
->raid_disks
)) {
327 shrink_buffers(sh
, conf
->raid_disks
);
328 kmem_cache_free(sc
, sh
);
331 /* we just created an active stripe so... */
332 atomic_set(&sh
->count
, 1);
333 atomic_inc(&conf
->active_stripes
);
334 INIT_LIST_HEAD(&sh
->lru
);
340 static void shrink_stripes(raid6_conf_t
*conf
)
342 struct stripe_head
*sh
;
345 spin_lock_irq(&conf
->device_lock
);
346 sh
= get_free_stripe(conf
);
347 spin_unlock_irq(&conf
->device_lock
);
350 if (atomic_read(&sh
->count
))
352 shrink_buffers(sh
, conf
->raid_disks
);
353 kmem_cache_free(conf
->slab_cache
, sh
);
354 atomic_dec(&conf
->active_stripes
);
356 kmem_cache_destroy(conf
->slab_cache
);
357 conf
->slab_cache
= NULL
;
360 static int raid6_end_read_request (struct bio
* bi
, unsigned int bytes_done
,
363 struct stripe_head
*sh
= bi
->bi_private
;
364 raid6_conf_t
*conf
= sh
->raid_conf
;
365 int disks
= conf
->raid_disks
, i
;
366 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
371 for (i
=0 ; i
<disks
; i
++)
372 if (bi
== &sh
->dev
[i
].req
)
375 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
376 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
387 spin_lock_irqsave(&conf
->device_lock
, flags
);
388 /* we can return a buffer if we bypassed the cache or
389 * if the top buffer is not in highmem. If there are
390 * multiple buffers, leave the extra work to
393 buffer
= sh
->bh_read
[i
];
395 (!PageHighMem(buffer
->b_page
)
396 || buffer
->b_page
== bh
->b_page
)
398 sh
->bh_read
[i
] = buffer
->b_reqnext
;
399 buffer
->b_reqnext
= NULL
;
402 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
403 if (sh
->bh_page
[i
]==bh
->b_page
)
404 set_buffer_uptodate(bh
);
406 if (buffer
->b_page
!= bh
->b_page
)
407 memcpy(buffer
->b_data
, bh
->b_data
, bh
->b_size
);
408 buffer
->b_end_io(buffer
, 1);
411 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
414 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
415 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
417 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
419 /* must restore b_page before unlocking buffer... */
420 if (sh
->bh_page
[i
] != bh
->b_page
) {
421 bh
->b_page
= sh
->bh_page
[i
];
422 bh
->b_data
= page_address(bh
->b_page
);
423 clear_buffer_uptodate(bh
);
426 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
427 set_bit(STRIPE_HANDLE
, &sh
->state
);
432 static int raid6_end_write_request (struct bio
*bi
, unsigned int bytes_done
,
435 struct stripe_head
*sh
= bi
->bi_private
;
436 raid6_conf_t
*conf
= sh
->raid_conf
;
437 int disks
= conf
->raid_disks
, i
;
439 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
444 for (i
=0 ; i
<disks
; i
++)
445 if (bi
== &sh
->dev
[i
].req
)
448 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
449 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
456 spin_lock_irqsave(&conf
->device_lock
, flags
);
458 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
460 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
462 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
463 set_bit(STRIPE_HANDLE
, &sh
->state
);
464 __release_stripe(conf
, sh
);
465 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
470 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
472 static void raid6_build_block (struct stripe_head
*sh
, int i
)
474 struct r5dev
*dev
= &sh
->dev
[i
];
475 int pd_idx
= sh
->pd_idx
;
476 int qd_idx
= raid6_next_disk(pd_idx
, sh
->raid_conf
->raid_disks
);
479 dev
->req
.bi_io_vec
= &dev
->vec
;
481 dev
->req
.bi_max_vecs
++;
482 dev
->vec
.bv_page
= dev
->page
;
483 dev
->vec
.bv_len
= STRIPE_SIZE
;
484 dev
->vec
.bv_offset
= 0;
486 dev
->req
.bi_sector
= sh
->sector
;
487 dev
->req
.bi_private
= sh
;
490 if (i
!= pd_idx
&& i
!= qd_idx
)
491 dev
->sector
= compute_blocknr(sh
, i
);
494 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
496 char b
[BDEVNAME_SIZE
];
497 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
498 PRINTK("raid6: error called\n");
503 conf
->working_disks
--;
505 conf
->failed_disks
++;
508 * if recovery was running, make sure it aborts.
510 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
514 "raid6: Disk failure on %s, disabling device."
515 " Operation continuing on %d devices\n",
516 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
521 * Input: a 'big' sector number,
522 * Output: index of the data and parity disk, and the sector # in them.
524 static sector_t
raid6_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
525 unsigned int data_disks
, unsigned int * dd_idx
,
526 unsigned int * pd_idx
, raid6_conf_t
*conf
)
529 unsigned long chunk_number
;
530 unsigned int chunk_offset
;
532 int sectors_per_chunk
= conf
->chunk_size
>> 9;
534 /* First compute the information on this sector */
537 * Compute the chunk number and the sector offset inside the chunk
539 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
540 chunk_number
= r_sector
;
541 if ( r_sector
!= chunk_number
) {
542 printk(KERN_CRIT
"raid6: ERROR: r_sector = %llu, chunk_number = %lu\n",
543 (unsigned long long)r_sector
, (unsigned long)chunk_number
);
548 * Compute the stripe number
550 stripe
= chunk_number
/ data_disks
;
553 * Compute the data disk and parity disk indexes inside the stripe
555 *dd_idx
= chunk_number
% data_disks
;
558 * Select the parity disk based on the user selected algorithm.
562 switch (conf
->algorithm
) {
563 case ALGORITHM_LEFT_ASYMMETRIC
:
564 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
565 if (*pd_idx
== raid_disks
-1)
566 (*dd_idx
)++; /* Q D D D P */
567 else if (*dd_idx
>= *pd_idx
)
568 (*dd_idx
) += 2; /* D D P Q D */
570 case ALGORITHM_RIGHT_ASYMMETRIC
:
571 *pd_idx
= stripe
% raid_disks
;
572 if (*pd_idx
== raid_disks
-1)
573 (*dd_idx
)++; /* Q D D D P */
574 else if (*dd_idx
>= *pd_idx
)
575 (*dd_idx
) += 2; /* D D P Q D */
577 case ALGORITHM_LEFT_SYMMETRIC
:
578 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
579 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
581 case ALGORITHM_RIGHT_SYMMETRIC
:
582 *pd_idx
= stripe
% raid_disks
;
583 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
586 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
590 PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n",
591 chunk_number
, *pd_idx
, *dd_idx
);
594 * Finally, compute the new sector number
596 new_sector
= (sector_t
) stripe
* sectors_per_chunk
+ chunk_offset
;
601 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
603 raid6_conf_t
*conf
= sh
->raid_conf
;
604 int raid_disks
= conf
->raid_disks
, data_disks
= raid_disks
- 2;
605 sector_t new_sector
= sh
->sector
, check
;
606 int sectors_per_chunk
= conf
->chunk_size
>> 9;
609 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
613 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
615 if ( new_sector
!= stripe
) {
616 printk(KERN_CRIT
"raid6: ERROR: new_sector = %llu, stripe = %lu\n",
617 (unsigned long long)new_sector
, (unsigned long)stripe
);
621 switch (conf
->algorithm
) {
622 case ALGORITHM_LEFT_ASYMMETRIC
:
623 case ALGORITHM_RIGHT_ASYMMETRIC
:
624 if (sh
->pd_idx
== raid_disks
-1)
626 else if (i
> sh
->pd_idx
)
627 i
-= 2; /* D D P Q D */
629 case ALGORITHM_LEFT_SYMMETRIC
:
630 case ALGORITHM_RIGHT_SYMMETRIC
:
631 if (sh
->pd_idx
== raid_disks
-1)
637 i
-= (sh
->pd_idx
+ 2);
641 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
645 PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh
->pd_idx
, i0
, i
);
647 chunk_number
= stripe
* data_disks
+ i
;
648 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
650 check
= raid6_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
651 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
652 printk(KERN_CRIT
"raid6: compute_blocknr: map not correct\n");
661 * Copy data between a page in the stripe cache, and one or more bion
662 * The page could align with the middle of the bio, or there could be
663 * several bion, each with several bio_vecs, which cover part of the page
664 * Multiple bion are linked together on bi_next. There may be extras
665 * at the end of this list. We ignore them.
667 static void copy_data(int frombio
, struct bio
*bio
,
671 char *pa
= page_address(page
);
676 if (bio
->bi_sector
>= sector
)
677 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
679 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
680 bio_for_each_segment(bvl
, bio
, i
) {
681 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
685 if (page_offset
< 0) {
686 b_offset
= -page_offset
;
687 page_offset
+= b_offset
;
691 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
692 clen
= STRIPE_SIZE
- page_offset
;
696 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
698 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
700 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
701 __bio_kunmap_atomic(ba
, KM_USER0
);
703 if (clen
< len
) /* hit end of page */
709 #define check_xor() do { \
710 if (count == MAX_XOR_BLOCKS) { \
711 xor_block(count, STRIPE_SIZE, ptr); \
716 /* Compute P and Q syndromes */
717 static void compute_parity(struct stripe_head
*sh
, int method
)
719 raid6_conf_t
*conf
= sh
->raid_conf
;
720 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= conf
->raid_disks
, count
;
722 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
725 qd_idx
= raid6_next_disk(pd_idx
, disks
);
726 d0_idx
= raid6_next_disk(qd_idx
, disks
);
728 PRINTK("compute_parity, stripe %llu, method %d\n",
729 (unsigned long long)sh
->sector
, method
);
732 case READ_MODIFY_WRITE
:
733 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
734 case RECONSTRUCT_WRITE
:
735 for (i
= disks
; i
-- ;)
736 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
737 chosen
= sh
->dev
[i
].towrite
;
738 sh
->dev
[i
].towrite
= NULL
;
740 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
741 wake_up(&conf
->wait_for_overlap
);
743 if (sh
->dev
[i
].written
) BUG();
744 sh
->dev
[i
].written
= chosen
;
748 BUG(); /* Not implemented yet */
751 for (i
= disks
; i
--;)
752 if (sh
->dev
[i
].written
) {
753 sector_t sector
= sh
->dev
[i
].sector
;
754 struct bio
*wbi
= sh
->dev
[i
].written
;
755 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
756 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
757 wbi
= r5_next_bio(wbi
, sector
);
760 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
761 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
765 // case RECONSTRUCT_WRITE:
766 // case CHECK_PARITY:
767 // case UPDATE_PARITY:
768 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
769 /* FIX: Is this ordering of drives even remotely optimal? */
773 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
774 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
775 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
776 i
= raid6_next_disk(i
, disks
);
777 } while ( i
!= d0_idx
);
781 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
784 case RECONSTRUCT_WRITE
:
785 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
786 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
787 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
788 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
791 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
792 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
797 /* Compute one missing block */
798 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
)
800 raid6_conf_t
*conf
= sh
->raid_conf
;
801 int i
, count
, disks
= conf
->raid_disks
;
802 void *ptr
[MAX_XOR_BLOCKS
], *p
;
803 int pd_idx
= sh
->pd_idx
;
804 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
806 PRINTK("compute_block_1, stripe %llu, idx %d\n",
807 (unsigned long long)sh
->sector
, dd_idx
);
809 if ( dd_idx
== qd_idx
) {
810 /* We're actually computing the Q drive */
811 compute_parity(sh
, UPDATE_PARITY
);
813 ptr
[0] = page_address(sh
->dev
[dd_idx
].page
);
814 memset(ptr
[0], 0, STRIPE_SIZE
);
816 for (i
= disks
; i
--; ) {
817 if (i
== dd_idx
|| i
== qd_idx
)
819 p
= page_address(sh
->dev
[i
].page
);
820 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
823 printk("compute_block() %d, stripe %llu, %d"
824 " not present\n", dd_idx
,
825 (unsigned long long)sh
->sector
, i
);
830 xor_block(count
, STRIPE_SIZE
, ptr
);
831 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
835 /* Compute two missing blocks */
836 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
838 raid6_conf_t
*conf
= sh
->raid_conf
;
839 int i
, count
, disks
= conf
->raid_disks
;
840 int pd_idx
= sh
->pd_idx
;
841 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
842 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
845 /* faila and failb are disk numbers relative to d0_idx */
846 /* pd_idx become disks-2 and qd_idx become disks-1 */
847 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
848 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
850 BUG_ON(faila
== failb
);
851 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
853 PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
854 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
856 if ( failb
== disks
-1 ) {
857 /* Q disk is one of the missing disks */
858 if ( faila
== disks
-2 ) {
859 /* Missing P+Q, just recompute */
860 compute_parity(sh
, UPDATE_PARITY
);
863 /* We're missing D+Q; recompute D from P */
864 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
);
865 compute_parity(sh
, UPDATE_PARITY
); /* Is this necessary? */
870 /* We're missing D+P or D+D; build pointer table */
872 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
878 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
879 i
= raid6_next_disk(i
, disks
);
880 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
881 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
882 printk("compute_2 with missing block %d/%d\n", count
, i
);
883 } while ( i
!= d0_idx
);
885 if ( failb
== disks
-2 ) {
886 /* We're missing D+P. */
887 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
889 /* We're missing D+D. */
890 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
893 /* Both the above update both missing blocks */
894 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
895 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
901 * Each stripe/dev can have one or more bion attached.
902 * toread/towrite point to the first in a chain.
903 * The bi_next chain must be in order.
905 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
908 raid6_conf_t
*conf
= sh
->raid_conf
;
910 PRINTK("adding bh b#%llu to stripe s#%llu\n",
911 (unsigned long long)bi
->bi_sector
,
912 (unsigned long long)sh
->sector
);
915 spin_lock(&sh
->lock
);
916 spin_lock_irq(&conf
->device_lock
);
918 bip
= &sh
->dev
[dd_idx
].towrite
;
920 bip
= &sh
->dev
[dd_idx
].toread
;
921 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
922 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
924 bip
= &(*bip
)->bi_next
;
926 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
929 if (*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
)
934 bi
->bi_phys_segments
++;
935 spin_unlock_irq(&conf
->device_lock
);
936 spin_unlock(&sh
->lock
);
938 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
939 (unsigned long long)bi
->bi_sector
,
940 (unsigned long long)sh
->sector
, dd_idx
);
943 /* check if page is covered */
944 sector_t sector
= sh
->dev
[dd_idx
].sector
;
945 for (bi
=sh
->dev
[dd_idx
].towrite
;
946 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
947 bi
&& bi
->bi_sector
<= sector
;
948 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
949 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
950 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
952 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
953 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
958 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
959 spin_unlock_irq(&conf
->device_lock
);
960 spin_unlock(&sh
->lock
);
966 * handle_stripe - do things to a stripe.
968 * We lock the stripe and then examine the state of various bits
969 * to see what needs to be done.
971 * return some read request which now have data
972 * return some write requests which are safely on disc
973 * schedule a read on some buffers
974 * schedule a write of some buffers
975 * return confirmation of parity correctness
977 * Parity calculations are done inside the stripe lock
978 * buffers are taken off read_list or write_list, and bh_cache buffers
979 * get BH_Lock set before the stripe lock is released.
983 static void handle_stripe(struct stripe_head
*sh
)
985 raid6_conf_t
*conf
= sh
->raid_conf
;
986 int disks
= conf
->raid_disks
;
987 struct bio
*return_bi
= NULL
;
991 int locked
=0, uptodate
=0, to_read
=0, to_write
=0, failed
=0, written
=0;
992 int non_overwrite
= 0;
993 int failed_num
[2] = {0, 0};
994 struct r5dev
*dev
, *pdev
, *qdev
;
995 int pd_idx
= sh
->pd_idx
;
996 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
997 int p_failed
, q_failed
;
999 PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1000 (unsigned long long)sh
->sector
, sh
->state
, atomic_read(&sh
->count
),
1003 spin_lock(&sh
->lock
);
1004 clear_bit(STRIPE_HANDLE
, &sh
->state
);
1005 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1007 syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
1008 /* Now to look around and see what can be done */
1010 for (i
=disks
; i
--; ) {
1013 clear_bit(R5_Insync
, &dev
->flags
);
1014 clear_bit(R5_Syncio
, &dev
->flags
);
1016 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1017 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
1018 /* maybe we can reply to a read */
1019 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
1020 struct bio
*rbi
, *rbi2
;
1021 PRINTK("Return read for disc %d\n", i
);
1022 spin_lock_irq(&conf
->device_lock
);
1025 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1026 wake_up(&conf
->wait_for_overlap
);
1027 spin_unlock_irq(&conf
->device_lock
);
1028 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1029 copy_data(0, rbi
, dev
->page
, dev
->sector
);
1030 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1031 spin_lock_irq(&conf
->device_lock
);
1032 if (--rbi
->bi_phys_segments
== 0) {
1033 rbi
->bi_next
= return_bi
;
1036 spin_unlock_irq(&conf
->device_lock
);
1041 /* now count some things */
1042 if (test_bit(R5_LOCKED
, &dev
->flags
)) locked
++;
1043 if (test_bit(R5_UPTODATE
, &dev
->flags
)) uptodate
++;
1046 if (dev
->toread
) to_read
++;
1049 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
1052 if (dev
->written
) written
++;
1053 rdev
= conf
->disks
[i
].rdev
; /* FIXME, should I be looking rdev */
1054 if (!rdev
|| !rdev
->in_sync
) {
1056 failed_num
[failed
] = i
;
1059 set_bit(R5_Insync
, &dev
->flags
);
1061 PRINTK("locked=%d uptodate=%d to_read=%d"
1062 " to_write=%d failed=%d failed_num=%d,%d\n",
1063 locked
, uptodate
, to_read
, to_write
, failed
,
1064 failed_num
[0], failed_num
[1]);
1065 /* check if the array has lost >2 devices and, if so, some requests might
1068 if (failed
> 2 && to_read
+to_write
+written
) {
1069 spin_lock_irq(&conf
->device_lock
);
1070 for (i
=disks
; i
--; ) {
1071 /* fail all writes first */
1072 bi
= sh
->dev
[i
].towrite
;
1073 sh
->dev
[i
].towrite
= NULL
;
1076 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1077 wake_up(&conf
->wait_for_overlap
);
1079 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1080 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1081 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1082 if (--bi
->bi_phys_segments
== 0) {
1083 md_write_end(conf
->mddev
);
1084 bi
->bi_next
= return_bi
;
1089 /* and fail all 'written' */
1090 bi
= sh
->dev
[i
].written
;
1091 sh
->dev
[i
].written
= NULL
;
1092 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1093 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1094 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1095 if (--bi
->bi_phys_segments
== 0) {
1096 md_write_end(conf
->mddev
);
1097 bi
->bi_next
= return_bi
;
1103 /* fail any reads if this device is non-operational */
1104 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)) {
1105 bi
= sh
->dev
[i
].toread
;
1106 sh
->dev
[i
].toread
= NULL
;
1107 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1108 wake_up(&conf
->wait_for_overlap
);
1110 while (bi
&& bi
->bi_sector
< sh
->dev
[i
].sector
+ STRIPE_SECTORS
){
1111 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1112 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1113 if (--bi
->bi_phys_segments
== 0) {
1114 bi
->bi_next
= return_bi
;
1121 spin_unlock_irq(&conf
->device_lock
);
1123 if (failed
> 2 && syncing
) {
1124 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
1125 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1130 * might be able to return some write requests if the parity blocks
1131 * are safe, or on a failed drive
1133 pdev
= &sh
->dev
[pd_idx
];
1134 p_failed
= (failed
>= 1 && failed_num
[0] == pd_idx
)
1135 || (failed
>= 2 && failed_num
[1] == pd_idx
);
1136 qdev
= &sh
->dev
[qd_idx
];
1137 q_failed
= (failed
>= 1 && failed_num
[0] == qd_idx
)
1138 || (failed
>= 2 && failed_num
[1] == qd_idx
);
1141 ( p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
1142 && !test_bit(R5_LOCKED
, &pdev
->flags
)
1143 && test_bit(R5_UPTODATE
, &pdev
->flags
))) ) &&
1144 ( q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
1145 && !test_bit(R5_LOCKED
, &qdev
->flags
)
1146 && test_bit(R5_UPTODATE
, &qdev
->flags
))) ) ) {
1147 /* any written block on an uptodate or failed drive can be
1148 * returned. Note that if we 'wrote' to a failed drive,
1149 * it will be UPTODATE, but never LOCKED, so we don't need
1150 * to test 'failed' directly.
1152 for (i
=disks
; i
--; )
1153 if (sh
->dev
[i
].written
) {
1155 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1156 test_bit(R5_UPTODATE
, &dev
->flags
) ) {
1157 /* We can return any write requests */
1158 struct bio
*wbi
, *wbi2
;
1159 PRINTK("Return write for stripe %llu disc %d\n",
1160 (unsigned long long)sh
->sector
, i
);
1161 spin_lock_irq(&conf
->device_lock
);
1163 dev
->written
= NULL
;
1164 while (wbi
&& wbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
1165 wbi2
= r5_next_bio(wbi
, dev
->sector
);
1166 if (--wbi
->bi_phys_segments
== 0) {
1167 md_write_end(conf
->mddev
);
1168 wbi
->bi_next
= return_bi
;
1173 spin_unlock_irq(&conf
->device_lock
);
1178 /* Now we might consider reading some blocks, either to check/generate
1179 * parity, or to satisfy requests
1180 * or to load a block that is being partially written.
1182 if (to_read
|| non_overwrite
|| (to_write
&& failed
) || (syncing
&& (uptodate
< disks
))) {
1183 for (i
=disks
; i
--;) {
1185 if (!test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1187 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1189 (failed
>= 1 && (sh
->dev
[failed_num
[0]].toread
|| to_write
)) ||
1190 (failed
>= 2 && (sh
->dev
[failed_num
[1]].toread
|| to_write
))
1193 /* we would like to get this block, possibly
1194 * by computing it, but we might not be able to
1196 if (uptodate
== disks
-1) {
1197 PRINTK("Computing stripe %llu block %d\n",
1198 (unsigned long long)sh
->sector
, i
);
1199 compute_block_1(sh
, i
);
1201 } else if ( uptodate
== disks
-2 && failed
>= 2 ) {
1202 /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
1204 for (other
=disks
; other
--;) {
1207 if ( !test_bit(R5_UPTODATE
, &sh
->dev
[other
].flags
) )
1211 PRINTK("Computing stripe %llu blocks %d,%d\n",
1212 (unsigned long long)sh
->sector
, i
, other
);
1213 compute_block_2(sh
, i
, other
);
1215 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
1216 set_bit(R5_LOCKED
, &dev
->flags
);
1217 set_bit(R5_Wantread
, &dev
->flags
);
1219 /* if I am just reading this block and we don't have
1220 a failed drive, or any pending writes then sidestep the cache */
1221 if (sh
->bh_read
[i
] && !sh
->bh_read
[i
]->b_reqnext
&&
1222 ! syncing
&& !failed
&& !to_write
) {
1223 sh
->bh_cache
[i
]->b_page
= sh
->bh_read
[i
]->b_page
;
1224 sh
->bh_cache
[i
]->b_data
= sh
->bh_read
[i
]->b_data
;
1228 PRINTK("Reading block %d (sync=%d)\n",
1231 md_sync_acct(conf
->disks
[i
].rdev
->bdev
,
1236 set_bit(STRIPE_HANDLE
, &sh
->state
);
1239 /* now to consider writing and what else, if anything should be read */
1241 int rcw
=0, must_compute
=0;
1242 for (i
=disks
; i
--;) {
1244 /* Would I have to read this buffer for reconstruct_write */
1245 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
1246 && i
!= pd_idx
&& i
!= qd_idx
1247 && (!test_bit(R5_LOCKED
, &dev
->flags
)
1249 || sh
->bh_page
[i
] != bh
->b_page
1252 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
1253 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
1255 PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i
, dev
->flags
);
1260 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
1261 (unsigned long long)sh
->sector
, rcw
, must_compute
);
1262 set_bit(STRIPE_HANDLE
, &sh
->state
);
1265 /* want reconstruct write, but need to get some data */
1266 for (i
=disks
; i
--;) {
1268 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
1269 && !(failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
1270 && !test_bit(R5_LOCKED
, &dev
->flags
) && !test_bit(R5_UPTODATE
, &dev
->flags
) &&
1271 test_bit(R5_Insync
, &dev
->flags
)) {
1272 if (test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1274 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
1275 (unsigned long long)sh
->sector
, i
);
1276 set_bit(R5_LOCKED
, &dev
->flags
);
1277 set_bit(R5_Wantread
, &dev
->flags
);
1280 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
1281 (unsigned long long)sh
->sector
, i
);
1282 set_bit(STRIPE_DELAYED
, &sh
->state
);
1283 set_bit(STRIPE_HANDLE
, &sh
->state
);
1287 /* now if nothing is locked, and if we have enough data, we can start a write request */
1288 if (locked
== 0 && rcw
== 0) {
1289 if ( must_compute
> 0 ) {
1290 /* We have failed blocks and need to compute them */
1293 case 1: compute_block_1(sh
, failed_num
[0]); break;
1294 case 2: compute_block_2(sh
, failed_num
[0], failed_num
[1]); break;
1295 default: BUG(); /* This request should have been failed? */
1299 PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh
->sector
);
1300 compute_parity(sh
, RECONSTRUCT_WRITE
);
1301 /* now every locked buffer is ready to be written */
1303 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
1304 PRINTK("Writing stripe %llu block %d\n",
1305 (unsigned long long)sh
->sector
, i
);
1307 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
1308 #if 0 /**** FIX: I don't understand the logic here... ****/
1309 if (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
)
1310 || ((i
==pd_idx
|| i
==qd_idx
) && failed
== 0)) /* FIX? */
1311 set_bit(STRIPE_INSYNC
, &sh
->state
);
1314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
1315 atomic_dec(&conf
->preread_active_stripes
);
1316 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
1317 md_wakeup_thread(conf
->mddev
->thread
);
1322 /* maybe we need to check and possibly fix the parity for this stripe
1323 * Any reads will already have been scheduled, so we just see if enough data
1326 if (syncing
&& locked
== 0 &&
1327 !test_bit(STRIPE_INSYNC
, &sh
->state
) && failed
<= 2) {
1328 set_bit(STRIPE_HANDLE
, &sh
->state
);
1329 #if 0 /* RAID-6: Don't support CHECK PARITY yet */
1332 if (uptodate
!= disks
)
1334 compute_parity(sh
, CHECK_PARITY
);
1336 pagea
= page_address(sh
->dev
[pd_idx
].page
);
1337 if ((*(u32
*)pagea
) == 0 &&
1338 !memcmp(pagea
, pagea
+4, STRIPE_SIZE
-4)) {
1339 /* parity is correct (on disc, not in buffer any more) */
1340 set_bit(STRIPE_INSYNC
, &sh
->state
);
1344 if (!test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1345 int failed_needupdate
[2];
1346 struct r5dev
*adev
, *bdev
;
1349 failed_num
[0] = pd_idx
;
1351 failed_num
[1] = (failed_num
[0] == qd_idx
) ? pd_idx
: qd_idx
;
1353 failed_needupdate
[0] = !test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
[0]].flags
);
1354 failed_needupdate
[1] = !test_bit(R5_UPTODATE
, &sh
->dev
[failed_num
[1]].flags
);
1356 PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n",
1357 failed
, failed_num
[0], failed_num
[1], failed_needupdate
[0], failed_needupdate
[1]);
1359 #if 0 /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */
1360 /* should be able to compute the missing block(s) and write to spare */
1361 if ( failed_needupdate
[0] ^ failed_needupdate
[1] ) {
1362 if (uptodate
+1 != disks
)
1364 compute_block_1(sh
, failed_needupdate
[0] ? failed_num
[0] : failed_num
[1]);
1366 } else if ( failed_needupdate
[0] & failed_needupdate
[1] ) {
1367 if (uptodate
+2 != disks
)
1369 compute_block_2(sh
, failed_num
[0], failed_num
[1]);
1373 compute_block_2(sh
, failed_num
[0], failed_num
[1]);
1374 uptodate
+= failed_needupdate
[0] + failed_needupdate
[1];
1377 if (uptodate
!= disks
)
1380 PRINTK("Marking for sync stripe %llu blocks %d,%d\n",
1381 (unsigned long long)sh
->sector
, failed_num
[0], failed_num
[1]);
1383 /**** FIX: Should we really do both of these unconditionally? ****/
1384 adev
= &sh
->dev
[failed_num
[0]];
1385 locked
+= !test_bit(R5_LOCKED
, &adev
->flags
);
1386 set_bit(R5_LOCKED
, &adev
->flags
);
1387 set_bit(R5_Wantwrite
, &adev
->flags
);
1388 bdev
= &sh
->dev
[failed_num
[1]];
1389 locked
+= !test_bit(R5_LOCKED
, &bdev
->flags
);
1390 set_bit(R5_LOCKED
, &bdev
->flags
);
1391 set_bit(R5_Wantwrite
, &bdev
->flags
);
1393 set_bit(STRIPE_INSYNC
, &sh
->state
);
1394 set_bit(R5_Syncio
, &adev
->flags
);
1395 set_bit(R5_Syncio
, &bdev
->flags
);
1398 if (syncing
&& locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
1399 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
1400 clear_bit(STRIPE_SYNCING
, &sh
->state
);
1403 spin_unlock(&sh
->lock
);
1405 while ((bi
=return_bi
)) {
1406 int bytes
= bi
->bi_size
;
1408 return_bi
= bi
->bi_next
;
1411 bi
->bi_end_io(bi
, bytes
, 0);
1413 for (i
=disks
; i
-- ;) {
1417 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
1419 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1424 bi
= &sh
->dev
[i
].req
;
1428 bi
->bi_end_io
= raid6_end_write_request
;
1430 bi
->bi_end_io
= raid6_end_read_request
;
1433 rdev
= conf
->disks
[i
].rdev
;
1434 if (rdev
&& rdev
->faulty
)
1437 atomic_inc(&rdev
->nr_pending
);
1441 if (test_bit(R5_Syncio
, &sh
->dev
[i
].flags
))
1442 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
1444 bi
->bi_bdev
= rdev
->bdev
;
1445 PRINTK("for %llu schedule op %ld on disc %d\n",
1446 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
1447 atomic_inc(&sh
->count
);
1448 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
1449 bi
->bi_flags
= 1 << BIO_UPTODATE
;
1451 bi
->bi_max_vecs
= 1;
1453 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
1454 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
1455 bi
->bi_io_vec
[0].bv_offset
= 0;
1456 bi
->bi_size
= STRIPE_SIZE
;
1458 generic_make_request(bi
);
1460 PRINTK("skip op %ld on disc %d for sector %llu\n",
1461 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
1462 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1463 set_bit(STRIPE_HANDLE
, &sh
->state
);
1468 static inline void raid6_activate_delayed(raid6_conf_t
*conf
)
1470 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
1471 while (!list_empty(&conf
->delayed_list
)) {
1472 struct list_head
*l
= conf
->delayed_list
.next
;
1473 struct stripe_head
*sh
;
1474 sh
= list_entry(l
, struct stripe_head
, lru
);
1476 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1477 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
1478 atomic_inc(&conf
->preread_active_stripes
);
1479 list_add_tail(&sh
->lru
, &conf
->handle_list
);
1484 static void unplug_slaves(mddev_t
*mddev
)
1486 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1490 for (i
=0; i
<mddev
->raid_disks
; i
++) {
1491 mdk_rdev_t
*rdev
= conf
->disks
[i
].rdev
;
1492 if (rdev
&& !rdev
->faulty
&& atomic_read(&rdev
->nr_pending
)) {
1493 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
1495 atomic_inc(&rdev
->nr_pending
);
1498 if (r_queue
->unplug_fn
)
1499 r_queue
->unplug_fn(r_queue
);
1501 rdev_dec_pending(rdev
, mddev
);
1508 static void raid6_unplug_device(request_queue_t
*q
)
1510 mddev_t
*mddev
= q
->queuedata
;
1511 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1512 unsigned long flags
;
1514 spin_lock_irqsave(&conf
->device_lock
, flags
);
1516 if (blk_remove_plug(q
))
1517 raid6_activate_delayed(conf
);
1518 md_wakeup_thread(mddev
->thread
);
1520 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1522 unplug_slaves(mddev
);
1525 static int raid6_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
1526 sector_t
*error_sector
)
1528 mddev_t
*mddev
= q
->queuedata
;
1529 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1533 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
1534 mdk_rdev_t
*rdev
= conf
->disks
[i
].rdev
;
1535 if (rdev
&& !rdev
->faulty
) {
1536 struct block_device
*bdev
= rdev
->bdev
;
1537 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
1539 if (!r_queue
->issue_flush_fn
)
1542 atomic_inc(&rdev
->nr_pending
);
1544 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
1546 rdev_dec_pending(rdev
, mddev
);
1555 static inline void raid6_plug_device(raid6_conf_t
*conf
)
1557 spin_lock_irq(&conf
->device_lock
);
1558 blk_plug_device(conf
->mddev
->queue
);
1559 spin_unlock_irq(&conf
->device_lock
);
1562 static int make_request (request_queue_t
*q
, struct bio
* bi
)
1564 mddev_t
*mddev
= q
->queuedata
;
1565 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1566 const unsigned int raid_disks
= conf
->raid_disks
;
1567 const unsigned int data_disks
= raid_disks
- 2;
1568 unsigned int dd_idx
, pd_idx
;
1569 sector_t new_sector
;
1570 sector_t logical_sector
, last_sector
;
1571 struct stripe_head
*sh
;
1573 md_write_start(mddev
, bi
);
1575 if (bio_data_dir(bi
)==WRITE
) {
1576 disk_stat_inc(mddev
->gendisk
, writes
);
1577 disk_stat_add(mddev
->gendisk
, write_sectors
, bio_sectors(bi
));
1579 disk_stat_inc(mddev
->gendisk
, reads
);
1580 disk_stat_add(mddev
->gendisk
, read_sectors
, bio_sectors(bi
));
1583 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
1584 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1587 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
1589 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
1592 new_sector
= raid6_compute_sector(logical_sector
,
1593 raid_disks
, data_disks
, &dd_idx
, &pd_idx
, conf
);
1595 PRINTK("raid6: make_request, sector %llu logical %llu\n",
1596 (unsigned long long)new_sector
,
1597 (unsigned long long)logical_sector
);
1600 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
1601 sh
= get_active_stripe(conf
, new_sector
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
1603 if (!add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
1604 /* Add failed due to overlap. Flush everything
1607 raid6_unplug_device(mddev
->queue
);
1612 finish_wait(&conf
->wait_for_overlap
, &w
);
1613 raid6_plug_device(conf
);
1617 /* cannot get stripe for read-ahead, just give-up */
1618 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1619 finish_wait(&conf
->wait_for_overlap
, &w
);
1624 spin_lock_irq(&conf
->device_lock
);
1625 if (--bi
->bi_phys_segments
== 0) {
1626 int bytes
= bi
->bi_size
;
1628 if ( bio_data_dir(bi
) == WRITE
)
1629 md_write_end(mddev
);
1631 bi
->bi_end_io(bi
, bytes
, 0);
1633 spin_unlock_irq(&conf
->device_lock
);
1637 /* FIXME go_faster isn't used */
1638 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1640 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
1641 struct stripe_head
*sh
;
1642 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1644 unsigned long stripe
;
1647 sector_t first_sector
;
1648 int raid_disks
= conf
->raid_disks
;
1649 int data_disks
= raid_disks
- 2;
1651 if (sector_nr
>= mddev
->size
<<1) {
1652 /* just being told to finish up .. nothing much to do */
1653 unplug_slaves(mddev
);
1656 /* if there are 2 or more failed drives and we are trying
1657 * to resync, then assert that we are finished, because there is
1658 * nothing we can do.
1660 if (mddev
->degraded
>= 2 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1661 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
1667 chunk_offset
= sector_div(x
, sectors_per_chunk
);
1669 BUG_ON(x
!= stripe
);
1671 first_sector
= raid6_compute_sector((sector_t
)stripe
*data_disks
*sectors_per_chunk
1672 + chunk_offset
, raid_disks
, data_disks
, &dd_idx
, &pd_idx
, conf
);
1673 sh
= get_active_stripe(conf
, sector_nr
, pd_idx
, 1);
1675 sh
= get_active_stripe(conf
, sector_nr
, pd_idx
, 0);
1676 /* make sure we don't swamp the stripe cache if someone else
1677 * is trying to get access
1679 set_current_state(TASK_UNINTERRUPTIBLE
);
1680 schedule_timeout(1);
1682 spin_lock(&sh
->lock
);
1683 set_bit(STRIPE_SYNCING
, &sh
->state
);
1684 clear_bit(STRIPE_INSYNC
, &sh
->state
);
1685 spin_unlock(&sh
->lock
);
1690 return STRIPE_SECTORS
;
1694 * This is our raid6 kernel thread.
1696 * We scan the hash table for stripes which can be handled now.
1697 * During the scan, completed stripes are saved for us by the interrupt
1698 * handler, so that they will not have to wait for our next wakeup.
1700 static void raid6d (mddev_t
*mddev
)
1702 struct stripe_head
*sh
;
1703 raid6_conf_t
*conf
= mddev_to_conf(mddev
);
1706 PRINTK("+++ raid6d active\n");
1708 md_check_recovery(mddev
);
1711 spin_lock_irq(&conf
->device_lock
);
1713 struct list_head
*first
;
1715 if (list_empty(&conf
->handle_list
) &&
1716 atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
&&
1717 !blk_queue_plugged(mddev
->queue
) &&
1718 !list_empty(&conf
->delayed_list
))
1719 raid6_activate_delayed(conf
);
1721 if (list_empty(&conf
->handle_list
))
1724 first
= conf
->handle_list
.next
;
1725 sh
= list_entry(first
, struct stripe_head
, lru
);
1727 list_del_init(first
);
1728 atomic_inc(&sh
->count
);
1729 if (atomic_read(&sh
->count
)!= 1)
1731 spin_unlock_irq(&conf
->device_lock
);
1737 spin_lock_irq(&conf
->device_lock
);
1739 PRINTK("%d stripes handled\n", handled
);
1741 spin_unlock_irq(&conf
->device_lock
);
1743 unplug_slaves(mddev
);
1745 PRINTK("--- raid6d inactive\n");
1748 static int run (mddev_t
*mddev
)
1751 int raid_disk
, memory
;
1753 struct disk_info
*disk
;
1754 struct list_head
*tmp
;
1756 if (mddev
->level
!= 6) {
1757 PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev
), mddev
->level
);
1761 mddev
->private = kmalloc (sizeof (raid6_conf_t
)
1762 + mddev
->raid_disks
* sizeof(struct disk_info
),
1764 if ((conf
= mddev
->private) == NULL
)
1766 memset (conf
, 0, sizeof (*conf
) + mddev
->raid_disks
* sizeof(struct disk_info
) );
1767 conf
->mddev
= mddev
;
1769 if ((conf
->stripe_hashtbl
= (struct stripe_head
**) __get_free_pages(GFP_ATOMIC
, HASH_PAGES_ORDER
)) == NULL
)
1771 memset(conf
->stripe_hashtbl
, 0, HASH_PAGES
* PAGE_SIZE
);
1773 spin_lock_init(&conf
->device_lock
);
1774 init_waitqueue_head(&conf
->wait_for_stripe
);
1775 init_waitqueue_head(&conf
->wait_for_overlap
);
1776 INIT_LIST_HEAD(&conf
->handle_list
);
1777 INIT_LIST_HEAD(&conf
->delayed_list
);
1778 INIT_LIST_HEAD(&conf
->inactive_list
);
1779 atomic_set(&conf
->active_stripes
, 0);
1780 atomic_set(&conf
->preread_active_stripes
, 0);
1782 PRINTK("raid6: run(%s) called.\n", mdname(mddev
));
1784 ITERATE_RDEV(mddev
,rdev
,tmp
) {
1785 raid_disk
= rdev
->raid_disk
;
1786 if (raid_disk
>= mddev
->raid_disks
1789 disk
= conf
->disks
+ raid_disk
;
1793 if (rdev
->in_sync
) {
1794 char b
[BDEVNAME_SIZE
];
1795 printk(KERN_INFO
"raid6: device %s operational as raid"
1796 " disk %d\n", bdevname(rdev
->bdev
,b
),
1798 conf
->working_disks
++;
1802 conf
->raid_disks
= mddev
->raid_disks
;
1805 * 0 for a fully functional array, 1 or 2 for a degraded array.
1807 mddev
->degraded
= conf
->failed_disks
= conf
->raid_disks
- conf
->working_disks
;
1808 conf
->mddev
= mddev
;
1809 conf
->chunk_size
= mddev
->chunk_size
;
1810 conf
->level
= mddev
->level
;
1811 conf
->algorithm
= mddev
->layout
;
1812 conf
->max_nr_stripes
= NR_STRIPES
;
1814 /* device size must be a multiple of chunk size */
1815 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
1816 mddev
->resync_max_sectors
= mddev
->size
<< 1;
1818 if (conf
->raid_disks
< 4) {
1819 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
1820 mdname(mddev
), conf
->raid_disks
);
1823 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
1824 printk(KERN_ERR
"raid6: invalid chunk size %d for %s\n",
1825 conf
->chunk_size
, mdname(mddev
));
1828 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
1830 "raid6: unsupported parity algorithm %d for %s\n",
1831 conf
->algorithm
, mdname(mddev
));
1834 if (mddev
->degraded
> 2) {
1835 printk(KERN_ERR
"raid6: not enough operational devices for %s"
1836 " (%d/%d failed)\n",
1837 mdname(mddev
), conf
->failed_disks
, conf
->raid_disks
);
1841 #if 0 /* FIX: For now */
1842 if (mddev
->degraded
> 0 &&
1843 mddev
->recovery_cp
!= MaxSector
) {
1844 printk(KERN_ERR
"raid6: cannot start dirty degraded array for %s\n", mdname(mddev
));
1850 mddev
->thread
= md_register_thread(raid6d
, mddev
, "%s_raid6");
1851 if (!mddev
->thread
) {
1853 "raid6: couldn't allocate thread for %s\n",
1859 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
1860 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
1861 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
1863 "raid6: couldn't allocate %dkB for buffers\n", memory
);
1864 shrink_stripes(conf
);
1865 md_unregister_thread(mddev
->thread
);
1868 printk(KERN_INFO
"raid6: allocated %dkB for %s\n",
1869 memory
, mdname(mddev
));
1871 if (mddev
->degraded
== 0)
1872 printk(KERN_INFO
"raid6: raid level %d set %s active with %d out of %d"
1873 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
1874 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
1877 printk(KERN_ALERT
"raid6: raid level %d set %s active with %d"
1878 " out of %d devices, algorithm %d\n", conf
->level
,
1879 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
1880 mddev
->raid_disks
, conf
->algorithm
);
1882 print_raid6_conf(conf
);
1884 /* read-ahead size must cover two whole stripes, which is
1885 * 2 * (n-2) * chunksize where 'n' is the number of raid devices
1888 int stripe
= (mddev
->raid_disks
-2) * mddev
->chunk_size
1890 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
1891 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
1894 /* Ok, everything is just fine now */
1895 mddev
->array_size
= mddev
->size
* (mddev
->raid_disks
- 2);
1897 mddev
->queue
->unplug_fn
= raid6_unplug_device
;
1898 mddev
->queue
->issue_flush_fn
= raid6_issue_flush
;
1902 print_raid6_conf(conf
);
1903 if (conf
->stripe_hashtbl
)
1904 free_pages((unsigned long) conf
->stripe_hashtbl
,
1908 mddev
->private = NULL
;
1909 printk(KERN_ALERT
"raid6: failed to run raid set %s\n", mdname(mddev
));
1915 static int stop (mddev_t
*mddev
)
1917 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
1919 md_unregister_thread(mddev
->thread
);
1920 mddev
->thread
= NULL
;
1921 shrink_stripes(conf
);
1922 free_pages((unsigned long) conf
->stripe_hashtbl
, HASH_PAGES_ORDER
);
1923 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
1925 mddev
->private = NULL
;
1930 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
1934 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
1935 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
1936 seq_printf(seq
, "sh %llu, count %d.\n",
1937 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
1938 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
1939 for (i
= 0; i
< sh
->raid_conf
->raid_disks
; i
++) {
1940 seq_printf(seq
, "(cache%d: %p %ld) ",
1941 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
1943 seq_printf(seq
, "\n");
1946 static void printall (struct seq_file
*seq
, raid6_conf_t
*conf
)
1948 struct stripe_head
*sh
;
1951 spin_lock_irq(&conf
->device_lock
);
1952 for (i
= 0; i
< NR_HASH
; i
++) {
1953 sh
= conf
->stripe_hashtbl
[i
];
1954 for (; sh
; sh
= sh
->hash_next
) {
1955 if (sh
->raid_conf
!= conf
)
1960 spin_unlock_irq(&conf
->device_lock
);
1964 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
1966 raid6_conf_t
*conf
= (raid6_conf_t
*) mddev
->private;
1969 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
1970 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->working_disks
);
1971 for (i
= 0; i
< conf
->raid_disks
; i
++)
1972 seq_printf (seq
, "%s",
1973 conf
->disks
[i
].rdev
&&
1974 conf
->disks
[i
].rdev
->in_sync
? "U" : "_");
1975 seq_printf (seq
, "]");
1977 seq_printf (seq
, "\n");
1978 printall(seq
, conf
);
1982 static void print_raid6_conf (raid6_conf_t
*conf
)
1985 struct disk_info
*tmp
;
1987 printk("RAID6 conf printout:\n");
1989 printk("(conf==NULL)\n");
1992 printk(" --- rd:%d wd:%d fd:%d\n", conf
->raid_disks
,
1993 conf
->working_disks
, conf
->failed_disks
);
1995 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1996 char b
[BDEVNAME_SIZE
];
1997 tmp
= conf
->disks
+ i
;
1999 printk(" disk %d, o:%d, dev:%s\n",
2000 i
, !tmp
->rdev
->faulty
,
2001 bdevname(tmp
->rdev
->bdev
,b
));
2005 static int raid6_spare_active(mddev_t
*mddev
)
2008 raid6_conf_t
*conf
= mddev
->private;
2009 struct disk_info
*tmp
;
2011 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2012 tmp
= conf
->disks
+ i
;
2014 && !tmp
->rdev
->faulty
2015 && !tmp
->rdev
->in_sync
) {
2017 conf
->failed_disks
--;
2018 conf
->working_disks
++;
2019 tmp
->rdev
->in_sync
= 1;
2022 print_raid6_conf(conf
);
2026 static int raid6_remove_disk(mddev_t
*mddev
, int number
)
2028 raid6_conf_t
*conf
= mddev
->private;
2031 struct disk_info
*p
= conf
->disks
+ number
;
2033 print_raid6_conf(conf
);
2036 if (rdev
->in_sync
||
2037 atomic_read(&rdev
->nr_pending
)) {
2043 if (atomic_read(&rdev
->nr_pending
)) {
2044 /* lost the race, try later */
2052 print_raid6_conf(conf
);
2056 static int raid6_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
2058 raid6_conf_t
*conf
= mddev
->private;
2061 struct disk_info
*p
;
2063 if (mddev
->degraded
> 2)
2064 /* no point adding a device */
2069 for (disk
=0; disk
< mddev
->raid_disks
; disk
++)
2070 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
2072 rdev
->raid_disk
= disk
;
2077 print_raid6_conf(conf
);
2081 static int raid6_resize(mddev_t
*mddev
, sector_t sectors
)
2083 /* no resync is happening, and there is enough space
2084 * on all devices, so we can resize.
2085 * We need to make sure resync covers any new space.
2086 * If the array is shrinking we should possibly wait until
2087 * any io in the removed space completes, but it hardly seems
2090 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
2091 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-2))>>1;
2092 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
2094 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
2095 mddev
->recovery_cp
= mddev
->size
<< 1;
2096 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2098 mddev
->size
= sectors
/2;
2099 mddev
->resync_max_sectors
= sectors
;
2103 static mdk_personality_t raid6_personality
=
2106 .owner
= THIS_MODULE
,
2107 .make_request
= make_request
,
2111 .error_handler
= error
,
2112 .hot_add_disk
= raid6_add_disk
,
2113 .hot_remove_disk
= raid6_remove_disk
,
2114 .spare_active
= raid6_spare_active
,
2115 .sync_request
= sync_request
,
2116 .resize
= raid6_resize
,
2119 static int __init
raid6_init (void)
2123 e
= raid6_select_algo();
2127 return register_md_personality (RAID6
, &raid6_personality
);
2130 static void raid6_exit (void)
2132 unregister_md_personality (RAID6
);
2135 module_init(raid6_init
);
2136 module_exit(raid6_exit
);
2137 MODULE_LICENSE("GPL");
2138 MODULE_ALIAS("md-personality-8"); /* RAID6 */