Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc-merge
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blobbf903b2d198f0820a2d03041b06de25af7a4d1d7
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
40 #include <linux/swapops.h>
42 /* possible outcome of pageout() */
43 typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52 } pageout_t;
54 struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
64 unsigned long nr_mapped; /* From page_state */
66 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
72 int may_writepage;
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
85 struct shrinker {
86 shrinker_t shrinker;
87 struct list_head list;
88 int seeks; /* seeks to recreate an obj */
89 long nr; /* objs pending delete */
92 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
94 #ifdef ARCH_HAS_PREFETCH
95 #define prefetch_prev_lru_page(_page, _base, _field) \
96 do { \
97 if ((_page)->lru.prev != _base) { \
98 struct page *prev; \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
103 } while (0)
104 #else
105 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106 #endif
108 #ifdef ARCH_HAS_PREFETCHW
109 #define prefetchw_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
117 } while (0)
118 #else
119 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120 #endif
123 * From 0 .. 100. Higher means more swappy.
125 int vm_swappiness = 60;
126 static long total_memory;
128 static LIST_HEAD(shrinker_list);
129 static DECLARE_RWSEM(shrinker_rwsem);
132 * Add a shrinker callback to be called from the vm
134 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
136 struct shrinker *shrinker;
138 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139 if (shrinker) {
140 shrinker->shrinker = theshrinker;
141 shrinker->seeks = seeks;
142 shrinker->nr = 0;
143 down_write(&shrinker_rwsem);
144 list_add_tail(&shrinker->list, &shrinker_list);
145 up_write(&shrinker_rwsem);
147 return shrinker;
149 EXPORT_SYMBOL(set_shrinker);
152 * Remove one
154 void remove_shrinker(struct shrinker *shrinker)
156 down_write(&shrinker_rwsem);
157 list_del(&shrinker->list);
158 up_write(&shrinker_rwsem);
159 kfree(shrinker);
161 EXPORT_SYMBOL(remove_shrinker);
163 #define SHRINK_BATCH 128
165 * Call the shrink functions to age shrinkable caches
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
181 * Returns the number of slab objects which we shrunk.
183 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
185 struct shrinker *shrinker;
186 int ret = 0;
188 if (scanned == 0)
189 scanned = SWAP_CLUSTER_MAX;
191 if (!down_read_trylock(&shrinker_rwsem))
192 return 1; /* Assume we'll be able to shrink next time */
194 list_for_each_entry(shrinker, &shrinker_list, list) {
195 unsigned long long delta;
196 unsigned long total_scan;
197 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
199 delta = (4 * scanned) / shrinker->seeks;
200 delta *= max_pass;
201 do_div(delta, lru_pages + 1);
202 shrinker->nr += delta;
203 if (shrinker->nr < 0) {
204 printk(KERN_ERR "%s: nr=%ld\n",
205 __FUNCTION__, shrinker->nr);
206 shrinker->nr = max_pass;
210 * Avoid risking looping forever due to too large nr value:
211 * never try to free more than twice the estimate number of
212 * freeable entries.
214 if (shrinker->nr > max_pass * 2)
215 shrinker->nr = max_pass * 2;
217 total_scan = shrinker->nr;
218 shrinker->nr = 0;
220 while (total_scan >= SHRINK_BATCH) {
221 long this_scan = SHRINK_BATCH;
222 int shrink_ret;
223 int nr_before;
225 nr_before = (*shrinker->shrinker)(0, gfp_mask);
226 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227 if (shrink_ret == -1)
228 break;
229 if (shrink_ret < nr_before)
230 ret += nr_before - shrink_ret;
231 mod_page_state(slabs_scanned, this_scan);
232 total_scan -= this_scan;
234 cond_resched();
237 shrinker->nr += total_scan;
239 up_read(&shrinker_rwsem);
240 return ret;
243 /* Called without lock on whether page is mapped, so answer is unstable */
244 static inline int page_mapping_inuse(struct page *page)
246 struct address_space *mapping;
248 /* Page is in somebody's page tables. */
249 if (page_mapped(page))
250 return 1;
252 /* Be more reluctant to reclaim swapcache than pagecache */
253 if (PageSwapCache(page))
254 return 1;
256 mapping = page_mapping(page);
257 if (!mapping)
258 return 0;
260 /* File is mmap'd by somebody? */
261 return mapping_mapped(mapping);
264 static inline int is_page_cache_freeable(struct page *page)
266 return page_count(page) - !!PagePrivate(page) == 2;
269 static int may_write_to_queue(struct backing_dev_info *bdi)
271 if (current->flags & PF_SWAPWRITE)
272 return 1;
273 if (!bdi_write_congested(bdi))
274 return 1;
275 if (bdi == current->backing_dev_info)
276 return 1;
277 return 0;
281 * We detected a synchronous write error writing a page out. Probably
282 * -ENOSPC. We need to propagate that into the address_space for a subsequent
283 * fsync(), msync() or close().
285 * The tricky part is that after writepage we cannot touch the mapping: nothing
286 * prevents it from being freed up. But we have a ref on the page and once
287 * that page is locked, the mapping is pinned.
289 * We're allowed to run sleeping lock_page() here because we know the caller has
290 * __GFP_FS.
292 static void handle_write_error(struct address_space *mapping,
293 struct page *page, int error)
295 lock_page(page);
296 if (page_mapping(page) == mapping) {
297 if (error == -ENOSPC)
298 set_bit(AS_ENOSPC, &mapping->flags);
299 else
300 set_bit(AS_EIO, &mapping->flags);
302 unlock_page(page);
306 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
308 static pageout_t pageout(struct page *page, struct address_space *mapping)
311 * If the page is dirty, only perform writeback if that write
312 * will be non-blocking. To prevent this allocation from being
313 * stalled by pagecache activity. But note that there may be
314 * stalls if we need to run get_block(). We could test
315 * PagePrivate for that.
317 * If this process is currently in generic_file_write() against
318 * this page's queue, we can perform writeback even if that
319 * will block.
321 * If the page is swapcache, write it back even if that would
322 * block, for some throttling. This happens by accident, because
323 * swap_backing_dev_info is bust: it doesn't reflect the
324 * congestion state of the swapdevs. Easy to fix, if needed.
325 * See swapfile.c:page_queue_congested().
327 if (!is_page_cache_freeable(page))
328 return PAGE_KEEP;
329 if (!mapping) {
331 * Some data journaling orphaned pages can have
332 * page->mapping == NULL while being dirty with clean buffers.
334 if (PagePrivate(page)) {
335 if (try_to_free_buffers(page)) {
336 ClearPageDirty(page);
337 printk("%s: orphaned page\n", __FUNCTION__);
338 return PAGE_CLEAN;
341 return PAGE_KEEP;
343 if (mapping->a_ops->writepage == NULL)
344 return PAGE_ACTIVATE;
345 if (!may_write_to_queue(mapping->backing_dev_info))
346 return PAGE_KEEP;
348 if (clear_page_dirty_for_io(page)) {
349 int res;
350 struct writeback_control wbc = {
351 .sync_mode = WB_SYNC_NONE,
352 .nr_to_write = SWAP_CLUSTER_MAX,
353 .nonblocking = 1,
354 .for_reclaim = 1,
357 SetPageReclaim(page);
358 res = mapping->a_ops->writepage(page, &wbc);
359 if (res < 0)
360 handle_write_error(mapping, page, res);
361 if (res == AOP_WRITEPAGE_ACTIVATE) {
362 ClearPageReclaim(page);
363 return PAGE_ACTIVATE;
365 if (!PageWriteback(page)) {
366 /* synchronous write or broken a_ops? */
367 ClearPageReclaim(page);
370 return PAGE_SUCCESS;
373 return PAGE_CLEAN;
376 static int remove_mapping(struct address_space *mapping, struct page *page)
378 if (!mapping)
379 return 0; /* truncate got there first */
381 write_lock_irq(&mapping->tree_lock);
384 * The non-racy check for busy page. It is critical to check
385 * PageDirty _after_ making sure that the page is freeable and
386 * not in use by anybody. (pagecache + us == 2)
388 if (unlikely(page_count(page) != 2))
389 goto cannot_free;
390 smp_rmb();
391 if (unlikely(PageDirty(page)))
392 goto cannot_free;
394 if (PageSwapCache(page)) {
395 swp_entry_t swap = { .val = page_private(page) };
396 __delete_from_swap_cache(page);
397 write_unlock_irq(&mapping->tree_lock);
398 swap_free(swap);
399 __put_page(page); /* The pagecache ref */
400 return 1;
403 __remove_from_page_cache(page);
404 write_unlock_irq(&mapping->tree_lock);
405 __put_page(page);
406 return 1;
408 cannot_free:
409 write_unlock_irq(&mapping->tree_lock);
410 return 0;
414 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
416 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
418 LIST_HEAD(ret_pages);
419 struct pagevec freed_pvec;
420 int pgactivate = 0;
421 int reclaimed = 0;
423 cond_resched();
425 pagevec_init(&freed_pvec, 1);
426 while (!list_empty(page_list)) {
427 struct address_space *mapping;
428 struct page *page;
429 int may_enter_fs;
430 int referenced;
432 cond_resched();
434 page = lru_to_page(page_list);
435 list_del(&page->lru);
437 if (TestSetPageLocked(page))
438 goto keep;
440 BUG_ON(PageActive(page));
442 sc->nr_scanned++;
443 /* Double the slab pressure for mapped and swapcache pages */
444 if (page_mapped(page) || PageSwapCache(page))
445 sc->nr_scanned++;
447 if (PageWriteback(page))
448 goto keep_locked;
450 referenced = page_referenced(page, 1);
451 /* In active use or really unfreeable? Activate it. */
452 if (referenced && page_mapping_inuse(page))
453 goto activate_locked;
455 #ifdef CONFIG_SWAP
457 * Anonymous process memory has backing store?
458 * Try to allocate it some swap space here.
460 if (PageAnon(page) && !PageSwapCache(page)) {
461 if (!add_to_swap(page, GFP_ATOMIC))
462 goto activate_locked;
464 #endif /* CONFIG_SWAP */
466 mapping = page_mapping(page);
467 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
468 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
471 * The page is mapped into the page tables of one or more
472 * processes. Try to unmap it here.
474 if (page_mapped(page) && mapping) {
475 switch (try_to_unmap(page)) {
476 case SWAP_FAIL:
477 goto activate_locked;
478 case SWAP_AGAIN:
479 goto keep_locked;
480 case SWAP_SUCCESS:
481 ; /* try to free the page below */
485 if (PageDirty(page)) {
486 if (referenced)
487 goto keep_locked;
488 if (!may_enter_fs)
489 goto keep_locked;
490 if (laptop_mode && !sc->may_writepage)
491 goto keep_locked;
493 /* Page is dirty, try to write it out here */
494 switch(pageout(page, mapping)) {
495 case PAGE_KEEP:
496 goto keep_locked;
497 case PAGE_ACTIVATE:
498 goto activate_locked;
499 case PAGE_SUCCESS:
500 if (PageWriteback(page) || PageDirty(page))
501 goto keep;
503 * A synchronous write - probably a ramdisk. Go
504 * ahead and try to reclaim the page.
506 if (TestSetPageLocked(page))
507 goto keep;
508 if (PageDirty(page) || PageWriteback(page))
509 goto keep_locked;
510 mapping = page_mapping(page);
511 case PAGE_CLEAN:
512 ; /* try to free the page below */
517 * If the page has buffers, try to free the buffer mappings
518 * associated with this page. If we succeed we try to free
519 * the page as well.
521 * We do this even if the page is PageDirty().
522 * try_to_release_page() does not perform I/O, but it is
523 * possible for a page to have PageDirty set, but it is actually
524 * clean (all its buffers are clean). This happens if the
525 * buffers were written out directly, with submit_bh(). ext3
526 * will do this, as well as the blockdev mapping.
527 * try_to_release_page() will discover that cleanness and will
528 * drop the buffers and mark the page clean - it can be freed.
530 * Rarely, pages can have buffers and no ->mapping. These are
531 * the pages which were not successfully invalidated in
532 * truncate_complete_page(). We try to drop those buffers here
533 * and if that worked, and the page is no longer mapped into
534 * process address space (page_count == 1) it can be freed.
535 * Otherwise, leave the page on the LRU so it is swappable.
537 if (PagePrivate(page)) {
538 if (!try_to_release_page(page, sc->gfp_mask))
539 goto activate_locked;
540 if (!mapping && page_count(page) == 1)
541 goto free_it;
544 if (!remove_mapping(mapping, page))
545 goto keep_locked;
547 free_it:
548 unlock_page(page);
549 reclaimed++;
550 if (!pagevec_add(&freed_pvec, page))
551 __pagevec_release_nonlru(&freed_pvec);
552 continue;
554 activate_locked:
555 SetPageActive(page);
556 pgactivate++;
557 keep_locked:
558 unlock_page(page);
559 keep:
560 list_add(&page->lru, &ret_pages);
561 BUG_ON(PageLRU(page));
563 list_splice(&ret_pages, page_list);
564 if (pagevec_count(&freed_pvec))
565 __pagevec_release_nonlru(&freed_pvec);
566 mod_page_state(pgactivate, pgactivate);
567 sc->nr_reclaimed += reclaimed;
568 return reclaimed;
571 #ifdef CONFIG_MIGRATION
572 static inline void move_to_lru(struct page *page)
574 list_del(&page->lru);
575 if (PageActive(page)) {
577 * lru_cache_add_active checks that
578 * the PG_active bit is off.
580 ClearPageActive(page);
581 lru_cache_add_active(page);
582 } else {
583 lru_cache_add(page);
585 put_page(page);
589 * Add isolated pages on the list back to the LRU
591 * returns the number of pages put back.
593 int putback_lru_pages(struct list_head *l)
595 struct page *page;
596 struct page *page2;
597 int count = 0;
599 list_for_each_entry_safe(page, page2, l, lru) {
600 move_to_lru(page);
601 count++;
603 return count;
607 * swapout a single page
608 * page is locked upon entry, unlocked on exit
610 static int swap_page(struct page *page)
612 struct address_space *mapping = page_mapping(page);
614 if (page_mapped(page) && mapping)
615 if (try_to_unmap(page) != SWAP_SUCCESS)
616 goto unlock_retry;
618 if (PageDirty(page)) {
619 /* Page is dirty, try to write it out here */
620 switch(pageout(page, mapping)) {
621 case PAGE_KEEP:
622 case PAGE_ACTIVATE:
623 goto unlock_retry;
625 case PAGE_SUCCESS:
626 goto retry;
628 case PAGE_CLEAN:
629 ; /* try to free the page below */
633 if (PagePrivate(page)) {
634 if (!try_to_release_page(page, GFP_KERNEL) ||
635 (!mapping && page_count(page) == 1))
636 goto unlock_retry;
639 if (remove_mapping(mapping, page)) {
640 /* Success */
641 unlock_page(page);
642 return 0;
645 unlock_retry:
646 unlock_page(page);
648 retry:
649 return -EAGAIN;
652 * migrate_pages
654 * Two lists are passed to this function. The first list
655 * contains the pages isolated from the LRU to be migrated.
656 * The second list contains new pages that the pages isolated
657 * can be moved to. If the second list is NULL then all
658 * pages are swapped out.
660 * The function returns after 10 attempts or if no pages
661 * are movable anymore because t has become empty
662 * or no retryable pages exist anymore.
664 * SIMPLIFIED VERSION: This implementation of migrate_pages
665 * is only swapping out pages and never touches the second
666 * list. The direct migration patchset
667 * extends this function to avoid the use of swap.
669 * Return: Number of pages not migrated when "to" ran empty.
671 int migrate_pages(struct list_head *from, struct list_head *to,
672 struct list_head *moved, struct list_head *failed)
674 int retry;
675 int nr_failed = 0;
676 int pass = 0;
677 struct page *page;
678 struct page *page2;
679 int swapwrite = current->flags & PF_SWAPWRITE;
680 int rc;
682 if (!swapwrite)
683 current->flags |= PF_SWAPWRITE;
685 redo:
686 retry = 0;
688 list_for_each_entry_safe(page, page2, from, lru) {
689 cond_resched();
691 rc = 0;
692 if (page_count(page) == 1)
693 /* page was freed from under us. So we are done. */
694 goto next;
697 * Skip locked pages during the first two passes to give the
698 * functions holding the lock time to release the page. Later we
699 * use lock_page() to have a higher chance of acquiring the
700 * lock.
702 rc = -EAGAIN;
703 if (pass > 2)
704 lock_page(page);
705 else
706 if (TestSetPageLocked(page))
707 goto next;
710 * Only wait on writeback if we have already done a pass where
711 * we we may have triggered writeouts for lots of pages.
713 if (pass > 0) {
714 wait_on_page_writeback(page);
715 } else {
716 if (PageWriteback(page))
717 goto unlock_page;
721 * Anonymous pages must have swap cache references otherwise
722 * the information contained in the page maps cannot be
723 * preserved.
725 if (PageAnon(page) && !PageSwapCache(page)) {
726 if (!add_to_swap(page, GFP_KERNEL)) {
727 rc = -ENOMEM;
728 goto unlock_page;
733 * Page is properly locked and writeback is complete.
734 * Try to migrate the page.
736 rc = swap_page(page);
737 goto next;
739 unlock_page:
740 unlock_page(page);
742 next:
743 if (rc == -EAGAIN) {
744 retry++;
745 } else if (rc) {
746 /* Permanent failure */
747 list_move(&page->lru, failed);
748 nr_failed++;
749 } else {
750 /* Success */
751 list_move(&page->lru, moved);
754 if (retry && pass++ < 10)
755 goto redo;
757 if (!swapwrite)
758 current->flags &= ~PF_SWAPWRITE;
760 return nr_failed + retry;
763 static void lru_add_drain_per_cpu(void *dummy)
765 lru_add_drain();
769 * Isolate one page from the LRU lists and put it on the
770 * indicated list. Do necessary cache draining if the
771 * page is not on the LRU lists yet.
773 * Result:
774 * 0 = page not on LRU list
775 * 1 = page removed from LRU list and added to the specified list.
776 * -ENOENT = page is being freed elsewhere.
778 int isolate_lru_page(struct page *page)
780 int rc = 0;
781 struct zone *zone = page_zone(page);
783 redo:
784 spin_lock_irq(&zone->lru_lock);
785 rc = __isolate_lru_page(page);
786 if (rc == 1) {
787 if (PageActive(page))
788 del_page_from_active_list(zone, page);
789 else
790 del_page_from_inactive_list(zone, page);
792 spin_unlock_irq(&zone->lru_lock);
793 if (rc == 0) {
795 * Maybe this page is still waiting for a cpu to drain it
796 * from one of the lru lists?
798 rc = schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
799 if (rc == 0 && PageLRU(page))
800 goto redo;
802 return rc;
804 #endif
807 * zone->lru_lock is heavily contended. Some of the functions that
808 * shrink the lists perform better by taking out a batch of pages
809 * and working on them outside the LRU lock.
811 * For pagecache intensive workloads, this function is the hottest
812 * spot in the kernel (apart from copy_*_user functions).
814 * Appropriate locks must be held before calling this function.
816 * @nr_to_scan: The number of pages to look through on the list.
817 * @src: The LRU list to pull pages off.
818 * @dst: The temp list to put pages on to.
819 * @scanned: The number of pages that were scanned.
821 * returns how many pages were moved onto *@dst.
823 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
824 struct list_head *dst, int *scanned)
826 int nr_taken = 0;
827 struct page *page;
828 int scan = 0;
830 while (scan++ < nr_to_scan && !list_empty(src)) {
831 page = lru_to_page(src);
832 prefetchw_prev_lru_page(page, src, flags);
834 switch (__isolate_lru_page(page)) {
835 case 1:
836 /* Succeeded to isolate page */
837 list_move(&page->lru, dst);
838 nr_taken++;
839 break;
840 case -ENOENT:
841 /* Not possible to isolate */
842 list_move(&page->lru, src);
843 break;
844 default:
845 BUG();
849 *scanned = scan;
850 return nr_taken;
854 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
856 static void shrink_cache(struct zone *zone, struct scan_control *sc)
858 LIST_HEAD(page_list);
859 struct pagevec pvec;
860 int max_scan = sc->nr_to_scan;
862 pagevec_init(&pvec, 1);
864 lru_add_drain();
865 spin_lock_irq(&zone->lru_lock);
866 while (max_scan > 0) {
867 struct page *page;
868 int nr_taken;
869 int nr_scan;
870 int nr_freed;
872 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
873 &zone->inactive_list,
874 &page_list, &nr_scan);
875 zone->nr_inactive -= nr_taken;
876 zone->pages_scanned += nr_scan;
877 spin_unlock_irq(&zone->lru_lock);
879 if (nr_taken == 0)
880 goto done;
882 max_scan -= nr_scan;
883 nr_freed = shrink_list(&page_list, sc);
885 local_irq_disable();
886 if (current_is_kswapd()) {
887 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
888 __mod_page_state(kswapd_steal, nr_freed);
889 } else
890 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
891 __mod_page_state_zone(zone, pgsteal, nr_freed);
893 spin_lock(&zone->lru_lock);
895 * Put back any unfreeable pages.
897 while (!list_empty(&page_list)) {
898 page = lru_to_page(&page_list);
899 if (TestSetPageLRU(page))
900 BUG();
901 list_del(&page->lru);
902 if (PageActive(page))
903 add_page_to_active_list(zone, page);
904 else
905 add_page_to_inactive_list(zone, page);
906 if (!pagevec_add(&pvec, page)) {
907 spin_unlock_irq(&zone->lru_lock);
908 __pagevec_release(&pvec);
909 spin_lock_irq(&zone->lru_lock);
913 spin_unlock_irq(&zone->lru_lock);
914 done:
915 pagevec_release(&pvec);
919 * This moves pages from the active list to the inactive list.
921 * We move them the other way if the page is referenced by one or more
922 * processes, from rmap.
924 * If the pages are mostly unmapped, the processing is fast and it is
925 * appropriate to hold zone->lru_lock across the whole operation. But if
926 * the pages are mapped, the processing is slow (page_referenced()) so we
927 * should drop zone->lru_lock around each page. It's impossible to balance
928 * this, so instead we remove the pages from the LRU while processing them.
929 * It is safe to rely on PG_active against the non-LRU pages in here because
930 * nobody will play with that bit on a non-LRU page.
932 * The downside is that we have to touch page->_count against each page.
933 * But we had to alter page->flags anyway.
935 static void
936 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
938 int pgmoved;
939 int pgdeactivate = 0;
940 int pgscanned;
941 int nr_pages = sc->nr_to_scan;
942 LIST_HEAD(l_hold); /* The pages which were snipped off */
943 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
944 LIST_HEAD(l_active); /* Pages to go onto the active_list */
945 struct page *page;
946 struct pagevec pvec;
947 int reclaim_mapped = 0;
948 long mapped_ratio;
949 long distress;
950 long swap_tendency;
952 lru_add_drain();
953 spin_lock_irq(&zone->lru_lock);
954 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
955 &l_hold, &pgscanned);
956 zone->pages_scanned += pgscanned;
957 zone->nr_active -= pgmoved;
958 spin_unlock_irq(&zone->lru_lock);
961 * `distress' is a measure of how much trouble we're having reclaiming
962 * pages. 0 -> no problems. 100 -> great trouble.
964 distress = 100 >> zone->prev_priority;
967 * The point of this algorithm is to decide when to start reclaiming
968 * mapped memory instead of just pagecache. Work out how much memory
969 * is mapped.
971 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
974 * Now decide how much we really want to unmap some pages. The mapped
975 * ratio is downgraded - just because there's a lot of mapped memory
976 * doesn't necessarily mean that page reclaim isn't succeeding.
978 * The distress ratio is important - we don't want to start going oom.
980 * A 100% value of vm_swappiness overrides this algorithm altogether.
982 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
985 * Now use this metric to decide whether to start moving mapped memory
986 * onto the inactive list.
988 if (swap_tendency >= 100)
989 reclaim_mapped = 1;
991 while (!list_empty(&l_hold)) {
992 cond_resched();
993 page = lru_to_page(&l_hold);
994 list_del(&page->lru);
995 if (page_mapped(page)) {
996 if (!reclaim_mapped ||
997 (total_swap_pages == 0 && PageAnon(page)) ||
998 page_referenced(page, 0)) {
999 list_add(&page->lru, &l_active);
1000 continue;
1003 list_add(&page->lru, &l_inactive);
1006 pagevec_init(&pvec, 1);
1007 pgmoved = 0;
1008 spin_lock_irq(&zone->lru_lock);
1009 while (!list_empty(&l_inactive)) {
1010 page = lru_to_page(&l_inactive);
1011 prefetchw_prev_lru_page(page, &l_inactive, flags);
1012 if (TestSetPageLRU(page))
1013 BUG();
1014 if (!TestClearPageActive(page))
1015 BUG();
1016 list_move(&page->lru, &zone->inactive_list);
1017 pgmoved++;
1018 if (!pagevec_add(&pvec, page)) {
1019 zone->nr_inactive += pgmoved;
1020 spin_unlock_irq(&zone->lru_lock);
1021 pgdeactivate += pgmoved;
1022 pgmoved = 0;
1023 if (buffer_heads_over_limit)
1024 pagevec_strip(&pvec);
1025 __pagevec_release(&pvec);
1026 spin_lock_irq(&zone->lru_lock);
1029 zone->nr_inactive += pgmoved;
1030 pgdeactivate += pgmoved;
1031 if (buffer_heads_over_limit) {
1032 spin_unlock_irq(&zone->lru_lock);
1033 pagevec_strip(&pvec);
1034 spin_lock_irq(&zone->lru_lock);
1037 pgmoved = 0;
1038 while (!list_empty(&l_active)) {
1039 page = lru_to_page(&l_active);
1040 prefetchw_prev_lru_page(page, &l_active, flags);
1041 if (TestSetPageLRU(page))
1042 BUG();
1043 BUG_ON(!PageActive(page));
1044 list_move(&page->lru, &zone->active_list);
1045 pgmoved++;
1046 if (!pagevec_add(&pvec, page)) {
1047 zone->nr_active += pgmoved;
1048 pgmoved = 0;
1049 spin_unlock_irq(&zone->lru_lock);
1050 __pagevec_release(&pvec);
1051 spin_lock_irq(&zone->lru_lock);
1054 zone->nr_active += pgmoved;
1055 spin_unlock(&zone->lru_lock);
1057 __mod_page_state_zone(zone, pgrefill, pgscanned);
1058 __mod_page_state(pgdeactivate, pgdeactivate);
1059 local_irq_enable();
1061 pagevec_release(&pvec);
1065 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1067 static void
1068 shrink_zone(struct zone *zone, struct scan_control *sc)
1070 unsigned long nr_active;
1071 unsigned long nr_inactive;
1073 atomic_inc(&zone->reclaim_in_progress);
1076 * Add one to `nr_to_scan' just to make sure that the kernel will
1077 * slowly sift through the active list.
1079 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1080 nr_active = zone->nr_scan_active;
1081 if (nr_active >= sc->swap_cluster_max)
1082 zone->nr_scan_active = 0;
1083 else
1084 nr_active = 0;
1086 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1087 nr_inactive = zone->nr_scan_inactive;
1088 if (nr_inactive >= sc->swap_cluster_max)
1089 zone->nr_scan_inactive = 0;
1090 else
1091 nr_inactive = 0;
1093 while (nr_active || nr_inactive) {
1094 if (nr_active) {
1095 sc->nr_to_scan = min(nr_active,
1096 (unsigned long)sc->swap_cluster_max);
1097 nr_active -= sc->nr_to_scan;
1098 refill_inactive_zone(zone, sc);
1101 if (nr_inactive) {
1102 sc->nr_to_scan = min(nr_inactive,
1103 (unsigned long)sc->swap_cluster_max);
1104 nr_inactive -= sc->nr_to_scan;
1105 shrink_cache(zone, sc);
1109 throttle_vm_writeout();
1111 atomic_dec(&zone->reclaim_in_progress);
1115 * This is the direct reclaim path, for page-allocating processes. We only
1116 * try to reclaim pages from zones which will satisfy the caller's allocation
1117 * request.
1119 * We reclaim from a zone even if that zone is over pages_high. Because:
1120 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1121 * allocation or
1122 * b) The zones may be over pages_high but they must go *over* pages_high to
1123 * satisfy the `incremental min' zone defense algorithm.
1125 * Returns the number of reclaimed pages.
1127 * If a zone is deemed to be full of pinned pages then just give it a light
1128 * scan then give up on it.
1130 static void
1131 shrink_caches(struct zone **zones, struct scan_control *sc)
1133 int i;
1135 for (i = 0; zones[i] != NULL; i++) {
1136 struct zone *zone = zones[i];
1138 if (!populated_zone(zone))
1139 continue;
1141 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1142 continue;
1144 zone->temp_priority = sc->priority;
1145 if (zone->prev_priority > sc->priority)
1146 zone->prev_priority = sc->priority;
1148 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1149 continue; /* Let kswapd poll it */
1151 shrink_zone(zone, sc);
1156 * This is the main entry point to direct page reclaim.
1158 * If a full scan of the inactive list fails to free enough memory then we
1159 * are "out of memory" and something needs to be killed.
1161 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1162 * high - the zone may be full of dirty or under-writeback pages, which this
1163 * caller can't do much about. We kick pdflush and take explicit naps in the
1164 * hope that some of these pages can be written. But if the allocating task
1165 * holds filesystem locks which prevent writeout this might not work, and the
1166 * allocation attempt will fail.
1168 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1170 int priority;
1171 int ret = 0;
1172 int total_scanned = 0, total_reclaimed = 0;
1173 struct reclaim_state *reclaim_state = current->reclaim_state;
1174 struct scan_control sc;
1175 unsigned long lru_pages = 0;
1176 int i;
1178 sc.gfp_mask = gfp_mask;
1179 sc.may_writepage = 0;
1181 inc_page_state(allocstall);
1183 for (i = 0; zones[i] != NULL; i++) {
1184 struct zone *zone = zones[i];
1186 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1187 continue;
1189 zone->temp_priority = DEF_PRIORITY;
1190 lru_pages += zone->nr_active + zone->nr_inactive;
1193 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1194 sc.nr_mapped = read_page_state(nr_mapped);
1195 sc.nr_scanned = 0;
1196 sc.nr_reclaimed = 0;
1197 sc.priority = priority;
1198 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1199 if (!priority)
1200 disable_swap_token();
1201 shrink_caches(zones, &sc);
1202 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1203 if (reclaim_state) {
1204 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1205 reclaim_state->reclaimed_slab = 0;
1207 total_scanned += sc.nr_scanned;
1208 total_reclaimed += sc.nr_reclaimed;
1209 if (total_reclaimed >= sc.swap_cluster_max) {
1210 ret = 1;
1211 goto out;
1215 * Try to write back as many pages as we just scanned. This
1216 * tends to cause slow streaming writers to write data to the
1217 * disk smoothly, at the dirtying rate, which is nice. But
1218 * that's undesirable in laptop mode, where we *want* lumpy
1219 * writeout. So in laptop mode, write out the whole world.
1221 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1222 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1223 sc.may_writepage = 1;
1226 /* Take a nap, wait for some writeback to complete */
1227 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1228 blk_congestion_wait(WRITE, HZ/10);
1230 out:
1231 for (i = 0; zones[i] != 0; i++) {
1232 struct zone *zone = zones[i];
1234 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1235 continue;
1237 zone->prev_priority = zone->temp_priority;
1239 return ret;
1243 * For kswapd, balance_pgdat() will work across all this node's zones until
1244 * they are all at pages_high.
1246 * If `nr_pages' is non-zero then it is the number of pages which are to be
1247 * reclaimed, regardless of the zone occupancies. This is a software suspend
1248 * special.
1250 * Returns the number of pages which were actually freed.
1252 * There is special handling here for zones which are full of pinned pages.
1253 * This can happen if the pages are all mlocked, or if they are all used by
1254 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1255 * What we do is to detect the case where all pages in the zone have been
1256 * scanned twice and there has been zero successful reclaim. Mark the zone as
1257 * dead and from now on, only perform a short scan. Basically we're polling
1258 * the zone for when the problem goes away.
1260 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1261 * zones which have free_pages > pages_high, but once a zone is found to have
1262 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1263 * of the number of free pages in the lower zones. This interoperates with
1264 * the page allocator fallback scheme to ensure that aging of pages is balanced
1265 * across the zones.
1267 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1269 int to_free = nr_pages;
1270 int all_zones_ok;
1271 int priority;
1272 int i;
1273 int total_scanned, total_reclaimed;
1274 struct reclaim_state *reclaim_state = current->reclaim_state;
1275 struct scan_control sc;
1277 loop_again:
1278 total_scanned = 0;
1279 total_reclaimed = 0;
1280 sc.gfp_mask = GFP_KERNEL;
1281 sc.may_writepage = 0;
1282 sc.nr_mapped = read_page_state(nr_mapped);
1284 inc_page_state(pageoutrun);
1286 for (i = 0; i < pgdat->nr_zones; i++) {
1287 struct zone *zone = pgdat->node_zones + i;
1289 zone->temp_priority = DEF_PRIORITY;
1292 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1293 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1294 unsigned long lru_pages = 0;
1296 /* The swap token gets in the way of swapout... */
1297 if (!priority)
1298 disable_swap_token();
1300 all_zones_ok = 1;
1302 if (nr_pages == 0) {
1304 * Scan in the highmem->dma direction for the highest
1305 * zone which needs scanning
1307 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1308 struct zone *zone = pgdat->node_zones + i;
1310 if (!populated_zone(zone))
1311 continue;
1313 if (zone->all_unreclaimable &&
1314 priority != DEF_PRIORITY)
1315 continue;
1317 if (!zone_watermark_ok(zone, order,
1318 zone->pages_high, 0, 0)) {
1319 end_zone = i;
1320 goto scan;
1323 goto out;
1324 } else {
1325 end_zone = pgdat->nr_zones - 1;
1327 scan:
1328 for (i = 0; i <= end_zone; i++) {
1329 struct zone *zone = pgdat->node_zones + i;
1331 lru_pages += zone->nr_active + zone->nr_inactive;
1335 * Now scan the zone in the dma->highmem direction, stopping
1336 * at the last zone which needs scanning.
1338 * We do this because the page allocator works in the opposite
1339 * direction. This prevents the page allocator from allocating
1340 * pages behind kswapd's direction of progress, which would
1341 * cause too much scanning of the lower zones.
1343 for (i = 0; i <= end_zone; i++) {
1344 struct zone *zone = pgdat->node_zones + i;
1345 int nr_slab;
1347 if (!populated_zone(zone))
1348 continue;
1350 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1351 continue;
1353 if (nr_pages == 0) { /* Not software suspend */
1354 if (!zone_watermark_ok(zone, order,
1355 zone->pages_high, end_zone, 0))
1356 all_zones_ok = 0;
1358 zone->temp_priority = priority;
1359 if (zone->prev_priority > priority)
1360 zone->prev_priority = priority;
1361 sc.nr_scanned = 0;
1362 sc.nr_reclaimed = 0;
1363 sc.priority = priority;
1364 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1365 atomic_inc(&zone->reclaim_in_progress);
1366 shrink_zone(zone, &sc);
1367 atomic_dec(&zone->reclaim_in_progress);
1368 reclaim_state->reclaimed_slab = 0;
1369 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1370 lru_pages);
1371 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1372 total_reclaimed += sc.nr_reclaimed;
1373 total_scanned += sc.nr_scanned;
1374 if (zone->all_unreclaimable)
1375 continue;
1376 if (nr_slab == 0 && zone->pages_scanned >=
1377 (zone->nr_active + zone->nr_inactive) * 4)
1378 zone->all_unreclaimable = 1;
1380 * If we've done a decent amount of scanning and
1381 * the reclaim ratio is low, start doing writepage
1382 * even in laptop mode
1384 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1385 total_scanned > total_reclaimed+total_reclaimed/2)
1386 sc.may_writepage = 1;
1388 if (nr_pages && to_free > total_reclaimed)
1389 continue; /* swsusp: need to do more work */
1390 if (all_zones_ok)
1391 break; /* kswapd: all done */
1393 * OK, kswapd is getting into trouble. Take a nap, then take
1394 * another pass across the zones.
1396 if (total_scanned && priority < DEF_PRIORITY - 2)
1397 blk_congestion_wait(WRITE, HZ/10);
1400 * We do this so kswapd doesn't build up large priorities for
1401 * example when it is freeing in parallel with allocators. It
1402 * matches the direct reclaim path behaviour in terms of impact
1403 * on zone->*_priority.
1405 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1406 break;
1408 out:
1409 for (i = 0; i < pgdat->nr_zones; i++) {
1410 struct zone *zone = pgdat->node_zones + i;
1412 zone->prev_priority = zone->temp_priority;
1414 if (!all_zones_ok) {
1415 cond_resched();
1416 goto loop_again;
1419 return total_reclaimed;
1423 * The background pageout daemon, started as a kernel thread
1424 * from the init process.
1426 * This basically trickles out pages so that we have _some_
1427 * free memory available even if there is no other activity
1428 * that frees anything up. This is needed for things like routing
1429 * etc, where we otherwise might have all activity going on in
1430 * asynchronous contexts that cannot page things out.
1432 * If there are applications that are active memory-allocators
1433 * (most normal use), this basically shouldn't matter.
1435 static int kswapd(void *p)
1437 unsigned long order;
1438 pg_data_t *pgdat = (pg_data_t*)p;
1439 struct task_struct *tsk = current;
1440 DEFINE_WAIT(wait);
1441 struct reclaim_state reclaim_state = {
1442 .reclaimed_slab = 0,
1444 cpumask_t cpumask;
1446 daemonize("kswapd%d", pgdat->node_id);
1447 cpumask = node_to_cpumask(pgdat->node_id);
1448 if (!cpus_empty(cpumask))
1449 set_cpus_allowed(tsk, cpumask);
1450 current->reclaim_state = &reclaim_state;
1453 * Tell the memory management that we're a "memory allocator",
1454 * and that if we need more memory we should get access to it
1455 * regardless (see "__alloc_pages()"). "kswapd" should
1456 * never get caught in the normal page freeing logic.
1458 * (Kswapd normally doesn't need memory anyway, but sometimes
1459 * you need a small amount of memory in order to be able to
1460 * page out something else, and this flag essentially protects
1461 * us from recursively trying to free more memory as we're
1462 * trying to free the first piece of memory in the first place).
1464 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1466 order = 0;
1467 for ( ; ; ) {
1468 unsigned long new_order;
1470 try_to_freeze();
1472 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1473 new_order = pgdat->kswapd_max_order;
1474 pgdat->kswapd_max_order = 0;
1475 if (order < new_order) {
1477 * Don't sleep if someone wants a larger 'order'
1478 * allocation
1480 order = new_order;
1481 } else {
1482 schedule();
1483 order = pgdat->kswapd_max_order;
1485 finish_wait(&pgdat->kswapd_wait, &wait);
1487 balance_pgdat(pgdat, 0, order);
1489 return 0;
1493 * A zone is low on free memory, so wake its kswapd task to service it.
1495 void wakeup_kswapd(struct zone *zone, int order)
1497 pg_data_t *pgdat;
1499 if (!populated_zone(zone))
1500 return;
1502 pgdat = zone->zone_pgdat;
1503 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1504 return;
1505 if (pgdat->kswapd_max_order < order)
1506 pgdat->kswapd_max_order = order;
1507 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1508 return;
1509 if (!waitqueue_active(&pgdat->kswapd_wait))
1510 return;
1511 wake_up_interruptible(&pgdat->kswapd_wait);
1514 #ifdef CONFIG_PM
1516 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1517 * pages.
1519 int shrink_all_memory(int nr_pages)
1521 pg_data_t *pgdat;
1522 int nr_to_free = nr_pages;
1523 int ret = 0;
1524 struct reclaim_state reclaim_state = {
1525 .reclaimed_slab = 0,
1528 current->reclaim_state = &reclaim_state;
1529 for_each_pgdat(pgdat) {
1530 int freed;
1531 freed = balance_pgdat(pgdat, nr_to_free, 0);
1532 ret += freed;
1533 nr_to_free -= freed;
1534 if (nr_to_free <= 0)
1535 break;
1537 current->reclaim_state = NULL;
1538 return ret;
1540 #endif
1542 #ifdef CONFIG_HOTPLUG_CPU
1543 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1544 not required for correctness. So if the last cpu in a node goes
1545 away, we get changed to run anywhere: as the first one comes back,
1546 restore their cpu bindings. */
1547 static int __devinit cpu_callback(struct notifier_block *nfb,
1548 unsigned long action,
1549 void *hcpu)
1551 pg_data_t *pgdat;
1552 cpumask_t mask;
1554 if (action == CPU_ONLINE) {
1555 for_each_pgdat(pgdat) {
1556 mask = node_to_cpumask(pgdat->node_id);
1557 if (any_online_cpu(mask) != NR_CPUS)
1558 /* One of our CPUs online: restore mask */
1559 set_cpus_allowed(pgdat->kswapd, mask);
1562 return NOTIFY_OK;
1564 #endif /* CONFIG_HOTPLUG_CPU */
1566 static int __init kswapd_init(void)
1568 pg_data_t *pgdat;
1569 swap_setup();
1570 for_each_pgdat(pgdat)
1571 pgdat->kswapd
1572 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1573 total_memory = nr_free_pagecache_pages();
1574 hotcpu_notifier(cpu_callback, 0);
1575 return 0;
1578 module_init(kswapd_init)