2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <asm/uaccess.h>
35 #include <asm/param.h>
38 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
);
39 static int load_elf_library(struct file
*);
40 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
41 int, int, unsigned long);
44 * If we don't support core dumping, then supply a NULL so we
47 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
48 static int elf_core_dump(long signr
, struct pt_regs
*regs
, struct file
*file
, unsigned long limit
);
50 #define elf_core_dump NULL
53 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
54 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
56 #define ELF_MIN_ALIGN PAGE_SIZE
59 #ifndef ELF_CORE_EFLAGS
60 #define ELF_CORE_EFLAGS 0
63 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
64 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
65 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67 static struct linux_binfmt elf_format
= {
68 .module
= THIS_MODULE
,
69 .load_binary
= load_elf_binary
,
70 .load_shlib
= load_elf_library
,
71 .core_dump
= elf_core_dump
,
72 .min_coredump
= ELF_EXEC_PAGESIZE
,
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
78 static int set_brk(unsigned long start
, unsigned long end
)
80 start
= ELF_PAGEALIGN(start
);
81 end
= ELF_PAGEALIGN(end
);
84 down_write(¤t
->mm
->mmap_sem
);
85 addr
= do_brk(start
, end
- start
);
86 up_write(¤t
->mm
->mmap_sem
);
90 current
->mm
->start_brk
= current
->mm
->brk
= end
;
94 /* We need to explicitly zero any fractional pages
95 after the data section (i.e. bss). This would
96 contain the junk from the file that should not
99 static int padzero(unsigned long elf_bss
)
103 nbyte
= ELF_PAGEOFFSET(elf_bss
);
105 nbyte
= ELF_MIN_ALIGN
- nbyte
;
106 if (clear_user((void __user
*) elf_bss
, nbyte
))
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 (((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
127 #ifndef ELF_BASE_PLATFORM
129 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131 * will be copied to the user stack in the same manner as AT_PLATFORM.
133 #define ELF_BASE_PLATFORM NULL
137 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
138 unsigned long load_addr
, unsigned long interp_load_addr
)
140 unsigned long p
= bprm
->p
;
141 int argc
= bprm
->argc
;
142 int envc
= bprm
->envc
;
143 elf_addr_t __user
*argv
;
144 elf_addr_t __user
*envp
;
145 elf_addr_t __user
*sp
;
146 elf_addr_t __user
*u_platform
;
147 elf_addr_t __user
*u_base_platform
;
148 elf_addr_t __user
*u_rand_bytes
;
149 const char *k_platform
= ELF_PLATFORM
;
150 const char *k_base_platform
= ELF_BASE_PLATFORM
;
151 unsigned char k_rand_bytes
[16];
153 elf_addr_t
*elf_info
;
155 const struct cred
*cred
= current_cred();
156 struct vm_area_struct
*vma
;
159 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 * evictions by the processes running on the same package. One
161 * thing we can do is to shuffle the initial stack for them.
164 p
= arch_align_stack(p
);
167 * If this architecture has a platform capability string, copy it
168 * to userspace. In some cases (Sparc), this info is impossible
169 * for userspace to get any other way, in others (i386) it is
174 size_t len
= strlen(k_platform
) + 1;
176 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
177 if (__copy_to_user(u_platform
, k_platform
, len
))
182 * If this architecture has a "base" platform capability
183 * string, copy it to userspace.
185 u_base_platform
= NULL
;
186 if (k_base_platform
) {
187 size_t len
= strlen(k_base_platform
) + 1;
189 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
190 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
195 * Generate 16 random bytes for userspace PRNG seeding.
197 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
198 u_rand_bytes
= (elf_addr_t __user
*)
199 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
200 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
203 /* Create the ELF interpreter info */
204 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
205 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
208 elf_info[ei_index++] = id; \
209 elf_info[ei_index++] = val; \
214 * ARCH_DLINFO must come first so PPC can do its special alignment of
216 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 * ARCH_DLINFO changes
221 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
222 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
223 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
224 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
225 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
226 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
227 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
228 NEW_AUX_ENT(AT_FLAGS
, 0);
229 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
230 NEW_AUX_ENT(AT_UID
, cred
->uid
);
231 NEW_AUX_ENT(AT_EUID
, cred
->euid
);
232 NEW_AUX_ENT(AT_GID
, cred
->gid
);
233 NEW_AUX_ENT(AT_EGID
, cred
->egid
);
234 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
235 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
236 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
238 NEW_AUX_ENT(AT_PLATFORM
,
239 (elf_addr_t
)(unsigned long)u_platform
);
241 if (k_base_platform
) {
242 NEW_AUX_ENT(AT_BASE_PLATFORM
,
243 (elf_addr_t
)(unsigned long)u_base_platform
);
245 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
246 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
249 /* AT_NULL is zero; clear the rest too */
250 memset(&elf_info
[ei_index
], 0,
251 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
253 /* And advance past the AT_NULL entry. */
256 sp
= STACK_ADD(p
, ei_index
);
258 items
= (argc
+ 1) + (envc
+ 1) + 1;
259 bprm
->p
= STACK_ROUND(sp
, items
);
261 /* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
264 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
266 sp
= (elf_addr_t __user
*)bprm
->p
;
271 * Grow the stack manually; some architectures have a limit on how
272 * far ahead a user-space access may be in order to grow the stack.
274 vma
= find_extend_vma(current
->mm
, bprm
->p
);
278 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 if (__put_user(argc
, sp
++))
282 envp
= argv
+ argc
+ 1;
284 /* Populate argv and envp */
285 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
288 if (__put_user((elf_addr_t
)p
, argv
++))
290 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
291 if (!len
|| len
> MAX_ARG_STRLEN
)
295 if (__put_user(0, argv
))
297 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
300 if (__put_user((elf_addr_t
)p
, envp
++))
302 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
303 if (!len
|| len
> MAX_ARG_STRLEN
)
307 if (__put_user(0, envp
))
309 current
->mm
->env_end
= p
;
311 /* Put the elf_info on the stack in the right place. */
312 sp
= (elf_addr_t __user
*)envp
+ 1;
313 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
320 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
321 struct elf_phdr
*eppnt
, int prot
, int type
,
322 unsigned long total_size
)
324 unsigned long map_addr
;
325 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
326 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
327 addr
= ELF_PAGESTART(addr
);
328 size
= ELF_PAGEALIGN(size
);
330 /* mmap() will return -EINVAL if given a zero size, but a
331 * segment with zero filesize is perfectly valid */
335 down_write(¤t
->mm
->mmap_sem
);
337 * total_size is the size of the ELF (interpreter) image.
338 * The _first_ mmap needs to know the full size, otherwise
339 * randomization might put this image into an overlapping
340 * position with the ELF binary image. (since size < total_size)
341 * So we first map the 'big' image - and unmap the remainder at
342 * the end. (which unmap is needed for ELF images with holes.)
345 total_size
= ELF_PAGEALIGN(total_size
);
346 map_addr
= do_mmap(filep
, addr
, total_size
, prot
, type
, off
);
347 if (!BAD_ADDR(map_addr
))
348 do_munmap(current
->mm
, map_addr
+size
, total_size
-size
);
350 map_addr
= do_mmap(filep
, addr
, size
, prot
, type
, off
);
352 up_write(¤t
->mm
->mmap_sem
);
356 #endif /* !elf_map */
358 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
360 int i
, first_idx
= -1, last_idx
= -1;
362 for (i
= 0; i
< nr
; i
++) {
363 if (cmds
[i
].p_type
== PT_LOAD
) {
372 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
373 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
377 /* This is much more generalized than the library routine read function,
378 so we keep this separate. Technically the library read function
379 is only provided so that we can read a.out libraries that have
382 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
383 struct file
*interpreter
, unsigned long *interp_map_addr
,
384 unsigned long no_base
)
386 struct elf_phdr
*elf_phdata
;
387 struct elf_phdr
*eppnt
;
388 unsigned long load_addr
= 0;
389 int load_addr_set
= 0;
390 unsigned long last_bss
= 0, elf_bss
= 0;
391 unsigned long error
= ~0UL;
392 unsigned long total_size
;
395 /* First of all, some simple consistency checks */
396 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
397 interp_elf_ex
->e_type
!= ET_DYN
)
399 if (!elf_check_arch(interp_elf_ex
))
401 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
405 * If the size of this structure has changed, then punt, since
406 * we will be doing the wrong thing.
408 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
410 if (interp_elf_ex
->e_phnum
< 1 ||
411 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
414 /* Now read in all of the header information */
415 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
416 if (size
> ELF_MIN_ALIGN
)
418 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
422 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
423 (char *)elf_phdata
,size
);
425 if (retval
!= size
) {
431 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
438 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
439 if (eppnt
->p_type
== PT_LOAD
) {
440 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
442 unsigned long vaddr
= 0;
443 unsigned long k
, map_addr
;
445 if (eppnt
->p_flags
& PF_R
)
446 elf_prot
= PROT_READ
;
447 if (eppnt
->p_flags
& PF_W
)
448 elf_prot
|= PROT_WRITE
;
449 if (eppnt
->p_flags
& PF_X
)
450 elf_prot
|= PROT_EXEC
;
451 vaddr
= eppnt
->p_vaddr
;
452 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
453 elf_type
|= MAP_FIXED
;
454 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
457 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
458 eppnt
, elf_prot
, elf_type
, total_size
);
460 if (!*interp_map_addr
)
461 *interp_map_addr
= map_addr
;
463 if (BAD_ADDR(map_addr
))
466 if (!load_addr_set
&&
467 interp_elf_ex
->e_type
== ET_DYN
) {
468 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
473 * Check to see if the section's size will overflow the
474 * allowed task size. Note that p_filesz must always be
475 * <= p_memsize so it's only necessary to check p_memsz.
477 k
= load_addr
+ eppnt
->p_vaddr
;
479 eppnt
->p_filesz
> eppnt
->p_memsz
||
480 eppnt
->p_memsz
> TASK_SIZE
||
481 TASK_SIZE
- eppnt
->p_memsz
< k
) {
487 * Find the end of the file mapping for this phdr, and
488 * keep track of the largest address we see for this.
490 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
495 * Do the same thing for the memory mapping - between
496 * elf_bss and last_bss is the bss section.
498 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
504 if (last_bss
> elf_bss
) {
506 * Now fill out the bss section. First pad the last page up
507 * to the page boundary, and then perform a mmap to make sure
508 * that there are zero-mapped pages up to and including the
511 if (padzero(elf_bss
)) {
516 /* What we have mapped so far */
517 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
519 /* Map the last of the bss segment */
520 down_write(¤t
->mm
->mmap_sem
);
521 error
= do_brk(elf_bss
, last_bss
- elf_bss
);
522 up_write(¤t
->mm
->mmap_sem
);
536 * These are the functions used to load ELF style executables and shared
537 * libraries. There is no binary dependent code anywhere else.
540 #define INTERPRETER_NONE 0
541 #define INTERPRETER_ELF 2
543 #ifndef STACK_RND_MASK
544 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
547 static unsigned long randomize_stack_top(unsigned long stack_top
)
549 unsigned int random_variable
= 0;
551 if ((current
->flags
& PF_RANDOMIZE
) &&
552 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
553 random_variable
= get_random_int() & STACK_RND_MASK
;
554 random_variable
<<= PAGE_SHIFT
;
556 #ifdef CONFIG_STACK_GROWSUP
557 return PAGE_ALIGN(stack_top
) + random_variable
;
559 return PAGE_ALIGN(stack_top
) - random_variable
;
563 static int load_elf_binary(struct linux_binprm
*bprm
, struct pt_regs
*regs
)
565 struct file
*interpreter
= NULL
; /* to shut gcc up */
566 unsigned long load_addr
= 0, load_bias
= 0;
567 int load_addr_set
= 0;
568 char * elf_interpreter
= NULL
;
570 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
571 unsigned long elf_bss
, elf_brk
;
574 unsigned long elf_entry
;
575 unsigned long interp_load_addr
= 0;
576 unsigned long start_code
, end_code
, start_data
, end_data
;
577 unsigned long reloc_func_desc
= 0;
578 int executable_stack
= EXSTACK_DEFAULT
;
579 unsigned long def_flags
= 0;
581 struct elfhdr elf_ex
;
582 struct elfhdr interp_elf_ex
;
585 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
591 /* Get the exec-header */
592 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
595 /* First of all, some simple consistency checks */
596 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
599 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
601 if (!elf_check_arch(&loc
->elf_ex
))
603 if (!bprm
->file
->f_op
||!bprm
->file
->f_op
->mmap
)
606 /* Now read in all of the header information */
607 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
609 if (loc
->elf_ex
.e_phnum
< 1 ||
610 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
612 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
614 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
618 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
619 (char *)elf_phdata
, size
);
620 if (retval
!= size
) {
626 elf_ppnt
= elf_phdata
;
635 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
636 if (elf_ppnt
->p_type
== PT_INTERP
) {
637 /* This is the program interpreter used for
638 * shared libraries - for now assume that this
639 * is an a.out format binary
642 if (elf_ppnt
->p_filesz
> PATH_MAX
||
643 elf_ppnt
->p_filesz
< 2)
647 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
649 if (!elf_interpreter
)
652 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
655 if (retval
!= elf_ppnt
->p_filesz
) {
658 goto out_free_interp
;
660 /* make sure path is NULL terminated */
662 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
663 goto out_free_interp
;
665 interpreter
= open_exec(elf_interpreter
);
666 retval
= PTR_ERR(interpreter
);
667 if (IS_ERR(interpreter
))
668 goto out_free_interp
;
671 * If the binary is not readable then enforce
672 * mm->dumpable = 0 regardless of the interpreter's
675 if (file_permission(interpreter
, MAY_READ
) < 0)
676 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
678 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
680 if (retval
!= BINPRM_BUF_SIZE
) {
683 goto out_free_dentry
;
686 /* Get the exec headers */
687 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
693 elf_ppnt
= elf_phdata
;
694 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
695 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
696 if (elf_ppnt
->p_flags
& PF_X
)
697 executable_stack
= EXSTACK_ENABLE_X
;
699 executable_stack
= EXSTACK_DISABLE_X
;
703 /* Some simple consistency checks for the interpreter */
704 if (elf_interpreter
) {
706 /* Not an ELF interpreter */
707 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
708 goto out_free_dentry
;
709 /* Verify the interpreter has a valid arch */
710 if (!elf_check_arch(&loc
->interp_elf_ex
))
711 goto out_free_dentry
;
714 /* Flush all traces of the currently running executable */
715 retval
= flush_old_exec(bprm
);
717 goto out_free_dentry
;
719 /* OK, This is the point of no return */
720 current
->flags
&= ~PF_FORKNOEXEC
;
721 current
->mm
->def_flags
= def_flags
;
723 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
724 may depend on the personality. */
725 SET_PERSONALITY(loc
->elf_ex
);
726 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
727 current
->personality
|= READ_IMPLIES_EXEC
;
729 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
730 current
->flags
|= PF_RANDOMIZE
;
732 setup_new_exec(bprm
);
734 /* Do this so that we can load the interpreter, if need be. We will
735 change some of these later */
736 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
737 current
->mm
->cached_hole_size
= 0;
738 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
741 send_sig(SIGKILL
, current
, 0);
742 goto out_free_dentry
;
745 current
->mm
->start_stack
= bprm
->p
;
747 /* Now we do a little grungy work by mmaping the ELF image into
748 the correct location in memory. */
749 for(i
= 0, elf_ppnt
= elf_phdata
;
750 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
751 int elf_prot
= 0, elf_flags
;
752 unsigned long k
, vaddr
;
754 if (elf_ppnt
->p_type
!= PT_LOAD
)
757 if (unlikely (elf_brk
> elf_bss
)) {
760 /* There was a PT_LOAD segment with p_memsz > p_filesz
761 before this one. Map anonymous pages, if needed,
762 and clear the area. */
763 retval
= set_brk (elf_bss
+ load_bias
,
764 elf_brk
+ load_bias
);
766 send_sig(SIGKILL
, current
, 0);
767 goto out_free_dentry
;
769 nbyte
= ELF_PAGEOFFSET(elf_bss
);
771 nbyte
= ELF_MIN_ALIGN
- nbyte
;
772 if (nbyte
> elf_brk
- elf_bss
)
773 nbyte
= elf_brk
- elf_bss
;
774 if (clear_user((void __user
*)elf_bss
+
777 * This bss-zeroing can fail if the ELF
778 * file specifies odd protections. So
779 * we don't check the return value
785 if (elf_ppnt
->p_flags
& PF_R
)
786 elf_prot
|= PROT_READ
;
787 if (elf_ppnt
->p_flags
& PF_W
)
788 elf_prot
|= PROT_WRITE
;
789 if (elf_ppnt
->p_flags
& PF_X
)
790 elf_prot
|= PROT_EXEC
;
792 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
794 vaddr
= elf_ppnt
->p_vaddr
;
795 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
796 elf_flags
|= MAP_FIXED
;
797 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
798 /* Try and get dynamic programs out of the way of the
799 * default mmap base, as well as whatever program they
800 * might try to exec. This is because the brk will
801 * follow the loader, and is not movable. */
805 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
809 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
810 elf_prot
, elf_flags
, 0);
811 if (BAD_ADDR(error
)) {
812 send_sig(SIGKILL
, current
, 0);
813 retval
= IS_ERR((void *)error
) ?
814 PTR_ERR((void*)error
) : -EINVAL
;
815 goto out_free_dentry
;
818 if (!load_addr_set
) {
820 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
821 if (loc
->elf_ex
.e_type
== ET_DYN
) {
823 ELF_PAGESTART(load_bias
+ vaddr
);
824 load_addr
+= load_bias
;
825 reloc_func_desc
= load_bias
;
828 k
= elf_ppnt
->p_vaddr
;
835 * Check to see if the section's size will overflow the
836 * allowed task size. Note that p_filesz must always be
837 * <= p_memsz so it is only necessary to check p_memsz.
839 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
840 elf_ppnt
->p_memsz
> TASK_SIZE
||
841 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
842 /* set_brk can never work. Avoid overflows. */
843 send_sig(SIGKILL
, current
, 0);
845 goto out_free_dentry
;
848 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
852 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
856 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
861 loc
->elf_ex
.e_entry
+= load_bias
;
862 elf_bss
+= load_bias
;
863 elf_brk
+= load_bias
;
864 start_code
+= load_bias
;
865 end_code
+= load_bias
;
866 start_data
+= load_bias
;
867 end_data
+= load_bias
;
869 /* Calling set_brk effectively mmaps the pages that we need
870 * for the bss and break sections. We must do this before
871 * mapping in the interpreter, to make sure it doesn't wind
872 * up getting placed where the bss needs to go.
874 retval
= set_brk(elf_bss
, elf_brk
);
876 send_sig(SIGKILL
, current
, 0);
877 goto out_free_dentry
;
879 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
880 send_sig(SIGSEGV
, current
, 0);
881 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
882 goto out_free_dentry
;
885 if (elf_interpreter
) {
886 unsigned long uninitialized_var(interp_map_addr
);
888 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
892 if (!IS_ERR((void *)elf_entry
)) {
894 * load_elf_interp() returns relocation
897 interp_load_addr
= elf_entry
;
898 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
900 if (BAD_ADDR(elf_entry
)) {
901 force_sig(SIGSEGV
, current
);
902 retval
= IS_ERR((void *)elf_entry
) ?
903 (int)elf_entry
: -EINVAL
;
904 goto out_free_dentry
;
906 reloc_func_desc
= interp_load_addr
;
908 allow_write_access(interpreter
);
910 kfree(elf_interpreter
);
912 elf_entry
= loc
->elf_ex
.e_entry
;
913 if (BAD_ADDR(elf_entry
)) {
914 force_sig(SIGSEGV
, current
);
916 goto out_free_dentry
;
922 set_binfmt(&elf_format
);
924 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
925 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
927 send_sig(SIGKILL
, current
, 0);
930 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
932 install_exec_creds(bprm
);
933 current
->flags
&= ~PF_FORKNOEXEC
;
934 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
935 load_addr
, interp_load_addr
);
937 send_sig(SIGKILL
, current
, 0);
940 /* N.B. passed_fileno might not be initialized? */
941 current
->mm
->end_code
= end_code
;
942 current
->mm
->start_code
= start_code
;
943 current
->mm
->start_data
= start_data
;
944 current
->mm
->end_data
= end_data
;
945 current
->mm
->start_stack
= bprm
->p
;
947 #ifdef arch_randomize_brk
948 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1))
949 current
->mm
->brk
= current
->mm
->start_brk
=
950 arch_randomize_brk(current
->mm
);
953 if (current
->personality
& MMAP_PAGE_ZERO
) {
954 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
955 and some applications "depend" upon this behavior.
956 Since we do not have the power to recompile these, we
957 emulate the SVr4 behavior. Sigh. */
958 down_write(¤t
->mm
->mmap_sem
);
959 error
= do_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
960 MAP_FIXED
| MAP_PRIVATE
, 0);
961 up_write(¤t
->mm
->mmap_sem
);
966 * The ABI may specify that certain registers be set up in special
967 * ways (on i386 %edx is the address of a DT_FINI function, for
968 * example. In addition, it may also specify (eg, PowerPC64 ELF)
969 * that the e_entry field is the address of the function descriptor
970 * for the startup routine, rather than the address of the startup
971 * routine itself. This macro performs whatever initialization to
972 * the regs structure is required as well as any relocations to the
973 * function descriptor entries when executing dynamically links apps.
975 ELF_PLAT_INIT(regs
, reloc_func_desc
);
978 start_thread(regs
, elf_entry
, bprm
->p
);
987 allow_write_access(interpreter
);
991 kfree(elf_interpreter
);
997 /* This is really simpleminded and specialized - we are loading an
998 a.out library that is given an ELF header. */
999 static int load_elf_library(struct file
*file
)
1001 struct elf_phdr
*elf_phdata
;
1002 struct elf_phdr
*eppnt
;
1003 unsigned long elf_bss
, bss
, len
;
1004 int retval
, error
, i
, j
;
1005 struct elfhdr elf_ex
;
1008 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1009 if (retval
!= sizeof(elf_ex
))
1012 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1015 /* First of all, some simple consistency checks */
1016 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1017 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1020 /* Now read in all of the header information */
1022 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1023 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1026 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1032 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1036 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1037 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1042 while (eppnt
->p_type
!= PT_LOAD
)
1045 /* Now use mmap to map the library into memory. */
1046 down_write(¤t
->mm
->mmap_sem
);
1047 error
= do_mmap(file
,
1048 ELF_PAGESTART(eppnt
->p_vaddr
),
1050 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1051 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1052 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1054 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1055 up_write(¤t
->mm
->mmap_sem
);
1056 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1059 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1060 if (padzero(elf_bss
)) {
1065 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1067 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1069 down_write(¤t
->mm
->mmap_sem
);
1070 do_brk(len
, bss
- len
);
1071 up_write(¤t
->mm
->mmap_sem
);
1082 * Note that some platforms still use traditional core dumps and not
1083 * the ELF core dump. Each platform can select it as appropriate.
1085 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1090 * Modelled on fs/exec.c:aout_core_dump()
1091 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1094 * These are the only things you should do on a core-file: use only these
1095 * functions to write out all the necessary info.
1097 static int dump_write(struct file
*file
, const void *addr
, int nr
)
1099 return file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
1102 static int dump_seek(struct file
*file
, loff_t off
)
1104 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
1105 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
1108 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
1112 unsigned long n
= off
;
1115 if (!dump_write(file
, buf
, n
))
1119 free_page((unsigned long)buf
);
1125 * Decide what to dump of a segment, part, all or none.
1127 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1128 unsigned long mm_flags
)
1130 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1132 /* The vma can be set up to tell us the answer directly. */
1133 if (vma
->vm_flags
& VM_ALWAYSDUMP
)
1136 /* Hugetlb memory check */
1137 if (vma
->vm_flags
& VM_HUGETLB
) {
1138 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1140 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1144 /* Do not dump I/O mapped devices or special mappings */
1145 if (vma
->vm_flags
& (VM_IO
| VM_RESERVED
))
1148 /* By default, dump shared memory if mapped from an anonymous file. */
1149 if (vma
->vm_flags
& VM_SHARED
) {
1150 if (vma
->vm_file
->f_path
.dentry
->d_inode
->i_nlink
== 0 ?
1151 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1156 /* Dump segments that have been written to. */
1157 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1159 if (vma
->vm_file
== NULL
)
1162 if (FILTER(MAPPED_PRIVATE
))
1166 * If this looks like the beginning of a DSO or executable mapping,
1167 * check for an ELF header. If we find one, dump the first page to
1168 * aid in determining what was mapped here.
1170 if (FILTER(ELF_HEADERS
) &&
1171 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1172 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1174 mm_segment_t fs
= get_fs();
1176 * Doing it this way gets the constant folded by GCC.
1180 char elfmag
[SELFMAG
];
1182 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1183 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1184 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1185 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1186 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1188 * Switch to the user "segment" for get_user(),
1189 * then put back what elf_core_dump() had in place.
1192 if (unlikely(get_user(word
, header
)))
1195 if (word
== magic
.cmp
)
1204 return vma
->vm_end
- vma
->vm_start
;
1207 /* An ELF note in memory */
1212 unsigned int datasz
;
1216 static int notesize(struct memelfnote
*en
)
1220 sz
= sizeof(struct elf_note
);
1221 sz
+= roundup(strlen(en
->name
) + 1, 4);
1222 sz
+= roundup(en
->datasz
, 4);
1227 #define DUMP_WRITE(addr, nr, foffset) \
1228 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1230 static int alignfile(struct file
*file
, loff_t
*foffset
)
1232 static const char buf
[4] = { 0, };
1233 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1237 static int writenote(struct memelfnote
*men
, struct file
*file
,
1241 en
.n_namesz
= strlen(men
->name
) + 1;
1242 en
.n_descsz
= men
->datasz
;
1243 en
.n_type
= men
->type
;
1245 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1246 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1247 if (!alignfile(file
, foffset
))
1249 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1250 if (!alignfile(file
, foffset
))
1257 #define DUMP_WRITE(addr, nr) \
1258 if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1261 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1262 u16 machine
, u32 flags
, u8 osabi
)
1264 memset(elf
, 0, sizeof(*elf
));
1266 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1267 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1268 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1269 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1270 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1272 elf
->e_type
= ET_CORE
;
1273 elf
->e_machine
= machine
;
1274 elf
->e_version
= EV_CURRENT
;
1275 elf
->e_phoff
= sizeof(struct elfhdr
);
1276 elf
->e_flags
= flags
;
1277 elf
->e_ehsize
= sizeof(struct elfhdr
);
1278 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1279 elf
->e_phnum
= segs
;
1284 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1286 phdr
->p_type
= PT_NOTE
;
1287 phdr
->p_offset
= offset
;
1290 phdr
->p_filesz
= sz
;
1297 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1298 unsigned int sz
, void *data
)
1308 * fill up all the fields in prstatus from the given task struct, except
1309 * registers which need to be filled up separately.
1311 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1312 struct task_struct
*p
, long signr
)
1314 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1315 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1316 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1318 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1320 prstatus
->pr_pid
= task_pid_vnr(p
);
1321 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1322 prstatus
->pr_sid
= task_session_vnr(p
);
1323 if (thread_group_leader(p
)) {
1324 struct task_cputime cputime
;
1327 * This is the record for the group leader. It shows the
1328 * group-wide total, not its individual thread total.
1330 thread_group_cputime(p
, &cputime
);
1331 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1332 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1334 cputime_to_timeval(p
->utime
, &prstatus
->pr_utime
);
1335 cputime_to_timeval(p
->stime
, &prstatus
->pr_stime
);
1337 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1338 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1341 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1342 struct mm_struct
*mm
)
1344 const struct cred
*cred
;
1345 unsigned int i
, len
;
1347 /* first copy the parameters from user space */
1348 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1350 len
= mm
->arg_end
- mm
->arg_start
;
1351 if (len
>= ELF_PRARGSZ
)
1352 len
= ELF_PRARGSZ
-1;
1353 if (copy_from_user(&psinfo
->pr_psargs
,
1354 (const char __user
*)mm
->arg_start
, len
))
1356 for(i
= 0; i
< len
; i
++)
1357 if (psinfo
->pr_psargs
[i
] == 0)
1358 psinfo
->pr_psargs
[i
] = ' ';
1359 psinfo
->pr_psargs
[len
] = 0;
1362 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1364 psinfo
->pr_pid
= task_pid_vnr(p
);
1365 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1366 psinfo
->pr_sid
= task_session_vnr(p
);
1368 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1369 psinfo
->pr_state
= i
;
1370 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1371 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1372 psinfo
->pr_nice
= task_nice(p
);
1373 psinfo
->pr_flag
= p
->flags
;
1375 cred
= __task_cred(p
);
1376 SET_UID(psinfo
->pr_uid
, cred
->uid
);
1377 SET_GID(psinfo
->pr_gid
, cred
->gid
);
1379 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1384 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1386 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1390 while (auxv
[i
- 2] != AT_NULL
);
1391 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1394 #ifdef CORE_DUMP_USE_REGSET
1395 #include <linux/regset.h>
1397 struct elf_thread_core_info
{
1398 struct elf_thread_core_info
*next
;
1399 struct task_struct
*task
;
1400 struct elf_prstatus prstatus
;
1401 struct memelfnote notes
[0];
1404 struct elf_note_info
{
1405 struct elf_thread_core_info
*thread
;
1406 struct memelfnote psinfo
;
1407 struct memelfnote auxv
;
1413 * When a regset has a writeback hook, we call it on each thread before
1414 * dumping user memory. On register window machines, this makes sure the
1415 * user memory backing the register data is up to date before we read it.
1417 static void do_thread_regset_writeback(struct task_struct
*task
,
1418 const struct user_regset
*regset
)
1420 if (regset
->writeback
)
1421 regset
->writeback(task
, regset
, 1);
1424 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1425 const struct user_regset_view
*view
,
1426 long signr
, size_t *total
)
1431 * NT_PRSTATUS is the one special case, because the regset data
1432 * goes into the pr_reg field inside the note contents, rather
1433 * than being the whole note contents. We fill the reset in here.
1434 * We assume that regset 0 is NT_PRSTATUS.
1436 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1437 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1438 0, sizeof(t
->prstatus
.pr_reg
),
1439 &t
->prstatus
.pr_reg
, NULL
);
1441 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1442 sizeof(t
->prstatus
), &t
->prstatus
);
1443 *total
+= notesize(&t
->notes
[0]);
1445 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1448 * Each other regset might generate a note too. For each regset
1449 * that has no core_note_type or is inactive, we leave t->notes[i]
1450 * all zero and we'll know to skip writing it later.
1452 for (i
= 1; i
< view
->n
; ++i
) {
1453 const struct user_regset
*regset
= &view
->regsets
[i
];
1454 do_thread_regset_writeback(t
->task
, regset
);
1455 if (regset
->core_note_type
&&
1456 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1458 size_t size
= regset
->n
* regset
->size
;
1459 void *data
= kmalloc(size
, GFP_KERNEL
);
1460 if (unlikely(!data
))
1462 ret
= regset
->get(t
->task
, regset
,
1463 0, size
, data
, NULL
);
1467 if (regset
->core_note_type
!= NT_PRFPREG
)
1468 fill_note(&t
->notes
[i
], "LINUX",
1469 regset
->core_note_type
,
1472 t
->prstatus
.pr_fpvalid
= 1;
1473 fill_note(&t
->notes
[i
], "CORE",
1474 NT_PRFPREG
, size
, data
);
1476 *total
+= notesize(&t
->notes
[i
]);
1484 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1485 struct elf_note_info
*info
,
1486 long signr
, struct pt_regs
*regs
)
1488 struct task_struct
*dump_task
= current
;
1489 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1490 struct elf_thread_core_info
*t
;
1491 struct elf_prpsinfo
*psinfo
;
1492 struct core_thread
*ct
;
1496 info
->thread
= NULL
;
1498 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1502 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1505 * Figure out how many notes we're going to need for each thread.
1507 info
->thread_notes
= 0;
1508 for (i
= 0; i
< view
->n
; ++i
)
1509 if (view
->regsets
[i
].core_note_type
!= 0)
1510 ++info
->thread_notes
;
1513 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1514 * since it is our one special case.
1516 if (unlikely(info
->thread_notes
== 0) ||
1517 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1523 * Initialize the ELF file header.
1525 fill_elf_header(elf
, phdrs
,
1526 view
->e_machine
, view
->e_flags
, view
->ei_osabi
);
1529 * Allocate a structure for each thread.
1531 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1532 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1533 notes
[info
->thread_notes
]),
1539 if (ct
->task
== dump_task
|| !info
->thread
) {
1540 t
->next
= info
->thread
;
1544 * Make sure to keep the original task at
1545 * the head of the list.
1547 t
->next
= info
->thread
->next
;
1548 info
->thread
->next
= t
;
1553 * Now fill in each thread's information.
1555 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1556 if (!fill_thread_core_info(t
, view
, signr
, &info
->size
))
1560 * Fill in the two process-wide notes.
1562 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1563 info
->size
+= notesize(&info
->psinfo
);
1565 fill_auxv_note(&info
->auxv
, current
->mm
);
1566 info
->size
+= notesize(&info
->auxv
);
1571 static size_t get_note_info_size(struct elf_note_info
*info
)
1577 * Write all the notes for each thread. When writing the first thread, the
1578 * process-wide notes are interleaved after the first thread-specific note.
1580 static int write_note_info(struct elf_note_info
*info
,
1581 struct file
*file
, loff_t
*foffset
)
1584 struct elf_thread_core_info
*t
= info
->thread
;
1589 if (!writenote(&t
->notes
[0], file
, foffset
))
1592 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1594 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1597 for (i
= 1; i
< info
->thread_notes
; ++i
)
1598 if (t
->notes
[i
].data
&&
1599 !writenote(&t
->notes
[i
], file
, foffset
))
1609 static void free_note_info(struct elf_note_info
*info
)
1611 struct elf_thread_core_info
*threads
= info
->thread
;
1614 struct elf_thread_core_info
*t
= threads
;
1616 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1617 for (i
= 1; i
< info
->thread_notes
; ++i
)
1618 kfree(t
->notes
[i
].data
);
1621 kfree(info
->psinfo
.data
);
1626 /* Here is the structure in which status of each thread is captured. */
1627 struct elf_thread_status
1629 struct list_head list
;
1630 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1631 elf_fpregset_t fpu
; /* NT_PRFPREG */
1632 struct task_struct
*thread
;
1633 #ifdef ELF_CORE_COPY_XFPREGS
1634 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1636 struct memelfnote notes
[3];
1641 * In order to add the specific thread information for the elf file format,
1642 * we need to keep a linked list of every threads pr_status and then create
1643 * a single section for them in the final core file.
1645 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1648 struct task_struct
*p
= t
->thread
;
1651 fill_prstatus(&t
->prstatus
, p
, signr
);
1652 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1654 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1657 sz
+= notesize(&t
->notes
[0]);
1659 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1661 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1664 sz
+= notesize(&t
->notes
[1]);
1667 #ifdef ELF_CORE_COPY_XFPREGS
1668 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1669 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1670 sizeof(t
->xfpu
), &t
->xfpu
);
1672 sz
+= notesize(&t
->notes
[2]);
1678 struct elf_note_info
{
1679 struct memelfnote
*notes
;
1680 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1681 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1682 struct list_head thread_list
;
1683 elf_fpregset_t
*fpu
;
1684 #ifdef ELF_CORE_COPY_XFPREGS
1685 elf_fpxregset_t
*xfpu
;
1687 int thread_status_size
;
1691 static int elf_note_info_init(struct elf_note_info
*info
)
1693 memset(info
, 0, sizeof(*info
));
1694 INIT_LIST_HEAD(&info
->thread_list
);
1696 /* Allocate space for six ELF notes */
1697 info
->notes
= kmalloc(6 * sizeof(struct memelfnote
), GFP_KERNEL
);
1700 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1703 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1704 if (!info
->prstatus
)
1706 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1709 #ifdef ELF_CORE_COPY_XFPREGS
1710 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1715 #ifdef ELF_CORE_COPY_XFPREGS
1720 kfree(info
->prstatus
);
1722 kfree(info
->psinfo
);
1728 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1729 struct elf_note_info
*info
,
1730 long signr
, struct pt_regs
*regs
)
1732 struct list_head
*t
;
1734 if (!elf_note_info_init(info
))
1738 struct core_thread
*ct
;
1739 struct elf_thread_status
*ets
;
1741 for (ct
= current
->mm
->core_state
->dumper
.next
;
1742 ct
; ct
= ct
->next
) {
1743 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1747 ets
->thread
= ct
->task
;
1748 list_add(&ets
->list
, &info
->thread_list
);
1751 list_for_each(t
, &info
->thread_list
) {
1754 ets
= list_entry(t
, struct elf_thread_status
, list
);
1755 sz
= elf_dump_thread_status(signr
, ets
);
1756 info
->thread_status_size
+= sz
;
1759 /* now collect the dump for the current */
1760 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1761 fill_prstatus(info
->prstatus
, current
, signr
);
1762 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1765 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
, ELF_OSABI
);
1768 * Set up the notes in similar form to SVR4 core dumps made
1769 * with info from their /proc.
1772 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1773 sizeof(*info
->prstatus
), info
->prstatus
);
1774 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1775 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1776 sizeof(*info
->psinfo
), info
->psinfo
);
1780 fill_auxv_note(&info
->notes
[info
->numnote
++], current
->mm
);
1782 /* Try to dump the FPU. */
1783 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1785 if (info
->prstatus
->pr_fpvalid
)
1786 fill_note(info
->notes
+ info
->numnote
++,
1787 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1788 #ifdef ELF_CORE_COPY_XFPREGS
1789 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1790 fill_note(info
->notes
+ info
->numnote
++,
1791 "LINUX", ELF_CORE_XFPREG_TYPE
,
1792 sizeof(*info
->xfpu
), info
->xfpu
);
1798 static size_t get_note_info_size(struct elf_note_info
*info
)
1803 for (i
= 0; i
< info
->numnote
; i
++)
1804 sz
+= notesize(info
->notes
+ i
);
1806 sz
+= info
->thread_status_size
;
1811 static int write_note_info(struct elf_note_info
*info
,
1812 struct file
*file
, loff_t
*foffset
)
1815 struct list_head
*t
;
1817 for (i
= 0; i
< info
->numnote
; i
++)
1818 if (!writenote(info
->notes
+ i
, file
, foffset
))
1821 /* write out the thread status notes section */
1822 list_for_each(t
, &info
->thread_list
) {
1823 struct elf_thread_status
*tmp
=
1824 list_entry(t
, struct elf_thread_status
, list
);
1826 for (i
= 0; i
< tmp
->num_notes
; i
++)
1827 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1834 static void free_note_info(struct elf_note_info
*info
)
1836 while (!list_empty(&info
->thread_list
)) {
1837 struct list_head
*tmp
= info
->thread_list
.next
;
1839 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1842 kfree(info
->prstatus
);
1843 kfree(info
->psinfo
);
1846 #ifdef ELF_CORE_COPY_XFPREGS
1853 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1854 struct vm_area_struct
*gate_vma
)
1856 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1863 * Helper function for iterating across a vma list. It ensures that the caller
1864 * will visit `gate_vma' prior to terminating the search.
1866 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1867 struct vm_area_struct
*gate_vma
)
1869 struct vm_area_struct
*ret
;
1871 ret
= this_vma
->vm_next
;
1874 if (this_vma
== gate_vma
)
1882 * This is a two-pass process; first we find the offsets of the bits,
1883 * and then they are actually written out. If we run out of core limit
1886 static int elf_core_dump(long signr
, struct pt_regs
*regs
, struct file
*file
, unsigned long limit
)
1892 struct vm_area_struct
*vma
, *gate_vma
;
1893 struct elfhdr
*elf
= NULL
;
1894 loff_t offset
= 0, dataoff
, foffset
;
1895 unsigned long mm_flags
;
1896 struct elf_note_info info
;
1899 * We no longer stop all VM operations.
1901 * This is because those proceses that could possibly change map_count
1902 * or the mmap / vma pages are now blocked in do_exit on current
1903 * finishing this core dump.
1905 * Only ptrace can touch these memory addresses, but it doesn't change
1906 * the map_count or the pages allocated. So no possibility of crashing
1907 * exists while dumping the mm->vm_next areas to the core file.
1910 /* alloc memory for large data structures: too large to be on stack */
1911 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
1915 * The number of segs are recored into ELF header as 16bit value.
1916 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1918 segs
= current
->mm
->map_count
;
1919 #ifdef ELF_CORE_EXTRA_PHDRS
1920 segs
+= ELF_CORE_EXTRA_PHDRS
;
1923 gate_vma
= get_gate_vma(current
);
1924 if (gate_vma
!= NULL
)
1928 * Collect all the non-memory information about the process for the
1929 * notes. This also sets up the file header.
1931 if (!fill_note_info(elf
, segs
+ 1, /* including notes section */
1932 &info
, signr
, regs
))
1936 current
->flags
|= PF_DUMPCORE
;
1941 DUMP_WRITE(elf
, sizeof(*elf
));
1942 offset
+= sizeof(*elf
); /* Elf header */
1943 offset
+= (segs
+ 1) * sizeof(struct elf_phdr
); /* Program headers */
1946 /* Write notes phdr entry */
1948 struct elf_phdr phdr
;
1949 size_t sz
= get_note_info_size(&info
);
1951 sz
+= elf_coredump_extra_notes_size();
1953 fill_elf_note_phdr(&phdr
, sz
, offset
);
1955 DUMP_WRITE(&phdr
, sizeof(phdr
));
1958 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
1961 * We must use the same mm->flags while dumping core to avoid
1962 * inconsistency between the program headers and bodies, otherwise an
1963 * unusable core file can be generated.
1965 mm_flags
= current
->mm
->flags
;
1967 /* Write program headers for segments dump */
1968 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
1969 vma
= next_vma(vma
, gate_vma
)) {
1970 struct elf_phdr phdr
;
1972 phdr
.p_type
= PT_LOAD
;
1973 phdr
.p_offset
= offset
;
1974 phdr
.p_vaddr
= vma
->vm_start
;
1976 phdr
.p_filesz
= vma_dump_size(vma
, mm_flags
);
1977 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
1978 offset
+= phdr
.p_filesz
;
1979 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
1980 if (vma
->vm_flags
& VM_WRITE
)
1981 phdr
.p_flags
|= PF_W
;
1982 if (vma
->vm_flags
& VM_EXEC
)
1983 phdr
.p_flags
|= PF_X
;
1984 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
1986 DUMP_WRITE(&phdr
, sizeof(phdr
));
1989 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1990 ELF_CORE_WRITE_EXTRA_PHDRS
;
1993 /* write out the notes section */
1994 if (!write_note_info(&info
, file
, &foffset
))
1997 if (elf_coredump_extra_notes_write(file
, &foffset
))
2001 if (!dump_seek(file
, dataoff
- foffset
))
2004 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2005 vma
= next_vma(vma
, gate_vma
)) {
2009 end
= vma
->vm_start
+ vma_dump_size(vma
, mm_flags
);
2011 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2015 page
= get_dump_page(addr
);
2017 void *kaddr
= kmap(page
);
2018 stop
= ((size
+= PAGE_SIZE
) > limit
) ||
2019 !dump_write(file
, kaddr
, PAGE_SIZE
);
2021 page_cache_release(page
);
2023 stop
= !dump_seek(file
, PAGE_SIZE
);
2029 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2030 ELF_CORE_WRITE_EXTRA_DATA
;
2037 free_note_info(&info
);
2043 #endif /* USE_ELF_CORE_DUMP */
2045 static int __init
init_elf_binfmt(void)
2047 return register_binfmt(&elf_format
);
2050 static void __exit
exit_elf_binfmt(void)
2052 /* Remove the COFF and ELF loaders. */
2053 unregister_binfmt(&elf_format
);
2056 core_initcall(init_elf_binfmt
);
2057 module_exit(exit_elf_binfmt
);
2058 MODULE_LICENSE("GPL");