sh: convert kexec crash kernel management to LMB.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh / kernel / setup.c
blobd67a8a386907cb4c17097cad2142035c30a08a5d
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/smp.h>
43 #include <asm/mmu_context.h>
46 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
47 * This value will be used at the very early stage of serial setup.
48 * The bigger value means no problem.
50 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
51 [0] = {
52 .type = CPU_SH_NONE,
53 .family = CPU_FAMILY_UNKNOWN,
54 .loops_per_jiffy = 10000000,
57 EXPORT_SYMBOL(cpu_data);
60 * The machine vector. First entry in .machvec.init, or clobbered by
61 * sh_mv= on the command line, prior to .machvec.init teardown.
63 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
64 EXPORT_SYMBOL(sh_mv);
66 #ifdef CONFIG_VT
67 struct screen_info screen_info;
68 #endif
70 extern int root_mountflags;
72 #define RAMDISK_IMAGE_START_MASK 0x07FF
73 #define RAMDISK_PROMPT_FLAG 0x8000
74 #define RAMDISK_LOAD_FLAG 0x4000
76 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
78 static struct resource code_resource = {
79 .name = "Kernel code",
80 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
83 static struct resource data_resource = {
84 .name = "Kernel data",
85 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
88 static struct resource bss_resource = {
89 .name = "Kernel bss",
90 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
93 unsigned long memory_start;
94 EXPORT_SYMBOL(memory_start);
95 unsigned long memory_end = 0;
96 EXPORT_SYMBOL(memory_end);
98 static struct resource mem_resources[MAX_NUMNODES];
100 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
102 static int __init early_parse_mem(char *p)
104 unsigned long size;
106 memory_start = (unsigned long)__va(__MEMORY_START);
107 size = memparse(p, &p);
109 if (size > __MEMORY_SIZE) {
110 printk(KERN_ERR
111 "Using mem= to increase the size of kernel memory "
112 "is not allowed.\n"
113 " Recompile the kernel with the correct value for "
114 "CONFIG_MEMORY_SIZE.\n");
115 return 0;
118 memory_end = memory_start + size;
120 return 0;
122 early_param("mem", early_parse_mem);
125 * Register fully available low RAM pages with the bootmem allocator.
127 static void __init register_bootmem_low_pages(void)
129 unsigned long curr_pfn, last_pfn, pages;
132 * We are rounding up the start address of usable memory:
134 curr_pfn = PFN_UP(__MEMORY_START);
137 * ... and at the end of the usable range downwards:
139 last_pfn = PFN_DOWN(__pa(memory_end));
141 if (last_pfn > max_low_pfn)
142 last_pfn = max_low_pfn;
144 pages = last_pfn - curr_pfn;
145 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
148 static void __init check_for_initrd(void)
150 #ifdef CONFIG_BLK_DEV_INITRD
151 unsigned long start, end;
154 * Check for the rare cases where boot loaders adhere to the boot
155 * ABI.
157 if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
158 goto disable;
160 start = INITRD_START + __MEMORY_START;
161 end = start + INITRD_SIZE;
163 if (unlikely(end <= start))
164 goto disable;
165 if (unlikely(start & ~PAGE_MASK)) {
166 pr_err("initrd must be page aligned\n");
167 goto disable;
170 if (unlikely(start < PAGE_OFFSET)) {
171 pr_err("initrd start < PAGE_OFFSET\n");
172 goto disable;
175 if (unlikely(end > lmb_end_of_DRAM())) {
176 pr_err("initrd extends beyond end of memory "
177 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
178 end, (unsigned long)lmb_end_of_DRAM());
179 goto disable;
183 * If we got this far inspite of the boot loader's best efforts
184 * to the contrary, assume we actually have a valid initrd and
185 * fix up the root dev.
187 ROOT_DEV = Root_RAM0;
190 * Address sanitization
192 initrd_start = (unsigned long)__va(__pa(start));
193 initrd_end = initrd_start + INITRD_SIZE;
195 reserve_bootmem(__pa(initrd_start), INITRD_SIZE, BOOTMEM_DEFAULT);
197 return;
199 disable:
200 pr_info("initrd disabled\n");
201 initrd_start = initrd_end = 0;
202 #endif
205 void __cpuinit calibrate_delay(void)
207 struct clk *clk = clk_get(NULL, "cpu_clk");
209 if (IS_ERR(clk))
210 panic("Need a sane CPU clock definition!");
212 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
214 printk(KERN_INFO "Calibrating delay loop (skipped)... "
215 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
216 loops_per_jiffy/(500000/HZ),
217 (loops_per_jiffy/(5000/HZ)) % 100,
218 loops_per_jiffy);
221 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
222 unsigned long end_pfn)
224 struct resource *res = &mem_resources[nid];
226 WARN_ON(res->name); /* max one active range per node for now */
228 res->name = "System RAM";
229 res->start = start_pfn << PAGE_SHIFT;
230 res->end = (end_pfn << PAGE_SHIFT) - 1;
231 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
232 if (request_resource(&iomem_resource, res)) {
233 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
234 start_pfn, end_pfn);
235 return;
239 * We don't know which RAM region contains kernel data,
240 * so we try it repeatedly and let the resource manager
241 * test it.
243 request_resource(res, &code_resource);
244 request_resource(res, &data_resource);
245 request_resource(res, &bss_resource);
247 add_active_range(nid, start_pfn, end_pfn);
250 void __init setup_bootmem_allocator(unsigned long free_pfn)
252 unsigned long bootmap_size;
253 unsigned long bootmap_pages, bootmem_paddr;
254 u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
255 int i;
257 bootmap_pages = bootmem_bootmap_pages(total_pages);
259 bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
262 * Find a proper area for the bootmem bitmap. After this
263 * bootstrap step all allocations (until the page allocator
264 * is intact) must be done via bootmem_alloc().
266 bootmap_size = init_bootmem_node(NODE_DATA(0),
267 bootmem_paddr >> PAGE_SHIFT,
268 min_low_pfn, max_low_pfn);
270 /* Add active regions with valid PFNs. */
271 for (i = 0; i < lmb.memory.cnt; i++) {
272 unsigned long start_pfn, end_pfn;
273 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
274 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
275 __add_active_range(0, start_pfn, end_pfn);
279 * Add all physical memory to the bootmem map and mark each
280 * area as present.
282 register_bootmem_low_pages();
284 /* Reserve the sections we're already using. */
285 for (i = 0; i < lmb.reserved.cnt; i++)
286 reserve_bootmem(lmb.reserved.region[i].base,
287 lmb_size_bytes(&lmb.reserved, i),
288 BOOTMEM_DEFAULT);
290 node_set_online(0);
292 sparse_memory_present_with_active_regions(0);
294 check_for_initrd();
296 reserve_crashkernel();
299 #ifndef CONFIG_NEED_MULTIPLE_NODES
300 static void __init setup_memory(void)
302 unsigned long start_pfn;
303 u64 base = min_low_pfn << PAGE_SHIFT;
304 u64 size = (max_low_pfn << PAGE_SHIFT) - base;
307 * Partially used pages are not usable - thus
308 * we are rounding upwards:
310 start_pfn = PFN_UP(__pa(_end));
312 lmb_add(base, size);
315 * Reserve the kernel text and
316 * Reserve the bootmem bitmap. We do this in two steps (first step
317 * was init_bootmem()), because this catches the (definitely buggy)
318 * case of us accidentally initializing the bootmem allocator with
319 * an invalid RAM area.
321 lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
322 (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
323 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
326 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
328 if (CONFIG_ZERO_PAGE_OFFSET != 0)
329 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
331 lmb_analyze();
332 lmb_dump_all();
334 setup_bootmem_allocator(start_pfn);
336 #else
337 extern void __init setup_memory(void);
338 #endif
341 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
342 * is_kdump_kernel() to determine if we are booting after a panic. Hence
343 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
345 #ifdef CONFIG_CRASH_DUMP
346 /* elfcorehdr= specifies the location of elf core header
347 * stored by the crashed kernel.
349 static int __init parse_elfcorehdr(char *arg)
351 if (!arg)
352 return -EINVAL;
353 elfcorehdr_addr = memparse(arg, &arg);
354 return 0;
356 early_param("elfcorehdr", parse_elfcorehdr);
357 #endif
359 void __init __attribute__ ((weak)) plat_early_device_setup(void)
363 void __init setup_arch(char **cmdline_p)
365 enable_mmu();
367 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
369 printk(KERN_NOTICE "Boot params:\n"
370 "... MOUNT_ROOT_RDONLY - %08lx\n"
371 "... RAMDISK_FLAGS - %08lx\n"
372 "... ORIG_ROOT_DEV - %08lx\n"
373 "... LOADER_TYPE - %08lx\n"
374 "... INITRD_START - %08lx\n"
375 "... INITRD_SIZE - %08lx\n",
376 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
377 ORIG_ROOT_DEV, LOADER_TYPE,
378 INITRD_START, INITRD_SIZE);
380 #ifdef CONFIG_BLK_DEV_RAM
381 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
382 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
383 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
384 #endif
386 if (!MOUNT_ROOT_RDONLY)
387 root_mountflags &= ~MS_RDONLY;
388 init_mm.start_code = (unsigned long) _text;
389 init_mm.end_code = (unsigned long) _etext;
390 init_mm.end_data = (unsigned long) _edata;
391 init_mm.brk = (unsigned long) _end;
393 code_resource.start = virt_to_phys(_text);
394 code_resource.end = virt_to_phys(_etext)-1;
395 data_resource.start = virt_to_phys(_etext);
396 data_resource.end = virt_to_phys(_edata)-1;
397 bss_resource.start = virt_to_phys(__bss_start);
398 bss_resource.end = virt_to_phys(_ebss)-1;
400 memory_start = (unsigned long)__va(__MEMORY_START);
401 if (!memory_end)
402 memory_end = memory_start + __MEMORY_SIZE;
404 #ifdef CONFIG_CMDLINE_OVERWRITE
405 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
406 #else
407 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
408 #ifdef CONFIG_CMDLINE_EXTEND
409 strlcat(command_line, " ", sizeof(command_line));
410 strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
411 #endif
412 #endif
414 /* Save unparsed command line copy for /proc/cmdline */
415 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
416 *cmdline_p = command_line;
418 parse_early_param();
420 uncached_init();
422 plat_early_device_setup();
424 /* Let earlyprintk output early console messages */
425 early_platform_driver_probe("earlyprintk", 1, 1);
427 sh_mv_setup();
430 * Find the highest page frame number we have available
432 max_pfn = PFN_DOWN(__pa(memory_end));
435 * Determine low and high memory ranges:
437 max_low_pfn = max_pfn;
438 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
440 nodes_clear(node_online_map);
442 pmb_init();
443 lmb_init();
444 setup_memory();
445 sparse_init();
447 #ifdef CONFIG_DUMMY_CONSOLE
448 conswitchp = &dummy_con;
449 #endif
450 paging_init();
452 ioremap_fixed_init();
454 /* Perform the machine specific initialisation */
455 if (likely(sh_mv.mv_setup))
456 sh_mv.mv_setup(cmdline_p);
458 plat_smp_setup();
461 /* processor boot mode configuration */
462 int generic_mode_pins(void)
464 pr_warning("generic_mode_pins(): missing mode pin configuration\n");
465 return 0;
468 int test_mode_pin(int pin)
470 return sh_mv.mv_mode_pins() & pin;
473 static const char *cpu_name[] = {
474 [CPU_SH7201] = "SH7201",
475 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
476 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
477 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
478 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
479 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
480 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
481 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
482 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
483 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
484 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
485 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
486 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
487 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
488 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
489 [CPU_SH7786] = "SH7786", [CPU_SH7757] = "SH7757",
490 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
491 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
492 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
493 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
494 [CPU_SH_NONE] = "Unknown"
497 const char *get_cpu_subtype(struct sh_cpuinfo *c)
499 return cpu_name[c->type];
501 EXPORT_SYMBOL(get_cpu_subtype);
503 #ifdef CONFIG_PROC_FS
504 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
505 static const char *cpu_flags[] = {
506 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
507 "ptea", "llsc", "l2", "op32", "pteaex", NULL
510 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
512 unsigned long i;
514 seq_printf(m, "cpu flags\t:");
516 if (!c->flags) {
517 seq_printf(m, " %s\n", cpu_flags[0]);
518 return;
521 for (i = 0; cpu_flags[i]; i++)
522 if ((c->flags & (1 << i)))
523 seq_printf(m, " %s", cpu_flags[i+1]);
525 seq_printf(m, "\n");
528 static void show_cacheinfo(struct seq_file *m, const char *type,
529 struct cache_info info)
531 unsigned int cache_size;
533 cache_size = info.ways * info.sets * info.linesz;
535 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
536 type, cache_size >> 10, info.ways);
540 * Get CPU information for use by the procfs.
542 static int show_cpuinfo(struct seq_file *m, void *v)
544 struct sh_cpuinfo *c = v;
545 unsigned int cpu = c - cpu_data;
547 if (!cpu_online(cpu))
548 return 0;
550 if (cpu == 0)
551 seq_printf(m, "machine\t\t: %s\n", get_system_type());
552 else
553 seq_printf(m, "\n");
555 seq_printf(m, "processor\t: %d\n", cpu);
556 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
557 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
558 if (c->cut_major == -1)
559 seq_printf(m, "cut\t\t: unknown\n");
560 else if (c->cut_minor == -1)
561 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
562 else
563 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
565 show_cpuflags(m, c);
567 seq_printf(m, "cache type\t: ");
570 * Check for what type of cache we have, we support both the
571 * unified cache on the SH-2 and SH-3, as well as the harvard
572 * style cache on the SH-4.
574 if (c->icache.flags & SH_CACHE_COMBINED) {
575 seq_printf(m, "unified\n");
576 show_cacheinfo(m, "cache", c->icache);
577 } else {
578 seq_printf(m, "split (harvard)\n");
579 show_cacheinfo(m, "icache", c->icache);
580 show_cacheinfo(m, "dcache", c->dcache);
583 /* Optional secondary cache */
584 if (c->flags & CPU_HAS_L2_CACHE)
585 show_cacheinfo(m, "scache", c->scache);
587 seq_printf(m, "bogomips\t: %lu.%02lu\n",
588 c->loops_per_jiffy/(500000/HZ),
589 (c->loops_per_jiffy/(5000/HZ)) % 100);
591 return 0;
594 static void *c_start(struct seq_file *m, loff_t *pos)
596 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
598 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
600 ++*pos;
601 return c_start(m, pos);
603 static void c_stop(struct seq_file *m, void *v)
606 const struct seq_operations cpuinfo_op = {
607 .start = c_start,
608 .next = c_next,
609 .stop = c_stop,
610 .show = show_cpuinfo,
612 #endif /* CONFIG_PROC_FS */
614 struct dentry *sh_debugfs_root;
616 static int __init sh_debugfs_init(void)
618 sh_debugfs_root = debugfs_create_dir("sh", NULL);
619 if (!sh_debugfs_root)
620 return -ENOMEM;
621 if (IS_ERR(sh_debugfs_root))
622 return PTR_ERR(sh_debugfs_root);
624 return 0;
626 arch_initcall(sh_debugfs_init);