Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / gianfar.c
blob5ed8f9f9419f163c26703412bb03512537a7e966
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
27 * Theory of operation
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98 #include <linux/of_net.h>
100 #include "gianfar.h"
101 #include "fsl_pq_mdio.h"
103 #define TX_TIMEOUT (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 const char gfar_driver_name[] = "Gianfar Ethernet";
108 const char gfar_driver_version[] = "1.3";
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev,
127 const struct of_device_id *match);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll(struct napi_struct *napi, int budget);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device *dev);
136 #endif
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
138 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
139 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
140 int amount_pull);
141 static void gfar_vlan_rx_register(struct net_device *netdev,
142 struct vlan_group *grp);
143 void gfar_halt(struct net_device *dev);
144 static void gfar_halt_nodisable(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
158 u32 lstatus;
160 bdp->bufPtr = buf;
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
166 eieio();
168 bdp->lstatus = lstatus;
171 static int gfar_init_bds(struct net_device *ndev)
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar_priv_tx_q *tx_queue = NULL;
175 struct gfar_priv_rx_q *rx_queue = NULL;
176 struct txbd8 *txbdp;
177 struct rxbd8 *rxbdp;
178 int i, j;
180 for (i = 0; i < priv->num_tx_queues; i++) {
181 tx_queue = priv->tx_queue[i];
182 /* Initialize some variables in our dev structure */
183 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185 tx_queue->cur_tx = tx_queue->tx_bd_base;
186 tx_queue->skb_curtx = 0;
187 tx_queue->skb_dirtytx = 0;
189 /* Initialize Transmit Descriptor Ring */
190 txbdp = tx_queue->tx_bd_base;
191 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192 txbdp->lstatus = 0;
193 txbdp->bufPtr = 0;
194 txbdp++;
197 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp--;
199 txbdp->status |= TXBD_WRAP;
202 for (i = 0; i < priv->num_rx_queues; i++) {
203 rx_queue = priv->rx_queue[i];
204 rx_queue->cur_rx = rx_queue->rx_bd_base;
205 rx_queue->skb_currx = 0;
206 rxbdp = rx_queue->rx_bd_base;
208 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209 struct sk_buff *skb = rx_queue->rx_skbuff[j];
211 if (skb) {
212 gfar_init_rxbdp(rx_queue, rxbdp,
213 rxbdp->bufPtr);
214 } else {
215 skb = gfar_new_skb(ndev);
216 if (!skb) {
217 pr_err("%s: Can't allocate RX buffers\n",
218 ndev->name);
219 goto err_rxalloc_fail;
221 rx_queue->rx_skbuff[j] = skb;
223 gfar_new_rxbdp(rx_queue, rxbdp, skb);
226 rxbdp++;
231 return 0;
233 err_rxalloc_fail:
234 free_skb_resources(priv);
235 return -ENOMEM;
238 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 void *vaddr;
241 dma_addr_t addr;
242 int i, j, k;
243 struct gfar_private *priv = netdev_priv(ndev);
244 struct device *dev = &priv->ofdev->dev;
245 struct gfar_priv_tx_q *tx_queue = NULL;
246 struct gfar_priv_rx_q *rx_queue = NULL;
248 priv->total_tx_ring_size = 0;
249 for (i = 0; i < priv->num_tx_queues; i++)
250 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252 priv->total_rx_ring_size = 0;
253 for (i = 0; i < priv->num_rx_queues; i++)
254 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256 /* Allocate memory for the buffer descriptors */
257 vaddr = dma_alloc_coherent(dev,
258 sizeof(struct txbd8) * priv->total_tx_ring_size +
259 sizeof(struct rxbd8) * priv->total_rx_ring_size,
260 &addr, GFP_KERNEL);
261 if (!vaddr) {
262 if (netif_msg_ifup(priv))
263 pr_err("%s: Could not allocate buffer descriptors!\n",
264 ndev->name);
265 return -ENOMEM;
268 for (i = 0; i < priv->num_tx_queues; i++) {
269 tx_queue = priv->tx_queue[i];
270 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
271 tx_queue->tx_bd_dma_base = addr;
272 tx_queue->dev = ndev;
273 /* enet DMA only understands physical addresses */
274 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
275 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
278 /* Start the rx descriptor ring where the tx ring leaves off */
279 for (i = 0; i < priv->num_rx_queues; i++) {
280 rx_queue = priv->rx_queue[i];
281 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
282 rx_queue->rx_bd_dma_base = addr;
283 rx_queue->dev = ndev;
284 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
285 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
288 /* Setup the skbuff rings */
289 for (i = 0; i < priv->num_tx_queues; i++) {
290 tx_queue = priv->tx_queue[i];
291 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
292 tx_queue->tx_ring_size, GFP_KERNEL);
293 if (!tx_queue->tx_skbuff) {
294 if (netif_msg_ifup(priv))
295 pr_err("%s: Could not allocate tx_skbuff\n",
296 ndev->name);
297 goto cleanup;
300 for (k = 0; k < tx_queue->tx_ring_size; k++)
301 tx_queue->tx_skbuff[k] = NULL;
304 for (i = 0; i < priv->num_rx_queues; i++) {
305 rx_queue = priv->rx_queue[i];
306 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
307 rx_queue->rx_ring_size, GFP_KERNEL);
309 if (!rx_queue->rx_skbuff) {
310 if (netif_msg_ifup(priv))
311 pr_err("%s: Could not allocate rx_skbuff\n",
312 ndev->name);
313 goto cleanup;
316 for (j = 0; j < rx_queue->rx_ring_size; j++)
317 rx_queue->rx_skbuff[j] = NULL;
320 if (gfar_init_bds(ndev))
321 goto cleanup;
323 return 0;
325 cleanup:
326 free_skb_resources(priv);
327 return -ENOMEM;
330 static void gfar_init_tx_rx_base(struct gfar_private *priv)
332 struct gfar __iomem *regs = priv->gfargrp[0].regs;
333 u32 __iomem *baddr;
334 int i;
336 baddr = &regs->tbase0;
337 for(i = 0; i < priv->num_tx_queues; i++) {
338 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
339 baddr += 2;
342 baddr = &regs->rbase0;
343 for(i = 0; i < priv->num_rx_queues; i++) {
344 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
345 baddr += 2;
349 static void gfar_init_mac(struct net_device *ndev)
351 struct gfar_private *priv = netdev_priv(ndev);
352 struct gfar __iomem *regs = priv->gfargrp[0].regs;
353 u32 rctrl = 0;
354 u32 tctrl = 0;
355 u32 attrs = 0;
357 /* write the tx/rx base registers */
358 gfar_init_tx_rx_base(priv);
360 /* Configure the coalescing support */
361 gfar_configure_coalescing(priv, 0xFF, 0xFF);
363 if (priv->rx_filer_enable) {
364 rctrl |= RCTRL_FILREN;
365 /* Program the RIR0 reg with the required distribution */
366 gfar_write(&regs->rir0, DEFAULT_RIR0);
369 if (priv->rx_csum_enable)
370 rctrl |= RCTRL_CHECKSUMMING;
372 if (priv->extended_hash) {
373 rctrl |= RCTRL_EXTHASH;
375 gfar_clear_exact_match(ndev);
376 rctrl |= RCTRL_EMEN;
379 if (priv->padding) {
380 rctrl &= ~RCTRL_PAL_MASK;
381 rctrl |= RCTRL_PADDING(priv->padding);
384 /* Insert receive time stamps into padding alignment bytes */
385 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
386 rctrl &= ~RCTRL_PAL_MASK;
387 rctrl |= RCTRL_PADDING(8);
388 priv->padding = 8;
391 /* Enable HW time stamping if requested from user space */
392 if (priv->hwts_rx_en)
393 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
395 /* keep vlan related bits if it's enabled */
396 if (priv->vlgrp) {
397 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
398 tctrl |= TCTRL_VLINS;
401 /* Init rctrl based on our settings */
402 gfar_write(&regs->rctrl, rctrl);
404 if (ndev->features & NETIF_F_IP_CSUM)
405 tctrl |= TCTRL_INIT_CSUM;
407 tctrl |= TCTRL_TXSCHED_PRIO;
409 gfar_write(&regs->tctrl, tctrl);
411 /* Set the extraction length and index */
412 attrs = ATTRELI_EL(priv->rx_stash_size) |
413 ATTRELI_EI(priv->rx_stash_index);
415 gfar_write(&regs->attreli, attrs);
417 /* Start with defaults, and add stashing or locking
418 * depending on the approprate variables */
419 attrs = ATTR_INIT_SETTINGS;
421 if (priv->bd_stash_en)
422 attrs |= ATTR_BDSTASH;
424 if (priv->rx_stash_size != 0)
425 attrs |= ATTR_BUFSTASH;
427 gfar_write(&regs->attr, attrs);
429 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
436 struct gfar_private *priv = netdev_priv(dev);
437 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438 unsigned long tx_packets = 0, tx_bytes = 0;
439 int i = 0;
441 for (i = 0; i < priv->num_rx_queues; i++) {
442 rx_packets += priv->rx_queue[i]->stats.rx_packets;
443 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
444 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
447 dev->stats.rx_packets = rx_packets;
448 dev->stats.rx_bytes = rx_bytes;
449 dev->stats.rx_dropped = rx_dropped;
451 for (i = 0; i < priv->num_tx_queues; i++) {
452 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453 tx_packets += priv->tx_queue[i]->stats.tx_packets;
456 dev->stats.tx_bytes = tx_bytes;
457 dev->stats.tx_packets = tx_packets;
459 return &dev->stats;
462 static const struct net_device_ops gfar_netdev_ops = {
463 .ndo_open = gfar_enet_open,
464 .ndo_start_xmit = gfar_start_xmit,
465 .ndo_stop = gfar_close,
466 .ndo_change_mtu = gfar_change_mtu,
467 .ndo_set_multicast_list = gfar_set_multi,
468 .ndo_tx_timeout = gfar_timeout,
469 .ndo_do_ioctl = gfar_ioctl,
470 .ndo_get_stats = gfar_get_stats,
471 .ndo_vlan_rx_register = gfar_vlan_rx_register,
472 .ndo_set_mac_address = eth_mac_addr,
473 .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller = gfar_netpoll,
476 #endif
479 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
480 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
482 void lock_rx_qs(struct gfar_private *priv)
484 int i = 0x0;
486 for (i = 0; i < priv->num_rx_queues; i++)
487 spin_lock(&priv->rx_queue[i]->rxlock);
490 void lock_tx_qs(struct gfar_private *priv)
492 int i = 0x0;
494 for (i = 0; i < priv->num_tx_queues; i++)
495 spin_lock(&priv->tx_queue[i]->txlock);
498 void unlock_rx_qs(struct gfar_private *priv)
500 int i = 0x0;
502 for (i = 0; i < priv->num_rx_queues; i++)
503 spin_unlock(&priv->rx_queue[i]->rxlock);
506 void unlock_tx_qs(struct gfar_private *priv)
508 int i = 0x0;
510 for (i = 0; i < priv->num_tx_queues; i++)
511 spin_unlock(&priv->tx_queue[i]->txlock);
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
517 return priv->vlgrp || priv->rx_csum_enable ||
518 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
521 static void free_tx_pointers(struct gfar_private *priv)
523 int i = 0;
525 for (i = 0; i < priv->num_tx_queues; i++)
526 kfree(priv->tx_queue[i]);
529 static void free_rx_pointers(struct gfar_private *priv)
531 int i = 0;
533 for (i = 0; i < priv->num_rx_queues; i++)
534 kfree(priv->rx_queue[i]);
537 static void unmap_group_regs(struct gfar_private *priv)
539 int i = 0;
541 for (i = 0; i < MAXGROUPS; i++)
542 if (priv->gfargrp[i].regs)
543 iounmap(priv->gfargrp[i].regs);
546 static void disable_napi(struct gfar_private *priv)
548 int i = 0;
550 for (i = 0; i < priv->num_grps; i++)
551 napi_disable(&priv->gfargrp[i].napi);
554 static void enable_napi(struct gfar_private *priv)
556 int i = 0;
558 for (i = 0; i < priv->num_grps; i++)
559 napi_enable(&priv->gfargrp[i].napi);
562 static int gfar_parse_group(struct device_node *np,
563 struct gfar_private *priv, const char *model)
565 u32 *queue_mask;
567 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
568 if (!priv->gfargrp[priv->num_grps].regs)
569 return -ENOMEM;
571 priv->gfargrp[priv->num_grps].interruptTransmit =
572 irq_of_parse_and_map(np, 0);
574 /* If we aren't the FEC we have multiple interrupts */
575 if (model && strcasecmp(model, "FEC")) {
576 priv->gfargrp[priv->num_grps].interruptReceive =
577 irq_of_parse_and_map(np, 1);
578 priv->gfargrp[priv->num_grps].interruptError =
579 irq_of_parse_and_map(np,2);
580 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
581 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
582 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
583 return -EINVAL;
586 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
587 priv->gfargrp[priv->num_grps].priv = priv;
588 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
589 if(priv->mode == MQ_MG_MODE) {
590 queue_mask = (u32 *)of_get_property(np,
591 "fsl,rx-bit-map", NULL);
592 priv->gfargrp[priv->num_grps].rx_bit_map =
593 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
594 queue_mask = (u32 *)of_get_property(np,
595 "fsl,tx-bit-map", NULL);
596 priv->gfargrp[priv->num_grps].tx_bit_map =
597 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
598 } else {
599 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
600 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
602 priv->num_grps++;
604 return 0;
607 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
609 const char *model;
610 const char *ctype;
611 const void *mac_addr;
612 int err = 0, i;
613 struct net_device *dev = NULL;
614 struct gfar_private *priv = NULL;
615 struct device_node *np = ofdev->dev.of_node;
616 struct device_node *child = NULL;
617 const u32 *stash;
618 const u32 *stash_len;
619 const u32 *stash_idx;
620 unsigned int num_tx_qs, num_rx_qs;
621 u32 *tx_queues, *rx_queues;
623 if (!np || !of_device_is_available(np))
624 return -ENODEV;
626 /* parse the num of tx and rx queues */
627 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
628 num_tx_qs = tx_queues ? *tx_queues : 1;
630 if (num_tx_qs > MAX_TX_QS) {
631 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
632 num_tx_qs, MAX_TX_QS);
633 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
634 return -EINVAL;
637 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
638 num_rx_qs = rx_queues ? *rx_queues : 1;
640 if (num_rx_qs > MAX_RX_QS) {
641 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
642 num_tx_qs, MAX_TX_QS);
643 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
644 return -EINVAL;
647 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
648 dev = *pdev;
649 if (NULL == dev)
650 return -ENOMEM;
652 priv = netdev_priv(dev);
653 priv->node = ofdev->dev.of_node;
654 priv->ndev = dev;
656 priv->num_tx_queues = num_tx_qs;
657 netif_set_real_num_rx_queues(dev, num_rx_qs);
658 priv->num_rx_queues = num_rx_qs;
659 priv->num_grps = 0x0;
661 model = of_get_property(np, "model", NULL);
663 for (i = 0; i < MAXGROUPS; i++)
664 priv->gfargrp[i].regs = NULL;
666 /* Parse and initialize group specific information */
667 if (of_device_is_compatible(np, "fsl,etsec2")) {
668 priv->mode = MQ_MG_MODE;
669 for_each_child_of_node(np, child) {
670 err = gfar_parse_group(child, priv, model);
671 if (err)
672 goto err_grp_init;
674 } else {
675 priv->mode = SQ_SG_MODE;
676 err = gfar_parse_group(np, priv, model);
677 if(err)
678 goto err_grp_init;
681 for (i = 0; i < priv->num_tx_queues; i++)
682 priv->tx_queue[i] = NULL;
683 for (i = 0; i < priv->num_rx_queues; i++)
684 priv->rx_queue[i] = NULL;
686 for (i = 0; i < priv->num_tx_queues; i++) {
687 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
688 GFP_KERNEL);
689 if (!priv->tx_queue[i]) {
690 err = -ENOMEM;
691 goto tx_alloc_failed;
693 priv->tx_queue[i]->tx_skbuff = NULL;
694 priv->tx_queue[i]->qindex = i;
695 priv->tx_queue[i]->dev = dev;
696 spin_lock_init(&(priv->tx_queue[i]->txlock));
699 for (i = 0; i < priv->num_rx_queues; i++) {
700 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
701 GFP_KERNEL);
702 if (!priv->rx_queue[i]) {
703 err = -ENOMEM;
704 goto rx_alloc_failed;
706 priv->rx_queue[i]->rx_skbuff = NULL;
707 priv->rx_queue[i]->qindex = i;
708 priv->rx_queue[i]->dev = dev;
709 spin_lock_init(&(priv->rx_queue[i]->rxlock));
713 stash = of_get_property(np, "bd-stash", NULL);
715 if (stash) {
716 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
717 priv->bd_stash_en = 1;
720 stash_len = of_get_property(np, "rx-stash-len", NULL);
722 if (stash_len)
723 priv->rx_stash_size = *stash_len;
725 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
727 if (stash_idx)
728 priv->rx_stash_index = *stash_idx;
730 if (stash_len || stash_idx)
731 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
733 mac_addr = of_get_mac_address(np);
734 if (mac_addr)
735 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
737 if (model && !strcasecmp(model, "TSEC"))
738 priv->device_flags =
739 FSL_GIANFAR_DEV_HAS_GIGABIT |
740 FSL_GIANFAR_DEV_HAS_COALESCE |
741 FSL_GIANFAR_DEV_HAS_RMON |
742 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
743 if (model && !strcasecmp(model, "eTSEC"))
744 priv->device_flags =
745 FSL_GIANFAR_DEV_HAS_GIGABIT |
746 FSL_GIANFAR_DEV_HAS_COALESCE |
747 FSL_GIANFAR_DEV_HAS_RMON |
748 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
749 FSL_GIANFAR_DEV_HAS_PADDING |
750 FSL_GIANFAR_DEV_HAS_CSUM |
751 FSL_GIANFAR_DEV_HAS_VLAN |
752 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
753 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
754 FSL_GIANFAR_DEV_HAS_TIMER;
756 ctype = of_get_property(np, "phy-connection-type", NULL);
758 /* We only care about rgmii-id. The rest are autodetected */
759 if (ctype && !strcmp(ctype, "rgmii-id"))
760 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
761 else
762 priv->interface = PHY_INTERFACE_MODE_MII;
764 if (of_get_property(np, "fsl,magic-packet", NULL))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
767 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
769 /* Find the TBI PHY. If it's not there, we don't support SGMII */
770 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
772 return 0;
774 rx_alloc_failed:
775 free_rx_pointers(priv);
776 tx_alloc_failed:
777 free_tx_pointers(priv);
778 err_grp_init:
779 unmap_group_regs(priv);
780 free_netdev(dev);
781 return err;
784 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
785 struct ifreq *ifr, int cmd)
787 struct hwtstamp_config config;
788 struct gfar_private *priv = netdev_priv(netdev);
790 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
791 return -EFAULT;
793 /* reserved for future extensions */
794 if (config.flags)
795 return -EINVAL;
797 switch (config.tx_type) {
798 case HWTSTAMP_TX_OFF:
799 priv->hwts_tx_en = 0;
800 break;
801 case HWTSTAMP_TX_ON:
802 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
803 return -ERANGE;
804 priv->hwts_tx_en = 1;
805 break;
806 default:
807 return -ERANGE;
810 switch (config.rx_filter) {
811 case HWTSTAMP_FILTER_NONE:
812 if (priv->hwts_rx_en) {
813 stop_gfar(netdev);
814 priv->hwts_rx_en = 0;
815 startup_gfar(netdev);
817 break;
818 default:
819 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
820 return -ERANGE;
821 if (!priv->hwts_rx_en) {
822 stop_gfar(netdev);
823 priv->hwts_rx_en = 1;
824 startup_gfar(netdev);
826 config.rx_filter = HWTSTAMP_FILTER_ALL;
827 break;
830 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
831 -EFAULT : 0;
834 /* Ioctl MII Interface */
835 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
837 struct gfar_private *priv = netdev_priv(dev);
839 if (!netif_running(dev))
840 return -EINVAL;
842 if (cmd == SIOCSHWTSTAMP)
843 return gfar_hwtstamp_ioctl(dev, rq, cmd);
845 if (!priv->phydev)
846 return -ENODEV;
848 return phy_mii_ioctl(priv->phydev, rq, cmd);
851 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
853 unsigned int new_bit_map = 0x0;
854 int mask = 0x1 << (max_qs - 1), i;
855 for (i = 0; i < max_qs; i++) {
856 if (bit_map & mask)
857 new_bit_map = new_bit_map + (1 << i);
858 mask = mask >> 0x1;
860 return new_bit_map;
863 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
864 u32 class)
866 u32 rqfpr = FPR_FILER_MASK;
867 u32 rqfcr = 0x0;
869 rqfar--;
870 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
871 ftp_rqfpr[rqfar] = rqfpr;
872 ftp_rqfcr[rqfar] = rqfcr;
873 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875 rqfar--;
876 rqfcr = RQFCR_CMP_NOMATCH;
877 ftp_rqfpr[rqfar] = rqfpr;
878 ftp_rqfcr[rqfar] = rqfcr;
879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881 rqfar--;
882 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
883 rqfpr = class;
884 ftp_rqfcr[rqfar] = rqfcr;
885 ftp_rqfpr[rqfar] = rqfpr;
886 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888 rqfar--;
889 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
890 rqfpr = class;
891 ftp_rqfcr[rqfar] = rqfcr;
892 ftp_rqfpr[rqfar] = rqfpr;
893 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
895 return rqfar;
898 static void gfar_init_filer_table(struct gfar_private *priv)
900 int i = 0x0;
901 u32 rqfar = MAX_FILER_IDX;
902 u32 rqfcr = 0x0;
903 u32 rqfpr = FPR_FILER_MASK;
905 /* Default rule */
906 rqfcr = RQFCR_CMP_MATCH;
907 ftp_rqfcr[rqfar] = rqfcr;
908 ftp_rqfpr[rqfar] = rqfpr;
909 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
911 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
912 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
918 /* cur_filer_idx indicated the first non-masked rule */
919 priv->cur_filer_idx = rqfar;
921 /* Rest are masked rules */
922 rqfcr = RQFCR_CMP_NOMATCH;
923 for (i = 0; i < rqfar; i++) {
924 ftp_rqfcr[i] = rqfcr;
925 ftp_rqfpr[i] = rqfpr;
926 gfar_write_filer(priv, i, rqfcr, rqfpr);
930 static void gfar_detect_errata(struct gfar_private *priv)
932 struct device *dev = &priv->ofdev->dev;
933 unsigned int pvr = mfspr(SPRN_PVR);
934 unsigned int svr = mfspr(SPRN_SVR);
935 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
936 unsigned int rev = svr & 0xffff;
938 /* MPC8313 Rev 2.0 and higher; All MPC837x */
939 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
940 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
941 priv->errata |= GFAR_ERRATA_74;
943 /* MPC8313 and MPC837x all rev */
944 if ((pvr == 0x80850010 && mod == 0x80b0) ||
945 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946 priv->errata |= GFAR_ERRATA_76;
948 /* MPC8313 and MPC837x all rev */
949 if ((pvr == 0x80850010 && mod == 0x80b0) ||
950 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951 priv->errata |= GFAR_ERRATA_A002;
953 if (priv->errata)
954 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
955 priv->errata);
958 /* Set up the ethernet device structure, private data,
959 * and anything else we need before we start */
960 static int gfar_probe(struct platform_device *ofdev,
961 const struct of_device_id *match)
963 u32 tempval;
964 struct net_device *dev = NULL;
965 struct gfar_private *priv = NULL;
966 struct gfar __iomem *regs = NULL;
967 int err = 0, i, grp_idx = 0;
968 int len_devname;
969 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
970 u32 isrg = 0;
971 u32 __iomem *baddr;
973 err = gfar_of_init(ofdev, &dev);
975 if (err)
976 return err;
978 priv = netdev_priv(dev);
979 priv->ndev = dev;
980 priv->ofdev = ofdev;
981 priv->node = ofdev->dev.of_node;
982 SET_NETDEV_DEV(dev, &ofdev->dev);
984 spin_lock_init(&priv->bflock);
985 INIT_WORK(&priv->reset_task, gfar_reset_task);
987 dev_set_drvdata(&ofdev->dev, priv);
988 regs = priv->gfargrp[0].regs;
990 gfar_detect_errata(priv);
992 /* Stop the DMA engine now, in case it was running before */
993 /* (The firmware could have used it, and left it running). */
994 gfar_halt(dev);
996 /* Reset MAC layer */
997 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
999 /* We need to delay at least 3 TX clocks */
1000 udelay(2);
1002 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1003 gfar_write(&regs->maccfg1, tempval);
1005 /* Initialize MACCFG2. */
1006 tempval = MACCFG2_INIT_SETTINGS;
1007 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1008 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1009 gfar_write(&regs->maccfg2, tempval);
1011 /* Initialize ECNTRL */
1012 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1014 /* Set the dev->base_addr to the gfar reg region */
1015 dev->base_addr = (unsigned long) regs;
1017 SET_NETDEV_DEV(dev, &ofdev->dev);
1019 /* Fill in the dev structure */
1020 dev->watchdog_timeo = TX_TIMEOUT;
1021 dev->mtu = 1500;
1022 dev->netdev_ops = &gfar_netdev_ops;
1023 dev->ethtool_ops = &gfar_ethtool_ops;
1025 /* Register for napi ...We are registering NAPI for each grp */
1026 for (i = 0; i < priv->num_grps; i++)
1027 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1029 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1030 priv->rx_csum_enable = 1;
1031 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1032 } else
1033 priv->rx_csum_enable = 0;
1035 priv->vlgrp = NULL;
1037 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1038 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1041 priv->extended_hash = 1;
1042 priv->hash_width = 9;
1044 priv->hash_regs[0] = &regs->igaddr0;
1045 priv->hash_regs[1] = &regs->igaddr1;
1046 priv->hash_regs[2] = &regs->igaddr2;
1047 priv->hash_regs[3] = &regs->igaddr3;
1048 priv->hash_regs[4] = &regs->igaddr4;
1049 priv->hash_regs[5] = &regs->igaddr5;
1050 priv->hash_regs[6] = &regs->igaddr6;
1051 priv->hash_regs[7] = &regs->igaddr7;
1052 priv->hash_regs[8] = &regs->gaddr0;
1053 priv->hash_regs[9] = &regs->gaddr1;
1054 priv->hash_regs[10] = &regs->gaddr2;
1055 priv->hash_regs[11] = &regs->gaddr3;
1056 priv->hash_regs[12] = &regs->gaddr4;
1057 priv->hash_regs[13] = &regs->gaddr5;
1058 priv->hash_regs[14] = &regs->gaddr6;
1059 priv->hash_regs[15] = &regs->gaddr7;
1061 } else {
1062 priv->extended_hash = 0;
1063 priv->hash_width = 8;
1065 priv->hash_regs[0] = &regs->gaddr0;
1066 priv->hash_regs[1] = &regs->gaddr1;
1067 priv->hash_regs[2] = &regs->gaddr2;
1068 priv->hash_regs[3] = &regs->gaddr3;
1069 priv->hash_regs[4] = &regs->gaddr4;
1070 priv->hash_regs[5] = &regs->gaddr5;
1071 priv->hash_regs[6] = &regs->gaddr6;
1072 priv->hash_regs[7] = &regs->gaddr7;
1075 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1076 priv->padding = DEFAULT_PADDING;
1077 else
1078 priv->padding = 0;
1080 if (dev->features & NETIF_F_IP_CSUM ||
1081 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1082 dev->hard_header_len += GMAC_FCB_LEN;
1084 /* Program the isrg regs only if number of grps > 1 */
1085 if (priv->num_grps > 1) {
1086 baddr = &regs->isrg0;
1087 for (i = 0; i < priv->num_grps; i++) {
1088 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1089 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1090 gfar_write(baddr, isrg);
1091 baddr++;
1092 isrg = 0x0;
1096 /* Need to reverse the bit maps as bit_map's MSB is q0
1097 * but, for_each_set_bit parses from right to left, which
1098 * basically reverses the queue numbers */
1099 for (i = 0; i< priv->num_grps; i++) {
1100 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1101 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1102 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1103 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1106 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1107 * also assign queues to groups */
1108 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1109 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1110 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1111 priv->num_rx_queues) {
1112 priv->gfargrp[grp_idx].num_rx_queues++;
1113 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1114 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1115 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1117 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1118 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1119 priv->num_tx_queues) {
1120 priv->gfargrp[grp_idx].num_tx_queues++;
1121 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1122 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1123 tqueue = tqueue | (TQUEUE_EN0 >> i);
1125 priv->gfargrp[grp_idx].rstat = rstat;
1126 priv->gfargrp[grp_idx].tstat = tstat;
1127 rstat = tstat =0;
1130 gfar_write(&regs->rqueue, rqueue);
1131 gfar_write(&regs->tqueue, tqueue);
1133 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1135 /* Initializing some of the rx/tx queue level parameters */
1136 for (i = 0; i < priv->num_tx_queues; i++) {
1137 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1138 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1139 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1140 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1143 for (i = 0; i < priv->num_rx_queues; i++) {
1144 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1145 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1146 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1149 /* enable filer if using multiple RX queues*/
1150 if(priv->num_rx_queues > 1)
1151 priv->rx_filer_enable = 1;
1152 /* Enable most messages by default */
1153 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1155 /* Carrier starts down, phylib will bring it up */
1156 netif_carrier_off(dev);
1158 err = register_netdev(dev);
1160 if (err) {
1161 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1162 dev->name);
1163 goto register_fail;
1166 device_init_wakeup(&dev->dev,
1167 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169 /* fill out IRQ number and name fields */
1170 len_devname = strlen(dev->name);
1171 for (i = 0; i < priv->num_grps; i++) {
1172 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1173 len_devname);
1174 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1175 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1176 "_g", sizeof("_g"));
1177 priv->gfargrp[i].int_name_tx[
1178 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1179 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1180 priv->gfargrp[i].int_name_tx)],
1181 "_tx", sizeof("_tx") + 1);
1183 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1184 len_devname);
1185 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1186 "_g", sizeof("_g"));
1187 priv->gfargrp[i].int_name_rx[
1188 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1189 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1190 priv->gfargrp[i].int_name_rx)],
1191 "_rx", sizeof("_rx") + 1);
1193 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1194 len_devname);
1195 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1196 "_g", sizeof("_g"));
1197 priv->gfargrp[i].int_name_er[strlen(
1198 priv->gfargrp[i].int_name_er)] = i+48;
1199 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1200 priv->gfargrp[i].int_name_er)],
1201 "_er", sizeof("_er") + 1);
1202 } else
1203 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206 /* Initialize the filer table */
1207 gfar_init_filer_table(priv);
1209 /* Create all the sysfs files */
1210 gfar_init_sysfs(dev);
1212 /* Print out the device info */
1213 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1215 /* Even more device info helps when determining which kernel */
1216 /* provided which set of benchmarks. */
1217 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1218 for (i = 0; i < priv->num_rx_queues; i++)
1219 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1220 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1221 for(i = 0; i < priv->num_tx_queues; i++)
1222 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1223 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1225 return 0;
1227 register_fail:
1228 unmap_group_regs(priv);
1229 free_tx_pointers(priv);
1230 free_rx_pointers(priv);
1231 if (priv->phy_node)
1232 of_node_put(priv->phy_node);
1233 if (priv->tbi_node)
1234 of_node_put(priv->tbi_node);
1235 free_netdev(dev);
1236 return err;
1239 static int gfar_remove(struct platform_device *ofdev)
1241 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1243 if (priv->phy_node)
1244 of_node_put(priv->phy_node);
1245 if (priv->tbi_node)
1246 of_node_put(priv->tbi_node);
1248 dev_set_drvdata(&ofdev->dev, NULL);
1250 unregister_netdev(priv->ndev);
1251 unmap_group_regs(priv);
1252 free_netdev(priv->ndev);
1254 return 0;
1257 #ifdef CONFIG_PM
1259 static int gfar_suspend(struct device *dev)
1261 struct gfar_private *priv = dev_get_drvdata(dev);
1262 struct net_device *ndev = priv->ndev;
1263 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1264 unsigned long flags;
1265 u32 tempval;
1267 int magic_packet = priv->wol_en &&
1268 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1270 netif_device_detach(ndev);
1272 if (netif_running(ndev)) {
1274 local_irq_save(flags);
1275 lock_tx_qs(priv);
1276 lock_rx_qs(priv);
1278 gfar_halt_nodisable(ndev);
1280 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1281 tempval = gfar_read(&regs->maccfg1);
1283 tempval &= ~MACCFG1_TX_EN;
1285 if (!magic_packet)
1286 tempval &= ~MACCFG1_RX_EN;
1288 gfar_write(&regs->maccfg1, tempval);
1290 unlock_rx_qs(priv);
1291 unlock_tx_qs(priv);
1292 local_irq_restore(flags);
1294 disable_napi(priv);
1296 if (magic_packet) {
1297 /* Enable interrupt on Magic Packet */
1298 gfar_write(&regs->imask, IMASK_MAG);
1300 /* Enable Magic Packet mode */
1301 tempval = gfar_read(&regs->maccfg2);
1302 tempval |= MACCFG2_MPEN;
1303 gfar_write(&regs->maccfg2, tempval);
1304 } else {
1305 phy_stop(priv->phydev);
1309 return 0;
1312 static int gfar_resume(struct device *dev)
1314 struct gfar_private *priv = dev_get_drvdata(dev);
1315 struct net_device *ndev = priv->ndev;
1316 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1317 unsigned long flags;
1318 u32 tempval;
1319 int magic_packet = priv->wol_en &&
1320 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1322 if (!netif_running(ndev)) {
1323 netif_device_attach(ndev);
1324 return 0;
1327 if (!magic_packet && priv->phydev)
1328 phy_start(priv->phydev);
1330 /* Disable Magic Packet mode, in case something
1331 * else woke us up.
1333 local_irq_save(flags);
1334 lock_tx_qs(priv);
1335 lock_rx_qs(priv);
1337 tempval = gfar_read(&regs->maccfg2);
1338 tempval &= ~MACCFG2_MPEN;
1339 gfar_write(&regs->maccfg2, tempval);
1341 gfar_start(ndev);
1343 unlock_rx_qs(priv);
1344 unlock_tx_qs(priv);
1345 local_irq_restore(flags);
1347 netif_device_attach(ndev);
1349 enable_napi(priv);
1351 return 0;
1354 static int gfar_restore(struct device *dev)
1356 struct gfar_private *priv = dev_get_drvdata(dev);
1357 struct net_device *ndev = priv->ndev;
1359 if (!netif_running(ndev))
1360 return 0;
1362 gfar_init_bds(ndev);
1363 init_registers(ndev);
1364 gfar_set_mac_address(ndev);
1365 gfar_init_mac(ndev);
1366 gfar_start(ndev);
1368 priv->oldlink = 0;
1369 priv->oldspeed = 0;
1370 priv->oldduplex = -1;
1372 if (priv->phydev)
1373 phy_start(priv->phydev);
1375 netif_device_attach(ndev);
1376 enable_napi(priv);
1378 return 0;
1381 static struct dev_pm_ops gfar_pm_ops = {
1382 .suspend = gfar_suspend,
1383 .resume = gfar_resume,
1384 .freeze = gfar_suspend,
1385 .thaw = gfar_resume,
1386 .restore = gfar_restore,
1389 #define GFAR_PM_OPS (&gfar_pm_ops)
1391 #else
1393 #define GFAR_PM_OPS NULL
1395 #endif
1397 /* Reads the controller's registers to determine what interface
1398 * connects it to the PHY.
1400 static phy_interface_t gfar_get_interface(struct net_device *dev)
1402 struct gfar_private *priv = netdev_priv(dev);
1403 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1404 u32 ecntrl;
1406 ecntrl = gfar_read(&regs->ecntrl);
1408 if (ecntrl & ECNTRL_SGMII_MODE)
1409 return PHY_INTERFACE_MODE_SGMII;
1411 if (ecntrl & ECNTRL_TBI_MODE) {
1412 if (ecntrl & ECNTRL_REDUCED_MODE)
1413 return PHY_INTERFACE_MODE_RTBI;
1414 else
1415 return PHY_INTERFACE_MODE_TBI;
1418 if (ecntrl & ECNTRL_REDUCED_MODE) {
1419 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1420 return PHY_INTERFACE_MODE_RMII;
1421 else {
1422 phy_interface_t interface = priv->interface;
1425 * This isn't autodetected right now, so it must
1426 * be set by the device tree or platform code.
1428 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1429 return PHY_INTERFACE_MODE_RGMII_ID;
1431 return PHY_INTERFACE_MODE_RGMII;
1435 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1436 return PHY_INTERFACE_MODE_GMII;
1438 return PHY_INTERFACE_MODE_MII;
1442 /* Initializes driver's PHY state, and attaches to the PHY.
1443 * Returns 0 on success.
1445 static int init_phy(struct net_device *dev)
1447 struct gfar_private *priv = netdev_priv(dev);
1448 uint gigabit_support =
1449 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1450 SUPPORTED_1000baseT_Full : 0;
1451 phy_interface_t interface;
1453 priv->oldlink = 0;
1454 priv->oldspeed = 0;
1455 priv->oldduplex = -1;
1457 interface = gfar_get_interface(dev);
1459 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1460 interface);
1461 if (!priv->phydev)
1462 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1463 interface);
1464 if (!priv->phydev) {
1465 dev_err(&dev->dev, "could not attach to PHY\n");
1466 return -ENODEV;
1469 if (interface == PHY_INTERFACE_MODE_SGMII)
1470 gfar_configure_serdes(dev);
1472 /* Remove any features not supported by the controller */
1473 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1474 priv->phydev->advertising = priv->phydev->supported;
1476 return 0;
1480 * Initialize TBI PHY interface for communicating with the
1481 * SERDES lynx PHY on the chip. We communicate with this PHY
1482 * through the MDIO bus on each controller, treating it as a
1483 * "normal" PHY at the address found in the TBIPA register. We assume
1484 * that the TBIPA register is valid. Either the MDIO bus code will set
1485 * it to a value that doesn't conflict with other PHYs on the bus, or the
1486 * value doesn't matter, as there are no other PHYs on the bus.
1488 static void gfar_configure_serdes(struct net_device *dev)
1490 struct gfar_private *priv = netdev_priv(dev);
1491 struct phy_device *tbiphy;
1493 if (!priv->tbi_node) {
1494 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1495 "device tree specify a tbi-handle\n");
1496 return;
1499 tbiphy = of_phy_find_device(priv->tbi_node);
1500 if (!tbiphy) {
1501 dev_err(&dev->dev, "error: Could not get TBI device\n");
1502 return;
1506 * If the link is already up, we must already be ok, and don't need to
1507 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1508 * everything for us? Resetting it takes the link down and requires
1509 * several seconds for it to come back.
1511 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1512 return;
1514 /* Single clk mode, mii mode off(for serdes communication) */
1515 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1517 phy_write(tbiphy, MII_ADVERTISE,
1518 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1519 ADVERTISE_1000XPSE_ASYM);
1521 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1522 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525 static void init_registers(struct net_device *dev)
1527 struct gfar_private *priv = netdev_priv(dev);
1528 struct gfar __iomem *regs = NULL;
1529 int i = 0;
1531 for (i = 0; i < priv->num_grps; i++) {
1532 regs = priv->gfargrp[i].regs;
1533 /* Clear IEVENT */
1534 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1536 /* Initialize IMASK */
1537 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540 regs = priv->gfargrp[0].regs;
1541 /* Init hash registers to zero */
1542 gfar_write(&regs->igaddr0, 0);
1543 gfar_write(&regs->igaddr1, 0);
1544 gfar_write(&regs->igaddr2, 0);
1545 gfar_write(&regs->igaddr3, 0);
1546 gfar_write(&regs->igaddr4, 0);
1547 gfar_write(&regs->igaddr5, 0);
1548 gfar_write(&regs->igaddr6, 0);
1549 gfar_write(&regs->igaddr7, 0);
1551 gfar_write(&regs->gaddr0, 0);
1552 gfar_write(&regs->gaddr1, 0);
1553 gfar_write(&regs->gaddr2, 0);
1554 gfar_write(&regs->gaddr3, 0);
1555 gfar_write(&regs->gaddr4, 0);
1556 gfar_write(&regs->gaddr5, 0);
1557 gfar_write(&regs->gaddr6, 0);
1558 gfar_write(&regs->gaddr7, 0);
1560 /* Zero out the rmon mib registers if it has them */
1561 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1562 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1564 /* Mask off the CAM interrupts */
1565 gfar_write(&regs->rmon.cam1, 0xffffffff);
1566 gfar_write(&regs->rmon.cam2, 0xffffffff);
1569 /* Initialize the max receive buffer length */
1570 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1572 /* Initialize the Minimum Frame Length Register */
1573 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576 static int __gfar_is_rx_idle(struct gfar_private *priv)
1578 u32 res;
1581 * Normaly TSEC should not hang on GRS commands, so we should
1582 * actually wait for IEVENT_GRSC flag.
1584 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1585 return 0;
1588 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1589 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1590 * and the Rx can be safely reset.
1592 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1593 res &= 0x7f807f80;
1594 if ((res & 0xffff) == (res >> 16))
1595 return 1;
1597 return 0;
1600 /* Halt the receive and transmit queues */
1601 static void gfar_halt_nodisable(struct net_device *dev)
1603 struct gfar_private *priv = netdev_priv(dev);
1604 struct gfar __iomem *regs = NULL;
1605 u32 tempval;
1606 int i = 0;
1608 for (i = 0; i < priv->num_grps; i++) {
1609 regs = priv->gfargrp[i].regs;
1610 /* Mask all interrupts */
1611 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1613 /* Clear all interrupts */
1614 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617 regs = priv->gfargrp[0].regs;
1618 /* Stop the DMA, and wait for it to stop */
1619 tempval = gfar_read(&regs->dmactrl);
1620 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1621 != (DMACTRL_GRS | DMACTRL_GTS)) {
1622 int ret;
1624 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1625 gfar_write(&regs->dmactrl, tempval);
1627 do {
1628 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1629 (IEVENT_GRSC | IEVENT_GTSC)) ==
1630 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1631 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1632 ret = __gfar_is_rx_idle(priv);
1633 } while (!ret);
1637 /* Halt the receive and transmit queues */
1638 void gfar_halt(struct net_device *dev)
1640 struct gfar_private *priv = netdev_priv(dev);
1641 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1642 u32 tempval;
1644 gfar_halt_nodisable(dev);
1646 /* Disable Rx and Tx */
1647 tempval = gfar_read(&regs->maccfg1);
1648 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1649 gfar_write(&regs->maccfg1, tempval);
1652 static void free_grp_irqs(struct gfar_priv_grp *grp)
1654 free_irq(grp->interruptError, grp);
1655 free_irq(grp->interruptTransmit, grp);
1656 free_irq(grp->interruptReceive, grp);
1659 void stop_gfar(struct net_device *dev)
1661 struct gfar_private *priv = netdev_priv(dev);
1662 unsigned long flags;
1663 int i;
1665 phy_stop(priv->phydev);
1668 /* Lock it down */
1669 local_irq_save(flags);
1670 lock_tx_qs(priv);
1671 lock_rx_qs(priv);
1673 gfar_halt(dev);
1675 unlock_rx_qs(priv);
1676 unlock_tx_qs(priv);
1677 local_irq_restore(flags);
1679 /* Free the IRQs */
1680 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1681 for (i = 0; i < priv->num_grps; i++)
1682 free_grp_irqs(&priv->gfargrp[i]);
1683 } else {
1684 for (i = 0; i < priv->num_grps; i++)
1685 free_irq(priv->gfargrp[i].interruptTransmit,
1686 &priv->gfargrp[i]);
1689 free_skb_resources(priv);
1692 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1694 struct txbd8 *txbdp;
1695 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1696 int i, j;
1698 txbdp = tx_queue->tx_bd_base;
1700 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1701 if (!tx_queue->tx_skbuff[i])
1702 continue;
1704 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1705 txbdp->length, DMA_TO_DEVICE);
1706 txbdp->lstatus = 0;
1707 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1708 j++) {
1709 txbdp++;
1710 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1711 txbdp->length, DMA_TO_DEVICE);
1713 txbdp++;
1714 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1715 tx_queue->tx_skbuff[i] = NULL;
1717 kfree(tx_queue->tx_skbuff);
1720 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1722 struct rxbd8 *rxbdp;
1723 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1724 int i;
1726 rxbdp = rx_queue->rx_bd_base;
1728 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1729 if (rx_queue->rx_skbuff[i]) {
1730 dma_unmap_single(&priv->ofdev->dev,
1731 rxbdp->bufPtr, priv->rx_buffer_size,
1732 DMA_FROM_DEVICE);
1733 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1734 rx_queue->rx_skbuff[i] = NULL;
1736 rxbdp->lstatus = 0;
1737 rxbdp->bufPtr = 0;
1738 rxbdp++;
1740 kfree(rx_queue->rx_skbuff);
1743 /* If there are any tx skbs or rx skbs still around, free them.
1744 * Then free tx_skbuff and rx_skbuff */
1745 static void free_skb_resources(struct gfar_private *priv)
1747 struct gfar_priv_tx_q *tx_queue = NULL;
1748 struct gfar_priv_rx_q *rx_queue = NULL;
1749 int i;
1751 /* Go through all the buffer descriptors and free their data buffers */
1752 for (i = 0; i < priv->num_tx_queues; i++) {
1753 tx_queue = priv->tx_queue[i];
1754 if(tx_queue->tx_skbuff)
1755 free_skb_tx_queue(tx_queue);
1758 for (i = 0; i < priv->num_rx_queues; i++) {
1759 rx_queue = priv->rx_queue[i];
1760 if(rx_queue->rx_skbuff)
1761 free_skb_rx_queue(rx_queue);
1764 dma_free_coherent(&priv->ofdev->dev,
1765 sizeof(struct txbd8) * priv->total_tx_ring_size +
1766 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1767 priv->tx_queue[0]->tx_bd_base,
1768 priv->tx_queue[0]->tx_bd_dma_base);
1769 skb_queue_purge(&priv->rx_recycle);
1772 void gfar_start(struct net_device *dev)
1774 struct gfar_private *priv = netdev_priv(dev);
1775 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1776 u32 tempval;
1777 int i = 0;
1779 /* Enable Rx and Tx in MACCFG1 */
1780 tempval = gfar_read(&regs->maccfg1);
1781 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1782 gfar_write(&regs->maccfg1, tempval);
1784 /* Initialize DMACTRL to have WWR and WOP */
1785 tempval = gfar_read(&regs->dmactrl);
1786 tempval |= DMACTRL_INIT_SETTINGS;
1787 gfar_write(&regs->dmactrl, tempval);
1789 /* Make sure we aren't stopped */
1790 tempval = gfar_read(&regs->dmactrl);
1791 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1792 gfar_write(&regs->dmactrl, tempval);
1794 for (i = 0; i < priv->num_grps; i++) {
1795 regs = priv->gfargrp[i].regs;
1796 /* Clear THLT/RHLT, so that the DMA starts polling now */
1797 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1798 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1799 /* Unmask the interrupts we look for */
1800 gfar_write(&regs->imask, IMASK_DEFAULT);
1803 dev->trans_start = jiffies; /* prevent tx timeout */
1806 void gfar_configure_coalescing(struct gfar_private *priv,
1807 unsigned long tx_mask, unsigned long rx_mask)
1809 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1810 u32 __iomem *baddr;
1811 int i = 0;
1813 /* Backward compatible case ---- even if we enable
1814 * multiple queues, there's only single reg to program
1816 gfar_write(&regs->txic, 0);
1817 if(likely(priv->tx_queue[0]->txcoalescing))
1818 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1820 gfar_write(&regs->rxic, 0);
1821 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1822 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1824 if (priv->mode == MQ_MG_MODE) {
1825 baddr = &regs->txic0;
1826 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1827 if (likely(priv->tx_queue[i]->txcoalescing)) {
1828 gfar_write(baddr + i, 0);
1829 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1833 baddr = &regs->rxic0;
1834 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1835 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1836 gfar_write(baddr + i, 0);
1837 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1843 static int register_grp_irqs(struct gfar_priv_grp *grp)
1845 struct gfar_private *priv = grp->priv;
1846 struct net_device *dev = priv->ndev;
1847 int err;
1849 /* If the device has multiple interrupts, register for
1850 * them. Otherwise, only register for the one */
1851 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1852 /* Install our interrupt handlers for Error,
1853 * Transmit, and Receive */
1854 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1855 grp->int_name_er,grp)) < 0) {
1856 if (netif_msg_intr(priv))
1857 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1858 dev->name, grp->interruptError);
1860 goto err_irq_fail;
1863 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1864 0, grp->int_name_tx, grp)) < 0) {
1865 if (netif_msg_intr(priv))
1866 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1867 dev->name, grp->interruptTransmit);
1868 goto tx_irq_fail;
1871 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1872 grp->int_name_rx, grp)) < 0) {
1873 if (netif_msg_intr(priv))
1874 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1875 dev->name, grp->interruptReceive);
1876 goto rx_irq_fail;
1878 } else {
1879 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1880 grp->int_name_tx, grp)) < 0) {
1881 if (netif_msg_intr(priv))
1882 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1883 dev->name, grp->interruptTransmit);
1884 goto err_irq_fail;
1888 return 0;
1890 rx_irq_fail:
1891 free_irq(grp->interruptTransmit, grp);
1892 tx_irq_fail:
1893 free_irq(grp->interruptError, grp);
1894 err_irq_fail:
1895 return err;
1899 /* Bring the controller up and running */
1900 int startup_gfar(struct net_device *ndev)
1902 struct gfar_private *priv = netdev_priv(ndev);
1903 struct gfar __iomem *regs = NULL;
1904 int err, i, j;
1906 for (i = 0; i < priv->num_grps; i++) {
1907 regs= priv->gfargrp[i].regs;
1908 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1911 regs= priv->gfargrp[0].regs;
1912 err = gfar_alloc_skb_resources(ndev);
1913 if (err)
1914 return err;
1916 gfar_init_mac(ndev);
1918 for (i = 0; i < priv->num_grps; i++) {
1919 err = register_grp_irqs(&priv->gfargrp[i]);
1920 if (err) {
1921 for (j = 0; j < i; j++)
1922 free_grp_irqs(&priv->gfargrp[j]);
1923 goto irq_fail;
1927 /* Start the controller */
1928 gfar_start(ndev);
1930 phy_start(priv->phydev);
1932 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934 return 0;
1936 irq_fail:
1937 free_skb_resources(priv);
1938 return err;
1941 /* Called when something needs to use the ethernet device */
1942 /* Returns 0 for success. */
1943 static int gfar_enet_open(struct net_device *dev)
1945 struct gfar_private *priv = netdev_priv(dev);
1946 int err;
1948 enable_napi(priv);
1950 skb_queue_head_init(&priv->rx_recycle);
1952 /* Initialize a bunch of registers */
1953 init_registers(dev);
1955 gfar_set_mac_address(dev);
1957 err = init_phy(dev);
1959 if (err) {
1960 disable_napi(priv);
1961 return err;
1964 err = startup_gfar(dev);
1965 if (err) {
1966 disable_napi(priv);
1967 return err;
1970 netif_tx_start_all_queues(dev);
1972 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974 return err;
1977 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981 memset(fcb, 0, GMAC_FCB_LEN);
1983 return fcb;
1986 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1988 u8 flags = 0;
1990 /* If we're here, it's a IP packet with a TCP or UDP
1991 * payload. We set it to checksum, using a pseudo-header
1992 * we provide
1994 flags = TXFCB_DEFAULT;
1996 /* Tell the controller what the protocol is */
1997 /* And provide the already calculated phcs */
1998 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1999 flags |= TXFCB_UDP;
2000 fcb->phcs = udp_hdr(skb)->check;
2001 } else
2002 fcb->phcs = tcp_hdr(skb)->check;
2004 /* l3os is the distance between the start of the
2005 * frame (skb->data) and the start of the IP hdr.
2006 * l4os is the distance between the start of the
2007 * l3 hdr and the l4 hdr */
2008 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2009 fcb->l4os = skb_network_header_len(skb);
2011 fcb->flags = flags;
2014 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2016 fcb->flags |= TXFCB_VLN;
2017 fcb->vlctl = vlan_tx_tag_get(skb);
2020 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2021 struct txbd8 *base, int ring_size)
2023 struct txbd8 *new_bd = bdp + stride;
2025 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2029 int ring_size)
2031 return skip_txbd(bdp, 1, base, ring_size);
2034 /* This is called by the kernel when a frame is ready for transmission. */
2035 /* It is pointed to by the dev->hard_start_xmit function pointer */
2036 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038 struct gfar_private *priv = netdev_priv(dev);
2039 struct gfar_priv_tx_q *tx_queue = NULL;
2040 struct netdev_queue *txq;
2041 struct gfar __iomem *regs = NULL;
2042 struct txfcb *fcb = NULL;
2043 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2044 u32 lstatus;
2045 int i, rq = 0, do_tstamp = 0;
2046 u32 bufaddr;
2047 unsigned long flags;
2048 unsigned int nr_frags, nr_txbds, length;
2051 * TOE=1 frames larger than 2500 bytes may see excess delays
2052 * before start of transmission.
2054 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2055 skb->ip_summed == CHECKSUM_PARTIAL &&
2056 skb->len > 2500)) {
2057 int ret;
2059 ret = skb_checksum_help(skb);
2060 if (ret)
2061 return ret;
2064 rq = skb->queue_mapping;
2065 tx_queue = priv->tx_queue[rq];
2066 txq = netdev_get_tx_queue(dev, rq);
2067 base = tx_queue->tx_bd_base;
2068 regs = tx_queue->grp->regs;
2070 /* check if time stamp should be generated */
2071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2072 priv->hwts_tx_en))
2073 do_tstamp = 1;
2075 /* make space for additional header when fcb is needed */
2076 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2077 vlan_tx_tag_present(skb) ||
2078 unlikely(do_tstamp)) &&
2079 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2080 struct sk_buff *skb_new;
2082 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2083 if (!skb_new) {
2084 dev->stats.tx_errors++;
2085 kfree_skb(skb);
2086 return NETDEV_TX_OK;
2088 kfree_skb(skb);
2089 skb = skb_new;
2092 /* total number of fragments in the SKB */
2093 nr_frags = skb_shinfo(skb)->nr_frags;
2095 /* calculate the required number of TxBDs for this skb */
2096 if (unlikely(do_tstamp))
2097 nr_txbds = nr_frags + 2;
2098 else
2099 nr_txbds = nr_frags + 1;
2101 /* check if there is space to queue this packet */
2102 if (nr_txbds > tx_queue->num_txbdfree) {
2103 /* no space, stop the queue */
2104 netif_tx_stop_queue(txq);
2105 dev->stats.tx_fifo_errors++;
2106 return NETDEV_TX_BUSY;
2109 /* Update transmit stats */
2110 tx_queue->stats.tx_bytes += skb->len;
2111 tx_queue->stats.tx_packets++;
2113 txbdp = txbdp_start = tx_queue->cur_tx;
2114 lstatus = txbdp->lstatus;
2116 /* Time stamp insertion requires one additional TxBD */
2117 if (unlikely(do_tstamp))
2118 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2119 tx_queue->tx_ring_size);
2121 if (nr_frags == 0) {
2122 if (unlikely(do_tstamp))
2123 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2124 TXBD_INTERRUPT);
2125 else
2126 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2127 } else {
2128 /* Place the fragment addresses and lengths into the TxBDs */
2129 for (i = 0; i < nr_frags; i++) {
2130 /* Point at the next BD, wrapping as needed */
2131 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2133 length = skb_shinfo(skb)->frags[i].size;
2135 lstatus = txbdp->lstatus | length |
2136 BD_LFLAG(TXBD_READY);
2138 /* Handle the last BD specially */
2139 if (i == nr_frags - 1)
2140 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2142 bufaddr = dma_map_page(&priv->ofdev->dev,
2143 skb_shinfo(skb)->frags[i].page,
2144 skb_shinfo(skb)->frags[i].page_offset,
2145 length,
2146 DMA_TO_DEVICE);
2148 /* set the TxBD length and buffer pointer */
2149 txbdp->bufPtr = bufaddr;
2150 txbdp->lstatus = lstatus;
2153 lstatus = txbdp_start->lstatus;
2156 /* Set up checksumming */
2157 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2158 fcb = gfar_add_fcb(skb);
2159 lstatus |= BD_LFLAG(TXBD_TOE);
2160 gfar_tx_checksum(skb, fcb);
2163 if (vlan_tx_tag_present(skb)) {
2164 if (unlikely(NULL == fcb)) {
2165 fcb = gfar_add_fcb(skb);
2166 lstatus |= BD_LFLAG(TXBD_TOE);
2169 gfar_tx_vlan(skb, fcb);
2172 /* Setup tx hardware time stamping if requested */
2173 if (unlikely(do_tstamp)) {
2174 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2175 if (fcb == NULL)
2176 fcb = gfar_add_fcb(skb);
2177 fcb->ptp = 1;
2178 lstatus |= BD_LFLAG(TXBD_TOE);
2181 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2182 skb_headlen(skb), DMA_TO_DEVICE);
2185 * If time stamping is requested one additional TxBD must be set up. The
2186 * first TxBD points to the FCB and must have a data length of
2187 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2188 * the full frame length.
2190 if (unlikely(do_tstamp)) {
2191 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2192 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2193 (skb_headlen(skb) - GMAC_FCB_LEN);
2194 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2195 } else {
2196 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2200 * We can work in parallel with gfar_clean_tx_ring(), except
2201 * when modifying num_txbdfree. Note that we didn't grab the lock
2202 * when we were reading the num_txbdfree and checking for available
2203 * space, that's because outside of this function it can only grow,
2204 * and once we've got needed space, it cannot suddenly disappear.
2206 * The lock also protects us from gfar_error(), which can modify
2207 * regs->tstat and thus retrigger the transfers, which is why we
2208 * also must grab the lock before setting ready bit for the first
2209 * to be transmitted BD.
2211 spin_lock_irqsave(&tx_queue->txlock, flags);
2214 * The powerpc-specific eieio() is used, as wmb() has too strong
2215 * semantics (it requires synchronization between cacheable and
2216 * uncacheable mappings, which eieio doesn't provide and which we
2217 * don't need), thus requiring a more expensive sync instruction. At
2218 * some point, the set of architecture-independent barrier functions
2219 * should be expanded to include weaker barriers.
2221 eieio();
2223 txbdp_start->lstatus = lstatus;
2225 eieio(); /* force lstatus write before tx_skbuff */
2227 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2229 /* Update the current skb pointer to the next entry we will use
2230 * (wrapping if necessary) */
2231 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2232 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2234 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2236 /* reduce TxBD free count */
2237 tx_queue->num_txbdfree -= (nr_txbds);
2239 /* If the next BD still needs to be cleaned up, then the bds
2240 are full. We need to tell the kernel to stop sending us stuff. */
2241 if (!tx_queue->num_txbdfree) {
2242 netif_tx_stop_queue(txq);
2244 dev->stats.tx_fifo_errors++;
2247 /* Tell the DMA to go go go */
2248 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2250 /* Unlock priv */
2251 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2253 return NETDEV_TX_OK;
2256 /* Stops the kernel queue, and halts the controller */
2257 static int gfar_close(struct net_device *dev)
2259 struct gfar_private *priv = netdev_priv(dev);
2261 disable_napi(priv);
2263 cancel_work_sync(&priv->reset_task);
2264 stop_gfar(dev);
2266 /* Disconnect from the PHY */
2267 phy_disconnect(priv->phydev);
2268 priv->phydev = NULL;
2270 netif_tx_stop_all_queues(dev);
2272 return 0;
2275 /* Changes the mac address if the controller is not running. */
2276 static int gfar_set_mac_address(struct net_device *dev)
2278 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2280 return 0;
2284 /* Enables and disables VLAN insertion/extraction */
2285 static void gfar_vlan_rx_register(struct net_device *dev,
2286 struct vlan_group *grp)
2288 struct gfar_private *priv = netdev_priv(dev);
2289 struct gfar __iomem *regs = NULL;
2290 unsigned long flags;
2291 u32 tempval;
2293 regs = priv->gfargrp[0].regs;
2294 local_irq_save(flags);
2295 lock_rx_qs(priv);
2297 priv->vlgrp = grp;
2299 if (grp) {
2300 /* Enable VLAN tag insertion */
2301 tempval = gfar_read(&regs->tctrl);
2302 tempval |= TCTRL_VLINS;
2304 gfar_write(&regs->tctrl, tempval);
2306 /* Enable VLAN tag extraction */
2307 tempval = gfar_read(&regs->rctrl);
2308 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2309 gfar_write(&regs->rctrl, tempval);
2310 } else {
2311 /* Disable VLAN tag insertion */
2312 tempval = gfar_read(&regs->tctrl);
2313 tempval &= ~TCTRL_VLINS;
2314 gfar_write(&regs->tctrl, tempval);
2316 /* Disable VLAN tag extraction */
2317 tempval = gfar_read(&regs->rctrl);
2318 tempval &= ~RCTRL_VLEX;
2319 /* If parse is no longer required, then disable parser */
2320 if (tempval & RCTRL_REQ_PARSER)
2321 tempval |= RCTRL_PRSDEP_INIT;
2322 else
2323 tempval &= ~RCTRL_PRSDEP_INIT;
2324 gfar_write(&regs->rctrl, tempval);
2327 gfar_change_mtu(dev, dev->mtu);
2329 unlock_rx_qs(priv);
2330 local_irq_restore(flags);
2333 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2335 int tempsize, tempval;
2336 struct gfar_private *priv = netdev_priv(dev);
2337 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2338 int oldsize = priv->rx_buffer_size;
2339 int frame_size = new_mtu + ETH_HLEN;
2341 if (priv->vlgrp)
2342 frame_size += VLAN_HLEN;
2344 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2345 if (netif_msg_drv(priv))
2346 printk(KERN_ERR "%s: Invalid MTU setting\n",
2347 dev->name);
2348 return -EINVAL;
2351 if (gfar_uses_fcb(priv))
2352 frame_size += GMAC_FCB_LEN;
2354 frame_size += priv->padding;
2356 tempsize =
2357 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2358 INCREMENTAL_BUFFER_SIZE;
2360 /* Only stop and start the controller if it isn't already
2361 * stopped, and we changed something */
2362 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2363 stop_gfar(dev);
2365 priv->rx_buffer_size = tempsize;
2367 dev->mtu = new_mtu;
2369 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2370 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2372 /* If the mtu is larger than the max size for standard
2373 * ethernet frames (ie, a jumbo frame), then set maccfg2
2374 * to allow huge frames, and to check the length */
2375 tempval = gfar_read(&regs->maccfg2);
2377 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2378 gfar_has_errata(priv, GFAR_ERRATA_74))
2379 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2380 else
2381 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2383 gfar_write(&regs->maccfg2, tempval);
2385 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2386 startup_gfar(dev);
2388 return 0;
2391 /* gfar_reset_task gets scheduled when a packet has not been
2392 * transmitted after a set amount of time.
2393 * For now, assume that clearing out all the structures, and
2394 * starting over will fix the problem.
2396 static void gfar_reset_task(struct work_struct *work)
2398 struct gfar_private *priv = container_of(work, struct gfar_private,
2399 reset_task);
2400 struct net_device *dev = priv->ndev;
2402 if (dev->flags & IFF_UP) {
2403 netif_tx_stop_all_queues(dev);
2404 stop_gfar(dev);
2405 startup_gfar(dev);
2406 netif_tx_start_all_queues(dev);
2409 netif_tx_schedule_all(dev);
2412 static void gfar_timeout(struct net_device *dev)
2414 struct gfar_private *priv = netdev_priv(dev);
2416 dev->stats.tx_errors++;
2417 schedule_work(&priv->reset_task);
2420 static void gfar_align_skb(struct sk_buff *skb)
2422 /* We need the data buffer to be aligned properly. We will reserve
2423 * as many bytes as needed to align the data properly
2425 skb_reserve(skb, RXBUF_ALIGNMENT -
2426 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2429 /* Interrupt Handler for Transmit complete */
2430 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2432 struct net_device *dev = tx_queue->dev;
2433 struct gfar_private *priv = netdev_priv(dev);
2434 struct gfar_priv_rx_q *rx_queue = NULL;
2435 struct txbd8 *bdp, *next = NULL;
2436 struct txbd8 *lbdp = NULL;
2437 struct txbd8 *base = tx_queue->tx_bd_base;
2438 struct sk_buff *skb;
2439 int skb_dirtytx;
2440 int tx_ring_size = tx_queue->tx_ring_size;
2441 int frags = 0, nr_txbds = 0;
2442 int i;
2443 int howmany = 0;
2444 u32 lstatus;
2445 size_t buflen;
2447 rx_queue = priv->rx_queue[tx_queue->qindex];
2448 bdp = tx_queue->dirty_tx;
2449 skb_dirtytx = tx_queue->skb_dirtytx;
2451 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2452 unsigned long flags;
2454 frags = skb_shinfo(skb)->nr_frags;
2457 * When time stamping, one additional TxBD must be freed.
2458 * Also, we need to dma_unmap_single() the TxPAL.
2460 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2461 nr_txbds = frags + 2;
2462 else
2463 nr_txbds = frags + 1;
2465 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2467 lstatus = lbdp->lstatus;
2469 /* Only clean completed frames */
2470 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2471 (lstatus & BD_LENGTH_MASK))
2472 break;
2474 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2475 next = next_txbd(bdp, base, tx_ring_size);
2476 buflen = next->length + GMAC_FCB_LEN;
2477 } else
2478 buflen = bdp->length;
2480 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2481 buflen, DMA_TO_DEVICE);
2483 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2484 struct skb_shared_hwtstamps shhwtstamps;
2485 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2486 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2487 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2488 skb_tstamp_tx(skb, &shhwtstamps);
2489 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2490 bdp = next;
2493 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2494 bdp = next_txbd(bdp, base, tx_ring_size);
2496 for (i = 0; i < frags; i++) {
2497 dma_unmap_page(&priv->ofdev->dev,
2498 bdp->bufPtr,
2499 bdp->length,
2500 DMA_TO_DEVICE);
2501 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502 bdp = next_txbd(bdp, base, tx_ring_size);
2506 * If there's room in the queue (limit it to rx_buffer_size)
2507 * we add this skb back into the pool, if it's the right size
2509 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2510 skb_recycle_check(skb, priv->rx_buffer_size +
2511 RXBUF_ALIGNMENT)) {
2512 gfar_align_skb(skb);
2513 skb_queue_head(&priv->rx_recycle, skb);
2514 } else
2515 dev_kfree_skb_any(skb);
2517 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2519 skb_dirtytx = (skb_dirtytx + 1) &
2520 TX_RING_MOD_MASK(tx_ring_size);
2522 howmany++;
2523 spin_lock_irqsave(&tx_queue->txlock, flags);
2524 tx_queue->num_txbdfree += nr_txbds;
2525 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2528 /* If we freed a buffer, we can restart transmission, if necessary */
2529 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2530 netif_wake_subqueue(dev, tx_queue->qindex);
2532 /* Update dirty indicators */
2533 tx_queue->skb_dirtytx = skb_dirtytx;
2534 tx_queue->dirty_tx = bdp;
2536 return howmany;
2539 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2541 unsigned long flags;
2543 spin_lock_irqsave(&gfargrp->grplock, flags);
2544 if (napi_schedule_prep(&gfargrp->napi)) {
2545 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2546 __napi_schedule(&gfargrp->napi);
2547 } else {
2549 * Clear IEVENT, so interrupts aren't called again
2550 * because of the packets that have already arrived.
2552 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2554 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2558 /* Interrupt Handler for Transmit complete */
2559 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2561 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2562 return IRQ_HANDLED;
2565 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2566 struct sk_buff *skb)
2568 struct net_device *dev = rx_queue->dev;
2569 struct gfar_private *priv = netdev_priv(dev);
2570 dma_addr_t buf;
2572 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2573 priv->rx_buffer_size, DMA_FROM_DEVICE);
2574 gfar_init_rxbdp(rx_queue, bdp, buf);
2577 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2579 struct gfar_private *priv = netdev_priv(dev);
2580 struct sk_buff *skb = NULL;
2582 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2583 if (!skb)
2584 return NULL;
2586 gfar_align_skb(skb);
2588 return skb;
2591 struct sk_buff * gfar_new_skb(struct net_device *dev)
2593 struct gfar_private *priv = netdev_priv(dev);
2594 struct sk_buff *skb = NULL;
2596 skb = skb_dequeue(&priv->rx_recycle);
2597 if (!skb)
2598 skb = gfar_alloc_skb(dev);
2600 return skb;
2603 static inline void count_errors(unsigned short status, struct net_device *dev)
2605 struct gfar_private *priv = netdev_priv(dev);
2606 struct net_device_stats *stats = &dev->stats;
2607 struct gfar_extra_stats *estats = &priv->extra_stats;
2609 /* If the packet was truncated, none of the other errors
2610 * matter */
2611 if (status & RXBD_TRUNCATED) {
2612 stats->rx_length_errors++;
2614 estats->rx_trunc++;
2616 return;
2618 /* Count the errors, if there were any */
2619 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2620 stats->rx_length_errors++;
2622 if (status & RXBD_LARGE)
2623 estats->rx_large++;
2624 else
2625 estats->rx_short++;
2627 if (status & RXBD_NONOCTET) {
2628 stats->rx_frame_errors++;
2629 estats->rx_nonoctet++;
2631 if (status & RXBD_CRCERR) {
2632 estats->rx_crcerr++;
2633 stats->rx_crc_errors++;
2635 if (status & RXBD_OVERRUN) {
2636 estats->rx_overrun++;
2637 stats->rx_crc_errors++;
2641 irqreturn_t gfar_receive(int irq, void *grp_id)
2643 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2644 return IRQ_HANDLED;
2647 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2649 /* If valid headers were found, and valid sums
2650 * were verified, then we tell the kernel that no
2651 * checksumming is necessary. Otherwise, it is */
2652 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2653 skb->ip_summed = CHECKSUM_UNNECESSARY;
2654 else
2655 skb_checksum_none_assert(skb);
2659 /* gfar_process_frame() -- handle one incoming packet if skb
2660 * isn't NULL. */
2661 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2662 int amount_pull)
2664 struct gfar_private *priv = netdev_priv(dev);
2665 struct rxfcb *fcb = NULL;
2667 int ret;
2669 /* fcb is at the beginning if exists */
2670 fcb = (struct rxfcb *)skb->data;
2672 /* Remove the FCB from the skb */
2673 /* Remove the padded bytes, if there are any */
2674 if (amount_pull) {
2675 skb_record_rx_queue(skb, fcb->rq);
2676 skb_pull(skb, amount_pull);
2679 /* Get receive timestamp from the skb */
2680 if (priv->hwts_rx_en) {
2681 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2682 u64 *ns = (u64 *) skb->data;
2683 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2684 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2687 if (priv->padding)
2688 skb_pull(skb, priv->padding);
2690 if (priv->rx_csum_enable)
2691 gfar_rx_checksum(skb, fcb);
2693 /* Tell the skb what kind of packet this is */
2694 skb->protocol = eth_type_trans(skb, dev);
2696 /* Send the packet up the stack */
2697 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2698 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2699 else
2700 ret = netif_receive_skb(skb);
2702 if (NET_RX_DROP == ret)
2703 priv->extra_stats.kernel_dropped++;
2705 return 0;
2708 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2709 * until the budget/quota has been reached. Returns the number
2710 * of frames handled
2712 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2714 struct net_device *dev = rx_queue->dev;
2715 struct rxbd8 *bdp, *base;
2716 struct sk_buff *skb;
2717 int pkt_len;
2718 int amount_pull;
2719 int howmany = 0;
2720 struct gfar_private *priv = netdev_priv(dev);
2722 /* Get the first full descriptor */
2723 bdp = rx_queue->cur_rx;
2724 base = rx_queue->rx_bd_base;
2726 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2728 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2729 struct sk_buff *newskb;
2730 rmb();
2732 /* Add another skb for the future */
2733 newskb = gfar_new_skb(dev);
2735 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2737 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2738 priv->rx_buffer_size, DMA_FROM_DEVICE);
2740 if (unlikely(!(bdp->status & RXBD_ERR) &&
2741 bdp->length > priv->rx_buffer_size))
2742 bdp->status = RXBD_LARGE;
2744 /* We drop the frame if we failed to allocate a new buffer */
2745 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2746 bdp->status & RXBD_ERR)) {
2747 count_errors(bdp->status, dev);
2749 if (unlikely(!newskb))
2750 newskb = skb;
2751 else if (skb)
2752 skb_queue_head(&priv->rx_recycle, skb);
2753 } else {
2754 /* Increment the number of packets */
2755 rx_queue->stats.rx_packets++;
2756 howmany++;
2758 if (likely(skb)) {
2759 pkt_len = bdp->length - ETH_FCS_LEN;
2760 /* Remove the FCS from the packet length */
2761 skb_put(skb, pkt_len);
2762 rx_queue->stats.rx_bytes += pkt_len;
2763 skb_record_rx_queue(skb, rx_queue->qindex);
2764 gfar_process_frame(dev, skb, amount_pull);
2766 } else {
2767 if (netif_msg_rx_err(priv))
2768 printk(KERN_WARNING
2769 "%s: Missing skb!\n", dev->name);
2770 rx_queue->stats.rx_dropped++;
2771 priv->extra_stats.rx_skbmissing++;
2776 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2778 /* Setup the new bdp */
2779 gfar_new_rxbdp(rx_queue, bdp, newskb);
2781 /* Update to the next pointer */
2782 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2784 /* update to point at the next skb */
2785 rx_queue->skb_currx =
2786 (rx_queue->skb_currx + 1) &
2787 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2790 /* Update the current rxbd pointer to be the next one */
2791 rx_queue->cur_rx = bdp;
2793 return howmany;
2796 static int gfar_poll(struct napi_struct *napi, int budget)
2798 struct gfar_priv_grp *gfargrp = container_of(napi,
2799 struct gfar_priv_grp, napi);
2800 struct gfar_private *priv = gfargrp->priv;
2801 struct gfar __iomem *regs = gfargrp->regs;
2802 struct gfar_priv_tx_q *tx_queue = NULL;
2803 struct gfar_priv_rx_q *rx_queue = NULL;
2804 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2805 int tx_cleaned = 0, i, left_over_budget = budget;
2806 unsigned long serviced_queues = 0;
2807 int num_queues = 0;
2809 num_queues = gfargrp->num_rx_queues;
2810 budget_per_queue = budget/num_queues;
2812 /* Clear IEVENT, so interrupts aren't called again
2813 * because of the packets that have already arrived */
2814 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2816 while (num_queues && left_over_budget) {
2818 budget_per_queue = left_over_budget/num_queues;
2819 left_over_budget = 0;
2821 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2822 if (test_bit(i, &serviced_queues))
2823 continue;
2824 rx_queue = priv->rx_queue[i];
2825 tx_queue = priv->tx_queue[rx_queue->qindex];
2827 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2828 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2829 budget_per_queue);
2830 rx_cleaned += rx_cleaned_per_queue;
2831 if(rx_cleaned_per_queue < budget_per_queue) {
2832 left_over_budget = left_over_budget +
2833 (budget_per_queue - rx_cleaned_per_queue);
2834 set_bit(i, &serviced_queues);
2835 num_queues--;
2840 if (tx_cleaned)
2841 return budget;
2843 if (rx_cleaned < budget) {
2844 napi_complete(napi);
2846 /* Clear the halt bit in RSTAT */
2847 gfar_write(&regs->rstat, gfargrp->rstat);
2849 gfar_write(&regs->imask, IMASK_DEFAULT);
2851 /* If we are coalescing interrupts, update the timer */
2852 /* Otherwise, clear it */
2853 gfar_configure_coalescing(priv,
2854 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2857 return rx_cleaned;
2860 #ifdef CONFIG_NET_POLL_CONTROLLER
2862 * Polling 'interrupt' - used by things like netconsole to send skbs
2863 * without having to re-enable interrupts. It's not called while
2864 * the interrupt routine is executing.
2866 static void gfar_netpoll(struct net_device *dev)
2868 struct gfar_private *priv = netdev_priv(dev);
2869 int i = 0;
2871 /* If the device has multiple interrupts, run tx/rx */
2872 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2873 for (i = 0; i < priv->num_grps; i++) {
2874 disable_irq(priv->gfargrp[i].interruptTransmit);
2875 disable_irq(priv->gfargrp[i].interruptReceive);
2876 disable_irq(priv->gfargrp[i].interruptError);
2877 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2878 &priv->gfargrp[i]);
2879 enable_irq(priv->gfargrp[i].interruptError);
2880 enable_irq(priv->gfargrp[i].interruptReceive);
2881 enable_irq(priv->gfargrp[i].interruptTransmit);
2883 } else {
2884 for (i = 0; i < priv->num_grps; i++) {
2885 disable_irq(priv->gfargrp[i].interruptTransmit);
2886 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2887 &priv->gfargrp[i]);
2888 enable_irq(priv->gfargrp[i].interruptTransmit);
2892 #endif
2894 /* The interrupt handler for devices with one interrupt */
2895 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2897 struct gfar_priv_grp *gfargrp = grp_id;
2899 /* Save ievent for future reference */
2900 u32 events = gfar_read(&gfargrp->regs->ievent);
2902 /* Check for reception */
2903 if (events & IEVENT_RX_MASK)
2904 gfar_receive(irq, grp_id);
2906 /* Check for transmit completion */
2907 if (events & IEVENT_TX_MASK)
2908 gfar_transmit(irq, grp_id);
2910 /* Check for errors */
2911 if (events & IEVENT_ERR_MASK)
2912 gfar_error(irq, grp_id);
2914 return IRQ_HANDLED;
2917 /* Called every time the controller might need to be made
2918 * aware of new link state. The PHY code conveys this
2919 * information through variables in the phydev structure, and this
2920 * function converts those variables into the appropriate
2921 * register values, and can bring down the device if needed.
2923 static void adjust_link(struct net_device *dev)
2925 struct gfar_private *priv = netdev_priv(dev);
2926 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2927 unsigned long flags;
2928 struct phy_device *phydev = priv->phydev;
2929 int new_state = 0;
2931 local_irq_save(flags);
2932 lock_tx_qs(priv);
2934 if (phydev->link) {
2935 u32 tempval = gfar_read(&regs->maccfg2);
2936 u32 ecntrl = gfar_read(&regs->ecntrl);
2938 /* Now we make sure that we can be in full duplex mode.
2939 * If not, we operate in half-duplex mode. */
2940 if (phydev->duplex != priv->oldduplex) {
2941 new_state = 1;
2942 if (!(phydev->duplex))
2943 tempval &= ~(MACCFG2_FULL_DUPLEX);
2944 else
2945 tempval |= MACCFG2_FULL_DUPLEX;
2947 priv->oldduplex = phydev->duplex;
2950 if (phydev->speed != priv->oldspeed) {
2951 new_state = 1;
2952 switch (phydev->speed) {
2953 case 1000:
2954 tempval =
2955 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2957 ecntrl &= ~(ECNTRL_R100);
2958 break;
2959 case 100:
2960 case 10:
2961 tempval =
2962 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2964 /* Reduced mode distinguishes
2965 * between 10 and 100 */
2966 if (phydev->speed == SPEED_100)
2967 ecntrl |= ECNTRL_R100;
2968 else
2969 ecntrl &= ~(ECNTRL_R100);
2970 break;
2971 default:
2972 if (netif_msg_link(priv))
2973 printk(KERN_WARNING
2974 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2975 dev->name, phydev->speed);
2976 break;
2979 priv->oldspeed = phydev->speed;
2982 gfar_write(&regs->maccfg2, tempval);
2983 gfar_write(&regs->ecntrl, ecntrl);
2985 if (!priv->oldlink) {
2986 new_state = 1;
2987 priv->oldlink = 1;
2989 } else if (priv->oldlink) {
2990 new_state = 1;
2991 priv->oldlink = 0;
2992 priv->oldspeed = 0;
2993 priv->oldduplex = -1;
2996 if (new_state && netif_msg_link(priv))
2997 phy_print_status(phydev);
2998 unlock_tx_qs(priv);
2999 local_irq_restore(flags);
3002 /* Update the hash table based on the current list of multicast
3003 * addresses we subscribe to. Also, change the promiscuity of
3004 * the device based on the flags (this function is called
3005 * whenever dev->flags is changed */
3006 static void gfar_set_multi(struct net_device *dev)
3008 struct netdev_hw_addr *ha;
3009 struct gfar_private *priv = netdev_priv(dev);
3010 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3011 u32 tempval;
3013 if (dev->flags & IFF_PROMISC) {
3014 /* Set RCTRL to PROM */
3015 tempval = gfar_read(&regs->rctrl);
3016 tempval |= RCTRL_PROM;
3017 gfar_write(&regs->rctrl, tempval);
3018 } else {
3019 /* Set RCTRL to not PROM */
3020 tempval = gfar_read(&regs->rctrl);
3021 tempval &= ~(RCTRL_PROM);
3022 gfar_write(&regs->rctrl, tempval);
3025 if (dev->flags & IFF_ALLMULTI) {
3026 /* Set the hash to rx all multicast frames */
3027 gfar_write(&regs->igaddr0, 0xffffffff);
3028 gfar_write(&regs->igaddr1, 0xffffffff);
3029 gfar_write(&regs->igaddr2, 0xffffffff);
3030 gfar_write(&regs->igaddr3, 0xffffffff);
3031 gfar_write(&regs->igaddr4, 0xffffffff);
3032 gfar_write(&regs->igaddr5, 0xffffffff);
3033 gfar_write(&regs->igaddr6, 0xffffffff);
3034 gfar_write(&regs->igaddr7, 0xffffffff);
3035 gfar_write(&regs->gaddr0, 0xffffffff);
3036 gfar_write(&regs->gaddr1, 0xffffffff);
3037 gfar_write(&regs->gaddr2, 0xffffffff);
3038 gfar_write(&regs->gaddr3, 0xffffffff);
3039 gfar_write(&regs->gaddr4, 0xffffffff);
3040 gfar_write(&regs->gaddr5, 0xffffffff);
3041 gfar_write(&regs->gaddr6, 0xffffffff);
3042 gfar_write(&regs->gaddr7, 0xffffffff);
3043 } else {
3044 int em_num;
3045 int idx;
3047 /* zero out the hash */
3048 gfar_write(&regs->igaddr0, 0x0);
3049 gfar_write(&regs->igaddr1, 0x0);
3050 gfar_write(&regs->igaddr2, 0x0);
3051 gfar_write(&regs->igaddr3, 0x0);
3052 gfar_write(&regs->igaddr4, 0x0);
3053 gfar_write(&regs->igaddr5, 0x0);
3054 gfar_write(&regs->igaddr6, 0x0);
3055 gfar_write(&regs->igaddr7, 0x0);
3056 gfar_write(&regs->gaddr0, 0x0);
3057 gfar_write(&regs->gaddr1, 0x0);
3058 gfar_write(&regs->gaddr2, 0x0);
3059 gfar_write(&regs->gaddr3, 0x0);
3060 gfar_write(&regs->gaddr4, 0x0);
3061 gfar_write(&regs->gaddr5, 0x0);
3062 gfar_write(&regs->gaddr6, 0x0);
3063 gfar_write(&regs->gaddr7, 0x0);
3065 /* If we have extended hash tables, we need to
3066 * clear the exact match registers to prepare for
3067 * setting them */
3068 if (priv->extended_hash) {
3069 em_num = GFAR_EM_NUM + 1;
3070 gfar_clear_exact_match(dev);
3071 idx = 1;
3072 } else {
3073 idx = 0;
3074 em_num = 0;
3077 if (netdev_mc_empty(dev))
3078 return;
3080 /* Parse the list, and set the appropriate bits */
3081 netdev_for_each_mc_addr(ha, dev) {
3082 if (idx < em_num) {
3083 gfar_set_mac_for_addr(dev, idx, ha->addr);
3084 idx++;
3085 } else
3086 gfar_set_hash_for_addr(dev, ha->addr);
3092 /* Clears each of the exact match registers to zero, so they
3093 * don't interfere with normal reception */
3094 static void gfar_clear_exact_match(struct net_device *dev)
3096 int idx;
3097 static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3099 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3100 gfar_set_mac_for_addr(dev, idx, zero_arr);
3103 /* Set the appropriate hash bit for the given addr */
3104 /* The algorithm works like so:
3105 * 1) Take the Destination Address (ie the multicast address), and
3106 * do a CRC on it (little endian), and reverse the bits of the
3107 * result.
3108 * 2) Use the 8 most significant bits as a hash into a 256-entry
3109 * table. The table is controlled through 8 32-bit registers:
3110 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3111 * gaddr7. This means that the 3 most significant bits in the
3112 * hash index which gaddr register to use, and the 5 other bits
3113 * indicate which bit (assuming an IBM numbering scheme, which
3114 * for PowerPC (tm) is usually the case) in the register holds
3115 * the entry. */
3116 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3118 u32 tempval;
3119 struct gfar_private *priv = netdev_priv(dev);
3120 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3121 int width = priv->hash_width;
3122 u8 whichbit = (result >> (32 - width)) & 0x1f;
3123 u8 whichreg = result >> (32 - width + 5);
3124 u32 value = (1 << (31-whichbit));
3126 tempval = gfar_read(priv->hash_regs[whichreg]);
3127 tempval |= value;
3128 gfar_write(priv->hash_regs[whichreg], tempval);
3132 /* There are multiple MAC Address register pairs on some controllers
3133 * This function sets the numth pair to a given address
3135 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3136 const u8 *addr)
3138 struct gfar_private *priv = netdev_priv(dev);
3139 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3140 int idx;
3141 char tmpbuf[MAC_ADDR_LEN];
3142 u32 tempval;
3143 u32 __iomem *macptr = &regs->macstnaddr1;
3145 macptr += num*2;
3147 /* Now copy it into the mac registers backwards, cuz */
3148 /* little endian is silly */
3149 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3150 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3152 gfar_write(macptr, *((u32 *) (tmpbuf)));
3154 tempval = *((u32 *) (tmpbuf + 4));
3156 gfar_write(macptr+1, tempval);
3159 /* GFAR error interrupt handler */
3160 static irqreturn_t gfar_error(int irq, void *grp_id)
3162 struct gfar_priv_grp *gfargrp = grp_id;
3163 struct gfar __iomem *regs = gfargrp->regs;
3164 struct gfar_private *priv= gfargrp->priv;
3165 struct net_device *dev = priv->ndev;
3167 /* Save ievent for future reference */
3168 u32 events = gfar_read(&regs->ievent);
3170 /* Clear IEVENT */
3171 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3173 /* Magic Packet is not an error. */
3174 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3175 (events & IEVENT_MAG))
3176 events &= ~IEVENT_MAG;
3178 /* Hmm... */
3179 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3180 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3181 dev->name, events, gfar_read(&regs->imask));
3183 /* Update the error counters */
3184 if (events & IEVENT_TXE) {
3185 dev->stats.tx_errors++;
3187 if (events & IEVENT_LC)
3188 dev->stats.tx_window_errors++;
3189 if (events & IEVENT_CRL)
3190 dev->stats.tx_aborted_errors++;
3191 if (events & IEVENT_XFUN) {
3192 unsigned long flags;
3194 if (netif_msg_tx_err(priv))
3195 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3196 "packet dropped.\n", dev->name);
3197 dev->stats.tx_dropped++;
3198 priv->extra_stats.tx_underrun++;
3200 local_irq_save(flags);
3201 lock_tx_qs(priv);
3203 /* Reactivate the Tx Queues */
3204 gfar_write(&regs->tstat, gfargrp->tstat);
3206 unlock_tx_qs(priv);
3207 local_irq_restore(flags);
3209 if (netif_msg_tx_err(priv))
3210 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3212 if (events & IEVENT_BSY) {
3213 dev->stats.rx_errors++;
3214 priv->extra_stats.rx_bsy++;
3216 gfar_receive(irq, grp_id);
3218 if (netif_msg_rx_err(priv))
3219 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3220 dev->name, gfar_read(&regs->rstat));
3222 if (events & IEVENT_BABR) {
3223 dev->stats.rx_errors++;
3224 priv->extra_stats.rx_babr++;
3226 if (netif_msg_rx_err(priv))
3227 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3229 if (events & IEVENT_EBERR) {
3230 priv->extra_stats.eberr++;
3231 if (netif_msg_rx_err(priv))
3232 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3234 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3235 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3237 if (events & IEVENT_BABT) {
3238 priv->extra_stats.tx_babt++;
3239 if (netif_msg_tx_err(priv))
3240 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3242 return IRQ_HANDLED;
3245 static struct of_device_id gfar_match[] =
3248 .type = "network",
3249 .compatible = "gianfar",
3252 .compatible = "fsl,etsec2",
3256 MODULE_DEVICE_TABLE(of, gfar_match);
3258 /* Structure for a device driver */
3259 static struct of_platform_driver gfar_driver = {
3260 .driver = {
3261 .name = "fsl-gianfar",
3262 .owner = THIS_MODULE,
3263 .pm = GFAR_PM_OPS,
3264 .of_match_table = gfar_match,
3266 .probe = gfar_probe,
3267 .remove = gfar_remove,
3270 static int __init gfar_init(void)
3272 return of_register_platform_driver(&gfar_driver);
3275 static void __exit gfar_exit(void)
3277 of_unregister_platform_driver(&gfar_driver);
3280 module_init(gfar_init);
3281 module_exit(gfar_exit);