2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Authors: Maynard Johnson <maynardj@us.ibm.com>
7 * Carl Love <carll@us.ibm.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/hrtimer.h>
16 #include <linux/smp.h>
17 #include <linux/slab.h>
18 #include <asm/cell-pmu.h>
21 #define TRACE_ARRAY_SIZE 1024
22 #define SCALE_SHIFT 14
27 static unsigned int profiling_interval
;
29 #define NUM_SPU_BITS_TRBUF 16
30 #define SPUS_PER_TB_ENTRY 4
32 #define SPU_PC_MASK 0xFFFF
34 static DEFINE_SPINLOCK(sample_array_lock
);
35 unsigned long sample_array_lock_flags
;
37 void set_spu_profiling_frequency(unsigned int freq_khz
, unsigned int cycles_reset
)
39 unsigned long ns_per_cyc
;
42 freq_khz
= ppc_proc_freq
/1000;
44 /* To calculate a timeout in nanoseconds, the basic
45 * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
46 * To avoid floating point math, we use the scale math
47 * technique as described in linux/jiffies.h. We use
48 * a scale factor of SCALE_SHIFT, which provides 4 decimal places
49 * of precision. This is close enough for the purpose at hand.
51 * The value of the timeout should be small enough that the hw
52 * trace buffer will not get more then about 1/3 full for the
53 * maximum user specified (the LFSR value) hw sampling frequency.
54 * This is to ensure the trace buffer will never fill even if the
55 * kernel thread scheduling varies under a heavy system load.
58 ns_per_cyc
= (USEC_PER_SEC
<< SCALE_SHIFT
)/freq_khz
;
59 profiling_interval
= (ns_per_cyc
* cycles_reset
) >> SCALE_SHIFT
;
64 * Extract SPU PC from trace buffer entry
66 static void spu_pc_extract(int cpu
, int entry
)
68 /* the trace buffer is 128 bits */
73 spu_mask
= SPU_PC_MASK
;
75 /* Each SPU PC is 16 bits; hence, four spus in each of
76 * the two 64-bit buffer entries that make up the
77 * 128-bit trace_buffer entry. Process two 64-bit values
79 * trace[0] SPU PC contents are: 0 1 2 3
80 * trace[1] SPU PC contents are: 4 5 6 7
83 cbe_read_trace_buffer(cpu
, trace_buffer
);
85 for (spu
= SPUS_PER_TB_ENTRY
-1; spu
>= 0; spu
--) {
86 /* spu PC trace entry is upper 16 bits of the
87 * 18 bit SPU program counter
89 samples
[spu
* TRACE_ARRAY_SIZE
+ entry
]
90 = (spu_mask
& trace_buffer
[0]) << 2;
91 samples
[(spu
+ SPUS_PER_TB_ENTRY
) * TRACE_ARRAY_SIZE
+ entry
]
92 = (spu_mask
& trace_buffer
[1]) << 2;
94 trace_buffer
[0] = trace_buffer
[0] >> NUM_SPU_BITS_TRBUF
;
95 trace_buffer
[1] = trace_buffer
[1] >> NUM_SPU_BITS_TRBUF
;
99 static int cell_spu_pc_collection(int cpu
)
104 /* process the collected SPU PC for the node */
108 trace_addr
= cbe_read_pm(cpu
, trace_address
);
109 while (!(trace_addr
& CBE_PM_TRACE_BUF_EMPTY
)) {
110 /* there is data in the trace buffer to process */
111 spu_pc_extract(cpu
, entry
);
115 if (entry
>= TRACE_ARRAY_SIZE
)
116 /* spu_samples is full */
119 trace_addr
= cbe_read_pm(cpu
, trace_address
);
126 static enum hrtimer_restart
profile_spus(struct hrtimer
*timer
)
129 int cpu
, node
, k
, num_samples
, spu_num
;
131 if (!spu_prof_running
)
134 for_each_online_cpu(cpu
) {
135 if (cbe_get_hw_thread_id(cpu
))
138 node
= cbe_cpu_to_node(cpu
);
140 /* There should only be one kernel thread at a time processing
141 * the samples. In the very unlikely case that the processing
142 * is taking a very long time and multiple kernel threads are
143 * started to process the samples. Make sure only one kernel
144 * thread is working on the samples array at a time. The
145 * sample array must be loaded and then processed for a given
146 * cpu. The sample array is not per cpu.
148 spin_lock_irqsave(&sample_array_lock
,
149 sample_array_lock_flags
);
150 num_samples
= cell_spu_pc_collection(cpu
);
152 if (num_samples
== 0) {
153 spin_unlock_irqrestore(&sample_array_lock
,
154 sample_array_lock_flags
);
158 for (k
= 0; k
< SPUS_PER_NODE
; k
++) {
159 spu_num
= k
+ (node
* SPUS_PER_NODE
);
160 spu_sync_buffer(spu_num
,
161 samples
+ (k
* TRACE_ARRAY_SIZE
),
165 spin_unlock_irqrestore(&sample_array_lock
,
166 sample_array_lock_flags
);
169 smp_wmb(); /* insure spu event buffer updates are written */
170 /* don't want events intermingled... */
172 kt
= ktime_set(0, profiling_interval
);
173 if (!spu_prof_running
)
175 hrtimer_forward(timer
, timer
->base
->get_time(), kt
);
176 return HRTIMER_RESTART
;
179 printk(KERN_INFO
"SPU_PROF: spu-prof timer ending\n");
180 return HRTIMER_NORESTART
;
183 static struct hrtimer timer
;
185 * Entry point for SPU profiling.
186 * NOTE: SPU profiling is done system-wide, not per-CPU.
188 * cycles_reset is the count value specified by the user when
189 * setting up OProfile to count SPU_CYCLES.
191 int start_spu_profiling(unsigned int cycles_reset
)
195 pr_debug("timer resolution: %lu\n", TICK_NSEC
);
196 kt
= ktime_set(0, profiling_interval
);
197 hrtimer_init(&timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
199 timer
.function
= profile_spus
;
201 /* Allocate arrays for collecting SPU PC samples */
202 samples
= kzalloc(SPUS_PER_NODE
*
203 TRACE_ARRAY_SIZE
* sizeof(u32
), GFP_KERNEL
);
208 spu_prof_running
= 1;
209 hrtimer_start(&timer
, kt
, HRTIMER_MODE_REL
);
210 schedule_delayed_work(&spu_work
, DEFAULT_TIMER_EXPIRE
);
215 void stop_spu_profiling(void)
217 spu_prof_running
= 0;
218 hrtimer_cancel(&timer
);
220 pr_debug("SPU_PROF: stop_spu_profiling issued\n");