Merge branch 'master' of git://git.infradead.org/ubi-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / lib / bitmap.c
blob06fb57c86de07007dad10f4bbeb3b1adcc0742c4
1 /*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
16 * bitmaps provide an array of bits, implemented using an an
17 * array of unsigned longs. The number of valid bits in a
18 * given bitmap does _not_ need to be an exact multiple of
19 * BITS_PER_LONG.
21 * The possible unused bits in the last, partially used word
22 * of a bitmap are 'don't care'. The implementation makes
23 * no particular effort to keep them zero. It ensures that
24 * their value will not affect the results of any operation.
25 * The bitmap operations that return Boolean (bitmap_empty,
26 * for example) or scalar (bitmap_weight, for example) results
27 * carefully filter out these unused bits from impacting their
28 * results.
30 * These operations actually hold to a slightly stronger rule:
31 * if you don't input any bitmaps to these ops that have some
32 * unused bits set, then they won't output any set unused bits
33 * in output bitmaps.
35 * The byte ordering of bitmaps is more natural on little
36 * endian architectures. See the big-endian headers
37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38 * for the best explanations of this ordering.
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
43 int k, lim = bits/BITS_PER_LONG;
44 for (k = 0; k < lim; ++k)
45 if (bitmap[k])
46 return 0;
48 if (bits % BITS_PER_LONG)
49 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 return 0;
52 return 1;
54 EXPORT_SYMBOL(__bitmap_empty);
56 int __bitmap_full(const unsigned long *bitmap, int bits)
58 int k, lim = bits/BITS_PER_LONG;
59 for (k = 0; k < lim; ++k)
60 if (~bitmap[k])
61 return 0;
63 if (bits % BITS_PER_LONG)
64 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 return 0;
67 return 1;
69 EXPORT_SYMBOL(__bitmap_full);
71 int __bitmap_equal(const unsigned long *bitmap1,
72 const unsigned long *bitmap2, int bits)
74 int k, lim = bits/BITS_PER_LONG;
75 for (k = 0; k < lim; ++k)
76 if (bitmap1[k] != bitmap2[k])
77 return 0;
79 if (bits % BITS_PER_LONG)
80 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 return 0;
83 return 1;
85 EXPORT_SYMBOL(__bitmap_equal);
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
89 int k, lim = bits/BITS_PER_LONG;
90 for (k = 0; k < lim; ++k)
91 dst[k] = ~src[k];
93 if (bits % BITS_PER_LONG)
94 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
96 EXPORT_SYMBOL(__bitmap_complement);
98 /**
99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
100 * @dst : destination bitmap
101 * @src : source bitmap
102 * @shift : shift by this many bits
103 * @bits : bitmap size, in bits
105 * Shifting right (dividing) means moving bits in the MS -> LS bit
106 * direction. Zeros are fed into the vacated MS positions and the
107 * LS bits shifted off the bottom are lost.
109 void __bitmap_shift_right(unsigned long *dst,
110 const unsigned long *src, int shift, int bits)
112 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 unsigned long mask = (1UL << left) - 1;
115 for (k = 0; off + k < lim; ++k) {
116 unsigned long upper, lower;
119 * If shift is not word aligned, take lower rem bits of
120 * word above and make them the top rem bits of result.
122 if (!rem || off + k + 1 >= lim)
123 upper = 0;
124 else {
125 upper = src[off + k + 1];
126 if (off + k + 1 == lim - 1 && left)
127 upper &= mask;
129 lower = src[off + k];
130 if (left && off + k == lim - 1)
131 lower &= mask;
132 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 if (left && k == lim - 1)
134 dst[k] &= mask;
136 if (off)
137 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
139 EXPORT_SYMBOL(__bitmap_shift_right);
143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
144 * @dst : destination bitmap
145 * @src : source bitmap
146 * @shift : shift by this many bits
147 * @bits : bitmap size, in bits
149 * Shifting left (multiplying) means moving bits in the LS -> MS
150 * direction. Zeros are fed into the vacated LS bit positions
151 * and those MS bits shifted off the top are lost.
154 void __bitmap_shift_left(unsigned long *dst,
155 const unsigned long *src, int shift, int bits)
157 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 for (k = lim - off - 1; k >= 0; --k) {
160 unsigned long upper, lower;
163 * If shift is not word aligned, take upper rem bits of
164 * word below and make them the bottom rem bits of result.
166 if (rem && k > 0)
167 lower = src[k - 1];
168 else
169 lower = 0;
170 upper = src[k];
171 if (left && k == lim - 1)
172 upper &= (1UL << left) - 1;
173 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
174 if (left && k + off == lim - 1)
175 dst[k + off] &= (1UL << left) - 1;
177 if (off)
178 memset(dst, 0, off*sizeof(unsigned long));
180 EXPORT_SYMBOL(__bitmap_shift_left);
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 const unsigned long *bitmap2, int bits)
185 int k;
186 int nr = BITS_TO_LONGS(bits);
188 for (k = 0; k < nr; k++)
189 dst[k] = bitmap1[k] & bitmap2[k];
191 EXPORT_SYMBOL(__bitmap_and);
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 const unsigned long *bitmap2, int bits)
196 int k;
197 int nr = BITS_TO_LONGS(bits);
199 for (k = 0; k < nr; k++)
200 dst[k] = bitmap1[k] | bitmap2[k];
202 EXPORT_SYMBOL(__bitmap_or);
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 const unsigned long *bitmap2, int bits)
207 int k;
208 int nr = BITS_TO_LONGS(bits);
210 for (k = 0; k < nr; k++)
211 dst[k] = bitmap1[k] ^ bitmap2[k];
213 EXPORT_SYMBOL(__bitmap_xor);
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 const unsigned long *bitmap2, int bits)
218 int k;
219 int nr = BITS_TO_LONGS(bits);
221 for (k = 0; k < nr; k++)
222 dst[k] = bitmap1[k] & ~bitmap2[k];
224 EXPORT_SYMBOL(__bitmap_andnot);
226 int __bitmap_intersects(const unsigned long *bitmap1,
227 const unsigned long *bitmap2, int bits)
229 int k, lim = bits/BITS_PER_LONG;
230 for (k = 0; k < lim; ++k)
231 if (bitmap1[k] & bitmap2[k])
232 return 1;
234 if (bits % BITS_PER_LONG)
235 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 return 1;
237 return 0;
239 EXPORT_SYMBOL(__bitmap_intersects);
241 int __bitmap_subset(const unsigned long *bitmap1,
242 const unsigned long *bitmap2, int bits)
244 int k, lim = bits/BITS_PER_LONG;
245 for (k = 0; k < lim; ++k)
246 if (bitmap1[k] & ~bitmap2[k])
247 return 0;
249 if (bits % BITS_PER_LONG)
250 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 return 0;
252 return 1;
254 EXPORT_SYMBOL(__bitmap_subset);
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
258 int k, w = 0, lim = bits/BITS_PER_LONG;
260 for (k = 0; k < lim; k++)
261 w += hweight_long(bitmap[k]);
263 if (bits % BITS_PER_LONG)
264 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
266 return w;
268 EXPORT_SYMBOL(__bitmap_weight);
271 * Bitmap printing & parsing functions: first version by Bill Irwin,
272 * second version by Paul Jackson, third by Joe Korty.
275 #define CHUNKSZ 32
276 #define nbits_to_hold_value(val) fls(val)
277 #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10 /* fancier cpuset lists input in decimal */
281 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282 * @buf: byte buffer into which string is placed
283 * @buflen: reserved size of @buf, in bytes
284 * @maskp: pointer to bitmap to convert
285 * @nmaskbits: size of bitmap, in bits
287 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
288 * comma-separated sets of eight digits per set.
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291 const unsigned long *maskp, int nmaskbits)
293 int i, word, bit, len = 0;
294 unsigned long val;
295 const char *sep = "";
296 int chunksz;
297 u32 chunkmask;
299 chunksz = nmaskbits & (CHUNKSZ - 1);
300 if (chunksz == 0)
301 chunksz = CHUNKSZ;
303 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304 for (; i >= 0; i -= CHUNKSZ) {
305 chunkmask = ((1ULL << chunksz) - 1);
306 word = i / BITS_PER_LONG;
307 bit = i % BITS_PER_LONG;
308 val = (maskp[word] >> bit) & chunkmask;
309 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 (chunksz+3)/4, val);
311 chunksz = CHUNKSZ;
312 sep = ",";
314 return len;
316 EXPORT_SYMBOL(bitmap_scnprintf);
319 * bitmap_scnprintf_len - return buffer length needed to convert
320 * bitmap to an ASCII hex string
321 * @nr_bits: number of bits to be converted
323 int bitmap_scnprintf_len(unsigned int nr_bits)
325 unsigned int nr_nibbles = ALIGN(nr_bits, 4) / 4;
326 return nr_nibbles + ALIGN(nr_nibbles, CHUNKSZ / 4) / (CHUNKSZ / 4) - 1;
330 * __bitmap_parse - convert an ASCII hex string into a bitmap.
331 * @buf: pointer to buffer containing string.
332 * @buflen: buffer size in bytes. If string is smaller than this
333 * then it must be terminated with a \0.
334 * @is_user: location of buffer, 0 indicates kernel space
335 * @maskp: pointer to bitmap array that will contain result.
336 * @nmaskbits: size of bitmap, in bits.
338 * Commas group hex digits into chunks. Each chunk defines exactly 32
339 * bits of the resultant bitmask. No chunk may specify a value larger
340 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
341 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
342 * characters and for grouping errors such as "1,,5", ",44", "," and "".
343 * Leading and trailing whitespace accepted, but not embedded whitespace.
345 int __bitmap_parse(const char *buf, unsigned int buflen,
346 int is_user, unsigned long *maskp,
347 int nmaskbits)
349 int c, old_c, totaldigits, ndigits, nchunks, nbits;
350 u32 chunk;
351 const char __user *ubuf = buf;
353 bitmap_zero(maskp, nmaskbits);
355 nchunks = nbits = totaldigits = c = 0;
356 do {
357 chunk = ndigits = 0;
359 /* Get the next chunk of the bitmap */
360 while (buflen) {
361 old_c = c;
362 if (is_user) {
363 if (__get_user(c, ubuf++))
364 return -EFAULT;
366 else
367 c = *buf++;
368 buflen--;
369 if (isspace(c))
370 continue;
373 * If the last character was a space and the current
374 * character isn't '\0', we've got embedded whitespace.
375 * This is a no-no, so throw an error.
377 if (totaldigits && c && isspace(old_c))
378 return -EINVAL;
380 /* A '\0' or a ',' signal the end of the chunk */
381 if (c == '\0' || c == ',')
382 break;
384 if (!isxdigit(c))
385 return -EINVAL;
388 * Make sure there are at least 4 free bits in 'chunk'.
389 * If not, this hexdigit will overflow 'chunk', so
390 * throw an error.
392 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
393 return -EOVERFLOW;
395 chunk = (chunk << 4) | unhex(c);
396 ndigits++; totaldigits++;
398 if (ndigits == 0)
399 return -EINVAL;
400 if (nchunks == 0 && chunk == 0)
401 continue;
403 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
404 *maskp |= chunk;
405 nchunks++;
406 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
407 if (nbits > nmaskbits)
408 return -EOVERFLOW;
409 } while (buflen && c == ',');
411 return 0;
413 EXPORT_SYMBOL(__bitmap_parse);
416 * bitmap_parse_user()
418 * @ubuf: pointer to user buffer containing string.
419 * @ulen: buffer size in bytes. If string is smaller than this
420 * then it must be terminated with a \0.
421 * @maskp: pointer to bitmap array that will contain result.
422 * @nmaskbits: size of bitmap, in bits.
424 * Wrapper for __bitmap_parse(), providing it with user buffer.
426 * We cannot have this as an inline function in bitmap.h because it needs
427 * linux/uaccess.h to get the access_ok() declaration and this causes
428 * cyclic dependencies.
430 int bitmap_parse_user(const char __user *ubuf,
431 unsigned int ulen, unsigned long *maskp,
432 int nmaskbits)
434 if (!access_ok(VERIFY_READ, ubuf, ulen))
435 return -EFAULT;
436 return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
438 EXPORT_SYMBOL(bitmap_parse_user);
441 * bscnl_emit(buf, buflen, rbot, rtop, bp)
443 * Helper routine for bitmap_scnlistprintf(). Write decimal number
444 * or range to buf, suppressing output past buf+buflen, with optional
445 * comma-prefix. Return len of what would be written to buf, if it
446 * all fit.
448 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
450 if (len > 0)
451 len += scnprintf(buf + len, buflen - len, ",");
452 if (rbot == rtop)
453 len += scnprintf(buf + len, buflen - len, "%d", rbot);
454 else
455 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
456 return len;
460 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
461 * @buf: byte buffer into which string is placed
462 * @buflen: reserved size of @buf, in bytes
463 * @maskp: pointer to bitmap to convert
464 * @nmaskbits: size of bitmap, in bits
466 * Output format is a comma-separated list of decimal numbers and
467 * ranges. Consecutively set bits are shown as two hyphen-separated
468 * decimal numbers, the smallest and largest bit numbers set in
469 * the range. Output format is compatible with the format
470 * accepted as input by bitmap_parselist().
472 * The return value is the number of characters which would be
473 * generated for the given input, excluding the trailing '\0', as
474 * per ISO C99.
476 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
477 const unsigned long *maskp, int nmaskbits)
479 int len = 0;
480 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
481 int cur, rbot, rtop;
483 if (buflen == 0)
484 return 0;
485 buf[0] = 0;
487 rbot = cur = find_first_bit(maskp, nmaskbits);
488 while (cur < nmaskbits) {
489 rtop = cur;
490 cur = find_next_bit(maskp, nmaskbits, cur+1);
491 if (cur >= nmaskbits || cur > rtop + 1) {
492 len = bscnl_emit(buf, buflen, rbot, rtop, len);
493 rbot = cur;
496 return len;
498 EXPORT_SYMBOL(bitmap_scnlistprintf);
501 * bitmap_parselist - convert list format ASCII string to bitmap
502 * @bp: read nul-terminated user string from this buffer
503 * @maskp: write resulting mask here
504 * @nmaskbits: number of bits in mask to be written
506 * Input format is a comma-separated list of decimal numbers and
507 * ranges. Consecutively set bits are shown as two hyphen-separated
508 * decimal numbers, the smallest and largest bit numbers set in
509 * the range.
511 * Returns 0 on success, -errno on invalid input strings.
512 * Error values:
513 * %-EINVAL: second number in range smaller than first
514 * %-EINVAL: invalid character in string
515 * %-ERANGE: bit number specified too large for mask
517 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
519 unsigned a, b;
521 bitmap_zero(maskp, nmaskbits);
522 do {
523 if (!isdigit(*bp))
524 return -EINVAL;
525 b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
526 if (*bp == '-') {
527 bp++;
528 if (!isdigit(*bp))
529 return -EINVAL;
530 b = simple_strtoul(bp, (char **)&bp, BASEDEC);
532 if (!(a <= b))
533 return -EINVAL;
534 if (b >= nmaskbits)
535 return -ERANGE;
536 while (a <= b) {
537 set_bit(a, maskp);
538 a++;
540 if (*bp == ',')
541 bp++;
542 } while (*bp != '\0' && *bp != '\n');
543 return 0;
545 EXPORT_SYMBOL(bitmap_parselist);
548 * bitmap_pos_to_ord(buf, pos, bits)
549 * @buf: pointer to a bitmap
550 * @pos: a bit position in @buf (0 <= @pos < @bits)
551 * @bits: number of valid bit positions in @buf
553 * Map the bit at position @pos in @buf (of length @bits) to the
554 * ordinal of which set bit it is. If it is not set or if @pos
555 * is not a valid bit position, map to -1.
557 * If for example, just bits 4 through 7 are set in @buf, then @pos
558 * values 4 through 7 will get mapped to 0 through 3, respectively,
559 * and other @pos values will get mapped to 0. When @pos value 7
560 * gets mapped to (returns) @ord value 3 in this example, that means
561 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
563 * The bit positions 0 through @bits are valid positions in @buf.
565 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
567 int i, ord;
569 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
570 return -1;
572 i = find_first_bit(buf, bits);
573 ord = 0;
574 while (i < pos) {
575 i = find_next_bit(buf, bits, i + 1);
576 ord++;
578 BUG_ON(i != pos);
580 return ord;
584 * bitmap_ord_to_pos(buf, ord, bits)
585 * @buf: pointer to bitmap
586 * @ord: ordinal bit position (n-th set bit, n >= 0)
587 * @bits: number of valid bit positions in @buf
589 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
590 * Value of @ord should be in range 0 <= @ord < weight(buf), else
591 * results are undefined.
593 * If for example, just bits 4 through 7 are set in @buf, then @ord
594 * values 0 through 3 will get mapped to 4 through 7, respectively,
595 * and all other @ord values return undefined values. When @ord value 3
596 * gets mapped to (returns) @pos value 7 in this example, that means
597 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
599 * The bit positions 0 through @bits are valid positions in @buf.
601 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
603 int pos = 0;
605 if (ord >= 0 && ord < bits) {
606 int i;
608 for (i = find_first_bit(buf, bits);
609 i < bits && ord > 0;
610 i = find_next_bit(buf, bits, i + 1))
611 ord--;
612 if (i < bits && ord == 0)
613 pos = i;
616 return pos;
620 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
621 * @dst: remapped result
622 * @src: subset to be remapped
623 * @old: defines domain of map
624 * @new: defines range of map
625 * @bits: number of bits in each of these bitmaps
627 * Let @old and @new define a mapping of bit positions, such that
628 * whatever position is held by the n-th set bit in @old is mapped
629 * to the n-th set bit in @new. In the more general case, allowing
630 * for the possibility that the weight 'w' of @new is less than the
631 * weight of @old, map the position of the n-th set bit in @old to
632 * the position of the m-th set bit in @new, where m == n % w.
634 * If either of the @old and @new bitmaps are empty, or if @src and
635 * @dst point to the same location, then this routine copies @src
636 * to @dst.
638 * The positions of unset bits in @old are mapped to themselves
639 * (the identify map).
641 * Apply the above specified mapping to @src, placing the result in
642 * @dst, clearing any bits previously set in @dst.
644 * For example, lets say that @old has bits 4 through 7 set, and
645 * @new has bits 12 through 15 set. This defines the mapping of bit
646 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
647 * bit positions unchanged. So if say @src comes into this routine
648 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
649 * 13 and 15 set.
651 void bitmap_remap(unsigned long *dst, const unsigned long *src,
652 const unsigned long *old, const unsigned long *new,
653 int bits)
655 int oldbit, w;
657 if (dst == src) /* following doesn't handle inplace remaps */
658 return;
659 bitmap_zero(dst, bits);
661 w = bitmap_weight(new, bits);
662 for (oldbit = find_first_bit(src, bits);
663 oldbit < bits;
664 oldbit = find_next_bit(src, bits, oldbit + 1)) {
665 int n = bitmap_pos_to_ord(old, oldbit, bits);
666 if (n < 0 || w == 0)
667 set_bit(oldbit, dst); /* identity map */
668 else
669 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
672 EXPORT_SYMBOL(bitmap_remap);
675 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
676 * @oldbit: bit position to be mapped
677 * @old: defines domain of map
678 * @new: defines range of map
679 * @bits: number of bits in each of these bitmaps
681 * Let @old and @new define a mapping of bit positions, such that
682 * whatever position is held by the n-th set bit in @old is mapped
683 * to the n-th set bit in @new. In the more general case, allowing
684 * for the possibility that the weight 'w' of @new is less than the
685 * weight of @old, map the position of the n-th set bit in @old to
686 * the position of the m-th set bit in @new, where m == n % w.
688 * The positions of unset bits in @old are mapped to themselves
689 * (the identify map).
691 * Apply the above specified mapping to bit position @oldbit, returning
692 * the new bit position.
694 * For example, lets say that @old has bits 4 through 7 set, and
695 * @new has bits 12 through 15 set. This defines the mapping of bit
696 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
697 * bit positions unchanged. So if say @oldbit is 5, then this routine
698 * returns 13.
700 int bitmap_bitremap(int oldbit, const unsigned long *old,
701 const unsigned long *new, int bits)
703 int w = bitmap_weight(new, bits);
704 int n = bitmap_pos_to_ord(old, oldbit, bits);
705 if (n < 0 || w == 0)
706 return oldbit;
707 else
708 return bitmap_ord_to_pos(new, n % w, bits);
710 EXPORT_SYMBOL(bitmap_bitremap);
713 * bitmap_onto - translate one bitmap relative to another
714 * @dst: resulting translated bitmap
715 * @orig: original untranslated bitmap
716 * @relmap: bitmap relative to which translated
717 * @bits: number of bits in each of these bitmaps
719 * Set the n-th bit of @dst iff there exists some m such that the
720 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
721 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
722 * (If you understood the previous sentence the first time your
723 * read it, you're overqualified for your current job.)
725 * In other words, @orig is mapped onto (surjectively) @dst,
726 * using the the map { <n, m> | the n-th bit of @relmap is the
727 * m-th set bit of @relmap }.
729 * Any set bits in @orig above bit number W, where W is the
730 * weight of (number of set bits in) @relmap are mapped nowhere.
731 * In particular, if for all bits m set in @orig, m >= W, then
732 * @dst will end up empty. In situations where the possibility
733 * of such an empty result is not desired, one way to avoid it is
734 * to use the bitmap_fold() operator, below, to first fold the
735 * @orig bitmap over itself so that all its set bits x are in the
736 * range 0 <= x < W. The bitmap_fold() operator does this by
737 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
739 * Example [1] for bitmap_onto():
740 * Let's say @relmap has bits 30-39 set, and @orig has bits
741 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
742 * @dst will have bits 31, 33, 35, 37 and 39 set.
744 * When bit 0 is set in @orig, it means turn on the bit in
745 * @dst corresponding to whatever is the first bit (if any)
746 * that is turned on in @relmap. Since bit 0 was off in the
747 * above example, we leave off that bit (bit 30) in @dst.
749 * When bit 1 is set in @orig (as in the above example), it
750 * means turn on the bit in @dst corresponding to whatever
751 * is the second bit that is turned on in @relmap. The second
752 * bit in @relmap that was turned on in the above example was
753 * bit 31, so we turned on bit 31 in @dst.
755 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
756 * because they were the 4th, 6th, 8th and 10th set bits
757 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
758 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
760 * When bit 11 is set in @orig, it means turn on the bit in
761 * @dst corresponding to whatever is the twelth bit that is
762 * turned on in @relmap. In the above example, there were
763 * only ten bits turned on in @relmap (30..39), so that bit
764 * 11 was set in @orig had no affect on @dst.
766 * Example [2] for bitmap_fold() + bitmap_onto():
767 * Let's say @relmap has these ten bits set:
768 * 40 41 42 43 45 48 53 61 74 95
769 * (for the curious, that's 40 plus the first ten terms of the
770 * Fibonacci sequence.)
772 * Further lets say we use the following code, invoking
773 * bitmap_fold() then bitmap_onto, as suggested above to
774 * avoid the possitility of an empty @dst result:
776 * unsigned long *tmp; // a temporary bitmap's bits
778 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
779 * bitmap_onto(dst, tmp, relmap, bits);
781 * Then this table shows what various values of @dst would be, for
782 * various @orig's. I list the zero-based positions of each set bit.
783 * The tmp column shows the intermediate result, as computed by
784 * using bitmap_fold() to fold the @orig bitmap modulo ten
785 * (the weight of @relmap).
787 * @orig tmp @dst
788 * 0 0 40
789 * 1 1 41
790 * 9 9 95
791 * 10 0 40 (*)
792 * 1 3 5 7 1 3 5 7 41 43 48 61
793 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
794 * 0 9 18 27 0 9 8 7 40 61 74 95
795 * 0 10 20 30 0 40
796 * 0 11 22 33 0 1 2 3 40 41 42 43
797 * 0 12 24 36 0 2 4 6 40 42 45 53
798 * 78 102 211 1 2 8 41 42 74 (*)
800 * (*) For these marked lines, if we hadn't first done bitmap_fold()
801 * into tmp, then the @dst result would have been empty.
803 * If either of @orig or @relmap is empty (no set bits), then @dst
804 * will be returned empty.
806 * If (as explained above) the only set bits in @orig are in positions
807 * m where m >= W, (where W is the weight of @relmap) then @dst will
808 * once again be returned empty.
810 * All bits in @dst not set by the above rule are cleared.
812 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
813 const unsigned long *relmap, int bits)
815 int n, m; /* same meaning as in above comment */
817 if (dst == orig) /* following doesn't handle inplace mappings */
818 return;
819 bitmap_zero(dst, bits);
822 * The following code is a more efficient, but less
823 * obvious, equivalent to the loop:
824 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
825 * n = bitmap_ord_to_pos(orig, m, bits);
826 * if (test_bit(m, orig))
827 * set_bit(n, dst);
831 m = 0;
832 for (n = find_first_bit(relmap, bits);
833 n < bits;
834 n = find_next_bit(relmap, bits, n + 1)) {
835 /* m == bitmap_pos_to_ord(relmap, n, bits) */
836 if (test_bit(m, orig))
837 set_bit(n, dst);
838 m++;
841 EXPORT_SYMBOL(bitmap_onto);
844 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
845 * @dst: resulting smaller bitmap
846 * @orig: original larger bitmap
847 * @sz: specified size
848 * @bits: number of bits in each of these bitmaps
850 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
851 * Clear all other bits in @dst. See further the comment and
852 * Example [2] for bitmap_onto() for why and how to use this.
854 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
855 int sz, int bits)
857 int oldbit;
859 if (dst == orig) /* following doesn't handle inplace mappings */
860 return;
861 bitmap_zero(dst, bits);
863 for (oldbit = find_first_bit(orig, bits);
864 oldbit < bits;
865 oldbit = find_next_bit(orig, bits, oldbit + 1))
866 set_bit(oldbit % sz, dst);
868 EXPORT_SYMBOL(bitmap_fold);
871 * Common code for bitmap_*_region() routines.
872 * bitmap: array of unsigned longs corresponding to the bitmap
873 * pos: the beginning of the region
874 * order: region size (log base 2 of number of bits)
875 * reg_op: operation(s) to perform on that region of bitmap
877 * Can set, verify and/or release a region of bits in a bitmap,
878 * depending on which combination of REG_OP_* flag bits is set.
880 * A region of a bitmap is a sequence of bits in the bitmap, of
881 * some size '1 << order' (a power of two), aligned to that same
882 * '1 << order' power of two.
884 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
885 * Returns 0 in all other cases and reg_ops.
888 enum {
889 REG_OP_ISFREE, /* true if region is all zero bits */
890 REG_OP_ALLOC, /* set all bits in region */
891 REG_OP_RELEASE, /* clear all bits in region */
894 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
896 int nbits_reg; /* number of bits in region */
897 int index; /* index first long of region in bitmap */
898 int offset; /* bit offset region in bitmap[index] */
899 int nlongs_reg; /* num longs spanned by region in bitmap */
900 int nbitsinlong; /* num bits of region in each spanned long */
901 unsigned long mask; /* bitmask for one long of region */
902 int i; /* scans bitmap by longs */
903 int ret = 0; /* return value */
906 * Either nlongs_reg == 1 (for small orders that fit in one long)
907 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
909 nbits_reg = 1 << order;
910 index = pos / BITS_PER_LONG;
911 offset = pos - (index * BITS_PER_LONG);
912 nlongs_reg = BITS_TO_LONGS(nbits_reg);
913 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
916 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
917 * overflows if nbitsinlong == BITS_PER_LONG.
919 mask = (1UL << (nbitsinlong - 1));
920 mask += mask - 1;
921 mask <<= offset;
923 switch (reg_op) {
924 case REG_OP_ISFREE:
925 for (i = 0; i < nlongs_reg; i++) {
926 if (bitmap[index + i] & mask)
927 goto done;
929 ret = 1; /* all bits in region free (zero) */
930 break;
932 case REG_OP_ALLOC:
933 for (i = 0; i < nlongs_reg; i++)
934 bitmap[index + i] |= mask;
935 break;
937 case REG_OP_RELEASE:
938 for (i = 0; i < nlongs_reg; i++)
939 bitmap[index + i] &= ~mask;
940 break;
942 done:
943 return ret;
947 * bitmap_find_free_region - find a contiguous aligned mem region
948 * @bitmap: array of unsigned longs corresponding to the bitmap
949 * @bits: number of bits in the bitmap
950 * @order: region size (log base 2 of number of bits) to find
952 * Find a region of free (zero) bits in a @bitmap of @bits bits and
953 * allocate them (set them to one). Only consider regions of length
954 * a power (@order) of two, aligned to that power of two, which
955 * makes the search algorithm much faster.
957 * Return the bit offset in bitmap of the allocated region,
958 * or -errno on failure.
960 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
962 int pos; /* scans bitmap by regions of size order */
964 for (pos = 0; pos < bits; pos += (1 << order))
965 if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
966 break;
967 if (pos == bits)
968 return -ENOMEM;
969 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
970 return pos;
972 EXPORT_SYMBOL(bitmap_find_free_region);
975 * bitmap_release_region - release allocated bitmap region
976 * @bitmap: array of unsigned longs corresponding to the bitmap
977 * @pos: beginning of bit region to release
978 * @order: region size (log base 2 of number of bits) to release
980 * This is the complement to __bitmap_find_free_region() and releases
981 * the found region (by clearing it in the bitmap).
983 * No return value.
985 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
987 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
989 EXPORT_SYMBOL(bitmap_release_region);
992 * bitmap_allocate_region - allocate bitmap region
993 * @bitmap: array of unsigned longs corresponding to the bitmap
994 * @pos: beginning of bit region to allocate
995 * @order: region size (log base 2 of number of bits) to allocate
997 * Allocate (set bits in) a specified region of a bitmap.
999 * Return 0 on success, or %-EBUSY if specified region wasn't
1000 * free (not all bits were zero).
1002 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1004 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1005 return -EBUSY;
1006 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1007 return 0;
1009 EXPORT_SYMBOL(bitmap_allocate_region);