usb: dwc3: gadget: add support for Bursts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blobebd1e86bef1c2d150a34239f6583e2340b078ea1
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
78 * Statistics for memory cgroup.
80 enum mem_cgroup_stat_index {
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
99 MEM_CGROUP_EVENTS_NSTATS,
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
107 enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
110 MEM_CGROUP_TARGET_NUMAINFO,
111 MEM_CGROUP_NTARGETS,
113 #define THRESHOLDS_EVENTS_TARGET (128)
114 #define SOFTLIMIT_EVENTS_TARGET (1024)
115 #define NUMAINFO_EVENTS_TARGET (1024)
117 struct mem_cgroup_stat_cpu {
118 long count[MEM_CGROUP_STAT_NSTATS];
119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120 unsigned long targets[MEM_CGROUP_NTARGETS];
124 * per-zone information in memory controller.
126 struct mem_cgroup_per_zone {
128 * spin_lock to protect the per cgroup LRU
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
133 struct zone_reclaim_stat reclaim_stat;
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
141 /* Macro for accessing counter */
142 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144 struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
148 struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
157 struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
162 struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
166 struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
170 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172 struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
177 /* For threshold */
178 struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
180 int current_threshold;
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
187 struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
195 struct mem_cgroup_threshold_ary *spare;
198 /* for OOM */
199 struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
204 static void mem_cgroup_threshold(struct mem_cgroup *mem);
205 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207 enum {
208 SCAN_BY_LIMIT,
209 SCAN_BY_SYSTEM,
210 NR_SCAN_CONTEXT,
211 SCAN_BY_SHRINK, /* not recorded now */
214 enum {
215 SCAN,
216 SCAN_ANON,
217 SCAN_FILE,
218 ROTATE,
219 ROTATE_ANON,
220 ROTATE_FILE,
221 FREED,
222 FREED_ANON,
223 FREED_FILE,
224 ELAPSED,
225 NR_SCANSTATS,
228 struct scanstat {
229 spinlock_t lock;
230 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
234 const char *scanstat_string[NR_SCANSTATS] = {
235 "scanned_pages",
236 "scanned_anon_pages",
237 "scanned_file_pages",
238 "rotated_pages",
239 "rotated_anon_pages",
240 "rotated_file_pages",
241 "freed_pages",
242 "freed_anon_pages",
243 "freed_file_pages",
244 "elapsed_ns",
246 #define SCANSTAT_WORD_LIMIT "_by_limit"
247 #define SCANSTAT_WORD_SYSTEM "_by_system"
248 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
262 struct mem_cgroup {
263 struct cgroup_subsys_state css;
265 * the counter to account for memory usage
267 struct res_counter res;
269 * the counter to account for mem+swap usage.
271 struct res_counter memsw;
273 * Per cgroup active and inactive list, similar to the
274 * per zone LRU lists.
276 struct mem_cgroup_lru_info info;
278 * While reclaiming in a hierarchy, we cache the last child we
279 * reclaimed from.
281 int last_scanned_child;
282 int last_scanned_node;
283 #if MAX_NUMNODES > 1
284 nodemask_t scan_nodes;
285 atomic_t numainfo_events;
286 atomic_t numainfo_updating;
287 #endif
289 * Should the accounting and control be hierarchical, per subtree?
291 bool use_hierarchy;
293 bool oom_lock;
294 atomic_t under_oom;
296 atomic_t refcnt;
298 int swappiness;
299 /* OOM-Killer disable */
300 int oom_kill_disable;
302 /* set when res.limit == memsw.limit */
303 bool memsw_is_minimum;
305 /* protect arrays of thresholds */
306 struct mutex thresholds_lock;
308 /* thresholds for memory usage. RCU-protected */
309 struct mem_cgroup_thresholds thresholds;
311 /* thresholds for mem+swap usage. RCU-protected */
312 struct mem_cgroup_thresholds memsw_thresholds;
314 /* For oom notifier event fd */
315 struct list_head oom_notify;
316 /* For recording LRU-scan statistics */
317 struct scanstat scanstat;
319 * Should we move charges of a task when a task is moved into this
320 * mem_cgroup ? And what type of charges should we move ?
322 unsigned long move_charge_at_immigrate;
324 * percpu counter.
326 struct mem_cgroup_stat_cpu *stat;
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
335 /* Stuffs for move charges at task migration. */
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
340 enum move_type {
341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
343 NR_MOVE_TYPE,
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 spinlock_t lock; /* for from, to */
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
352 unsigned long moved_charge;
353 unsigned long moved_swap;
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361 static bool move_anon(void)
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
367 static bool move_file(void)
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
380 enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_MAPPED,
383 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
384 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
387 NR_CHARGE_TYPE,
390 /* for encoding cft->private value on file */
391 #define _MEM (0)
392 #define _MEMSWAP (1)
393 #define _OOM_TYPE (2)
394 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
395 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
396 #define MEMFILE_ATTR(val) ((val) & 0xffff)
397 /* Used for OOM nofiier */
398 #define OOM_CONTROL (0)
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
403 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
408 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410 static void mem_cgroup_get(struct mem_cgroup *mem);
411 static void mem_cgroup_put(struct mem_cgroup *mem);
412 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
413 static void drain_all_stock_async(struct mem_cgroup *mem);
415 static struct mem_cgroup_per_zone *
416 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
418 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
421 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
423 return &mem->css;
426 static struct mem_cgroup_per_zone *
427 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429 int nid = page_to_nid(page);
430 int zid = page_zonenum(page);
432 return mem_cgroup_zoneinfo(mem, nid, zid);
435 static struct mem_cgroup_tree_per_zone *
436 soft_limit_tree_node_zone(int nid, int zid)
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
441 static struct mem_cgroup_tree_per_zone *
442 soft_limit_tree_from_page(struct page *page)
444 int nid = page_to_nid(page);
445 int zid = page_zonenum(page);
447 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
450 static void
451 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz,
454 unsigned long long new_usage_in_excess)
456 struct rb_node **p = &mctz->rb_root.rb_node;
457 struct rb_node *parent = NULL;
458 struct mem_cgroup_per_zone *mz_node;
460 if (mz->on_tree)
461 return;
463 mz->usage_in_excess = new_usage_in_excess;
464 if (!mz->usage_in_excess)
465 return;
466 while (*p) {
467 parent = *p;
468 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469 tree_node);
470 if (mz->usage_in_excess < mz_node->usage_in_excess)
471 p = &(*p)->rb_left;
473 * We can't avoid mem cgroups that are over their soft
474 * limit by the same amount
476 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477 p = &(*p)->rb_right;
479 rb_link_node(&mz->tree_node, parent, p);
480 rb_insert_color(&mz->tree_node, &mctz->rb_root);
481 mz->on_tree = true;
484 static void
485 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486 struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
489 if (!mz->on_tree)
490 return;
491 rb_erase(&mz->tree_node, &mctz->rb_root);
492 mz->on_tree = false;
495 static void
496 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497 struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz)
500 spin_lock(&mctz->lock);
501 __mem_cgroup_remove_exceeded(mem, mz, mctz);
502 spin_unlock(&mctz->lock);
506 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
508 unsigned long long excess;
509 struct mem_cgroup_per_zone *mz;
510 struct mem_cgroup_tree_per_zone *mctz;
511 int nid = page_to_nid(page);
512 int zid = page_zonenum(page);
513 mctz = soft_limit_tree_from_page(page);
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
519 for (; mem; mem = parent_mem_cgroup(mem)) {
520 mz = mem_cgroup_zoneinfo(mem, nid, zid);
521 excess = res_counter_soft_limit_excess(&mem->res);
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
526 if (excess || mz->on_tree) {
527 spin_lock(&mctz->lock);
528 /* if on-tree, remove it */
529 if (mz->on_tree)
530 __mem_cgroup_remove_exceeded(mem, mz, mctz);
532 * Insert again. mz->usage_in_excess will be updated.
533 * If excess is 0, no tree ops.
535 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
536 spin_unlock(&mctz->lock);
541 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
543 int node, zone;
544 struct mem_cgroup_per_zone *mz;
545 struct mem_cgroup_tree_per_zone *mctz;
547 for_each_node_state(node, N_POSSIBLE) {
548 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549 mz = mem_cgroup_zoneinfo(mem, node, zone);
550 mctz = soft_limit_tree_node_zone(node, zone);
551 mem_cgroup_remove_exceeded(mem, mz, mctz);
556 static struct mem_cgroup_per_zone *
557 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
559 struct rb_node *rightmost = NULL;
560 struct mem_cgroup_per_zone *mz;
562 retry:
563 mz = NULL;
564 rightmost = rb_last(&mctz->rb_root);
565 if (!rightmost)
566 goto done; /* Nothing to reclaim from */
568 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
570 * Remove the node now but someone else can add it back,
571 * we will to add it back at the end of reclaim to its correct
572 * position in the tree.
574 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576 !css_tryget(&mz->mem->css))
577 goto retry;
578 done:
579 return mz;
582 static struct mem_cgroup_per_zone *
583 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
585 struct mem_cgroup_per_zone *mz;
587 spin_lock(&mctz->lock);
588 mz = __mem_cgroup_largest_soft_limit_node(mctz);
589 spin_unlock(&mctz->lock);
590 return mz;
594 * Implementation Note: reading percpu statistics for memcg.
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronizion of counter in memcg's counter.
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threashold and synchonization as vmstat[] should be
610 * implemented.
612 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613 enum mem_cgroup_stat_index idx)
615 long val = 0;
616 int cpu;
618 get_online_cpus();
619 for_each_online_cpu(cpu)
620 val += per_cpu(mem->stat->count[idx], cpu);
621 #ifdef CONFIG_HOTPLUG_CPU
622 spin_lock(&mem->pcp_counter_lock);
623 val += mem->nocpu_base.count[idx];
624 spin_unlock(&mem->pcp_counter_lock);
625 #endif
626 put_online_cpus();
627 return val;
630 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631 bool charge)
633 int val = (charge) ? 1 : -1;
634 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
637 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
639 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
642 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
644 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
647 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648 enum mem_cgroup_events_index idx)
650 unsigned long val = 0;
651 int cpu;
653 for_each_online_cpu(cpu)
654 val += per_cpu(mem->stat->events[idx], cpu);
655 #ifdef CONFIG_HOTPLUG_CPU
656 spin_lock(&mem->pcp_counter_lock);
657 val += mem->nocpu_base.events[idx];
658 spin_unlock(&mem->pcp_counter_lock);
659 #endif
660 return val;
663 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
664 bool file, int nr_pages)
666 preempt_disable();
668 if (file)
669 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
670 else
671 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673 /* pagein of a big page is an event. So, ignore page size */
674 if (nr_pages > 0)
675 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
676 else {
677 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
678 nr_pages = -nr_pages; /* for event */
681 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683 preempt_enable();
686 unsigned long
687 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688 unsigned int lru_mask)
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list l;
692 unsigned long ret = 0;
694 mz = mem_cgroup_zoneinfo(mem, nid, zid);
696 for_each_lru(l) {
697 if (BIT(l) & lru_mask)
698 ret += MEM_CGROUP_ZSTAT(mz, l);
700 return ret;
703 static unsigned long
704 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705 int nid, unsigned int lru_mask)
707 u64 total = 0;
708 int zid;
710 for (zid = 0; zid < MAX_NR_ZONES; zid++)
711 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
713 return total;
716 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717 unsigned int lru_mask)
719 int nid;
720 u64 total = 0;
722 for_each_node_state(nid, N_HIGH_MEMORY)
723 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
724 return total;
727 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
729 unsigned long val, next;
731 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732 next = this_cpu_read(mem->stat->targets[target]);
733 /* from time_after() in jiffies.h */
734 return ((long)next - (long)val < 0);
737 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739 unsigned long val, next;
741 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743 switch (target) {
744 case MEM_CGROUP_TARGET_THRESH:
745 next = val + THRESHOLDS_EVENTS_TARGET;
746 break;
747 case MEM_CGROUP_TARGET_SOFTLIMIT:
748 next = val + SOFTLIMIT_EVENTS_TARGET;
749 break;
750 case MEM_CGROUP_TARGET_NUMAINFO:
751 next = val + NUMAINFO_EVENTS_TARGET;
752 break;
753 default:
754 return;
757 this_cpu_write(mem->stat->targets[target], next);
761 * Check events in order.
764 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
766 /* threshold event is triggered in finer grain than soft limit */
767 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
768 mem_cgroup_threshold(mem);
769 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770 if (unlikely(__memcg_event_check(mem,
771 MEM_CGROUP_TARGET_SOFTLIMIT))) {
772 mem_cgroup_update_tree(mem, page);
773 __mem_cgroup_target_update(mem,
774 MEM_CGROUP_TARGET_SOFTLIMIT);
776 #if MAX_NUMNODES > 1
777 if (unlikely(__memcg_event_check(mem,
778 MEM_CGROUP_TARGET_NUMAINFO))) {
779 atomic_inc(&mem->numainfo_events);
780 __mem_cgroup_target_update(mem,
781 MEM_CGROUP_TARGET_NUMAINFO);
783 #endif
787 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
789 return container_of(cgroup_subsys_state(cont,
790 mem_cgroup_subsys_id), struct mem_cgroup,
791 css);
794 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
797 * mm_update_next_owner() may clear mm->owner to NULL
798 * if it races with swapoff, page migration, etc.
799 * So this can be called with p == NULL.
801 if (unlikely(!p))
802 return NULL;
804 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805 struct mem_cgroup, css);
808 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 struct mem_cgroup *mem = NULL;
812 if (!mm)
813 return NULL;
815 * Because we have no locks, mm->owner's may be being moved to other
816 * cgroup. We use css_tryget() here even if this looks
817 * pessimistic (rather than adding locks here).
819 rcu_read_lock();
820 do {
821 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822 if (unlikely(!mem))
823 break;
824 } while (!css_tryget(&mem->css));
825 rcu_read_unlock();
826 return mem;
829 /* The caller has to guarantee "mem" exists before calling this */
830 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
832 struct cgroup_subsys_state *css;
833 int found;
835 if (!mem) /* ROOT cgroup has the smallest ID */
836 return root_mem_cgroup; /*css_put/get against root is ignored*/
837 if (!mem->use_hierarchy) {
838 if (css_tryget(&mem->css))
839 return mem;
840 return NULL;
842 rcu_read_lock();
844 * searching a memory cgroup which has the smallest ID under given
845 * ROOT cgroup. (ID >= 1)
847 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848 if (css && css_tryget(css))
849 mem = container_of(css, struct mem_cgroup, css);
850 else
851 mem = NULL;
852 rcu_read_unlock();
853 return mem;
856 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857 struct mem_cgroup *root,
858 bool cond)
860 int nextid = css_id(&iter->css) + 1;
861 int found;
862 int hierarchy_used;
863 struct cgroup_subsys_state *css;
865 hierarchy_used = iter->use_hierarchy;
867 css_put(&iter->css);
868 /* If no ROOT, walk all, ignore hierarchy */
869 if (!cond || (root && !hierarchy_used))
870 return NULL;
872 if (!root)
873 root = root_mem_cgroup;
875 do {
876 iter = NULL;
877 rcu_read_lock();
879 css = css_get_next(&mem_cgroup_subsys, nextid,
880 &root->css, &found);
881 if (css && css_tryget(css))
882 iter = container_of(css, struct mem_cgroup, css);
883 rcu_read_unlock();
884 /* If css is NULL, no more cgroups will be found */
885 nextid = found + 1;
886 } while (css && !iter);
888 return iter;
891 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892 * be careful that "break" loop is not allowed. We have reference count.
893 * Instead of that modify "cond" to be false and "continue" to exit the loop.
895 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
896 for (iter = mem_cgroup_start_loop(root);\
897 iter != NULL;\
898 iter = mem_cgroup_get_next(iter, root, cond))
900 #define for_each_mem_cgroup_tree(iter, root) \
901 for_each_mem_cgroup_tree_cond(iter, root, true)
903 #define for_each_mem_cgroup_all(iter) \
904 for_each_mem_cgroup_tree_cond(iter, NULL, true)
907 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
909 return (mem == root_mem_cgroup);
912 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
914 struct mem_cgroup *mem;
916 if (!mm)
917 return;
919 rcu_read_lock();
920 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921 if (unlikely(!mem))
922 goto out;
924 switch (idx) {
925 case PGMAJFAULT:
926 mem_cgroup_pgmajfault(mem, 1);
927 break;
928 case PGFAULT:
929 mem_cgroup_pgfault(mem, 1);
930 break;
931 default:
932 BUG();
934 out:
935 rcu_read_unlock();
937 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
940 * Following LRU functions are allowed to be used without PCG_LOCK.
941 * Operations are called by routine of global LRU independently from memcg.
942 * What we have to take care of here is validness of pc->mem_cgroup.
944 * Changes to pc->mem_cgroup happens when
945 * 1. charge
946 * 2. moving account
947 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948 * It is added to LRU before charge.
949 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950 * When moving account, the page is not on LRU. It's isolated.
953 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
955 struct page_cgroup *pc;
956 struct mem_cgroup_per_zone *mz;
958 if (mem_cgroup_disabled())
959 return;
960 pc = lookup_page_cgroup(page);
961 /* can happen while we handle swapcache. */
962 if (!TestClearPageCgroupAcctLRU(pc))
963 return;
964 VM_BUG_ON(!pc->mem_cgroup);
966 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967 * removed from global LRU.
969 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
970 /* huge page split is done under lru_lock. so, we have no races. */
971 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
972 if (mem_cgroup_is_root(pc->mem_cgroup))
973 return;
974 VM_BUG_ON(list_empty(&pc->lru));
975 list_del_init(&pc->lru);
978 void mem_cgroup_del_lru(struct page *page)
980 mem_cgroup_del_lru_list(page, page_lru(page));
984 * Writeback is about to end against a page which has been marked for immediate
985 * reclaim. If it still appears to be reclaimable, move it to the tail of the
986 * inactive list.
988 void mem_cgroup_rotate_reclaimable_page(struct page *page)
990 struct mem_cgroup_per_zone *mz;
991 struct page_cgroup *pc;
992 enum lru_list lru = page_lru(page);
994 if (mem_cgroup_disabled())
995 return;
997 pc = lookup_page_cgroup(page);
998 /* unused or root page is not rotated. */
999 if (!PageCgroupUsed(pc))
1000 return;
1001 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002 smp_rmb();
1003 if (mem_cgroup_is_root(pc->mem_cgroup))
1004 return;
1005 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1006 list_move_tail(&pc->lru, &mz->lists[lru]);
1009 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1011 struct mem_cgroup_per_zone *mz;
1012 struct page_cgroup *pc;
1014 if (mem_cgroup_disabled())
1015 return;
1017 pc = lookup_page_cgroup(page);
1018 /* unused or root page is not rotated. */
1019 if (!PageCgroupUsed(pc))
1020 return;
1021 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022 smp_rmb();
1023 if (mem_cgroup_is_root(pc->mem_cgroup))
1024 return;
1025 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1026 list_move(&pc->lru, &mz->lists[lru]);
1029 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031 struct page_cgroup *pc;
1032 struct mem_cgroup_per_zone *mz;
1034 if (mem_cgroup_disabled())
1035 return;
1036 pc = lookup_page_cgroup(page);
1037 VM_BUG_ON(PageCgroupAcctLRU(pc));
1038 if (!PageCgroupUsed(pc))
1039 return;
1040 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 smp_rmb();
1042 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1043 /* huge page split is done under lru_lock. so, we have no races. */
1044 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1045 SetPageCgroupAcctLRU(pc);
1046 if (mem_cgroup_is_root(pc->mem_cgroup))
1047 return;
1048 list_add(&pc->lru, &mz->lists[lru]);
1052 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053 * while it's linked to lru because the page may be reused after it's fully
1054 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055 * It's done under lock_page and expected that zone->lru_lock isnever held.
1057 static void mem_cgroup_lru_del_before_commit(struct page *page)
1059 unsigned long flags;
1060 struct zone *zone = page_zone(page);
1061 struct page_cgroup *pc = lookup_page_cgroup(page);
1064 * Doing this check without taking ->lru_lock seems wrong but this
1065 * is safe. Because if page_cgroup's USED bit is unset, the page
1066 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067 * set, the commit after this will fail, anyway.
1068 * This all charge/uncharge is done under some mutual execustion.
1069 * So, we don't need to taking care of changes in USED bit.
1071 if (likely(!PageLRU(page)))
1072 return;
1074 spin_lock_irqsave(&zone->lru_lock, flags);
1076 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077 * is guarded by lock_page() because the page is SwapCache.
1079 if (!PageCgroupUsed(pc))
1080 mem_cgroup_del_lru_list(page, page_lru(page));
1081 spin_unlock_irqrestore(&zone->lru_lock, flags);
1084 static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 unsigned long flags;
1087 struct zone *zone = page_zone(page);
1088 struct page_cgroup *pc = lookup_page_cgroup(page);
1090 /* taking care of that the page is added to LRU while we commit it */
1091 if (likely(!PageLRU(page)))
1092 return;
1093 spin_lock_irqsave(&zone->lru_lock, flags);
1094 /* link when the page is linked to LRU but page_cgroup isn't */
1095 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1096 mem_cgroup_add_lru_list(page, page_lru(page));
1097 spin_unlock_irqrestore(&zone->lru_lock, flags);
1101 void mem_cgroup_move_lists(struct page *page,
1102 enum lru_list from, enum lru_list to)
1104 if (mem_cgroup_disabled())
1105 return;
1106 mem_cgroup_del_lru_list(page, from);
1107 mem_cgroup_add_lru_list(page, to);
1111 * Checks whether given mem is same or in the root_mem's
1112 * hierarchy subtree
1114 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115 struct mem_cgroup *mem)
1117 if (root_mem != mem) {
1118 return (root_mem->use_hierarchy &&
1119 css_is_ancestor(&mem->css, &root_mem->css));
1122 return true;
1125 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1127 int ret;
1128 struct mem_cgroup *curr = NULL;
1129 struct task_struct *p;
1131 p = find_lock_task_mm(task);
1132 if (!p)
1133 return 0;
1134 curr = try_get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
1136 if (!curr)
1137 return 0;
1139 * We should check use_hierarchy of "mem" not "curr". Because checking
1140 * use_hierarchy of "curr" here make this function true if hierarchy is
1141 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142 * hierarchy(even if use_hierarchy is disabled in "mem").
1144 ret = mem_cgroup_same_or_subtree(mem, curr);
1145 css_put(&curr->css);
1146 return ret;
1149 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1151 unsigned long active;
1152 unsigned long inactive;
1153 unsigned long gb;
1154 unsigned long inactive_ratio;
1156 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1159 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160 if (gb)
1161 inactive_ratio = int_sqrt(10 * gb);
1162 else
1163 inactive_ratio = 1;
1165 if (present_pages) {
1166 present_pages[0] = inactive;
1167 present_pages[1] = active;
1170 return inactive_ratio;
1173 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1175 unsigned long active;
1176 unsigned long inactive;
1177 unsigned long present_pages[2];
1178 unsigned long inactive_ratio;
1180 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1182 inactive = present_pages[0];
1183 active = present_pages[1];
1185 if (inactive * inactive_ratio < active)
1186 return 1;
1188 return 0;
1191 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1193 unsigned long active;
1194 unsigned long inactive;
1196 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1199 return (active > inactive);
1202 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203 struct zone *zone)
1205 int nid = zone_to_nid(zone);
1206 int zid = zone_idx(zone);
1207 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1209 return &mz->reclaim_stat;
1212 struct zone_reclaim_stat *
1213 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1215 struct page_cgroup *pc;
1216 struct mem_cgroup_per_zone *mz;
1218 if (mem_cgroup_disabled())
1219 return NULL;
1221 pc = lookup_page_cgroup(page);
1222 if (!PageCgroupUsed(pc))
1223 return NULL;
1224 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225 smp_rmb();
1226 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1227 return &mz->reclaim_stat;
1230 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231 struct list_head *dst,
1232 unsigned long *scanned, int order,
1233 int mode, struct zone *z,
1234 struct mem_cgroup *mem_cont,
1235 int active, int file)
1237 unsigned long nr_taken = 0;
1238 struct page *page;
1239 unsigned long scan;
1240 LIST_HEAD(pc_list);
1241 struct list_head *src;
1242 struct page_cgroup *pc, *tmp;
1243 int nid = zone_to_nid(z);
1244 int zid = zone_idx(z);
1245 struct mem_cgroup_per_zone *mz;
1246 int lru = LRU_FILE * file + active;
1247 int ret;
1249 BUG_ON(!mem_cont);
1250 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1251 src = &mz->lists[lru];
1253 scan = 0;
1254 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1255 if (scan >= nr_to_scan)
1256 break;
1258 if (unlikely(!PageCgroupUsed(pc)))
1259 continue;
1261 page = lookup_cgroup_page(pc);
1263 if (unlikely(!PageLRU(page)))
1264 continue;
1266 scan++;
1267 ret = __isolate_lru_page(page, mode, file);
1268 switch (ret) {
1269 case 0:
1270 list_move(&page->lru, dst);
1271 mem_cgroup_del_lru(page);
1272 nr_taken += hpage_nr_pages(page);
1273 break;
1274 case -EBUSY:
1275 /* we don't affect global LRU but rotate in our LRU */
1276 mem_cgroup_rotate_lru_list(page, page_lru(page));
1277 break;
1278 default:
1279 break;
1283 *scanned = scan;
1285 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286 0, 0, 0, mode);
1288 return nr_taken;
1291 #define mem_cgroup_from_res_counter(counter, member) \
1292 container_of(counter, struct mem_cgroup, member)
1295 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296 * @mem: the memory cgroup
1298 * Returns the maximum amount of memory @mem can be charged with, in
1299 * pages.
1301 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1303 unsigned long long margin;
1305 margin = res_counter_margin(&mem->res);
1306 if (do_swap_account)
1307 margin = min(margin, res_counter_margin(&mem->memsw));
1308 return margin >> PAGE_SHIFT;
1311 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1313 struct cgroup *cgrp = memcg->css.cgroup;
1315 /* root ? */
1316 if (cgrp->parent == NULL)
1317 return vm_swappiness;
1319 return memcg->swappiness;
1322 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1324 int cpu;
1326 get_online_cpus();
1327 spin_lock(&mem->pcp_counter_lock);
1328 for_each_online_cpu(cpu)
1329 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1330 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331 spin_unlock(&mem->pcp_counter_lock);
1332 put_online_cpus();
1334 synchronize_rcu();
1337 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1339 int cpu;
1341 if (!mem)
1342 return;
1343 get_online_cpus();
1344 spin_lock(&mem->pcp_counter_lock);
1345 for_each_online_cpu(cpu)
1346 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1347 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348 spin_unlock(&mem->pcp_counter_lock);
1349 put_online_cpus();
1352 * 2 routines for checking "mem" is under move_account() or not.
1354 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355 * for avoiding race in accounting. If true,
1356 * pc->mem_cgroup may be overwritten.
1358 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359 * under hierarchy of moving cgroups. This is for
1360 * waiting at hith-memory prressure caused by "move".
1363 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1365 VM_BUG_ON(!rcu_read_lock_held());
1366 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1369 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1371 struct mem_cgroup *from;
1372 struct mem_cgroup *to;
1373 bool ret = false;
1375 * Unlike task_move routines, we access mc.to, mc.from not under
1376 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1378 spin_lock(&mc.lock);
1379 from = mc.from;
1380 to = mc.to;
1381 if (!from)
1382 goto unlock;
1384 ret = mem_cgroup_same_or_subtree(mem, from)
1385 || mem_cgroup_same_or_subtree(mem, to);
1386 unlock:
1387 spin_unlock(&mc.lock);
1388 return ret;
1391 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1393 if (mc.moving_task && current != mc.moving_task) {
1394 if (mem_cgroup_under_move(mem)) {
1395 DEFINE_WAIT(wait);
1396 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397 /* moving charge context might have finished. */
1398 if (mc.moving_task)
1399 schedule();
1400 finish_wait(&mc.waitq, &wait);
1401 return true;
1404 return false;
1408 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1409 * @memcg: The memory cgroup that went over limit
1410 * @p: Task that is going to be killed
1412 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413 * enabled
1415 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1417 struct cgroup *task_cgrp;
1418 struct cgroup *mem_cgrp;
1420 * Need a buffer in BSS, can't rely on allocations. The code relies
1421 * on the assumption that OOM is serialized for memory controller.
1422 * If this assumption is broken, revisit this code.
1424 static char memcg_name[PATH_MAX];
1425 int ret;
1427 if (!memcg || !p)
1428 return;
1431 rcu_read_lock();
1433 mem_cgrp = memcg->css.cgroup;
1434 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1436 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437 if (ret < 0) {
1439 * Unfortunately, we are unable to convert to a useful name
1440 * But we'll still print out the usage information
1442 rcu_read_unlock();
1443 goto done;
1445 rcu_read_unlock();
1447 printk(KERN_INFO "Task in %s killed", memcg_name);
1449 rcu_read_lock();
1450 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451 if (ret < 0) {
1452 rcu_read_unlock();
1453 goto done;
1455 rcu_read_unlock();
1458 * Continues from above, so we don't need an KERN_ level
1460 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461 done:
1463 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468 "failcnt %llu\n",
1469 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1475 * This function returns the number of memcg under hierarchy tree. Returns
1476 * 1(self count) if no children.
1478 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1480 int num = 0;
1481 struct mem_cgroup *iter;
1483 for_each_mem_cgroup_tree(iter, mem)
1484 num++;
1485 return num;
1489 * Return the memory (and swap, if configured) limit for a memcg.
1491 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1493 u64 limit;
1494 u64 memsw;
1496 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497 limit += total_swap_pages << PAGE_SHIFT;
1499 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1501 * If memsw is finite and limits the amount of swap space available
1502 * to this memcg, return that limit.
1504 return min(limit, memsw);
1508 * Visit the first child (need not be the first child as per the ordering
1509 * of the cgroup list, since we track last_scanned_child) of @mem and use
1510 * that to reclaim free pages from.
1512 static struct mem_cgroup *
1513 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1515 struct mem_cgroup *ret = NULL;
1516 struct cgroup_subsys_state *css;
1517 int nextid, found;
1519 if (!root_mem->use_hierarchy) {
1520 css_get(&root_mem->css);
1521 ret = root_mem;
1524 while (!ret) {
1525 rcu_read_lock();
1526 nextid = root_mem->last_scanned_child + 1;
1527 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528 &found);
1529 if (css && css_tryget(css))
1530 ret = container_of(css, struct mem_cgroup, css);
1532 rcu_read_unlock();
1533 /* Updates scanning parameter */
1534 if (!css) {
1535 /* this means start scan from ID:1 */
1536 root_mem->last_scanned_child = 0;
1537 } else
1538 root_mem->last_scanned_child = found;
1541 return ret;
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1554 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555 int nid, bool noswap)
1557 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1558 return true;
1559 if (noswap || !total_swap_pages)
1560 return false;
1561 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1562 return true;
1563 return false;
1566 #if MAX_NUMNODES > 1
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1574 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1576 int nid;
1578 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 * pagein/pageout changes since the last update.
1581 if (!atomic_read(&mem->numainfo_events))
1582 return;
1583 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1584 return;
1586 /* make a nodemask where this memcg uses memory from */
1587 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1589 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1591 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592 node_clear(nid, mem->scan_nodes);
1595 atomic_set(&mem->numainfo_events, 0);
1596 atomic_set(&mem->numainfo_updating, 0);
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1609 * Now, we use round-robin. Better algorithm is welcomed.
1611 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1613 int node;
1615 mem_cgroup_may_update_nodemask(mem);
1616 node = mem->last_scanned_node;
1618 node = next_node(node, mem->scan_nodes);
1619 if (node == MAX_NUMNODES)
1620 node = first_node(mem->scan_nodes);
1622 * We call this when we hit limit, not when pages are added to LRU.
1623 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 * memcg is too small and all pages are not on LRU. In that case,
1625 * we use curret node.
1627 if (unlikely(node == MAX_NUMNODES))
1628 node = numa_node_id();
1630 mem->last_scanned_node = node;
1631 return node;
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1640 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1642 int nid;
1645 * quick check...making use of scan_node.
1646 * We can skip unused nodes.
1648 if (!nodes_empty(mem->scan_nodes)) {
1649 for (nid = first_node(mem->scan_nodes);
1650 nid < MAX_NUMNODES;
1651 nid = next_node(nid, mem->scan_nodes)) {
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1658 * Check rest of nodes.
1660 for_each_node_state(nid, N_HIGH_MEMORY) {
1661 if (node_isset(nid, mem->scan_nodes))
1662 continue;
1663 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664 return true;
1666 return false;
1669 #else
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1672 return 0;
1675 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1677 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1679 #endif
1681 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682 struct memcg_scanrecord *rec)
1685 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686 stats[SCAN_ANON] += rec->nr_scanned[0];
1687 stats[SCAN_FILE] += rec->nr_scanned[1];
1689 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690 stats[ROTATE_ANON] += rec->nr_rotated[0];
1691 stats[ROTATE_FILE] += rec->nr_rotated[1];
1693 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694 stats[FREED_ANON] += rec->nr_freed[0];
1695 stats[FREED_FILE] += rec->nr_freed[1];
1697 stats[ELAPSED] += rec->elapsed;
1700 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1702 struct mem_cgroup *mem;
1703 int context = rec->context;
1705 if (context >= NR_SCAN_CONTEXT)
1706 return;
1708 mem = rec->mem;
1709 spin_lock(&mem->scanstat.lock);
1710 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711 spin_unlock(&mem->scanstat.lock);
1713 mem = rec->root;
1714 spin_lock(&mem->scanstat.lock);
1715 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716 spin_unlock(&mem->scanstat.lock);
1720 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721 * we reclaimed from, so that we don't end up penalizing one child extensively
1722 * based on its position in the children list.
1724 * root_mem is the original ancestor that we've been reclaim from.
1726 * We give up and return to the caller when we visit root_mem twice.
1727 * (other groups can be removed while we're walking....)
1729 * If shrink==true, for avoiding to free too much, this returns immedieately.
1731 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1732 struct zone *zone,
1733 gfp_t gfp_mask,
1734 unsigned long reclaim_options,
1735 unsigned long *total_scanned)
1737 struct mem_cgroup *victim;
1738 int ret, total = 0;
1739 int loop = 0;
1740 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1742 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1743 struct memcg_scanrecord rec;
1744 unsigned long excess;
1745 unsigned long scanned;
1747 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1749 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1750 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1751 noswap = true;
1753 if (shrink)
1754 rec.context = SCAN_BY_SHRINK;
1755 else if (check_soft)
1756 rec.context = SCAN_BY_SYSTEM;
1757 else
1758 rec.context = SCAN_BY_LIMIT;
1760 rec.root = root_mem;
1762 while (1) {
1763 victim = mem_cgroup_select_victim(root_mem);
1764 if (victim == root_mem) {
1765 loop++;
1767 * We are not draining per cpu cached charges during
1768 * soft limit reclaim because global reclaim doesn't
1769 * care about charges. It tries to free some memory and
1770 * charges will not give any.
1772 if (!check_soft && loop >= 1)
1773 drain_all_stock_async(root_mem);
1774 if (loop >= 2) {
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1780 if (!check_soft || !total) {
1781 css_put(&victim->css);
1782 break;
1785 * We want to do more targeted reclaim.
1786 * excess >> 2 is not to excessive so as to
1787 * reclaim too much, nor too less that we keep
1788 * coming back to reclaim from this cgroup
1790 if (total >= (excess >> 2) ||
1791 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792 css_put(&victim->css);
1793 break;
1797 if (!mem_cgroup_reclaimable(victim, noswap)) {
1798 /* this cgroup's local usage == 0 */
1799 css_put(&victim->css);
1800 continue;
1802 rec.mem = victim;
1803 rec.nr_scanned[0] = 0;
1804 rec.nr_scanned[1] = 0;
1805 rec.nr_rotated[0] = 0;
1806 rec.nr_rotated[1] = 0;
1807 rec.nr_freed[0] = 0;
1808 rec.nr_freed[1] = 0;
1809 rec.elapsed = 0;
1810 /* we use swappiness of local cgroup */
1811 if (check_soft) {
1812 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1813 noswap, zone, &rec, &scanned);
1814 *total_scanned += scanned;
1815 } else
1816 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1817 noswap, &rec);
1818 mem_cgroup_record_scanstat(&rec);
1819 css_put(&victim->css);
1821 * At shrinking usage, we can't check we should stop here or
1822 * reclaim more. It's depends on callers. last_scanned_child
1823 * will work enough for keeping fairness under tree.
1825 if (shrink)
1826 return ret;
1827 total += ret;
1828 if (check_soft) {
1829 if (!res_counter_soft_limit_excess(&root_mem->res))
1830 return total;
1831 } else if (mem_cgroup_margin(root_mem))
1832 return total;
1834 return total;
1838 * Check OOM-Killer is already running under our hierarchy.
1839 * If someone is running, return false.
1840 * Has to be called with memcg_oom_lock
1842 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1844 struct mem_cgroup *iter, *failed = NULL;
1845 bool cond = true;
1847 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1848 if (iter->oom_lock) {
1850 * this subtree of our hierarchy is already locked
1851 * so we cannot give a lock.
1853 failed = iter;
1854 cond = false;
1855 } else
1856 iter->oom_lock = true;
1859 if (!failed)
1860 return true;
1863 * OK, we failed to lock the whole subtree so we have to clean up
1864 * what we set up to the failing subtree
1866 cond = true;
1867 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1868 if (iter == failed) {
1869 cond = false;
1870 continue;
1872 iter->oom_lock = false;
1874 return false;
1878 * Has to be called with memcg_oom_lock
1880 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1882 struct mem_cgroup *iter;
1884 for_each_mem_cgroup_tree(iter, mem)
1885 iter->oom_lock = false;
1886 return 0;
1889 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1891 struct mem_cgroup *iter;
1893 for_each_mem_cgroup_tree(iter, mem)
1894 atomic_inc(&iter->under_oom);
1897 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1899 struct mem_cgroup *iter;
1902 * When a new child is created while the hierarchy is under oom,
1903 * mem_cgroup_oom_lock() may not be called. We have to use
1904 * atomic_add_unless() here.
1906 for_each_mem_cgroup_tree(iter, mem)
1907 atomic_add_unless(&iter->under_oom, -1, 0);
1910 static DEFINE_SPINLOCK(memcg_oom_lock);
1911 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1913 struct oom_wait_info {
1914 struct mem_cgroup *mem;
1915 wait_queue_t wait;
1918 static int memcg_oom_wake_function(wait_queue_t *wait,
1919 unsigned mode, int sync, void *arg)
1921 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1922 *oom_wait_mem;
1923 struct oom_wait_info *oom_wait_info;
1925 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1926 oom_wait_mem = oom_wait_info->mem;
1929 * Both of oom_wait_info->mem and wake_mem are stable under us.
1930 * Then we can use css_is_ancestor without taking care of RCU.
1932 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1933 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1934 return 0;
1935 return autoremove_wake_function(wait, mode, sync, arg);
1938 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1940 /* for filtering, pass "mem" as argument. */
1941 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1944 static void memcg_oom_recover(struct mem_cgroup *mem)
1946 if (mem && atomic_read(&mem->under_oom))
1947 memcg_wakeup_oom(mem);
1951 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1953 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1955 struct oom_wait_info owait;
1956 bool locked, need_to_kill;
1958 owait.mem = mem;
1959 owait.wait.flags = 0;
1960 owait.wait.func = memcg_oom_wake_function;
1961 owait.wait.private = current;
1962 INIT_LIST_HEAD(&owait.wait.task_list);
1963 need_to_kill = true;
1964 mem_cgroup_mark_under_oom(mem);
1966 /* At first, try to OOM lock hierarchy under mem.*/
1967 spin_lock(&memcg_oom_lock);
1968 locked = mem_cgroup_oom_lock(mem);
1970 * Even if signal_pending(), we can't quit charge() loop without
1971 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1972 * under OOM is always welcomed, use TASK_KILLABLE here.
1974 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1975 if (!locked || mem->oom_kill_disable)
1976 need_to_kill = false;
1977 if (locked)
1978 mem_cgroup_oom_notify(mem);
1979 spin_unlock(&memcg_oom_lock);
1981 if (need_to_kill) {
1982 finish_wait(&memcg_oom_waitq, &owait.wait);
1983 mem_cgroup_out_of_memory(mem, mask);
1984 } else {
1985 schedule();
1986 finish_wait(&memcg_oom_waitq, &owait.wait);
1988 spin_lock(&memcg_oom_lock);
1989 if (locked)
1990 mem_cgroup_oom_unlock(mem);
1991 memcg_wakeup_oom(mem);
1992 spin_unlock(&memcg_oom_lock);
1994 mem_cgroup_unmark_under_oom(mem);
1996 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1997 return false;
1998 /* Give chance to dying process */
1999 schedule_timeout(1);
2000 return true;
2004 * Currently used to update mapped file statistics, but the routine can be
2005 * generalized to update other statistics as well.
2007 * Notes: Race condition
2009 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2010 * it tends to be costly. But considering some conditions, we doesn't need
2011 * to do so _always_.
2013 * Considering "charge", lock_page_cgroup() is not required because all
2014 * file-stat operations happen after a page is attached to radix-tree. There
2015 * are no race with "charge".
2017 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2018 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2019 * if there are race with "uncharge". Statistics itself is properly handled
2020 * by flags.
2022 * Considering "move", this is an only case we see a race. To make the race
2023 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2024 * possibility of race condition. If there is, we take a lock.
2027 void mem_cgroup_update_page_stat(struct page *page,
2028 enum mem_cgroup_page_stat_item idx, int val)
2030 struct mem_cgroup *mem;
2031 struct page_cgroup *pc = lookup_page_cgroup(page);
2032 bool need_unlock = false;
2033 unsigned long uninitialized_var(flags);
2035 if (unlikely(!pc))
2036 return;
2038 rcu_read_lock();
2039 mem = pc->mem_cgroup;
2040 if (unlikely(!mem || !PageCgroupUsed(pc)))
2041 goto out;
2042 /* pc->mem_cgroup is unstable ? */
2043 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2044 /* take a lock against to access pc->mem_cgroup */
2045 move_lock_page_cgroup(pc, &flags);
2046 need_unlock = true;
2047 mem = pc->mem_cgroup;
2048 if (!mem || !PageCgroupUsed(pc))
2049 goto out;
2052 switch (idx) {
2053 case MEMCG_NR_FILE_MAPPED:
2054 if (val > 0)
2055 SetPageCgroupFileMapped(pc);
2056 else if (!page_mapped(page))
2057 ClearPageCgroupFileMapped(pc);
2058 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2059 break;
2060 default:
2061 BUG();
2064 this_cpu_add(mem->stat->count[idx], val);
2066 out:
2067 if (unlikely(need_unlock))
2068 move_unlock_page_cgroup(pc, &flags);
2069 rcu_read_unlock();
2070 return;
2072 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2075 * size of first charge trial. "32" comes from vmscan.c's magic value.
2076 * TODO: maybe necessary to use big numbers in big irons.
2078 #define CHARGE_BATCH 32U
2079 struct memcg_stock_pcp {
2080 struct mem_cgroup *cached; /* this never be root cgroup */
2081 unsigned int nr_pages;
2082 struct work_struct work;
2083 unsigned long flags;
2084 #define FLUSHING_CACHED_CHARGE (0)
2086 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2087 static DEFINE_MUTEX(percpu_charge_mutex);
2090 * Try to consume stocked charge on this cpu. If success, one page is consumed
2091 * from local stock and true is returned. If the stock is 0 or charges from a
2092 * cgroup which is not current target, returns false. This stock will be
2093 * refilled.
2095 static bool consume_stock(struct mem_cgroup *mem)
2097 struct memcg_stock_pcp *stock;
2098 bool ret = true;
2100 stock = &get_cpu_var(memcg_stock);
2101 if (mem == stock->cached && stock->nr_pages)
2102 stock->nr_pages--;
2103 else /* need to call res_counter_charge */
2104 ret = false;
2105 put_cpu_var(memcg_stock);
2106 return ret;
2110 * Returns stocks cached in percpu to res_counter and reset cached information.
2112 static void drain_stock(struct memcg_stock_pcp *stock)
2114 struct mem_cgroup *old = stock->cached;
2116 if (stock->nr_pages) {
2117 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2119 res_counter_uncharge(&old->res, bytes);
2120 if (do_swap_account)
2121 res_counter_uncharge(&old->memsw, bytes);
2122 stock->nr_pages = 0;
2124 stock->cached = NULL;
2128 * This must be called under preempt disabled or must be called by
2129 * a thread which is pinned to local cpu.
2131 static void drain_local_stock(struct work_struct *dummy)
2133 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2134 drain_stock(stock);
2135 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2139 * Cache charges(val) which is from res_counter, to local per_cpu area.
2140 * This will be consumed by consume_stock() function, later.
2142 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2144 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2146 if (stock->cached != mem) { /* reset if necessary */
2147 drain_stock(stock);
2148 stock->cached = mem;
2150 stock->nr_pages += nr_pages;
2151 put_cpu_var(memcg_stock);
2155 * Drains all per-CPU charge caches for given root_mem resp. subtree
2156 * of the hierarchy under it. sync flag says whether we should block
2157 * until the work is done.
2159 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2161 int cpu, curcpu;
2163 /* Notify other cpus that system-wide "drain" is running */
2164 get_online_cpus();
2165 curcpu = get_cpu();
2166 for_each_online_cpu(cpu) {
2167 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2168 struct mem_cgroup *mem;
2170 mem = stock->cached;
2171 if (!mem || !stock->nr_pages)
2172 continue;
2173 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2174 continue;
2175 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2176 if (cpu == curcpu)
2177 drain_local_stock(&stock->work);
2178 else
2179 schedule_work_on(cpu, &stock->work);
2182 put_cpu();
2184 if (!sync)
2185 goto out;
2187 for_each_online_cpu(cpu) {
2188 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2189 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2190 flush_work(&stock->work);
2192 out:
2193 put_online_cpus();
2197 * Tries to drain stocked charges in other cpus. This function is asynchronous
2198 * and just put a work per cpu for draining localy on each cpu. Caller can
2199 * expects some charges will be back to res_counter later but cannot wait for
2200 * it.
2202 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2205 * If someone calls draining, avoid adding more kworker runs.
2207 if (!mutex_trylock(&percpu_charge_mutex))
2208 return;
2209 drain_all_stock(root_mem, false);
2210 mutex_unlock(&percpu_charge_mutex);
2213 /* This is a synchronous drain interface. */
2214 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2216 /* called when force_empty is called */
2217 mutex_lock(&percpu_charge_mutex);
2218 drain_all_stock(root_mem, true);
2219 mutex_unlock(&percpu_charge_mutex);
2223 * This function drains percpu counter value from DEAD cpu and
2224 * move it to local cpu. Note that this function can be preempted.
2226 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2228 int i;
2230 spin_lock(&mem->pcp_counter_lock);
2231 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2232 long x = per_cpu(mem->stat->count[i], cpu);
2234 per_cpu(mem->stat->count[i], cpu) = 0;
2235 mem->nocpu_base.count[i] += x;
2237 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2238 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2240 per_cpu(mem->stat->events[i], cpu) = 0;
2241 mem->nocpu_base.events[i] += x;
2243 /* need to clear ON_MOVE value, works as a kind of lock. */
2244 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2245 spin_unlock(&mem->pcp_counter_lock);
2248 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2250 int idx = MEM_CGROUP_ON_MOVE;
2252 spin_lock(&mem->pcp_counter_lock);
2253 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2254 spin_unlock(&mem->pcp_counter_lock);
2257 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2258 unsigned long action,
2259 void *hcpu)
2261 int cpu = (unsigned long)hcpu;
2262 struct memcg_stock_pcp *stock;
2263 struct mem_cgroup *iter;
2265 if ((action == CPU_ONLINE)) {
2266 for_each_mem_cgroup_all(iter)
2267 synchronize_mem_cgroup_on_move(iter, cpu);
2268 return NOTIFY_OK;
2271 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2272 return NOTIFY_OK;
2274 for_each_mem_cgroup_all(iter)
2275 mem_cgroup_drain_pcp_counter(iter, cpu);
2277 stock = &per_cpu(memcg_stock, cpu);
2278 drain_stock(stock);
2279 return NOTIFY_OK;
2283 /* See __mem_cgroup_try_charge() for details */
2284 enum {
2285 CHARGE_OK, /* success */
2286 CHARGE_RETRY, /* need to retry but retry is not bad */
2287 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2288 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2289 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2292 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2293 unsigned int nr_pages, bool oom_check)
2295 unsigned long csize = nr_pages * PAGE_SIZE;
2296 struct mem_cgroup *mem_over_limit;
2297 struct res_counter *fail_res;
2298 unsigned long flags = 0;
2299 int ret;
2301 ret = res_counter_charge(&mem->res, csize, &fail_res);
2303 if (likely(!ret)) {
2304 if (!do_swap_account)
2305 return CHARGE_OK;
2306 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2307 if (likely(!ret))
2308 return CHARGE_OK;
2310 res_counter_uncharge(&mem->res, csize);
2311 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2312 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2313 } else
2314 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2316 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2317 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2319 * Never reclaim on behalf of optional batching, retry with a
2320 * single page instead.
2322 if (nr_pages == CHARGE_BATCH)
2323 return CHARGE_RETRY;
2325 if (!(gfp_mask & __GFP_WAIT))
2326 return CHARGE_WOULDBLOCK;
2328 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2329 gfp_mask, flags, NULL);
2330 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2331 return CHARGE_RETRY;
2333 * Even though the limit is exceeded at this point, reclaim
2334 * may have been able to free some pages. Retry the charge
2335 * before killing the task.
2337 * Only for regular pages, though: huge pages are rather
2338 * unlikely to succeed so close to the limit, and we fall back
2339 * to regular pages anyway in case of failure.
2341 if (nr_pages == 1 && ret)
2342 return CHARGE_RETRY;
2345 * At task move, charge accounts can be doubly counted. So, it's
2346 * better to wait until the end of task_move if something is going on.
2348 if (mem_cgroup_wait_acct_move(mem_over_limit))
2349 return CHARGE_RETRY;
2351 /* If we don't need to call oom-killer at el, return immediately */
2352 if (!oom_check)
2353 return CHARGE_NOMEM;
2354 /* check OOM */
2355 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2356 return CHARGE_OOM_DIE;
2358 return CHARGE_RETRY;
2362 * Unlike exported interface, "oom" parameter is added. if oom==true,
2363 * oom-killer can be invoked.
2365 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2366 gfp_t gfp_mask,
2367 unsigned int nr_pages,
2368 struct mem_cgroup **memcg,
2369 bool oom)
2371 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2372 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2373 struct mem_cgroup *mem = NULL;
2374 int ret;
2377 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2378 * in system level. So, allow to go ahead dying process in addition to
2379 * MEMDIE process.
2381 if (unlikely(test_thread_flag(TIF_MEMDIE)
2382 || fatal_signal_pending(current)))
2383 goto bypass;
2386 * We always charge the cgroup the mm_struct belongs to.
2387 * The mm_struct's mem_cgroup changes on task migration if the
2388 * thread group leader migrates. It's possible that mm is not
2389 * set, if so charge the init_mm (happens for pagecache usage).
2391 if (!*memcg && !mm)
2392 goto bypass;
2393 again:
2394 if (*memcg) { /* css should be a valid one */
2395 mem = *memcg;
2396 VM_BUG_ON(css_is_removed(&mem->css));
2397 if (mem_cgroup_is_root(mem))
2398 goto done;
2399 if (nr_pages == 1 && consume_stock(mem))
2400 goto done;
2401 css_get(&mem->css);
2402 } else {
2403 struct task_struct *p;
2405 rcu_read_lock();
2406 p = rcu_dereference(mm->owner);
2408 * Because we don't have task_lock(), "p" can exit.
2409 * In that case, "mem" can point to root or p can be NULL with
2410 * race with swapoff. Then, we have small risk of mis-accouning.
2411 * But such kind of mis-account by race always happens because
2412 * we don't have cgroup_mutex(). It's overkill and we allo that
2413 * small race, here.
2414 * (*) swapoff at el will charge against mm-struct not against
2415 * task-struct. So, mm->owner can be NULL.
2417 mem = mem_cgroup_from_task(p);
2418 if (!mem || mem_cgroup_is_root(mem)) {
2419 rcu_read_unlock();
2420 goto done;
2422 if (nr_pages == 1 && consume_stock(mem)) {
2424 * It seems dagerous to access memcg without css_get().
2425 * But considering how consume_stok works, it's not
2426 * necessary. If consume_stock success, some charges
2427 * from this memcg are cached on this cpu. So, we
2428 * don't need to call css_get()/css_tryget() before
2429 * calling consume_stock().
2431 rcu_read_unlock();
2432 goto done;
2434 /* after here, we may be blocked. we need to get refcnt */
2435 if (!css_tryget(&mem->css)) {
2436 rcu_read_unlock();
2437 goto again;
2439 rcu_read_unlock();
2442 do {
2443 bool oom_check;
2445 /* If killed, bypass charge */
2446 if (fatal_signal_pending(current)) {
2447 css_put(&mem->css);
2448 goto bypass;
2451 oom_check = false;
2452 if (oom && !nr_oom_retries) {
2453 oom_check = true;
2454 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2457 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2458 switch (ret) {
2459 case CHARGE_OK:
2460 break;
2461 case CHARGE_RETRY: /* not in OOM situation but retry */
2462 batch = nr_pages;
2463 css_put(&mem->css);
2464 mem = NULL;
2465 goto again;
2466 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2467 css_put(&mem->css);
2468 goto nomem;
2469 case CHARGE_NOMEM: /* OOM routine works */
2470 if (!oom) {
2471 css_put(&mem->css);
2472 goto nomem;
2474 /* If oom, we never return -ENOMEM */
2475 nr_oom_retries--;
2476 break;
2477 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2478 css_put(&mem->css);
2479 goto bypass;
2481 } while (ret != CHARGE_OK);
2483 if (batch > nr_pages)
2484 refill_stock(mem, batch - nr_pages);
2485 css_put(&mem->css);
2486 done:
2487 *memcg = mem;
2488 return 0;
2489 nomem:
2490 *memcg = NULL;
2491 return -ENOMEM;
2492 bypass:
2493 *memcg = NULL;
2494 return 0;
2498 * Somemtimes we have to undo a charge we got by try_charge().
2499 * This function is for that and do uncharge, put css's refcnt.
2500 * gotten by try_charge().
2502 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2503 unsigned int nr_pages)
2505 if (!mem_cgroup_is_root(mem)) {
2506 unsigned long bytes = nr_pages * PAGE_SIZE;
2508 res_counter_uncharge(&mem->res, bytes);
2509 if (do_swap_account)
2510 res_counter_uncharge(&mem->memsw, bytes);
2515 * A helper function to get mem_cgroup from ID. must be called under
2516 * rcu_read_lock(). The caller must check css_is_removed() or some if
2517 * it's concern. (dropping refcnt from swap can be called against removed
2518 * memcg.)
2520 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2522 struct cgroup_subsys_state *css;
2524 /* ID 0 is unused ID */
2525 if (!id)
2526 return NULL;
2527 css = css_lookup(&mem_cgroup_subsys, id);
2528 if (!css)
2529 return NULL;
2530 return container_of(css, struct mem_cgroup, css);
2533 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2535 struct mem_cgroup *mem = NULL;
2536 struct page_cgroup *pc;
2537 unsigned short id;
2538 swp_entry_t ent;
2540 VM_BUG_ON(!PageLocked(page));
2542 pc = lookup_page_cgroup(page);
2543 lock_page_cgroup(pc);
2544 if (PageCgroupUsed(pc)) {
2545 mem = pc->mem_cgroup;
2546 if (mem && !css_tryget(&mem->css))
2547 mem = NULL;
2548 } else if (PageSwapCache(page)) {
2549 ent.val = page_private(page);
2550 id = lookup_swap_cgroup(ent);
2551 rcu_read_lock();
2552 mem = mem_cgroup_lookup(id);
2553 if (mem && !css_tryget(&mem->css))
2554 mem = NULL;
2555 rcu_read_unlock();
2557 unlock_page_cgroup(pc);
2558 return mem;
2561 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2562 struct page *page,
2563 unsigned int nr_pages,
2564 struct page_cgroup *pc,
2565 enum charge_type ctype)
2567 lock_page_cgroup(pc);
2568 if (unlikely(PageCgroupUsed(pc))) {
2569 unlock_page_cgroup(pc);
2570 __mem_cgroup_cancel_charge(mem, nr_pages);
2571 return;
2574 * we don't need page_cgroup_lock about tail pages, becase they are not
2575 * accessed by any other context at this point.
2577 pc->mem_cgroup = mem;
2579 * We access a page_cgroup asynchronously without lock_page_cgroup().
2580 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2581 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2582 * before USED bit, we need memory barrier here.
2583 * See mem_cgroup_add_lru_list(), etc.
2585 smp_wmb();
2586 switch (ctype) {
2587 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2588 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2589 SetPageCgroupCache(pc);
2590 SetPageCgroupUsed(pc);
2591 break;
2592 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2593 ClearPageCgroupCache(pc);
2594 SetPageCgroupUsed(pc);
2595 break;
2596 default:
2597 break;
2600 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2601 unlock_page_cgroup(pc);
2603 * "charge_statistics" updated event counter. Then, check it.
2604 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2605 * if they exceeds softlimit.
2607 memcg_check_events(mem, page);
2610 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2612 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2613 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2615 * Because tail pages are not marked as "used", set it. We're under
2616 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2618 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2620 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2621 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2622 unsigned long flags;
2624 if (mem_cgroup_disabled())
2625 return;
2627 * We have no races with charge/uncharge but will have races with
2628 * page state accounting.
2630 move_lock_page_cgroup(head_pc, &flags);
2632 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2633 smp_wmb(); /* see __commit_charge() */
2634 if (PageCgroupAcctLRU(head_pc)) {
2635 enum lru_list lru;
2636 struct mem_cgroup_per_zone *mz;
2639 * LRU flags cannot be copied because we need to add tail
2640 *.page to LRU by generic call and our hook will be called.
2641 * We hold lru_lock, then, reduce counter directly.
2643 lru = page_lru(head);
2644 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2645 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2647 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2648 move_unlock_page_cgroup(head_pc, &flags);
2650 #endif
2653 * mem_cgroup_move_account - move account of the page
2654 * @page: the page
2655 * @nr_pages: number of regular pages (>1 for huge pages)
2656 * @pc: page_cgroup of the page.
2657 * @from: mem_cgroup which the page is moved from.
2658 * @to: mem_cgroup which the page is moved to. @from != @to.
2659 * @uncharge: whether we should call uncharge and css_put against @from.
2661 * The caller must confirm following.
2662 * - page is not on LRU (isolate_page() is useful.)
2663 * - compound_lock is held when nr_pages > 1
2665 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2666 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2667 * true, this function does "uncharge" from old cgroup, but it doesn't if
2668 * @uncharge is false, so a caller should do "uncharge".
2670 static int mem_cgroup_move_account(struct page *page,
2671 unsigned int nr_pages,
2672 struct page_cgroup *pc,
2673 struct mem_cgroup *from,
2674 struct mem_cgroup *to,
2675 bool uncharge)
2677 unsigned long flags;
2678 int ret;
2680 VM_BUG_ON(from == to);
2681 VM_BUG_ON(PageLRU(page));
2683 * The page is isolated from LRU. So, collapse function
2684 * will not handle this page. But page splitting can happen.
2685 * Do this check under compound_page_lock(). The caller should
2686 * hold it.
2688 ret = -EBUSY;
2689 if (nr_pages > 1 && !PageTransHuge(page))
2690 goto out;
2692 lock_page_cgroup(pc);
2694 ret = -EINVAL;
2695 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2696 goto unlock;
2698 move_lock_page_cgroup(pc, &flags);
2700 if (PageCgroupFileMapped(pc)) {
2701 /* Update mapped_file data for mem_cgroup */
2702 preempt_disable();
2703 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2704 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2705 preempt_enable();
2707 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2708 if (uncharge)
2709 /* This is not "cancel", but cancel_charge does all we need. */
2710 __mem_cgroup_cancel_charge(from, nr_pages);
2712 /* caller should have done css_get */
2713 pc->mem_cgroup = to;
2714 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2716 * We charges against "to" which may not have any tasks. Then, "to"
2717 * can be under rmdir(). But in current implementation, caller of
2718 * this function is just force_empty() and move charge, so it's
2719 * guaranteed that "to" is never removed. So, we don't check rmdir
2720 * status here.
2722 move_unlock_page_cgroup(pc, &flags);
2723 ret = 0;
2724 unlock:
2725 unlock_page_cgroup(pc);
2727 * check events
2729 memcg_check_events(to, page);
2730 memcg_check_events(from, page);
2731 out:
2732 return ret;
2736 * move charges to its parent.
2739 static int mem_cgroup_move_parent(struct page *page,
2740 struct page_cgroup *pc,
2741 struct mem_cgroup *child,
2742 gfp_t gfp_mask)
2744 struct cgroup *cg = child->css.cgroup;
2745 struct cgroup *pcg = cg->parent;
2746 struct mem_cgroup *parent;
2747 unsigned int nr_pages;
2748 unsigned long uninitialized_var(flags);
2749 int ret;
2751 /* Is ROOT ? */
2752 if (!pcg)
2753 return -EINVAL;
2755 ret = -EBUSY;
2756 if (!get_page_unless_zero(page))
2757 goto out;
2758 if (isolate_lru_page(page))
2759 goto put;
2761 nr_pages = hpage_nr_pages(page);
2763 parent = mem_cgroup_from_cont(pcg);
2764 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2765 if (ret || !parent)
2766 goto put_back;
2768 if (nr_pages > 1)
2769 flags = compound_lock_irqsave(page);
2771 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2772 if (ret)
2773 __mem_cgroup_cancel_charge(parent, nr_pages);
2775 if (nr_pages > 1)
2776 compound_unlock_irqrestore(page, flags);
2777 put_back:
2778 putback_lru_page(page);
2779 put:
2780 put_page(page);
2781 out:
2782 return ret;
2786 * Charge the memory controller for page usage.
2787 * Return
2788 * 0 if the charge was successful
2789 * < 0 if the cgroup is over its limit
2791 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2792 gfp_t gfp_mask, enum charge_type ctype)
2794 struct mem_cgroup *mem = NULL;
2795 unsigned int nr_pages = 1;
2796 struct page_cgroup *pc;
2797 bool oom = true;
2798 int ret;
2800 if (PageTransHuge(page)) {
2801 nr_pages <<= compound_order(page);
2802 VM_BUG_ON(!PageTransHuge(page));
2804 * Never OOM-kill a process for a huge page. The
2805 * fault handler will fall back to regular pages.
2807 oom = false;
2810 pc = lookup_page_cgroup(page);
2811 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2813 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2814 if (ret || !mem)
2815 return ret;
2817 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2818 return 0;
2821 int mem_cgroup_newpage_charge(struct page *page,
2822 struct mm_struct *mm, gfp_t gfp_mask)
2824 if (mem_cgroup_disabled())
2825 return 0;
2827 * If already mapped, we don't have to account.
2828 * If page cache, page->mapping has address_space.
2829 * But page->mapping may have out-of-use anon_vma pointer,
2830 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2831 * is NULL.
2833 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2834 return 0;
2835 if (unlikely(!mm))
2836 mm = &init_mm;
2837 return mem_cgroup_charge_common(page, mm, gfp_mask,
2838 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2841 static void
2842 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype);
2845 static void
2846 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2847 enum charge_type ctype)
2849 struct page_cgroup *pc = lookup_page_cgroup(page);
2851 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2852 * is already on LRU. It means the page may on some other page_cgroup's
2853 * LRU. Take care of it.
2855 mem_cgroup_lru_del_before_commit(page);
2856 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2857 mem_cgroup_lru_add_after_commit(page);
2858 return;
2861 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2862 gfp_t gfp_mask)
2864 struct mem_cgroup *mem = NULL;
2865 int ret;
2867 if (mem_cgroup_disabled())
2868 return 0;
2869 if (PageCompound(page))
2870 return 0;
2872 if (unlikely(!mm))
2873 mm = &init_mm;
2875 if (page_is_file_cache(page)) {
2876 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2877 if (ret || !mem)
2878 return ret;
2881 * FUSE reuses pages without going through the final
2882 * put that would remove them from the LRU list, make
2883 * sure that they get relinked properly.
2885 __mem_cgroup_commit_charge_lrucare(page, mem,
2886 MEM_CGROUP_CHARGE_TYPE_CACHE);
2887 return ret;
2889 /* shmem */
2890 if (PageSwapCache(page)) {
2891 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2892 if (!ret)
2893 __mem_cgroup_commit_charge_swapin(page, mem,
2894 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2895 } else
2896 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2897 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2899 return ret;
2903 * While swap-in, try_charge -> commit or cancel, the page is locked.
2904 * And when try_charge() successfully returns, one refcnt to memcg without
2905 * struct page_cgroup is acquired. This refcnt will be consumed by
2906 * "commit()" or removed by "cancel()"
2908 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2909 struct page *page,
2910 gfp_t mask, struct mem_cgroup **ptr)
2912 struct mem_cgroup *mem;
2913 int ret;
2915 *ptr = NULL;
2917 if (mem_cgroup_disabled())
2918 return 0;
2920 if (!do_swap_account)
2921 goto charge_cur_mm;
2923 * A racing thread's fault, or swapoff, may have already updated
2924 * the pte, and even removed page from swap cache: in those cases
2925 * do_swap_page()'s pte_same() test will fail; but there's also a
2926 * KSM case which does need to charge the page.
2928 if (!PageSwapCache(page))
2929 goto charge_cur_mm;
2930 mem = try_get_mem_cgroup_from_page(page);
2931 if (!mem)
2932 goto charge_cur_mm;
2933 *ptr = mem;
2934 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2935 css_put(&mem->css);
2936 return ret;
2937 charge_cur_mm:
2938 if (unlikely(!mm))
2939 mm = &init_mm;
2940 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2943 static void
2944 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2945 enum charge_type ctype)
2947 if (mem_cgroup_disabled())
2948 return;
2949 if (!ptr)
2950 return;
2951 cgroup_exclude_rmdir(&ptr->css);
2953 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2955 * Now swap is on-memory. This means this page may be
2956 * counted both as mem and swap....double count.
2957 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2958 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2959 * may call delete_from_swap_cache() before reach here.
2961 if (do_swap_account && PageSwapCache(page)) {
2962 swp_entry_t ent = {.val = page_private(page)};
2963 unsigned short id;
2964 struct mem_cgroup *memcg;
2966 id = swap_cgroup_record(ent, 0);
2967 rcu_read_lock();
2968 memcg = mem_cgroup_lookup(id);
2969 if (memcg) {
2971 * This recorded memcg can be obsolete one. So, avoid
2972 * calling css_tryget
2974 if (!mem_cgroup_is_root(memcg))
2975 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2976 mem_cgroup_swap_statistics(memcg, false);
2977 mem_cgroup_put(memcg);
2979 rcu_read_unlock();
2982 * At swapin, we may charge account against cgroup which has no tasks.
2983 * So, rmdir()->pre_destroy() can be called while we do this charge.
2984 * In that case, we need to call pre_destroy() again. check it here.
2986 cgroup_release_and_wakeup_rmdir(&ptr->css);
2989 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2991 __mem_cgroup_commit_charge_swapin(page, ptr,
2992 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2995 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2997 if (mem_cgroup_disabled())
2998 return;
2999 if (!mem)
3000 return;
3001 __mem_cgroup_cancel_charge(mem, 1);
3004 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3005 unsigned int nr_pages,
3006 const enum charge_type ctype)
3008 struct memcg_batch_info *batch = NULL;
3009 bool uncharge_memsw = true;
3011 /* If swapout, usage of swap doesn't decrease */
3012 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3013 uncharge_memsw = false;
3015 batch = &current->memcg_batch;
3017 * In usual, we do css_get() when we remember memcg pointer.
3018 * But in this case, we keep res->usage until end of a series of
3019 * uncharges. Then, it's ok to ignore memcg's refcnt.
3021 if (!batch->memcg)
3022 batch->memcg = mem;
3024 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3025 * In those cases, all pages freed continuously can be expected to be in
3026 * the same cgroup and we have chance to coalesce uncharges.
3027 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3028 * because we want to do uncharge as soon as possible.
3031 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3032 goto direct_uncharge;
3034 if (nr_pages > 1)
3035 goto direct_uncharge;
3038 * In typical case, batch->memcg == mem. This means we can
3039 * merge a series of uncharges to an uncharge of res_counter.
3040 * If not, we uncharge res_counter ony by one.
3042 if (batch->memcg != mem)
3043 goto direct_uncharge;
3044 /* remember freed charge and uncharge it later */
3045 batch->nr_pages++;
3046 if (uncharge_memsw)
3047 batch->memsw_nr_pages++;
3048 return;
3049 direct_uncharge:
3050 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3051 if (uncharge_memsw)
3052 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3053 if (unlikely(batch->memcg != mem))
3054 memcg_oom_recover(mem);
3055 return;
3059 * uncharge if !page_mapped(page)
3061 static struct mem_cgroup *
3062 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3064 struct mem_cgroup *mem = NULL;
3065 unsigned int nr_pages = 1;
3066 struct page_cgroup *pc;
3068 if (mem_cgroup_disabled())
3069 return NULL;
3071 if (PageSwapCache(page))
3072 return NULL;
3074 if (PageTransHuge(page)) {
3075 nr_pages <<= compound_order(page);
3076 VM_BUG_ON(!PageTransHuge(page));
3079 * Check if our page_cgroup is valid
3081 pc = lookup_page_cgroup(page);
3082 if (unlikely(!pc || !PageCgroupUsed(pc)))
3083 return NULL;
3085 lock_page_cgroup(pc);
3087 mem = pc->mem_cgroup;
3089 if (!PageCgroupUsed(pc))
3090 goto unlock_out;
3092 switch (ctype) {
3093 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3094 case MEM_CGROUP_CHARGE_TYPE_DROP:
3095 /* See mem_cgroup_prepare_migration() */
3096 if (page_mapped(page) || PageCgroupMigration(pc))
3097 goto unlock_out;
3098 break;
3099 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3100 if (!PageAnon(page)) { /* Shared memory */
3101 if (page->mapping && !page_is_file_cache(page))
3102 goto unlock_out;
3103 } else if (page_mapped(page)) /* Anon */
3104 goto unlock_out;
3105 break;
3106 default:
3107 break;
3110 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3112 ClearPageCgroupUsed(pc);
3114 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3115 * freed from LRU. This is safe because uncharged page is expected not
3116 * to be reused (freed soon). Exception is SwapCache, it's handled by
3117 * special functions.
3120 unlock_page_cgroup(pc);
3122 * even after unlock, we have mem->res.usage here and this memcg
3123 * will never be freed.
3125 memcg_check_events(mem, page);
3126 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3127 mem_cgroup_swap_statistics(mem, true);
3128 mem_cgroup_get(mem);
3130 if (!mem_cgroup_is_root(mem))
3131 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3133 return mem;
3135 unlock_out:
3136 unlock_page_cgroup(pc);
3137 return NULL;
3140 void mem_cgroup_uncharge_page(struct page *page)
3142 /* early check. */
3143 if (page_mapped(page))
3144 return;
3145 if (page->mapping && !PageAnon(page))
3146 return;
3147 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3150 void mem_cgroup_uncharge_cache_page(struct page *page)
3152 VM_BUG_ON(page_mapped(page));
3153 VM_BUG_ON(page->mapping);
3154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3158 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3159 * In that cases, pages are freed continuously and we can expect pages
3160 * are in the same memcg. All these calls itself limits the number of
3161 * pages freed at once, then uncharge_start/end() is called properly.
3162 * This may be called prural(2) times in a context,
3165 void mem_cgroup_uncharge_start(void)
3167 current->memcg_batch.do_batch++;
3168 /* We can do nest. */
3169 if (current->memcg_batch.do_batch == 1) {
3170 current->memcg_batch.memcg = NULL;
3171 current->memcg_batch.nr_pages = 0;
3172 current->memcg_batch.memsw_nr_pages = 0;
3176 void mem_cgroup_uncharge_end(void)
3178 struct memcg_batch_info *batch = &current->memcg_batch;
3180 if (!batch->do_batch)
3181 return;
3183 batch->do_batch--;
3184 if (batch->do_batch) /* If stacked, do nothing. */
3185 return;
3187 if (!batch->memcg)
3188 return;
3190 * This "batch->memcg" is valid without any css_get/put etc...
3191 * bacause we hide charges behind us.
3193 if (batch->nr_pages)
3194 res_counter_uncharge(&batch->memcg->res,
3195 batch->nr_pages * PAGE_SIZE);
3196 if (batch->memsw_nr_pages)
3197 res_counter_uncharge(&batch->memcg->memsw,
3198 batch->memsw_nr_pages * PAGE_SIZE);
3199 memcg_oom_recover(batch->memcg);
3200 /* forget this pointer (for sanity check) */
3201 batch->memcg = NULL;
3204 #ifdef CONFIG_SWAP
3206 * called after __delete_from_swap_cache() and drop "page" account.
3207 * memcg information is recorded to swap_cgroup of "ent"
3209 void
3210 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3212 struct mem_cgroup *memcg;
3213 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3215 if (!swapout) /* this was a swap cache but the swap is unused ! */
3216 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3218 memcg = __mem_cgroup_uncharge_common(page, ctype);
3221 * record memcg information, if swapout && memcg != NULL,
3222 * mem_cgroup_get() was called in uncharge().
3224 if (do_swap_account && swapout && memcg)
3225 swap_cgroup_record(ent, css_id(&memcg->css));
3227 #endif
3229 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3231 * called from swap_entry_free(). remove record in swap_cgroup and
3232 * uncharge "memsw" account.
3234 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3236 struct mem_cgroup *memcg;
3237 unsigned short id;
3239 if (!do_swap_account)
3240 return;
3242 id = swap_cgroup_record(ent, 0);
3243 rcu_read_lock();
3244 memcg = mem_cgroup_lookup(id);
3245 if (memcg) {
3247 * We uncharge this because swap is freed.
3248 * This memcg can be obsolete one. We avoid calling css_tryget
3250 if (!mem_cgroup_is_root(memcg))
3251 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3252 mem_cgroup_swap_statistics(memcg, false);
3253 mem_cgroup_put(memcg);
3255 rcu_read_unlock();
3259 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3260 * @entry: swap entry to be moved
3261 * @from: mem_cgroup which the entry is moved from
3262 * @to: mem_cgroup which the entry is moved to
3263 * @need_fixup: whether we should fixup res_counters and refcounts.
3265 * It succeeds only when the swap_cgroup's record for this entry is the same
3266 * as the mem_cgroup's id of @from.
3268 * Returns 0 on success, -EINVAL on failure.
3270 * The caller must have charged to @to, IOW, called res_counter_charge() about
3271 * both res and memsw, and called css_get().
3273 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3274 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3276 unsigned short old_id, new_id;
3278 old_id = css_id(&from->css);
3279 new_id = css_id(&to->css);
3281 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3282 mem_cgroup_swap_statistics(from, false);
3283 mem_cgroup_swap_statistics(to, true);
3285 * This function is only called from task migration context now.
3286 * It postpones res_counter and refcount handling till the end
3287 * of task migration(mem_cgroup_clear_mc()) for performance
3288 * improvement. But we cannot postpone mem_cgroup_get(to)
3289 * because if the process that has been moved to @to does
3290 * swap-in, the refcount of @to might be decreased to 0.
3292 mem_cgroup_get(to);
3293 if (need_fixup) {
3294 if (!mem_cgroup_is_root(from))
3295 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3296 mem_cgroup_put(from);
3298 * we charged both to->res and to->memsw, so we should
3299 * uncharge to->res.
3301 if (!mem_cgroup_is_root(to))
3302 res_counter_uncharge(&to->res, PAGE_SIZE);
3304 return 0;
3306 return -EINVAL;
3308 #else
3309 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3310 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3312 return -EINVAL;
3314 #endif
3317 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3318 * page belongs to.
3320 int mem_cgroup_prepare_migration(struct page *page,
3321 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3323 struct mem_cgroup *mem = NULL;
3324 struct page_cgroup *pc;
3325 enum charge_type ctype;
3326 int ret = 0;
3328 *ptr = NULL;
3330 VM_BUG_ON(PageTransHuge(page));
3331 if (mem_cgroup_disabled())
3332 return 0;
3334 pc = lookup_page_cgroup(page);
3335 lock_page_cgroup(pc);
3336 if (PageCgroupUsed(pc)) {
3337 mem = pc->mem_cgroup;
3338 css_get(&mem->css);
3340 * At migrating an anonymous page, its mapcount goes down
3341 * to 0 and uncharge() will be called. But, even if it's fully
3342 * unmapped, migration may fail and this page has to be
3343 * charged again. We set MIGRATION flag here and delay uncharge
3344 * until end_migration() is called
3346 * Corner Case Thinking
3347 * A)
3348 * When the old page was mapped as Anon and it's unmap-and-freed
3349 * while migration was ongoing.
3350 * If unmap finds the old page, uncharge() of it will be delayed
3351 * until end_migration(). If unmap finds a new page, it's
3352 * uncharged when it make mapcount to be 1->0. If unmap code
3353 * finds swap_migration_entry, the new page will not be mapped
3354 * and end_migration() will find it(mapcount==0).
3356 * B)
3357 * When the old page was mapped but migraion fails, the kernel
3358 * remaps it. A charge for it is kept by MIGRATION flag even
3359 * if mapcount goes down to 0. We can do remap successfully
3360 * without charging it again.
3362 * C)
3363 * The "old" page is under lock_page() until the end of
3364 * migration, so, the old page itself will not be swapped-out.
3365 * If the new page is swapped out before end_migraton, our
3366 * hook to usual swap-out path will catch the event.
3368 if (PageAnon(page))
3369 SetPageCgroupMigration(pc);
3371 unlock_page_cgroup(pc);
3373 * If the page is not charged at this point,
3374 * we return here.
3376 if (!mem)
3377 return 0;
3379 *ptr = mem;
3380 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3381 css_put(&mem->css);/* drop extra refcnt */
3382 if (ret || *ptr == NULL) {
3383 if (PageAnon(page)) {
3384 lock_page_cgroup(pc);
3385 ClearPageCgroupMigration(pc);
3386 unlock_page_cgroup(pc);
3388 * The old page may be fully unmapped while we kept it.
3390 mem_cgroup_uncharge_page(page);
3392 return -ENOMEM;
3395 * We charge new page before it's used/mapped. So, even if unlock_page()
3396 * is called before end_migration, we can catch all events on this new
3397 * page. In the case new page is migrated but not remapped, new page's
3398 * mapcount will be finally 0 and we call uncharge in end_migration().
3400 pc = lookup_page_cgroup(newpage);
3401 if (PageAnon(page))
3402 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3403 else if (page_is_file_cache(page))
3404 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3405 else
3406 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3407 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3408 return ret;
3411 /* remove redundant charge if migration failed*/
3412 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3413 struct page *oldpage, struct page *newpage, bool migration_ok)
3415 struct page *used, *unused;
3416 struct page_cgroup *pc;
3418 if (!mem)
3419 return;
3420 /* blocks rmdir() */
3421 cgroup_exclude_rmdir(&mem->css);
3422 if (!migration_ok) {
3423 used = oldpage;
3424 unused = newpage;
3425 } else {
3426 used = newpage;
3427 unused = oldpage;
3430 * We disallowed uncharge of pages under migration because mapcount
3431 * of the page goes down to zero, temporarly.
3432 * Clear the flag and check the page should be charged.
3434 pc = lookup_page_cgroup(oldpage);
3435 lock_page_cgroup(pc);
3436 ClearPageCgroupMigration(pc);
3437 unlock_page_cgroup(pc);
3439 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3442 * If a page is a file cache, radix-tree replacement is very atomic
3443 * and we can skip this check. When it was an Anon page, its mapcount
3444 * goes down to 0. But because we added MIGRATION flage, it's not
3445 * uncharged yet. There are several case but page->mapcount check
3446 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3447 * check. (see prepare_charge() also)
3449 if (PageAnon(used))
3450 mem_cgroup_uncharge_page(used);
3452 * At migration, we may charge account against cgroup which has no
3453 * tasks.
3454 * So, rmdir()->pre_destroy() can be called while we do this charge.
3455 * In that case, we need to call pre_destroy() again. check it here.
3457 cgroup_release_and_wakeup_rmdir(&mem->css);
3460 #ifdef CONFIG_DEBUG_VM
3461 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3463 struct page_cgroup *pc;
3465 pc = lookup_page_cgroup(page);
3466 if (likely(pc) && PageCgroupUsed(pc))
3467 return pc;
3468 return NULL;
3471 bool mem_cgroup_bad_page_check(struct page *page)
3473 if (mem_cgroup_disabled())
3474 return false;
3476 return lookup_page_cgroup_used(page) != NULL;
3479 void mem_cgroup_print_bad_page(struct page *page)
3481 struct page_cgroup *pc;
3483 pc = lookup_page_cgroup_used(page);
3484 if (pc) {
3485 int ret = -1;
3486 char *path;
3488 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3489 pc, pc->flags, pc->mem_cgroup);
3491 path = kmalloc(PATH_MAX, GFP_KERNEL);
3492 if (path) {
3493 rcu_read_lock();
3494 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3495 path, PATH_MAX);
3496 rcu_read_unlock();
3499 printk(KERN_CONT "(%s)\n",
3500 (ret < 0) ? "cannot get the path" : path);
3501 kfree(path);
3504 #endif
3506 static DEFINE_MUTEX(set_limit_mutex);
3508 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3509 unsigned long long val)
3511 int retry_count;
3512 u64 memswlimit, memlimit;
3513 int ret = 0;
3514 int children = mem_cgroup_count_children(memcg);
3515 u64 curusage, oldusage;
3516 int enlarge;
3519 * For keeping hierarchical_reclaim simple, how long we should retry
3520 * is depends on callers. We set our retry-count to be function
3521 * of # of children which we should visit in this loop.
3523 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3525 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3527 enlarge = 0;
3528 while (retry_count) {
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
3536 * We have to guarantee mem->res.limit < mem->memsw.limit.
3538 mutex_lock(&set_limit_mutex);
3539 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3540 if (memswlimit < val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
3543 break;
3546 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3547 if (memlimit < val)
3548 enlarge = 1;
3550 ret = res_counter_set_limit(&memcg->res, val);
3551 if (!ret) {
3552 if (memswlimit == val)
3553 memcg->memsw_is_minimum = true;
3554 else
3555 memcg->memsw_is_minimum = false;
3557 mutex_unlock(&set_limit_mutex);
3559 if (!ret)
3560 break;
3562 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3563 MEM_CGROUP_RECLAIM_SHRINK,
3564 NULL);
3565 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3566 /* Usage is reduced ? */
3567 if (curusage >= oldusage)
3568 retry_count--;
3569 else
3570 oldusage = curusage;
3572 if (!ret && enlarge)
3573 memcg_oom_recover(memcg);
3575 return ret;
3578 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3579 unsigned long long val)
3581 int retry_count;
3582 u64 memlimit, memswlimit, oldusage, curusage;
3583 int children = mem_cgroup_count_children(memcg);
3584 int ret = -EBUSY;
3585 int enlarge = 0;
3587 /* see mem_cgroup_resize_res_limit */
3588 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3589 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3590 while (retry_count) {
3591 if (signal_pending(current)) {
3592 ret = -EINTR;
3593 break;
3596 * Rather than hide all in some function, I do this in
3597 * open coded manner. You see what this really does.
3598 * We have to guarantee mem->res.limit < mem->memsw.limit.
3600 mutex_lock(&set_limit_mutex);
3601 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3602 if (memlimit > val) {
3603 ret = -EINVAL;
3604 mutex_unlock(&set_limit_mutex);
3605 break;
3607 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3608 if (memswlimit < val)
3609 enlarge = 1;
3610 ret = res_counter_set_limit(&memcg->memsw, val);
3611 if (!ret) {
3612 if (memlimit == val)
3613 memcg->memsw_is_minimum = true;
3614 else
3615 memcg->memsw_is_minimum = false;
3617 mutex_unlock(&set_limit_mutex);
3619 if (!ret)
3620 break;
3622 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3623 MEM_CGROUP_RECLAIM_NOSWAP |
3624 MEM_CGROUP_RECLAIM_SHRINK,
3625 NULL);
3626 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3627 /* Usage is reduced ? */
3628 if (curusage >= oldusage)
3629 retry_count--;
3630 else
3631 oldusage = curusage;
3633 if (!ret && enlarge)
3634 memcg_oom_recover(memcg);
3635 return ret;
3638 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3639 gfp_t gfp_mask,
3640 unsigned long *total_scanned)
3642 unsigned long nr_reclaimed = 0;
3643 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3644 unsigned long reclaimed;
3645 int loop = 0;
3646 struct mem_cgroup_tree_per_zone *mctz;
3647 unsigned long long excess;
3648 unsigned long nr_scanned;
3650 if (order > 0)
3651 return 0;
3653 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3655 * This loop can run a while, specially if mem_cgroup's continuously
3656 * keep exceeding their soft limit and putting the system under
3657 * pressure
3659 do {
3660 if (next_mz)
3661 mz = next_mz;
3662 else
3663 mz = mem_cgroup_largest_soft_limit_node(mctz);
3664 if (!mz)
3665 break;
3667 nr_scanned = 0;
3668 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3669 gfp_mask,
3670 MEM_CGROUP_RECLAIM_SOFT,
3671 &nr_scanned);
3672 nr_reclaimed += reclaimed;
3673 *total_scanned += nr_scanned;
3674 spin_lock(&mctz->lock);
3677 * If we failed to reclaim anything from this memory cgroup
3678 * it is time to move on to the next cgroup
3680 next_mz = NULL;
3681 if (!reclaimed) {
3682 do {
3684 * Loop until we find yet another one.
3686 * By the time we get the soft_limit lock
3687 * again, someone might have aded the
3688 * group back on the RB tree. Iterate to
3689 * make sure we get a different mem.
3690 * mem_cgroup_largest_soft_limit_node returns
3691 * NULL if no other cgroup is present on
3692 * the tree
3694 next_mz =
3695 __mem_cgroup_largest_soft_limit_node(mctz);
3696 if (next_mz == mz)
3697 css_put(&next_mz->mem->css);
3698 else /* next_mz == NULL or other memcg */
3699 break;
3700 } while (1);
3702 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3703 excess = res_counter_soft_limit_excess(&mz->mem->res);
3705 * One school of thought says that we should not add
3706 * back the node to the tree if reclaim returns 0.
3707 * But our reclaim could return 0, simply because due
3708 * to priority we are exposing a smaller subset of
3709 * memory to reclaim from. Consider this as a longer
3710 * term TODO.
3712 /* If excess == 0, no tree ops */
3713 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3714 spin_unlock(&mctz->lock);
3715 css_put(&mz->mem->css);
3716 loop++;
3718 * Could not reclaim anything and there are no more
3719 * mem cgroups to try or we seem to be looping without
3720 * reclaiming anything.
3722 if (!nr_reclaimed &&
3723 (next_mz == NULL ||
3724 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3725 break;
3726 } while (!nr_reclaimed);
3727 if (next_mz)
3728 css_put(&next_mz->mem->css);
3729 return nr_reclaimed;
3733 * This routine traverse page_cgroup in given list and drop them all.
3734 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3736 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3737 int node, int zid, enum lru_list lru)
3739 struct zone *zone;
3740 struct mem_cgroup_per_zone *mz;
3741 struct page_cgroup *pc, *busy;
3742 unsigned long flags, loop;
3743 struct list_head *list;
3744 int ret = 0;
3746 zone = &NODE_DATA(node)->node_zones[zid];
3747 mz = mem_cgroup_zoneinfo(mem, node, zid);
3748 list = &mz->lists[lru];
3750 loop = MEM_CGROUP_ZSTAT(mz, lru);
3751 /* give some margin against EBUSY etc...*/
3752 loop += 256;
3753 busy = NULL;
3754 while (loop--) {
3755 struct page *page;
3757 ret = 0;
3758 spin_lock_irqsave(&zone->lru_lock, flags);
3759 if (list_empty(list)) {
3760 spin_unlock_irqrestore(&zone->lru_lock, flags);
3761 break;
3763 pc = list_entry(list->prev, struct page_cgroup, lru);
3764 if (busy == pc) {
3765 list_move(&pc->lru, list);
3766 busy = NULL;
3767 spin_unlock_irqrestore(&zone->lru_lock, flags);
3768 continue;
3770 spin_unlock_irqrestore(&zone->lru_lock, flags);
3772 page = lookup_cgroup_page(pc);
3774 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3775 if (ret == -ENOMEM)
3776 break;
3778 if (ret == -EBUSY || ret == -EINVAL) {
3779 /* found lock contention or "pc" is obsolete. */
3780 busy = pc;
3781 cond_resched();
3782 } else
3783 busy = NULL;
3786 if (!ret && !list_empty(list))
3787 return -EBUSY;
3788 return ret;
3792 * make mem_cgroup's charge to be 0 if there is no task.
3793 * This enables deleting this mem_cgroup.
3795 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3797 int ret;
3798 int node, zid, shrink;
3799 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3800 struct cgroup *cgrp = mem->css.cgroup;
3802 css_get(&mem->css);
3804 shrink = 0;
3805 /* should free all ? */
3806 if (free_all)
3807 goto try_to_free;
3808 move_account:
3809 do {
3810 ret = -EBUSY;
3811 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3812 goto out;
3813 ret = -EINTR;
3814 if (signal_pending(current))
3815 goto out;
3816 /* This is for making all *used* pages to be on LRU. */
3817 lru_add_drain_all();
3818 drain_all_stock_sync(mem);
3819 ret = 0;
3820 mem_cgroup_start_move(mem);
3821 for_each_node_state(node, N_HIGH_MEMORY) {
3822 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3823 enum lru_list l;
3824 for_each_lru(l) {
3825 ret = mem_cgroup_force_empty_list(mem,
3826 node, zid, l);
3827 if (ret)
3828 break;
3831 if (ret)
3832 break;
3834 mem_cgroup_end_move(mem);
3835 memcg_oom_recover(mem);
3836 /* it seems parent cgroup doesn't have enough mem */
3837 if (ret == -ENOMEM)
3838 goto try_to_free;
3839 cond_resched();
3840 /* "ret" should also be checked to ensure all lists are empty. */
3841 } while (mem->res.usage > 0 || ret);
3842 out:
3843 css_put(&mem->css);
3844 return ret;
3846 try_to_free:
3847 /* returns EBUSY if there is a task or if we come here twice. */
3848 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3849 ret = -EBUSY;
3850 goto out;
3852 /* we call try-to-free pages for make this cgroup empty */
3853 lru_add_drain_all();
3854 /* try to free all pages in this cgroup */
3855 shrink = 1;
3856 while (nr_retries && mem->res.usage > 0) {
3857 struct memcg_scanrecord rec;
3858 int progress;
3860 if (signal_pending(current)) {
3861 ret = -EINTR;
3862 goto out;
3864 rec.context = SCAN_BY_SHRINK;
3865 rec.mem = mem;
3866 rec.root = mem;
3867 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3868 false, &rec);
3869 if (!progress) {
3870 nr_retries--;
3871 /* maybe some writeback is necessary */
3872 congestion_wait(BLK_RW_ASYNC, HZ/10);
3876 lru_add_drain();
3877 /* try move_account...there may be some *locked* pages. */
3878 goto move_account;
3881 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3883 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3887 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3889 return mem_cgroup_from_cont(cont)->use_hierarchy;
3892 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3893 u64 val)
3895 int retval = 0;
3896 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3897 struct cgroup *parent = cont->parent;
3898 struct mem_cgroup *parent_mem = NULL;
3900 if (parent)
3901 parent_mem = mem_cgroup_from_cont(parent);
3903 cgroup_lock();
3905 * If parent's use_hierarchy is set, we can't make any modifications
3906 * in the child subtrees. If it is unset, then the change can
3907 * occur, provided the current cgroup has no children.
3909 * For the root cgroup, parent_mem is NULL, we allow value to be
3910 * set if there are no children.
3912 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3913 (val == 1 || val == 0)) {
3914 if (list_empty(&cont->children))
3915 mem->use_hierarchy = val;
3916 else
3917 retval = -EBUSY;
3918 } else
3919 retval = -EINVAL;
3920 cgroup_unlock();
3922 return retval;
3926 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3927 enum mem_cgroup_stat_index idx)
3929 struct mem_cgroup *iter;
3930 long val = 0;
3932 /* Per-cpu values can be negative, use a signed accumulator */
3933 for_each_mem_cgroup_tree(iter, mem)
3934 val += mem_cgroup_read_stat(iter, idx);
3936 if (val < 0) /* race ? */
3937 val = 0;
3938 return val;
3941 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3943 u64 val;
3945 if (!mem_cgroup_is_root(mem)) {
3946 if (!swap)
3947 return res_counter_read_u64(&mem->res, RES_USAGE);
3948 else
3949 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3952 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3953 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3955 if (swap)
3956 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3958 return val << PAGE_SHIFT;
3961 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3963 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3964 u64 val;
3965 int type, name;
3967 type = MEMFILE_TYPE(cft->private);
3968 name = MEMFILE_ATTR(cft->private);
3969 switch (type) {
3970 case _MEM:
3971 if (name == RES_USAGE)
3972 val = mem_cgroup_usage(mem, false);
3973 else
3974 val = res_counter_read_u64(&mem->res, name);
3975 break;
3976 case _MEMSWAP:
3977 if (name == RES_USAGE)
3978 val = mem_cgroup_usage(mem, true);
3979 else
3980 val = res_counter_read_u64(&mem->memsw, name);
3981 break;
3982 default:
3983 BUG();
3984 break;
3986 return val;
3989 * The user of this function is...
3990 * RES_LIMIT.
3992 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3993 const char *buffer)
3995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3996 int type, name;
3997 unsigned long long val;
3998 int ret;
4000 type = MEMFILE_TYPE(cft->private);
4001 name = MEMFILE_ATTR(cft->private);
4002 switch (name) {
4003 case RES_LIMIT:
4004 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4005 ret = -EINVAL;
4006 break;
4008 /* This function does all necessary parse...reuse it */
4009 ret = res_counter_memparse_write_strategy(buffer, &val);
4010 if (ret)
4011 break;
4012 if (type == _MEM)
4013 ret = mem_cgroup_resize_limit(memcg, val);
4014 else
4015 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4016 break;
4017 case RES_SOFT_LIMIT:
4018 ret = res_counter_memparse_write_strategy(buffer, &val);
4019 if (ret)
4020 break;
4022 * For memsw, soft limits are hard to implement in terms
4023 * of semantics, for now, we support soft limits for
4024 * control without swap
4026 if (type == _MEM)
4027 ret = res_counter_set_soft_limit(&memcg->res, val);
4028 else
4029 ret = -EINVAL;
4030 break;
4031 default:
4032 ret = -EINVAL; /* should be BUG() ? */
4033 break;
4035 return ret;
4038 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4039 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4041 struct cgroup *cgroup;
4042 unsigned long long min_limit, min_memsw_limit, tmp;
4044 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4046 cgroup = memcg->css.cgroup;
4047 if (!memcg->use_hierarchy)
4048 goto out;
4050 while (cgroup->parent) {
4051 cgroup = cgroup->parent;
4052 memcg = mem_cgroup_from_cont(cgroup);
4053 if (!memcg->use_hierarchy)
4054 break;
4055 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4056 min_limit = min(min_limit, tmp);
4057 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4058 min_memsw_limit = min(min_memsw_limit, tmp);
4060 out:
4061 *mem_limit = min_limit;
4062 *memsw_limit = min_memsw_limit;
4063 return;
4066 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4068 struct mem_cgroup *mem;
4069 int type, name;
4071 mem = mem_cgroup_from_cont(cont);
4072 type = MEMFILE_TYPE(event);
4073 name = MEMFILE_ATTR(event);
4074 switch (name) {
4075 case RES_MAX_USAGE:
4076 if (type == _MEM)
4077 res_counter_reset_max(&mem->res);
4078 else
4079 res_counter_reset_max(&mem->memsw);
4080 break;
4081 case RES_FAILCNT:
4082 if (type == _MEM)
4083 res_counter_reset_failcnt(&mem->res);
4084 else
4085 res_counter_reset_failcnt(&mem->memsw);
4086 break;
4089 return 0;
4092 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4093 struct cftype *cft)
4095 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4098 #ifdef CONFIG_MMU
4099 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4100 struct cftype *cft, u64 val)
4102 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4104 if (val >= (1 << NR_MOVE_TYPE))
4105 return -EINVAL;
4107 * We check this value several times in both in can_attach() and
4108 * attach(), so we need cgroup lock to prevent this value from being
4109 * inconsistent.
4111 cgroup_lock();
4112 mem->move_charge_at_immigrate = val;
4113 cgroup_unlock();
4115 return 0;
4117 #else
4118 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4119 struct cftype *cft, u64 val)
4121 return -ENOSYS;
4123 #endif
4126 /* For read statistics */
4127 enum {
4128 MCS_CACHE,
4129 MCS_RSS,
4130 MCS_FILE_MAPPED,
4131 MCS_PGPGIN,
4132 MCS_PGPGOUT,
4133 MCS_SWAP,
4134 MCS_PGFAULT,
4135 MCS_PGMAJFAULT,
4136 MCS_INACTIVE_ANON,
4137 MCS_ACTIVE_ANON,
4138 MCS_INACTIVE_FILE,
4139 MCS_ACTIVE_FILE,
4140 MCS_UNEVICTABLE,
4141 NR_MCS_STAT,
4144 struct mcs_total_stat {
4145 s64 stat[NR_MCS_STAT];
4148 struct {
4149 char *local_name;
4150 char *total_name;
4151 } memcg_stat_strings[NR_MCS_STAT] = {
4152 {"cache", "total_cache"},
4153 {"rss", "total_rss"},
4154 {"mapped_file", "total_mapped_file"},
4155 {"pgpgin", "total_pgpgin"},
4156 {"pgpgout", "total_pgpgout"},
4157 {"swap", "total_swap"},
4158 {"pgfault", "total_pgfault"},
4159 {"pgmajfault", "total_pgmajfault"},
4160 {"inactive_anon", "total_inactive_anon"},
4161 {"active_anon", "total_active_anon"},
4162 {"inactive_file", "total_inactive_file"},
4163 {"active_file", "total_active_file"},
4164 {"unevictable", "total_unevictable"}
4168 static void
4169 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4171 s64 val;
4173 /* per cpu stat */
4174 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4175 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4176 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4177 s->stat[MCS_RSS] += val * PAGE_SIZE;
4178 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4179 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4180 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4181 s->stat[MCS_PGPGIN] += val;
4182 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4183 s->stat[MCS_PGPGOUT] += val;
4184 if (do_swap_account) {
4185 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4186 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4188 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4189 s->stat[MCS_PGFAULT] += val;
4190 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4191 s->stat[MCS_PGMAJFAULT] += val;
4193 /* per zone stat */
4194 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4195 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4196 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4197 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4198 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4199 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4200 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4201 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4202 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4203 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4206 static void
4207 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4209 struct mem_cgroup *iter;
4211 for_each_mem_cgroup_tree(iter, mem)
4212 mem_cgroup_get_local_stat(iter, s);
4215 #ifdef CONFIG_NUMA
4216 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4218 int nid;
4219 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4220 unsigned long node_nr;
4221 struct cgroup *cont = m->private;
4222 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4224 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4225 seq_printf(m, "total=%lu", total_nr);
4226 for_each_node_state(nid, N_HIGH_MEMORY) {
4227 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4228 seq_printf(m, " N%d=%lu", nid, node_nr);
4230 seq_putc(m, '\n');
4232 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4233 seq_printf(m, "file=%lu", file_nr);
4234 for_each_node_state(nid, N_HIGH_MEMORY) {
4235 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4236 LRU_ALL_FILE);
4237 seq_printf(m, " N%d=%lu", nid, node_nr);
4239 seq_putc(m, '\n');
4241 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4242 seq_printf(m, "anon=%lu", anon_nr);
4243 for_each_node_state(nid, N_HIGH_MEMORY) {
4244 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4245 LRU_ALL_ANON);
4246 seq_printf(m, " N%d=%lu", nid, node_nr);
4248 seq_putc(m, '\n');
4250 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4251 seq_printf(m, "unevictable=%lu", unevictable_nr);
4252 for_each_node_state(nid, N_HIGH_MEMORY) {
4253 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4254 BIT(LRU_UNEVICTABLE));
4255 seq_printf(m, " N%d=%lu", nid, node_nr);
4257 seq_putc(m, '\n');
4258 return 0;
4260 #endif /* CONFIG_NUMA */
4262 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4263 struct cgroup_map_cb *cb)
4265 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4266 struct mcs_total_stat mystat;
4267 int i;
4269 memset(&mystat, 0, sizeof(mystat));
4270 mem_cgroup_get_local_stat(mem_cont, &mystat);
4273 for (i = 0; i < NR_MCS_STAT; i++) {
4274 if (i == MCS_SWAP && !do_swap_account)
4275 continue;
4276 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4279 /* Hierarchical information */
4281 unsigned long long limit, memsw_limit;
4282 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4283 cb->fill(cb, "hierarchical_memory_limit", limit);
4284 if (do_swap_account)
4285 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4288 memset(&mystat, 0, sizeof(mystat));
4289 mem_cgroup_get_total_stat(mem_cont, &mystat);
4290 for (i = 0; i < NR_MCS_STAT; i++) {
4291 if (i == MCS_SWAP && !do_swap_account)
4292 continue;
4293 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4296 #ifdef CONFIG_DEBUG_VM
4297 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4300 int nid, zid;
4301 struct mem_cgroup_per_zone *mz;
4302 unsigned long recent_rotated[2] = {0, 0};
4303 unsigned long recent_scanned[2] = {0, 0};
4305 for_each_online_node(nid)
4306 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4307 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4309 recent_rotated[0] +=
4310 mz->reclaim_stat.recent_rotated[0];
4311 recent_rotated[1] +=
4312 mz->reclaim_stat.recent_rotated[1];
4313 recent_scanned[0] +=
4314 mz->reclaim_stat.recent_scanned[0];
4315 recent_scanned[1] +=
4316 mz->reclaim_stat.recent_scanned[1];
4318 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4319 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4320 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4321 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4323 #endif
4325 return 0;
4328 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4330 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4332 return mem_cgroup_swappiness(memcg);
4335 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4336 u64 val)
4338 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4339 struct mem_cgroup *parent;
4341 if (val > 100)
4342 return -EINVAL;
4344 if (cgrp->parent == NULL)
4345 return -EINVAL;
4347 parent = mem_cgroup_from_cont(cgrp->parent);
4349 cgroup_lock();
4351 /* If under hierarchy, only empty-root can set this value */
4352 if ((parent->use_hierarchy) ||
4353 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4354 cgroup_unlock();
4355 return -EINVAL;
4358 memcg->swappiness = val;
4360 cgroup_unlock();
4362 return 0;
4365 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4367 struct mem_cgroup_threshold_ary *t;
4368 u64 usage;
4369 int i;
4371 rcu_read_lock();
4372 if (!swap)
4373 t = rcu_dereference(memcg->thresholds.primary);
4374 else
4375 t = rcu_dereference(memcg->memsw_thresholds.primary);
4377 if (!t)
4378 goto unlock;
4380 usage = mem_cgroup_usage(memcg, swap);
4383 * current_threshold points to threshold just below usage.
4384 * If it's not true, a threshold was crossed after last
4385 * call of __mem_cgroup_threshold().
4387 i = t->current_threshold;
4390 * Iterate backward over array of thresholds starting from
4391 * current_threshold and check if a threshold is crossed.
4392 * If none of thresholds below usage is crossed, we read
4393 * only one element of the array here.
4395 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4396 eventfd_signal(t->entries[i].eventfd, 1);
4398 /* i = current_threshold + 1 */
4399 i++;
4402 * Iterate forward over array of thresholds starting from
4403 * current_threshold+1 and check if a threshold is crossed.
4404 * If none of thresholds above usage is crossed, we read
4405 * only one element of the array here.
4407 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4408 eventfd_signal(t->entries[i].eventfd, 1);
4410 /* Update current_threshold */
4411 t->current_threshold = i - 1;
4412 unlock:
4413 rcu_read_unlock();
4416 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4418 while (memcg) {
4419 __mem_cgroup_threshold(memcg, false);
4420 if (do_swap_account)
4421 __mem_cgroup_threshold(memcg, true);
4423 memcg = parent_mem_cgroup(memcg);
4427 static int compare_thresholds(const void *a, const void *b)
4429 const struct mem_cgroup_threshold *_a = a;
4430 const struct mem_cgroup_threshold *_b = b;
4432 return _a->threshold - _b->threshold;
4435 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4437 struct mem_cgroup_eventfd_list *ev;
4439 list_for_each_entry(ev, &mem->oom_notify, list)
4440 eventfd_signal(ev->eventfd, 1);
4441 return 0;
4444 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4446 struct mem_cgroup *iter;
4448 for_each_mem_cgroup_tree(iter, mem)
4449 mem_cgroup_oom_notify_cb(iter);
4452 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4453 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4455 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4456 struct mem_cgroup_thresholds *thresholds;
4457 struct mem_cgroup_threshold_ary *new;
4458 int type = MEMFILE_TYPE(cft->private);
4459 u64 threshold, usage;
4460 int i, size, ret;
4462 ret = res_counter_memparse_write_strategy(args, &threshold);
4463 if (ret)
4464 return ret;
4466 mutex_lock(&memcg->thresholds_lock);
4468 if (type == _MEM)
4469 thresholds = &memcg->thresholds;
4470 else if (type == _MEMSWAP)
4471 thresholds = &memcg->memsw_thresholds;
4472 else
4473 BUG();
4475 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4477 /* Check if a threshold crossed before adding a new one */
4478 if (thresholds->primary)
4479 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4481 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4483 /* Allocate memory for new array of thresholds */
4484 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4485 GFP_KERNEL);
4486 if (!new) {
4487 ret = -ENOMEM;
4488 goto unlock;
4490 new->size = size;
4492 /* Copy thresholds (if any) to new array */
4493 if (thresholds->primary) {
4494 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4495 sizeof(struct mem_cgroup_threshold));
4498 /* Add new threshold */
4499 new->entries[size - 1].eventfd = eventfd;
4500 new->entries[size - 1].threshold = threshold;
4502 /* Sort thresholds. Registering of new threshold isn't time-critical */
4503 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4504 compare_thresholds, NULL);
4506 /* Find current threshold */
4507 new->current_threshold = -1;
4508 for (i = 0; i < size; i++) {
4509 if (new->entries[i].threshold < usage) {
4511 * new->current_threshold will not be used until
4512 * rcu_assign_pointer(), so it's safe to increment
4513 * it here.
4515 ++new->current_threshold;
4519 /* Free old spare buffer and save old primary buffer as spare */
4520 kfree(thresholds->spare);
4521 thresholds->spare = thresholds->primary;
4523 rcu_assign_pointer(thresholds->primary, new);
4525 /* To be sure that nobody uses thresholds */
4526 synchronize_rcu();
4528 unlock:
4529 mutex_unlock(&memcg->thresholds_lock);
4531 return ret;
4534 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4535 struct cftype *cft, struct eventfd_ctx *eventfd)
4537 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538 struct mem_cgroup_thresholds *thresholds;
4539 struct mem_cgroup_threshold_ary *new;
4540 int type = MEMFILE_TYPE(cft->private);
4541 u64 usage;
4542 int i, j, size;
4544 mutex_lock(&memcg->thresholds_lock);
4545 if (type == _MEM)
4546 thresholds = &memcg->thresholds;
4547 else if (type == _MEMSWAP)
4548 thresholds = &memcg->memsw_thresholds;
4549 else
4550 BUG();
4553 * Something went wrong if we trying to unregister a threshold
4554 * if we don't have thresholds
4556 BUG_ON(!thresholds);
4558 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4560 /* Check if a threshold crossed before removing */
4561 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4563 /* Calculate new number of threshold */
4564 size = 0;
4565 for (i = 0; i < thresholds->primary->size; i++) {
4566 if (thresholds->primary->entries[i].eventfd != eventfd)
4567 size++;
4570 new = thresholds->spare;
4572 /* Set thresholds array to NULL if we don't have thresholds */
4573 if (!size) {
4574 kfree(new);
4575 new = NULL;
4576 goto swap_buffers;
4579 new->size = size;
4581 /* Copy thresholds and find current threshold */
4582 new->current_threshold = -1;
4583 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4584 if (thresholds->primary->entries[i].eventfd == eventfd)
4585 continue;
4587 new->entries[j] = thresholds->primary->entries[i];
4588 if (new->entries[j].threshold < usage) {
4590 * new->current_threshold will not be used
4591 * until rcu_assign_pointer(), so it's safe to increment
4592 * it here.
4594 ++new->current_threshold;
4596 j++;
4599 swap_buffers:
4600 /* Swap primary and spare array */
4601 thresholds->spare = thresholds->primary;
4602 rcu_assign_pointer(thresholds->primary, new);
4604 /* To be sure that nobody uses thresholds */
4605 synchronize_rcu();
4607 mutex_unlock(&memcg->thresholds_lock);
4610 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4611 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4613 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4614 struct mem_cgroup_eventfd_list *event;
4615 int type = MEMFILE_TYPE(cft->private);
4617 BUG_ON(type != _OOM_TYPE);
4618 event = kmalloc(sizeof(*event), GFP_KERNEL);
4619 if (!event)
4620 return -ENOMEM;
4622 spin_lock(&memcg_oom_lock);
4624 event->eventfd = eventfd;
4625 list_add(&event->list, &memcg->oom_notify);
4627 /* already in OOM ? */
4628 if (atomic_read(&memcg->under_oom))
4629 eventfd_signal(eventfd, 1);
4630 spin_unlock(&memcg_oom_lock);
4632 return 0;
4635 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4636 struct cftype *cft, struct eventfd_ctx *eventfd)
4638 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4639 struct mem_cgroup_eventfd_list *ev, *tmp;
4640 int type = MEMFILE_TYPE(cft->private);
4642 BUG_ON(type != _OOM_TYPE);
4644 spin_lock(&memcg_oom_lock);
4646 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4647 if (ev->eventfd == eventfd) {
4648 list_del(&ev->list);
4649 kfree(ev);
4653 spin_unlock(&memcg_oom_lock);
4656 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4657 struct cftype *cft, struct cgroup_map_cb *cb)
4659 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4661 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4663 if (atomic_read(&mem->under_oom))
4664 cb->fill(cb, "under_oom", 1);
4665 else
4666 cb->fill(cb, "under_oom", 0);
4667 return 0;
4670 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4671 struct cftype *cft, u64 val)
4673 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4674 struct mem_cgroup *parent;
4676 /* cannot set to root cgroup and only 0 and 1 are allowed */
4677 if (!cgrp->parent || !((val == 0) || (val == 1)))
4678 return -EINVAL;
4680 parent = mem_cgroup_from_cont(cgrp->parent);
4682 cgroup_lock();
4683 /* oom-kill-disable is a flag for subhierarchy. */
4684 if ((parent->use_hierarchy) ||
4685 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4686 cgroup_unlock();
4687 return -EINVAL;
4689 mem->oom_kill_disable = val;
4690 if (!val)
4691 memcg_oom_recover(mem);
4692 cgroup_unlock();
4693 return 0;
4696 #ifdef CONFIG_NUMA
4697 static const struct file_operations mem_control_numa_stat_file_operations = {
4698 .read = seq_read,
4699 .llseek = seq_lseek,
4700 .release = single_release,
4703 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4705 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4707 file->f_op = &mem_control_numa_stat_file_operations;
4708 return single_open(file, mem_control_numa_stat_show, cont);
4710 #endif /* CONFIG_NUMA */
4712 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4713 struct cftype *cft,
4714 struct cgroup_map_cb *cb)
4716 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4717 char string[64];
4718 int i;
4720 for (i = 0; i < NR_SCANSTATS; i++) {
4721 strcpy(string, scanstat_string[i]);
4722 strcat(string, SCANSTAT_WORD_LIMIT);
4723 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4726 for (i = 0; i < NR_SCANSTATS; i++) {
4727 strcpy(string, scanstat_string[i]);
4728 strcat(string, SCANSTAT_WORD_SYSTEM);
4729 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4732 for (i = 0; i < NR_SCANSTATS; i++) {
4733 strcpy(string, scanstat_string[i]);
4734 strcat(string, SCANSTAT_WORD_LIMIT);
4735 strcat(string, SCANSTAT_WORD_HIERARCHY);
4736 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4738 for (i = 0; i < NR_SCANSTATS; i++) {
4739 strcpy(string, scanstat_string[i]);
4740 strcat(string, SCANSTAT_WORD_SYSTEM);
4741 strcat(string, SCANSTAT_WORD_HIERARCHY);
4742 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4744 return 0;
4747 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4748 unsigned int event)
4750 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4752 spin_lock(&mem->scanstat.lock);
4753 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4754 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4755 spin_unlock(&mem->scanstat.lock);
4756 return 0;
4760 static struct cftype mem_cgroup_files[] = {
4762 .name = "usage_in_bytes",
4763 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4764 .read_u64 = mem_cgroup_read,
4765 .register_event = mem_cgroup_usage_register_event,
4766 .unregister_event = mem_cgroup_usage_unregister_event,
4769 .name = "max_usage_in_bytes",
4770 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4771 .trigger = mem_cgroup_reset,
4772 .read_u64 = mem_cgroup_read,
4775 .name = "limit_in_bytes",
4776 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4777 .write_string = mem_cgroup_write,
4778 .read_u64 = mem_cgroup_read,
4781 .name = "soft_limit_in_bytes",
4782 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4783 .write_string = mem_cgroup_write,
4784 .read_u64 = mem_cgroup_read,
4787 .name = "failcnt",
4788 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4789 .trigger = mem_cgroup_reset,
4790 .read_u64 = mem_cgroup_read,
4793 .name = "stat",
4794 .read_map = mem_control_stat_show,
4797 .name = "force_empty",
4798 .trigger = mem_cgroup_force_empty_write,
4801 .name = "use_hierarchy",
4802 .write_u64 = mem_cgroup_hierarchy_write,
4803 .read_u64 = mem_cgroup_hierarchy_read,
4806 .name = "swappiness",
4807 .read_u64 = mem_cgroup_swappiness_read,
4808 .write_u64 = mem_cgroup_swappiness_write,
4811 .name = "move_charge_at_immigrate",
4812 .read_u64 = mem_cgroup_move_charge_read,
4813 .write_u64 = mem_cgroup_move_charge_write,
4816 .name = "oom_control",
4817 .read_map = mem_cgroup_oom_control_read,
4818 .write_u64 = mem_cgroup_oom_control_write,
4819 .register_event = mem_cgroup_oom_register_event,
4820 .unregister_event = mem_cgroup_oom_unregister_event,
4821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4823 #ifdef CONFIG_NUMA
4825 .name = "numa_stat",
4826 .open = mem_control_numa_stat_open,
4827 .mode = S_IRUGO,
4829 #endif
4831 .name = "vmscan_stat",
4832 .read_map = mem_cgroup_vmscan_stat_read,
4833 .trigger = mem_cgroup_reset_vmscan_stat,
4837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4838 static struct cftype memsw_cgroup_files[] = {
4840 .name = "memsw.usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4842 .read_u64 = mem_cgroup_read,
4843 .register_event = mem_cgroup_usage_register_event,
4844 .unregister_event = mem_cgroup_usage_unregister_event,
4847 .name = "memsw.max_usage_in_bytes",
4848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4849 .trigger = mem_cgroup_reset,
4850 .read_u64 = mem_cgroup_read,
4853 .name = "memsw.limit_in_bytes",
4854 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4855 .write_string = mem_cgroup_write,
4856 .read_u64 = mem_cgroup_read,
4859 .name = "memsw.failcnt",
4860 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4861 .trigger = mem_cgroup_reset,
4862 .read_u64 = mem_cgroup_read,
4866 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4868 if (!do_swap_account)
4869 return 0;
4870 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4871 ARRAY_SIZE(memsw_cgroup_files));
4873 #else
4874 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4876 return 0;
4878 #endif
4880 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4882 struct mem_cgroup_per_node *pn;
4883 struct mem_cgroup_per_zone *mz;
4884 enum lru_list l;
4885 int zone, tmp = node;
4887 * This routine is called against possible nodes.
4888 * But it's BUG to call kmalloc() against offline node.
4890 * TODO: this routine can waste much memory for nodes which will
4891 * never be onlined. It's better to use memory hotplug callback
4892 * function.
4894 if (!node_state(node, N_NORMAL_MEMORY))
4895 tmp = -1;
4896 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4897 if (!pn)
4898 return 1;
4900 mem->info.nodeinfo[node] = pn;
4901 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4902 mz = &pn->zoneinfo[zone];
4903 for_each_lru(l)
4904 INIT_LIST_HEAD(&mz->lists[l]);
4905 mz->usage_in_excess = 0;
4906 mz->on_tree = false;
4907 mz->mem = mem;
4909 return 0;
4912 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4914 kfree(mem->info.nodeinfo[node]);
4917 static struct mem_cgroup *mem_cgroup_alloc(void)
4919 struct mem_cgroup *mem;
4920 int size = sizeof(struct mem_cgroup);
4922 /* Can be very big if MAX_NUMNODES is very big */
4923 if (size < PAGE_SIZE)
4924 mem = kzalloc(size, GFP_KERNEL);
4925 else
4926 mem = vzalloc(size);
4928 if (!mem)
4929 return NULL;
4931 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4932 if (!mem->stat)
4933 goto out_free;
4934 spin_lock_init(&mem->pcp_counter_lock);
4935 return mem;
4937 out_free:
4938 if (size < PAGE_SIZE)
4939 kfree(mem);
4940 else
4941 vfree(mem);
4942 return NULL;
4946 * At destroying mem_cgroup, references from swap_cgroup can remain.
4947 * (scanning all at force_empty is too costly...)
4949 * Instead of clearing all references at force_empty, we remember
4950 * the number of reference from swap_cgroup and free mem_cgroup when
4951 * it goes down to 0.
4953 * Removal of cgroup itself succeeds regardless of refs from swap.
4956 static void __mem_cgroup_free(struct mem_cgroup *mem)
4958 int node;
4960 mem_cgroup_remove_from_trees(mem);
4961 free_css_id(&mem_cgroup_subsys, &mem->css);
4963 for_each_node_state(node, N_POSSIBLE)
4964 free_mem_cgroup_per_zone_info(mem, node);
4966 free_percpu(mem->stat);
4967 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4968 kfree(mem);
4969 else
4970 vfree(mem);
4973 static void mem_cgroup_get(struct mem_cgroup *mem)
4975 atomic_inc(&mem->refcnt);
4978 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4980 if (atomic_sub_and_test(count, &mem->refcnt)) {
4981 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4982 __mem_cgroup_free(mem);
4983 if (parent)
4984 mem_cgroup_put(parent);
4988 static void mem_cgroup_put(struct mem_cgroup *mem)
4990 __mem_cgroup_put(mem, 1);
4994 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4996 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4998 if (!mem->res.parent)
4999 return NULL;
5000 return mem_cgroup_from_res_counter(mem->res.parent, res);
5003 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5004 static void __init enable_swap_cgroup(void)
5006 if (!mem_cgroup_disabled() && really_do_swap_account)
5007 do_swap_account = 1;
5009 #else
5010 static void __init enable_swap_cgroup(void)
5013 #endif
5015 static int mem_cgroup_soft_limit_tree_init(void)
5017 struct mem_cgroup_tree_per_node *rtpn;
5018 struct mem_cgroup_tree_per_zone *rtpz;
5019 int tmp, node, zone;
5021 for_each_node_state(node, N_POSSIBLE) {
5022 tmp = node;
5023 if (!node_state(node, N_NORMAL_MEMORY))
5024 tmp = -1;
5025 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5026 if (!rtpn)
5027 return 1;
5029 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5031 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5032 rtpz = &rtpn->rb_tree_per_zone[zone];
5033 rtpz->rb_root = RB_ROOT;
5034 spin_lock_init(&rtpz->lock);
5037 return 0;
5040 static struct cgroup_subsys_state * __ref
5041 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5043 struct mem_cgroup *mem, *parent;
5044 long error = -ENOMEM;
5045 int node;
5047 mem = mem_cgroup_alloc();
5048 if (!mem)
5049 return ERR_PTR(error);
5051 for_each_node_state(node, N_POSSIBLE)
5052 if (alloc_mem_cgroup_per_zone_info(mem, node))
5053 goto free_out;
5055 /* root ? */
5056 if (cont->parent == NULL) {
5057 int cpu;
5058 enable_swap_cgroup();
5059 parent = NULL;
5060 root_mem_cgroup = mem;
5061 if (mem_cgroup_soft_limit_tree_init())
5062 goto free_out;
5063 for_each_possible_cpu(cpu) {
5064 struct memcg_stock_pcp *stock =
5065 &per_cpu(memcg_stock, cpu);
5066 INIT_WORK(&stock->work, drain_local_stock);
5068 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5069 } else {
5070 parent = mem_cgroup_from_cont(cont->parent);
5071 mem->use_hierarchy = parent->use_hierarchy;
5072 mem->oom_kill_disable = parent->oom_kill_disable;
5075 if (parent && parent->use_hierarchy) {
5076 res_counter_init(&mem->res, &parent->res);
5077 res_counter_init(&mem->memsw, &parent->memsw);
5079 * We increment refcnt of the parent to ensure that we can
5080 * safely access it on res_counter_charge/uncharge.
5081 * This refcnt will be decremented when freeing this
5082 * mem_cgroup(see mem_cgroup_put).
5084 mem_cgroup_get(parent);
5085 } else {
5086 res_counter_init(&mem->res, NULL);
5087 res_counter_init(&mem->memsw, NULL);
5089 mem->last_scanned_child = 0;
5090 mem->last_scanned_node = MAX_NUMNODES;
5091 INIT_LIST_HEAD(&mem->oom_notify);
5093 if (parent)
5094 mem->swappiness = mem_cgroup_swappiness(parent);
5095 atomic_set(&mem->refcnt, 1);
5096 mem->move_charge_at_immigrate = 0;
5097 mutex_init(&mem->thresholds_lock);
5098 spin_lock_init(&mem->scanstat.lock);
5099 return &mem->css;
5100 free_out:
5101 __mem_cgroup_free(mem);
5102 root_mem_cgroup = NULL;
5103 return ERR_PTR(error);
5106 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5107 struct cgroup *cont)
5109 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5111 return mem_cgroup_force_empty(mem, false);
5114 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5115 struct cgroup *cont)
5117 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5119 mem_cgroup_put(mem);
5122 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5123 struct cgroup *cont)
5125 int ret;
5127 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5128 ARRAY_SIZE(mem_cgroup_files));
5130 if (!ret)
5131 ret = register_memsw_files(cont, ss);
5132 return ret;
5135 #ifdef CONFIG_MMU
5136 /* Handlers for move charge at task migration. */
5137 #define PRECHARGE_COUNT_AT_ONCE 256
5138 static int mem_cgroup_do_precharge(unsigned long count)
5140 int ret = 0;
5141 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5142 struct mem_cgroup *mem = mc.to;
5144 if (mem_cgroup_is_root(mem)) {
5145 mc.precharge += count;
5146 /* we don't need css_get for root */
5147 return ret;
5149 /* try to charge at once */
5150 if (count > 1) {
5151 struct res_counter *dummy;
5153 * "mem" cannot be under rmdir() because we've already checked
5154 * by cgroup_lock_live_cgroup() that it is not removed and we
5155 * are still under the same cgroup_mutex. So we can postpone
5156 * css_get().
5158 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5159 goto one_by_one;
5160 if (do_swap_account && res_counter_charge(&mem->memsw,
5161 PAGE_SIZE * count, &dummy)) {
5162 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5163 goto one_by_one;
5165 mc.precharge += count;
5166 return ret;
5168 one_by_one:
5169 /* fall back to one by one charge */
5170 while (count--) {
5171 if (signal_pending(current)) {
5172 ret = -EINTR;
5173 break;
5175 if (!batch_count--) {
5176 batch_count = PRECHARGE_COUNT_AT_ONCE;
5177 cond_resched();
5179 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5180 if (ret || !mem)
5181 /* mem_cgroup_clear_mc() will do uncharge later */
5182 return -ENOMEM;
5183 mc.precharge++;
5185 return ret;
5189 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5190 * @vma: the vma the pte to be checked belongs
5191 * @addr: the address corresponding to the pte to be checked
5192 * @ptent: the pte to be checked
5193 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5195 * Returns
5196 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5197 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5198 * move charge. if @target is not NULL, the page is stored in target->page
5199 * with extra refcnt got(Callers should handle it).
5200 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5201 * target for charge migration. if @target is not NULL, the entry is stored
5202 * in target->ent.
5204 * Called with pte lock held.
5206 union mc_target {
5207 struct page *page;
5208 swp_entry_t ent;
5211 enum mc_target_type {
5212 MC_TARGET_NONE, /* not used */
5213 MC_TARGET_PAGE,
5214 MC_TARGET_SWAP,
5217 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5218 unsigned long addr, pte_t ptent)
5220 struct page *page = vm_normal_page(vma, addr, ptent);
5222 if (!page || !page_mapped(page))
5223 return NULL;
5224 if (PageAnon(page)) {
5225 /* we don't move shared anon */
5226 if (!move_anon() || page_mapcount(page) > 2)
5227 return NULL;
5228 } else if (!move_file())
5229 /* we ignore mapcount for file pages */
5230 return NULL;
5231 if (!get_page_unless_zero(page))
5232 return NULL;
5234 return page;
5237 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5238 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5240 int usage_count;
5241 struct page *page = NULL;
5242 swp_entry_t ent = pte_to_swp_entry(ptent);
5244 if (!move_anon() || non_swap_entry(ent))
5245 return NULL;
5246 usage_count = mem_cgroup_count_swap_user(ent, &page);
5247 if (usage_count > 1) { /* we don't move shared anon */
5248 if (page)
5249 put_page(page);
5250 return NULL;
5252 if (do_swap_account)
5253 entry->val = ent.val;
5255 return page;
5258 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5259 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5261 struct page *page = NULL;
5262 struct inode *inode;
5263 struct address_space *mapping;
5264 pgoff_t pgoff;
5266 if (!vma->vm_file) /* anonymous vma */
5267 return NULL;
5268 if (!move_file())
5269 return NULL;
5271 inode = vma->vm_file->f_path.dentry->d_inode;
5272 mapping = vma->vm_file->f_mapping;
5273 if (pte_none(ptent))
5274 pgoff = linear_page_index(vma, addr);
5275 else /* pte_file(ptent) is true */
5276 pgoff = pte_to_pgoff(ptent);
5278 /* page is moved even if it's not RSS of this task(page-faulted). */
5279 page = find_get_page(mapping, pgoff);
5281 #ifdef CONFIG_SWAP
5282 /* shmem/tmpfs may report page out on swap: account for that too. */
5283 if (radix_tree_exceptional_entry(page)) {
5284 swp_entry_t swap = radix_to_swp_entry(page);
5285 if (do_swap_account)
5286 *entry = swap;
5287 page = find_get_page(&swapper_space, swap.val);
5289 #endif
5290 return page;
5293 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5294 unsigned long addr, pte_t ptent, union mc_target *target)
5296 struct page *page = NULL;
5297 struct page_cgroup *pc;
5298 int ret = 0;
5299 swp_entry_t ent = { .val = 0 };
5301 if (pte_present(ptent))
5302 page = mc_handle_present_pte(vma, addr, ptent);
5303 else if (is_swap_pte(ptent))
5304 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5305 else if (pte_none(ptent) || pte_file(ptent))
5306 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5308 if (!page && !ent.val)
5309 return 0;
5310 if (page) {
5311 pc = lookup_page_cgroup(page);
5313 * Do only loose check w/o page_cgroup lock.
5314 * mem_cgroup_move_account() checks the pc is valid or not under
5315 * the lock.
5317 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5318 ret = MC_TARGET_PAGE;
5319 if (target)
5320 target->page = page;
5322 if (!ret || !target)
5323 put_page(page);
5325 /* There is a swap entry and a page doesn't exist or isn't charged */
5326 if (ent.val && !ret &&
5327 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5328 ret = MC_TARGET_SWAP;
5329 if (target)
5330 target->ent = ent;
5332 return ret;
5335 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
5339 struct vm_area_struct *vma = walk->private;
5340 pte_t *pte;
5341 spinlock_t *ptl;
5343 split_huge_page_pmd(walk->mm, pmd);
5345 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5346 for (; addr != end; pte++, addr += PAGE_SIZE)
5347 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5348 mc.precharge++; /* increment precharge temporarily */
5349 pte_unmap_unlock(pte - 1, ptl);
5350 cond_resched();
5352 return 0;
5355 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5357 unsigned long precharge;
5358 struct vm_area_struct *vma;
5360 down_read(&mm->mmap_sem);
5361 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5362 struct mm_walk mem_cgroup_count_precharge_walk = {
5363 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5364 .mm = mm,
5365 .private = vma,
5367 if (is_vm_hugetlb_page(vma))
5368 continue;
5369 walk_page_range(vma->vm_start, vma->vm_end,
5370 &mem_cgroup_count_precharge_walk);
5372 up_read(&mm->mmap_sem);
5374 precharge = mc.precharge;
5375 mc.precharge = 0;
5377 return precharge;
5380 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5382 unsigned long precharge = mem_cgroup_count_precharge(mm);
5384 VM_BUG_ON(mc.moving_task);
5385 mc.moving_task = current;
5386 return mem_cgroup_do_precharge(precharge);
5389 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5390 static void __mem_cgroup_clear_mc(void)
5392 struct mem_cgroup *from = mc.from;
5393 struct mem_cgroup *to = mc.to;
5395 /* we must uncharge all the leftover precharges from mc.to */
5396 if (mc.precharge) {
5397 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5398 mc.precharge = 0;
5401 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5402 * we must uncharge here.
5404 if (mc.moved_charge) {
5405 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5406 mc.moved_charge = 0;
5408 /* we must fixup refcnts and charges */
5409 if (mc.moved_swap) {
5410 /* uncharge swap account from the old cgroup */
5411 if (!mem_cgroup_is_root(mc.from))
5412 res_counter_uncharge(&mc.from->memsw,
5413 PAGE_SIZE * mc.moved_swap);
5414 __mem_cgroup_put(mc.from, mc.moved_swap);
5416 if (!mem_cgroup_is_root(mc.to)) {
5418 * we charged both to->res and to->memsw, so we should
5419 * uncharge to->res.
5421 res_counter_uncharge(&mc.to->res,
5422 PAGE_SIZE * mc.moved_swap);
5424 /* we've already done mem_cgroup_get(mc.to) */
5425 mc.moved_swap = 0;
5427 memcg_oom_recover(from);
5428 memcg_oom_recover(to);
5429 wake_up_all(&mc.waitq);
5432 static void mem_cgroup_clear_mc(void)
5434 struct mem_cgroup *from = mc.from;
5437 * we must clear moving_task before waking up waiters at the end of
5438 * task migration.
5440 mc.moving_task = NULL;
5441 __mem_cgroup_clear_mc();
5442 spin_lock(&mc.lock);
5443 mc.from = NULL;
5444 mc.to = NULL;
5445 spin_unlock(&mc.lock);
5446 mem_cgroup_end_move(from);
5449 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5450 struct cgroup *cgroup,
5451 struct task_struct *p)
5453 int ret = 0;
5454 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5456 if (mem->move_charge_at_immigrate) {
5457 struct mm_struct *mm;
5458 struct mem_cgroup *from = mem_cgroup_from_task(p);
5460 VM_BUG_ON(from == mem);
5462 mm = get_task_mm(p);
5463 if (!mm)
5464 return 0;
5465 /* We move charges only when we move a owner of the mm */
5466 if (mm->owner == p) {
5467 VM_BUG_ON(mc.from);
5468 VM_BUG_ON(mc.to);
5469 VM_BUG_ON(mc.precharge);
5470 VM_BUG_ON(mc.moved_charge);
5471 VM_BUG_ON(mc.moved_swap);
5472 mem_cgroup_start_move(from);
5473 spin_lock(&mc.lock);
5474 mc.from = from;
5475 mc.to = mem;
5476 spin_unlock(&mc.lock);
5477 /* We set mc.moving_task later */
5479 ret = mem_cgroup_precharge_mc(mm);
5480 if (ret)
5481 mem_cgroup_clear_mc();
5483 mmput(mm);
5485 return ret;
5488 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5489 struct cgroup *cgroup,
5490 struct task_struct *p)
5492 mem_cgroup_clear_mc();
5495 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5496 unsigned long addr, unsigned long end,
5497 struct mm_walk *walk)
5499 int ret = 0;
5500 struct vm_area_struct *vma = walk->private;
5501 pte_t *pte;
5502 spinlock_t *ptl;
5504 split_huge_page_pmd(walk->mm, pmd);
5505 retry:
5506 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5507 for (; addr != end; addr += PAGE_SIZE) {
5508 pte_t ptent = *(pte++);
5509 union mc_target target;
5510 int type;
5511 struct page *page;
5512 struct page_cgroup *pc;
5513 swp_entry_t ent;
5515 if (!mc.precharge)
5516 break;
5518 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5519 switch (type) {
5520 case MC_TARGET_PAGE:
5521 page = target.page;
5522 if (isolate_lru_page(page))
5523 goto put;
5524 pc = lookup_page_cgroup(page);
5525 if (!mem_cgroup_move_account(page, 1, pc,
5526 mc.from, mc.to, false)) {
5527 mc.precharge--;
5528 /* we uncharge from mc.from later. */
5529 mc.moved_charge++;
5531 putback_lru_page(page);
5532 put: /* is_target_pte_for_mc() gets the page */
5533 put_page(page);
5534 break;
5535 case MC_TARGET_SWAP:
5536 ent = target.ent;
5537 if (!mem_cgroup_move_swap_account(ent,
5538 mc.from, mc.to, false)) {
5539 mc.precharge--;
5540 /* we fixup refcnts and charges later. */
5541 mc.moved_swap++;
5543 break;
5544 default:
5545 break;
5548 pte_unmap_unlock(pte - 1, ptl);
5549 cond_resched();
5551 if (addr != end) {
5553 * We have consumed all precharges we got in can_attach().
5554 * We try charge one by one, but don't do any additional
5555 * charges to mc.to if we have failed in charge once in attach()
5556 * phase.
5558 ret = mem_cgroup_do_precharge(1);
5559 if (!ret)
5560 goto retry;
5563 return ret;
5566 static void mem_cgroup_move_charge(struct mm_struct *mm)
5568 struct vm_area_struct *vma;
5570 lru_add_drain_all();
5571 retry:
5572 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5574 * Someone who are holding the mmap_sem might be waiting in
5575 * waitq. So we cancel all extra charges, wake up all waiters,
5576 * and retry. Because we cancel precharges, we might not be able
5577 * to move enough charges, but moving charge is a best-effort
5578 * feature anyway, so it wouldn't be a big problem.
5580 __mem_cgroup_clear_mc();
5581 cond_resched();
5582 goto retry;
5584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5585 int ret;
5586 struct mm_walk mem_cgroup_move_charge_walk = {
5587 .pmd_entry = mem_cgroup_move_charge_pte_range,
5588 .mm = mm,
5589 .private = vma,
5591 if (is_vm_hugetlb_page(vma))
5592 continue;
5593 ret = walk_page_range(vma->vm_start, vma->vm_end,
5594 &mem_cgroup_move_charge_walk);
5595 if (ret)
5597 * means we have consumed all precharges and failed in
5598 * doing additional charge. Just abandon here.
5600 break;
5602 up_read(&mm->mmap_sem);
5605 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5606 struct cgroup *cont,
5607 struct cgroup *old_cont,
5608 struct task_struct *p)
5610 struct mm_struct *mm = get_task_mm(p);
5612 if (mm) {
5613 if (mc.to)
5614 mem_cgroup_move_charge(mm);
5615 put_swap_token(mm);
5616 mmput(mm);
5618 if (mc.to)
5619 mem_cgroup_clear_mc();
5621 #else /* !CONFIG_MMU */
5622 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5623 struct cgroup *cgroup,
5624 struct task_struct *p)
5626 return 0;
5628 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5629 struct cgroup *cgroup,
5630 struct task_struct *p)
5633 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5634 struct cgroup *cont,
5635 struct cgroup *old_cont,
5636 struct task_struct *p)
5639 #endif
5641 struct cgroup_subsys mem_cgroup_subsys = {
5642 .name = "memory",
5643 .subsys_id = mem_cgroup_subsys_id,
5644 .create = mem_cgroup_create,
5645 .pre_destroy = mem_cgroup_pre_destroy,
5646 .destroy = mem_cgroup_destroy,
5647 .populate = mem_cgroup_populate,
5648 .can_attach = mem_cgroup_can_attach,
5649 .cancel_attach = mem_cgroup_cancel_attach,
5650 .attach = mem_cgroup_move_task,
5651 .early_init = 0,
5652 .use_id = 1,
5655 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5656 static int __init enable_swap_account(char *s)
5658 /* consider enabled if no parameter or 1 is given */
5659 if (!strcmp(s, "1"))
5660 really_do_swap_account = 1;
5661 else if (!strcmp(s, "0"))
5662 really_do_swap_account = 0;
5663 return 1;
5665 __setup("swapaccount=", enable_swap_account);
5667 #endif