2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 static int ext4_split_extent(handle_t
*handle
,
50 struct ext4_ext_path
*path
,
51 struct ext4_map_blocks
*map
,
55 static int ext4_ext_truncate_extend_restart(handle_t
*handle
,
61 if (!ext4_handle_valid(handle
))
63 if (handle
->h_buffer_credits
> needed
)
65 err
= ext4_journal_extend(handle
, needed
);
68 err
= ext4_truncate_restart_trans(handle
, inode
, needed
);
80 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
81 struct ext4_ext_path
*path
)
84 /* path points to block */
85 return ext4_journal_get_write_access(handle
, path
->p_bh
);
87 /* path points to leaf/index in inode body */
88 /* we use in-core data, no need to protect them */
98 #define ext4_ext_dirty(handle, inode, path) \
99 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where
, unsigned int line
,
101 handle_t
*handle
, struct inode
*inode
,
102 struct ext4_ext_path
*path
)
106 /* path points to block */
107 err
= __ext4_handle_dirty_metadata(where
, line
, handle
,
110 /* path points to leaf/index in inode body */
111 err
= ext4_mark_inode_dirty(handle
, inode
);
116 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
117 struct ext4_ext_path
*path
,
121 int depth
= path
->p_depth
;
122 struct ext4_extent
*ex
;
125 * Try to predict block placement assuming that we are
126 * filling in a file which will eventually be
127 * non-sparse --- i.e., in the case of libbfd writing
128 * an ELF object sections out-of-order but in a way
129 * the eventually results in a contiguous object or
130 * executable file, or some database extending a table
131 * space file. However, this is actually somewhat
132 * non-ideal if we are writing a sparse file such as
133 * qemu or KVM writing a raw image file that is going
134 * to stay fairly sparse, since it will end up
135 * fragmenting the file system's free space. Maybe we
136 * should have some hueristics or some way to allow
137 * userspace to pass a hint to file system,
138 * especially if the latter case turns out to be
141 ex
= path
[depth
].p_ext
;
143 ext4_fsblk_t ext_pblk
= ext4_ext_pblock(ex
);
144 ext4_lblk_t ext_block
= le32_to_cpu(ex
->ee_block
);
146 if (block
> ext_block
)
147 return ext_pblk
+ (block
- ext_block
);
149 return ext_pblk
- (ext_block
- block
);
152 /* it looks like index is empty;
153 * try to find starting block from index itself */
154 if (path
[depth
].p_bh
)
155 return path
[depth
].p_bh
->b_blocknr
;
158 /* OK. use inode's group */
159 return ext4_inode_to_goal_block(inode
);
163 * Allocation for a meta data block
166 ext4_ext_new_meta_block(handle_t
*handle
, struct inode
*inode
,
167 struct ext4_ext_path
*path
,
168 struct ext4_extent
*ex
, int *err
, unsigned int flags
)
170 ext4_fsblk_t goal
, newblock
;
172 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
173 newblock
= ext4_new_meta_blocks(handle
, inode
, goal
, flags
,
178 static inline int ext4_ext_space_block(struct inode
*inode
, int check
)
182 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
183 / sizeof(struct ext4_extent
);
184 #ifdef AGGRESSIVE_TEST
185 if (!check
&& size
> 6)
191 static inline int ext4_ext_space_block_idx(struct inode
*inode
, int check
)
195 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
196 / sizeof(struct ext4_extent_idx
);
197 #ifdef AGGRESSIVE_TEST
198 if (!check
&& size
> 5)
204 static inline int ext4_ext_space_root(struct inode
*inode
, int check
)
208 size
= sizeof(EXT4_I(inode
)->i_data
);
209 size
-= sizeof(struct ext4_extent_header
);
210 size
/= sizeof(struct ext4_extent
);
211 #ifdef AGGRESSIVE_TEST
212 if (!check
&& size
> 3)
218 static inline int ext4_ext_space_root_idx(struct inode
*inode
, int check
)
222 size
= sizeof(EXT4_I(inode
)->i_data
);
223 size
-= sizeof(struct ext4_extent_header
);
224 size
/= sizeof(struct ext4_extent_idx
);
225 #ifdef AGGRESSIVE_TEST
226 if (!check
&& size
> 4)
233 * Calculate the number of metadata blocks needed
234 * to allocate @blocks
235 * Worse case is one block per extent
237 int ext4_ext_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
239 struct ext4_inode_info
*ei
= EXT4_I(inode
);
242 idxs
= ((inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
243 / sizeof(struct ext4_extent_idx
));
246 * If the new delayed allocation block is contiguous with the
247 * previous da block, it can share index blocks with the
248 * previous block, so we only need to allocate a new index
249 * block every idxs leaf blocks. At ldxs**2 blocks, we need
250 * an additional index block, and at ldxs**3 blocks, yet
251 * another index blocks.
253 if (ei
->i_da_metadata_calc_len
&&
254 ei
->i_da_metadata_calc_last_lblock
+1 == lblock
) {
257 if ((ei
->i_da_metadata_calc_len
% idxs
) == 0)
259 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
)) == 0)
261 if ((ei
->i_da_metadata_calc_len
% (idxs
*idxs
*idxs
)) == 0) {
263 ei
->i_da_metadata_calc_len
= 0;
265 ei
->i_da_metadata_calc_len
++;
266 ei
->i_da_metadata_calc_last_lblock
++;
271 * In the worst case we need a new set of index blocks at
272 * every level of the inode's extent tree.
274 ei
->i_da_metadata_calc_len
= 1;
275 ei
->i_da_metadata_calc_last_lblock
= lblock
;
276 return ext_depth(inode
) + 1;
280 ext4_ext_max_entries(struct inode
*inode
, int depth
)
284 if (depth
== ext_depth(inode
)) {
286 max
= ext4_ext_space_root(inode
, 1);
288 max
= ext4_ext_space_root_idx(inode
, 1);
291 max
= ext4_ext_space_block(inode
, 1);
293 max
= ext4_ext_space_block_idx(inode
, 1);
299 static int ext4_valid_extent(struct inode
*inode
, struct ext4_extent
*ext
)
301 ext4_fsblk_t block
= ext4_ext_pblock(ext
);
302 int len
= ext4_ext_get_actual_len(ext
);
304 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, len
);
307 static int ext4_valid_extent_idx(struct inode
*inode
,
308 struct ext4_extent_idx
*ext_idx
)
310 ext4_fsblk_t block
= ext4_idx_pblock(ext_idx
);
312 return ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block
, 1);
315 static int ext4_valid_extent_entries(struct inode
*inode
,
316 struct ext4_extent_header
*eh
,
319 unsigned short entries
;
320 if (eh
->eh_entries
== 0)
323 entries
= le16_to_cpu(eh
->eh_entries
);
327 struct ext4_extent
*ext
= EXT_FIRST_EXTENT(eh
);
329 if (!ext4_valid_extent(inode
, ext
))
335 struct ext4_extent_idx
*ext_idx
= EXT_FIRST_INDEX(eh
);
337 if (!ext4_valid_extent_idx(inode
, ext_idx
))
346 static int __ext4_ext_check(const char *function
, unsigned int line
,
347 struct inode
*inode
, struct ext4_extent_header
*eh
,
350 const char *error_msg
;
353 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
354 error_msg
= "invalid magic";
357 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
358 error_msg
= "unexpected eh_depth";
361 if (unlikely(eh
->eh_max
== 0)) {
362 error_msg
= "invalid eh_max";
365 max
= ext4_ext_max_entries(inode
, depth
);
366 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
367 error_msg
= "too large eh_max";
370 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
371 error_msg
= "invalid eh_entries";
374 if (!ext4_valid_extent_entries(inode
, eh
, depth
)) {
375 error_msg
= "invalid extent entries";
381 ext4_error_inode(inode
, function
, line
, 0,
382 "bad header/extent: %s - magic %x, "
383 "entries %u, max %u(%u), depth %u(%u)",
384 error_msg
, le16_to_cpu(eh
->eh_magic
),
385 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
386 max
, le16_to_cpu(eh
->eh_depth
), depth
);
391 #define ext4_ext_check(inode, eh, depth) \
392 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
394 int ext4_ext_check_inode(struct inode
*inode
)
396 return ext4_ext_check(inode
, ext_inode_hdr(inode
), ext_depth(inode
));
400 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
402 int k
, l
= path
->p_depth
;
405 for (k
= 0; k
<= l
; k
++, path
++) {
407 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
408 ext4_idx_pblock(path
->p_idx
));
409 } else if (path
->p_ext
) {
410 ext_debug(" %d:[%d]%d:%llu ",
411 le32_to_cpu(path
->p_ext
->ee_block
),
412 ext4_ext_is_uninitialized(path
->p_ext
),
413 ext4_ext_get_actual_len(path
->p_ext
),
414 ext4_ext_pblock(path
->p_ext
));
421 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
423 int depth
= ext_depth(inode
);
424 struct ext4_extent_header
*eh
;
425 struct ext4_extent
*ex
;
431 eh
= path
[depth
].p_hdr
;
432 ex
= EXT_FIRST_EXTENT(eh
);
434 ext_debug("Displaying leaf extents for inode %lu\n", inode
->i_ino
);
436 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
437 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex
->ee_block
),
438 ext4_ext_is_uninitialized(ex
),
439 ext4_ext_get_actual_len(ex
), ext4_ext_pblock(ex
));
444 static void ext4_ext_show_move(struct inode
*inode
, struct ext4_ext_path
*path
,
445 ext4_fsblk_t newblock
, int level
)
447 int depth
= ext_depth(inode
);
448 struct ext4_extent
*ex
;
450 if (depth
!= level
) {
451 struct ext4_extent_idx
*idx
;
452 idx
= path
[level
].p_idx
;
453 while (idx
<= EXT_MAX_INDEX(path
[level
].p_hdr
)) {
454 ext_debug("%d: move %d:%llu in new index %llu\n", level
,
455 le32_to_cpu(idx
->ei_block
),
456 ext4_idx_pblock(idx
),
464 ex
= path
[depth
].p_ext
;
465 while (ex
<= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
466 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
467 le32_to_cpu(ex
->ee_block
),
469 ext4_ext_is_uninitialized(ex
),
470 ext4_ext_get_actual_len(ex
),
477 #define ext4_ext_show_path(inode, path)
478 #define ext4_ext_show_leaf(inode, path)
479 #define ext4_ext_show_move(inode, path, newblock, level)
482 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
484 int depth
= path
->p_depth
;
487 for (i
= 0; i
<= depth
; i
++, path
++)
495 * ext4_ext_binsearch_idx:
496 * binary search for the closest index of the given block
497 * the header must be checked before calling this
500 ext4_ext_binsearch_idx(struct inode
*inode
,
501 struct ext4_ext_path
*path
, ext4_lblk_t block
)
503 struct ext4_extent_header
*eh
= path
->p_hdr
;
504 struct ext4_extent_idx
*r
, *l
, *m
;
507 ext_debug("binsearch for %u(idx): ", block
);
509 l
= EXT_FIRST_INDEX(eh
) + 1;
510 r
= EXT_LAST_INDEX(eh
);
513 if (block
< le32_to_cpu(m
->ei_block
))
517 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
518 m
, le32_to_cpu(m
->ei_block
),
519 r
, le32_to_cpu(r
->ei_block
));
523 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
524 ext4_idx_pblock(path
->p_idx
));
526 #ifdef CHECK_BINSEARCH
528 struct ext4_extent_idx
*chix
, *ix
;
531 chix
= ix
= EXT_FIRST_INDEX(eh
);
532 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
534 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
535 printk(KERN_DEBUG
"k=%d, ix=0x%p, "
537 ix
, EXT_FIRST_INDEX(eh
));
538 printk(KERN_DEBUG
"%u <= %u\n",
539 le32_to_cpu(ix
->ei_block
),
540 le32_to_cpu(ix
[-1].ei_block
));
542 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
543 <= le32_to_cpu(ix
[-1].ei_block
));
544 if (block
< le32_to_cpu(ix
->ei_block
))
548 BUG_ON(chix
!= path
->p_idx
);
555 * ext4_ext_binsearch:
556 * binary search for closest extent of the given block
557 * the header must be checked before calling this
560 ext4_ext_binsearch(struct inode
*inode
,
561 struct ext4_ext_path
*path
, ext4_lblk_t block
)
563 struct ext4_extent_header
*eh
= path
->p_hdr
;
564 struct ext4_extent
*r
, *l
, *m
;
566 if (eh
->eh_entries
== 0) {
568 * this leaf is empty:
569 * we get such a leaf in split/add case
574 ext_debug("binsearch for %u: ", block
);
576 l
= EXT_FIRST_EXTENT(eh
) + 1;
577 r
= EXT_LAST_EXTENT(eh
);
581 if (block
< le32_to_cpu(m
->ee_block
))
585 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
586 m
, le32_to_cpu(m
->ee_block
),
587 r
, le32_to_cpu(r
->ee_block
));
591 ext_debug(" -> %d:%llu:[%d]%d ",
592 le32_to_cpu(path
->p_ext
->ee_block
),
593 ext4_ext_pblock(path
->p_ext
),
594 ext4_ext_is_uninitialized(path
->p_ext
),
595 ext4_ext_get_actual_len(path
->p_ext
));
597 #ifdef CHECK_BINSEARCH
599 struct ext4_extent
*chex
, *ex
;
602 chex
= ex
= EXT_FIRST_EXTENT(eh
);
603 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
604 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
605 <= le32_to_cpu(ex
[-1].ee_block
));
606 if (block
< le32_to_cpu(ex
->ee_block
))
610 BUG_ON(chex
!= path
->p_ext
);
616 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
618 struct ext4_extent_header
*eh
;
620 eh
= ext_inode_hdr(inode
);
623 eh
->eh_magic
= EXT4_EXT_MAGIC
;
624 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
, 0));
625 ext4_mark_inode_dirty(handle
, inode
);
626 ext4_ext_invalidate_cache(inode
);
630 struct ext4_ext_path
*
631 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
632 struct ext4_ext_path
*path
)
634 struct ext4_extent_header
*eh
;
635 struct buffer_head
*bh
;
636 short int depth
, i
, ppos
= 0, alloc
= 0;
638 eh
= ext_inode_hdr(inode
);
639 depth
= ext_depth(inode
);
641 /* account possible depth increase */
643 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
646 return ERR_PTR(-ENOMEM
);
653 /* walk through the tree */
655 int need_to_validate
= 0;
657 ext_debug("depth %d: num %d, max %d\n",
658 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
660 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
661 path
[ppos
].p_block
= ext4_idx_pblock(path
[ppos
].p_idx
);
662 path
[ppos
].p_depth
= i
;
663 path
[ppos
].p_ext
= NULL
;
665 bh
= sb_getblk(inode
->i_sb
, path
[ppos
].p_block
);
668 if (!bh_uptodate_or_lock(bh
)) {
669 trace_ext4_ext_load_extent(inode
, block
,
671 if (bh_submit_read(bh
) < 0) {
675 /* validate the extent entries */
676 need_to_validate
= 1;
678 eh
= ext_block_hdr(bh
);
680 if (unlikely(ppos
> depth
)) {
682 EXT4_ERROR_INODE(inode
,
683 "ppos %d > depth %d", ppos
, depth
);
686 path
[ppos
].p_bh
= bh
;
687 path
[ppos
].p_hdr
= eh
;
690 if (need_to_validate
&& ext4_ext_check(inode
, eh
, i
))
694 path
[ppos
].p_depth
= i
;
695 path
[ppos
].p_ext
= NULL
;
696 path
[ppos
].p_idx
= NULL
;
699 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
700 /* if not an empty leaf */
701 if (path
[ppos
].p_ext
)
702 path
[ppos
].p_block
= ext4_ext_pblock(path
[ppos
].p_ext
);
704 ext4_ext_show_path(inode
, path
);
709 ext4_ext_drop_refs(path
);
712 return ERR_PTR(-EIO
);
716 * ext4_ext_insert_index:
717 * insert new index [@logical;@ptr] into the block at @curp;
718 * check where to insert: before @curp or after @curp
720 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
721 struct ext4_ext_path
*curp
,
722 int logical
, ext4_fsblk_t ptr
)
724 struct ext4_extent_idx
*ix
;
727 err
= ext4_ext_get_access(handle
, inode
, curp
);
731 if (unlikely(logical
== le32_to_cpu(curp
->p_idx
->ei_block
))) {
732 EXT4_ERROR_INODE(inode
,
733 "logical %d == ei_block %d!",
734 logical
, le32_to_cpu(curp
->p_idx
->ei_block
));
738 if (unlikely(le16_to_cpu(curp
->p_hdr
->eh_entries
)
739 >= le16_to_cpu(curp
->p_hdr
->eh_max
))) {
740 EXT4_ERROR_INODE(inode
,
741 "eh_entries %d >= eh_max %d!",
742 le16_to_cpu(curp
->p_hdr
->eh_entries
),
743 le16_to_cpu(curp
->p_hdr
->eh_max
));
747 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
749 ext_debug("insert new index %d after: %llu\n", logical
, ptr
);
750 ix
= curp
->p_idx
+ 1;
753 ext_debug("insert new index %d before: %llu\n", logical
, ptr
);
757 len
= EXT_LAST_INDEX(curp
->p_hdr
) - ix
+ 1;
760 ext_debug("insert new index %d: "
761 "move %d indices from 0x%p to 0x%p\n",
762 logical
, len
, ix
, ix
+ 1);
763 memmove(ix
+ 1, ix
, len
* sizeof(struct ext4_extent_idx
));
766 if (unlikely(ix
> EXT_MAX_INDEX(curp
->p_hdr
))) {
767 EXT4_ERROR_INODE(inode
, "ix > EXT_MAX_INDEX!");
771 ix
->ei_block
= cpu_to_le32(logical
);
772 ext4_idx_store_pblock(ix
, ptr
);
773 le16_add_cpu(&curp
->p_hdr
->eh_entries
, 1);
775 if (unlikely(ix
> EXT_LAST_INDEX(curp
->p_hdr
))) {
776 EXT4_ERROR_INODE(inode
, "ix > EXT_LAST_INDEX!");
780 err
= ext4_ext_dirty(handle
, inode
, curp
);
781 ext4_std_error(inode
->i_sb
, err
);
788 * inserts new subtree into the path, using free index entry
790 * - allocates all needed blocks (new leaf and all intermediate index blocks)
791 * - makes decision where to split
792 * - moves remaining extents and index entries (right to the split point)
793 * into the newly allocated blocks
794 * - initializes subtree
796 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
798 struct ext4_ext_path
*path
,
799 struct ext4_extent
*newext
, int at
)
801 struct buffer_head
*bh
= NULL
;
802 int depth
= ext_depth(inode
);
803 struct ext4_extent_header
*neh
;
804 struct ext4_extent_idx
*fidx
;
806 ext4_fsblk_t newblock
, oldblock
;
808 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
811 /* make decision: where to split? */
812 /* FIXME: now decision is simplest: at current extent */
814 /* if current leaf will be split, then we should use
815 * border from split point */
816 if (unlikely(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
))) {
817 EXT4_ERROR_INODE(inode
, "p_ext > EXT_MAX_EXTENT!");
820 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
821 border
= path
[depth
].p_ext
[1].ee_block
;
822 ext_debug("leaf will be split."
823 " next leaf starts at %d\n",
824 le32_to_cpu(border
));
826 border
= newext
->ee_block
;
827 ext_debug("leaf will be added."
828 " next leaf starts at %d\n",
829 le32_to_cpu(border
));
833 * If error occurs, then we break processing
834 * and mark filesystem read-only. index won't
835 * be inserted and tree will be in consistent
836 * state. Next mount will repair buffers too.
840 * Get array to track all allocated blocks.
841 * We need this to handle errors and free blocks
844 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
848 /* allocate all needed blocks */
849 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
850 for (a
= 0; a
< depth
- at
; a
++) {
851 newblock
= ext4_ext_new_meta_block(handle
, inode
, path
,
852 newext
, &err
, flags
);
855 ablocks
[a
] = newblock
;
858 /* initialize new leaf */
859 newblock
= ablocks
[--a
];
860 if (unlikely(newblock
== 0)) {
861 EXT4_ERROR_INODE(inode
, "newblock == 0!");
865 bh
= sb_getblk(inode
->i_sb
, newblock
);
872 err
= ext4_journal_get_create_access(handle
, bh
);
876 neh
= ext_block_hdr(bh
);
878 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
879 neh
->eh_magic
= EXT4_EXT_MAGIC
;
882 /* move remainder of path[depth] to the new leaf */
883 if (unlikely(path
[depth
].p_hdr
->eh_entries
!=
884 path
[depth
].p_hdr
->eh_max
)) {
885 EXT4_ERROR_INODE(inode
, "eh_entries %d != eh_max %d!",
886 path
[depth
].p_hdr
->eh_entries
,
887 path
[depth
].p_hdr
->eh_max
);
891 /* start copy from next extent */
892 m
= EXT_MAX_EXTENT(path
[depth
].p_hdr
) - path
[depth
].p_ext
++;
893 ext4_ext_show_move(inode
, path
, newblock
, depth
);
895 struct ext4_extent
*ex
;
896 ex
= EXT_FIRST_EXTENT(neh
);
897 memmove(ex
, path
[depth
].p_ext
, sizeof(struct ext4_extent
) * m
);
898 le16_add_cpu(&neh
->eh_entries
, m
);
901 set_buffer_uptodate(bh
);
904 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
910 /* correct old leaf */
912 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
915 le16_add_cpu(&path
[depth
].p_hdr
->eh_entries
, -m
);
916 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
922 /* create intermediate indexes */
924 if (unlikely(k
< 0)) {
925 EXT4_ERROR_INODE(inode
, "k %d < 0!", k
);
930 ext_debug("create %d intermediate indices\n", k
);
931 /* insert new index into current index block */
932 /* current depth stored in i var */
936 newblock
= ablocks
[--a
];
937 bh
= sb_getblk(inode
->i_sb
, newblock
);
944 err
= ext4_journal_get_create_access(handle
, bh
);
948 neh
= ext_block_hdr(bh
);
949 neh
->eh_entries
= cpu_to_le16(1);
950 neh
->eh_magic
= EXT4_EXT_MAGIC
;
951 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
952 neh
->eh_depth
= cpu_to_le16(depth
- i
);
953 fidx
= EXT_FIRST_INDEX(neh
);
954 fidx
->ei_block
= border
;
955 ext4_idx_store_pblock(fidx
, oldblock
);
957 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
958 i
, newblock
, le32_to_cpu(border
), oldblock
);
960 /* move remainder of path[i] to the new index block */
961 if (unlikely(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
962 EXT_LAST_INDEX(path
[i
].p_hdr
))) {
963 EXT4_ERROR_INODE(inode
,
964 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
965 le32_to_cpu(path
[i
].p_ext
->ee_block
));
969 /* start copy indexes */
970 m
= EXT_MAX_INDEX(path
[i
].p_hdr
) - path
[i
].p_idx
++;
971 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
972 EXT_MAX_INDEX(path
[i
].p_hdr
));
973 ext4_ext_show_move(inode
, path
, newblock
, i
);
975 memmove(++fidx
, path
[i
].p_idx
,
976 sizeof(struct ext4_extent_idx
) * m
);
977 le16_add_cpu(&neh
->eh_entries
, m
);
979 set_buffer_uptodate(bh
);
982 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
988 /* correct old index */
990 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
993 le16_add_cpu(&path
[i
].p_hdr
->eh_entries
, -m
);
994 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
1002 /* insert new index */
1003 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
1004 le32_to_cpu(border
), newblock
);
1008 if (buffer_locked(bh
))
1014 /* free all allocated blocks in error case */
1015 for (i
= 0; i
< depth
; i
++) {
1018 ext4_free_blocks(handle
, inode
, NULL
, ablocks
[i
], 1,
1019 EXT4_FREE_BLOCKS_METADATA
);
1028 * ext4_ext_grow_indepth:
1029 * implements tree growing procedure:
1030 * - allocates new block
1031 * - moves top-level data (index block or leaf) into the new block
1032 * - initializes new top-level, creating index that points to the
1033 * just created block
1035 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
1037 struct ext4_extent
*newext
)
1039 struct ext4_extent_header
*neh
;
1040 struct buffer_head
*bh
;
1041 ext4_fsblk_t newblock
;
1044 newblock
= ext4_ext_new_meta_block(handle
, inode
, NULL
,
1045 newext
, &err
, flags
);
1049 bh
= sb_getblk(inode
->i_sb
, newblock
);
1052 ext4_std_error(inode
->i_sb
, err
);
1057 err
= ext4_journal_get_create_access(handle
, bh
);
1063 /* move top-level index/leaf into new block */
1064 memmove(bh
->b_data
, EXT4_I(inode
)->i_data
,
1065 sizeof(EXT4_I(inode
)->i_data
));
1067 /* set size of new block */
1068 neh
= ext_block_hdr(bh
);
1069 /* old root could have indexes or leaves
1070 * so calculate e_max right way */
1071 if (ext_depth(inode
))
1072 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
, 0));
1074 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
, 0));
1075 neh
->eh_magic
= EXT4_EXT_MAGIC
;
1076 set_buffer_uptodate(bh
);
1079 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1083 /* Update top-level index: num,max,pointer */
1084 neh
= ext_inode_hdr(inode
);
1085 neh
->eh_entries
= cpu_to_le16(1);
1086 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh
), newblock
);
1087 if (neh
->eh_depth
== 0) {
1088 /* Root extent block becomes index block */
1089 neh
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
, 0));
1090 EXT_FIRST_INDEX(neh
)->ei_block
=
1091 EXT_FIRST_EXTENT(neh
)->ee_block
;
1093 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1094 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
1095 le32_to_cpu(EXT_FIRST_INDEX(neh
)->ei_block
),
1096 ext4_idx_pblock(EXT_FIRST_INDEX(neh
)));
1098 neh
->eh_depth
= cpu_to_le16(neh
->eh_depth
+ 1);
1099 ext4_mark_inode_dirty(handle
, inode
);
1107 * ext4_ext_create_new_leaf:
1108 * finds empty index and adds new leaf.
1109 * if no free index is found, then it requests in-depth growing.
1111 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
1113 struct ext4_ext_path
*path
,
1114 struct ext4_extent
*newext
)
1116 struct ext4_ext_path
*curp
;
1117 int depth
, i
, err
= 0;
1120 i
= depth
= ext_depth(inode
);
1122 /* walk up to the tree and look for free index entry */
1123 curp
= path
+ depth
;
1124 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
1129 /* we use already allocated block for index block,
1130 * so subsequent data blocks should be contiguous */
1131 if (EXT_HAS_FREE_INDEX(curp
)) {
1132 /* if we found index with free entry, then use that
1133 * entry: create all needed subtree and add new leaf */
1134 err
= ext4_ext_split(handle
, inode
, flags
, path
, newext
, i
);
1139 ext4_ext_drop_refs(path
);
1140 path
= ext4_ext_find_extent(inode
,
1141 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1144 err
= PTR_ERR(path
);
1146 /* tree is full, time to grow in depth */
1147 err
= ext4_ext_grow_indepth(handle
, inode
, flags
, newext
);
1152 ext4_ext_drop_refs(path
);
1153 path
= ext4_ext_find_extent(inode
,
1154 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1157 err
= PTR_ERR(path
);
1162 * only first (depth 0 -> 1) produces free space;
1163 * in all other cases we have to split the grown tree
1165 depth
= ext_depth(inode
);
1166 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1167 /* now we need to split */
1177 * search the closest allocated block to the left for *logical
1178 * and returns it at @logical + it's physical address at @phys
1179 * if *logical is the smallest allocated block, the function
1180 * returns 0 at @phys
1181 * return value contains 0 (success) or error code
1183 static int ext4_ext_search_left(struct inode
*inode
,
1184 struct ext4_ext_path
*path
,
1185 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1187 struct ext4_extent_idx
*ix
;
1188 struct ext4_extent
*ex
;
1191 if (unlikely(path
== NULL
)) {
1192 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1195 depth
= path
->p_depth
;
1198 if (depth
== 0 && path
->p_ext
== NULL
)
1201 /* usually extent in the path covers blocks smaller
1202 * then *logical, but it can be that extent is the
1203 * first one in the file */
1205 ex
= path
[depth
].p_ext
;
1206 ee_len
= ext4_ext_get_actual_len(ex
);
1207 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1208 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1209 EXT4_ERROR_INODE(inode
,
1210 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1211 *logical
, le32_to_cpu(ex
->ee_block
));
1214 while (--depth
>= 0) {
1215 ix
= path
[depth
].p_idx
;
1216 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1217 EXT4_ERROR_INODE(inode
,
1218 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1219 ix
!= NULL
? le32_to_cpu(ix
->ei_block
) : 0,
1220 EXT_FIRST_INDEX(path
[depth
].p_hdr
) != NULL
?
1221 le32_to_cpu(EXT_FIRST_INDEX(path
[depth
].p_hdr
)->ei_block
) : 0,
1229 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1230 EXT4_ERROR_INODE(inode
,
1231 "logical %d < ee_block %d + ee_len %d!",
1232 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1236 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1237 *phys
= ext4_ext_pblock(ex
) + ee_len
- 1;
1242 * search the closest allocated block to the right for *logical
1243 * and returns it at @logical + it's physical address at @phys
1244 * if *logical is the largest allocated block, the function
1245 * returns 0 at @phys
1246 * return value contains 0 (success) or error code
1248 static int ext4_ext_search_right(struct inode
*inode
,
1249 struct ext4_ext_path
*path
,
1250 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
,
1251 struct ext4_extent
**ret_ex
)
1253 struct buffer_head
*bh
= NULL
;
1254 struct ext4_extent_header
*eh
;
1255 struct ext4_extent_idx
*ix
;
1256 struct ext4_extent
*ex
;
1258 int depth
; /* Note, NOT eh_depth; depth from top of tree */
1261 if (unlikely(path
== NULL
)) {
1262 EXT4_ERROR_INODE(inode
, "path == NULL *logical %d!", *logical
);
1265 depth
= path
->p_depth
;
1268 if (depth
== 0 && path
->p_ext
== NULL
)
1271 /* usually extent in the path covers blocks smaller
1272 * then *logical, but it can be that extent is the
1273 * first one in the file */
1275 ex
= path
[depth
].p_ext
;
1276 ee_len
= ext4_ext_get_actual_len(ex
);
1277 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1278 if (unlikely(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
)) {
1279 EXT4_ERROR_INODE(inode
,
1280 "first_extent(path[%d].p_hdr) != ex",
1284 while (--depth
>= 0) {
1285 ix
= path
[depth
].p_idx
;
1286 if (unlikely(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
))) {
1287 EXT4_ERROR_INODE(inode
,
1288 "ix != EXT_FIRST_INDEX *logical %d!",
1296 if (unlikely(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
))) {
1297 EXT4_ERROR_INODE(inode
,
1298 "logical %d < ee_block %d + ee_len %d!",
1299 *logical
, le32_to_cpu(ex
->ee_block
), ee_len
);
1303 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1304 /* next allocated block in this leaf */
1309 /* go up and search for index to the right */
1310 while (--depth
>= 0) {
1311 ix
= path
[depth
].p_idx
;
1312 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1316 /* we've gone up to the root and found no index to the right */
1320 /* we've found index to the right, let's
1321 * follow it and find the closest allocated
1322 * block to the right */
1324 block
= ext4_idx_pblock(ix
);
1325 while (++depth
< path
->p_depth
) {
1326 bh
= sb_bread(inode
->i_sb
, block
);
1329 eh
= ext_block_hdr(bh
);
1330 /* subtract from p_depth to get proper eh_depth */
1331 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1335 ix
= EXT_FIRST_INDEX(eh
);
1336 block
= ext4_idx_pblock(ix
);
1340 bh
= sb_bread(inode
->i_sb
, block
);
1343 eh
= ext_block_hdr(bh
);
1344 if (ext4_ext_check(inode
, eh
, path
->p_depth
- depth
)) {
1348 ex
= EXT_FIRST_EXTENT(eh
);
1350 *logical
= le32_to_cpu(ex
->ee_block
);
1351 *phys
= ext4_ext_pblock(ex
);
1359 * ext4_ext_next_allocated_block:
1360 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1361 * NOTE: it considers block number from index entry as
1362 * allocated block. Thus, index entries have to be consistent
1366 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1370 BUG_ON(path
== NULL
);
1371 depth
= path
->p_depth
;
1373 if (depth
== 0 && path
->p_ext
== NULL
)
1374 return EXT_MAX_BLOCKS
;
1376 while (depth
>= 0) {
1377 if (depth
== path
->p_depth
) {
1379 if (path
[depth
].p_ext
&&
1380 path
[depth
].p_ext
!=
1381 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1382 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1385 if (path
[depth
].p_idx
!=
1386 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1387 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1392 return EXT_MAX_BLOCKS
;
1396 * ext4_ext_next_leaf_block:
1397 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1399 static ext4_lblk_t
ext4_ext_next_leaf_block(struct ext4_ext_path
*path
)
1403 BUG_ON(path
== NULL
);
1404 depth
= path
->p_depth
;
1406 /* zero-tree has no leaf blocks at all */
1408 return EXT_MAX_BLOCKS
;
1410 /* go to index block */
1413 while (depth
>= 0) {
1414 if (path
[depth
].p_idx
!=
1415 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1416 return (ext4_lblk_t
)
1417 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1421 return EXT_MAX_BLOCKS
;
1425 * ext4_ext_correct_indexes:
1426 * if leaf gets modified and modified extent is first in the leaf,
1427 * then we have to correct all indexes above.
1428 * TODO: do we need to correct tree in all cases?
1430 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1431 struct ext4_ext_path
*path
)
1433 struct ext4_extent_header
*eh
;
1434 int depth
= ext_depth(inode
);
1435 struct ext4_extent
*ex
;
1439 eh
= path
[depth
].p_hdr
;
1440 ex
= path
[depth
].p_ext
;
1442 if (unlikely(ex
== NULL
|| eh
== NULL
)) {
1443 EXT4_ERROR_INODE(inode
,
1444 "ex %p == NULL or eh %p == NULL", ex
, eh
);
1449 /* there is no tree at all */
1453 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1454 /* we correct tree if first leaf got modified only */
1459 * TODO: we need correction if border is smaller than current one
1462 border
= path
[depth
].p_ext
->ee_block
;
1463 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1466 path
[k
].p_idx
->ei_block
= border
;
1467 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1472 /* change all left-side indexes */
1473 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1475 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1478 path
[k
].p_idx
->ei_block
= border
;
1479 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1488 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1489 struct ext4_extent
*ex2
)
1491 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1494 * Make sure that either both extents are uninitialized, or
1497 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1500 if (ext4_ext_is_uninitialized(ex1
))
1501 max_len
= EXT_UNINIT_MAX_LEN
;
1503 max_len
= EXT_INIT_MAX_LEN
;
1505 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1506 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1508 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1509 le32_to_cpu(ex2
->ee_block
))
1513 * To allow future support for preallocated extents to be added
1514 * as an RO_COMPAT feature, refuse to merge to extents if
1515 * this can result in the top bit of ee_len being set.
1517 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1519 #ifdef AGGRESSIVE_TEST
1520 if (ext1_ee_len
>= 4)
1524 if (ext4_ext_pblock(ex1
) + ext1_ee_len
== ext4_ext_pblock(ex2
))
1530 * This function tries to merge the "ex" extent to the next extent in the tree.
1531 * It always tries to merge towards right. If you want to merge towards
1532 * left, pass "ex - 1" as argument instead of "ex".
1533 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1534 * 1 if they got merged.
1536 static int ext4_ext_try_to_merge_right(struct inode
*inode
,
1537 struct ext4_ext_path
*path
,
1538 struct ext4_extent
*ex
)
1540 struct ext4_extent_header
*eh
;
1541 unsigned int depth
, len
;
1543 int uninitialized
= 0;
1545 depth
= ext_depth(inode
);
1546 BUG_ON(path
[depth
].p_hdr
== NULL
);
1547 eh
= path
[depth
].p_hdr
;
1549 while (ex
< EXT_LAST_EXTENT(eh
)) {
1550 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1552 /* merge with next extent! */
1553 if (ext4_ext_is_uninitialized(ex
))
1555 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1556 + ext4_ext_get_actual_len(ex
+ 1));
1558 ext4_ext_mark_uninitialized(ex
);
1560 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1561 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1562 * sizeof(struct ext4_extent
);
1563 memmove(ex
+ 1, ex
+ 2, len
);
1565 le16_add_cpu(&eh
->eh_entries
, -1);
1567 WARN_ON(eh
->eh_entries
== 0);
1568 if (!eh
->eh_entries
)
1569 EXT4_ERROR_INODE(inode
, "eh->eh_entries = 0!");
1576 * This function tries to merge the @ex extent to neighbours in the tree.
1577 * return 1 if merge left else 0.
1579 static int ext4_ext_try_to_merge(struct inode
*inode
,
1580 struct ext4_ext_path
*path
,
1581 struct ext4_extent
*ex
) {
1582 struct ext4_extent_header
*eh
;
1587 depth
= ext_depth(inode
);
1588 BUG_ON(path
[depth
].p_hdr
== NULL
);
1589 eh
= path
[depth
].p_hdr
;
1591 if (ex
> EXT_FIRST_EXTENT(eh
))
1592 merge_done
= ext4_ext_try_to_merge_right(inode
, path
, ex
- 1);
1595 ret
= ext4_ext_try_to_merge_right(inode
, path
, ex
);
1601 * check if a portion of the "newext" extent overlaps with an
1604 * If there is an overlap discovered, it updates the length of the newext
1605 * such that there will be no overlap, and then returns 1.
1606 * If there is no overlap found, it returns 0.
1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info
*sbi
,
1609 struct inode
*inode
,
1610 struct ext4_extent
*newext
,
1611 struct ext4_ext_path
*path
)
1614 unsigned int depth
, len1
;
1615 unsigned int ret
= 0;
1617 b1
= le32_to_cpu(newext
->ee_block
);
1618 len1
= ext4_ext_get_actual_len(newext
);
1619 depth
= ext_depth(inode
);
1620 if (!path
[depth
].p_ext
)
1622 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1623 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1626 * get the next allocated block if the extent in the path
1627 * is before the requested block(s)
1630 b2
= ext4_ext_next_allocated_block(path
);
1631 if (b2
== EXT_MAX_BLOCKS
)
1633 b2
&= ~(sbi
->s_cluster_ratio
- 1);
1636 /* check for wrap through zero on extent logical start block*/
1637 if (b1
+ len1
< b1
) {
1638 len1
= EXT_MAX_BLOCKS
- b1
;
1639 newext
->ee_len
= cpu_to_le16(len1
);
1643 /* check for overlap */
1644 if (b1
+ len1
> b2
) {
1645 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1653 * ext4_ext_insert_extent:
1654 * tries to merge requsted extent into the existing extent or
1655 * inserts requested extent as new one into the tree,
1656 * creating new leaf in the no-space case.
1658 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1659 struct ext4_ext_path
*path
,
1660 struct ext4_extent
*newext
, int flag
)
1662 struct ext4_extent_header
*eh
;
1663 struct ext4_extent
*ex
, *fex
;
1664 struct ext4_extent
*nearex
; /* nearest extent */
1665 struct ext4_ext_path
*npath
= NULL
;
1666 int depth
, len
, err
;
1668 unsigned uninitialized
= 0;
1671 if (unlikely(ext4_ext_get_actual_len(newext
) == 0)) {
1672 EXT4_ERROR_INODE(inode
, "ext4_ext_get_actual_len(newext) == 0");
1675 depth
= ext_depth(inode
);
1676 ex
= path
[depth
].p_ext
;
1677 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1678 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1682 /* try to insert block into found extent and return */
1683 if (ex
&& !(flag
& EXT4_GET_BLOCKS_PRE_IO
)
1684 && ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1685 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1686 ext4_ext_is_uninitialized(newext
),
1687 ext4_ext_get_actual_len(newext
),
1688 le32_to_cpu(ex
->ee_block
),
1689 ext4_ext_is_uninitialized(ex
),
1690 ext4_ext_get_actual_len(ex
),
1691 ext4_ext_pblock(ex
));
1692 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1697 * ext4_can_extents_be_merged should have checked that either
1698 * both extents are uninitialized, or both aren't. Thus we
1699 * need to check only one of them here.
1701 if (ext4_ext_is_uninitialized(ex
))
1703 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1704 + ext4_ext_get_actual_len(newext
));
1706 ext4_ext_mark_uninitialized(ex
);
1707 eh
= path
[depth
].p_hdr
;
1712 depth
= ext_depth(inode
);
1713 eh
= path
[depth
].p_hdr
;
1714 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1717 /* probably next leaf has space for us? */
1718 fex
= EXT_LAST_EXTENT(eh
);
1719 next
= EXT_MAX_BLOCKS
;
1720 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
))
1721 next
= ext4_ext_next_leaf_block(path
);
1722 if (next
!= EXT_MAX_BLOCKS
) {
1723 ext_debug("next leaf block - %u\n", next
);
1724 BUG_ON(npath
!= NULL
);
1725 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1727 return PTR_ERR(npath
);
1728 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1729 eh
= npath
[depth
].p_hdr
;
1730 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1731 ext_debug("next leaf isn't full(%d)\n",
1732 le16_to_cpu(eh
->eh_entries
));
1736 ext_debug("next leaf has no free space(%d,%d)\n",
1737 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1741 * There is no free space in the found leaf.
1742 * We're gonna add a new leaf in the tree.
1744 if (flag
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
)
1745 flags
= EXT4_MB_USE_ROOT_BLOCKS
;
1746 err
= ext4_ext_create_new_leaf(handle
, inode
, flags
, path
, newext
);
1749 depth
= ext_depth(inode
);
1750 eh
= path
[depth
].p_hdr
;
1753 nearex
= path
[depth
].p_ext
;
1755 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1760 /* there is no extent in this leaf, create first one */
1761 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1762 le32_to_cpu(newext
->ee_block
),
1763 ext4_ext_pblock(newext
),
1764 ext4_ext_is_uninitialized(newext
),
1765 ext4_ext_get_actual_len(newext
));
1766 nearex
= EXT_FIRST_EXTENT(eh
);
1768 if (le32_to_cpu(newext
->ee_block
)
1769 > le32_to_cpu(nearex
->ee_block
)) {
1771 ext_debug("insert %u:%llu:[%d]%d before: "
1773 le32_to_cpu(newext
->ee_block
),
1774 ext4_ext_pblock(newext
),
1775 ext4_ext_is_uninitialized(newext
),
1776 ext4_ext_get_actual_len(newext
),
1781 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1782 ext_debug("insert %u:%llu:[%d]%d after: "
1784 le32_to_cpu(newext
->ee_block
),
1785 ext4_ext_pblock(newext
),
1786 ext4_ext_is_uninitialized(newext
),
1787 ext4_ext_get_actual_len(newext
),
1790 len
= EXT_LAST_EXTENT(eh
) - nearex
+ 1;
1792 ext_debug("insert %u:%llu:[%d]%d: "
1793 "move %d extents from 0x%p to 0x%p\n",
1794 le32_to_cpu(newext
->ee_block
),
1795 ext4_ext_pblock(newext
),
1796 ext4_ext_is_uninitialized(newext
),
1797 ext4_ext_get_actual_len(newext
),
1798 len
, nearex
, nearex
+ 1);
1799 memmove(nearex
+ 1, nearex
,
1800 len
* sizeof(struct ext4_extent
));
1804 le16_add_cpu(&eh
->eh_entries
, 1);
1805 path
[depth
].p_ext
= nearex
;
1806 nearex
->ee_block
= newext
->ee_block
;
1807 ext4_ext_store_pblock(nearex
, ext4_ext_pblock(newext
));
1808 nearex
->ee_len
= newext
->ee_len
;
1811 /* try to merge extents to the right */
1812 if (!(flag
& EXT4_GET_BLOCKS_PRE_IO
))
1813 ext4_ext_try_to_merge(inode
, path
, nearex
);
1815 /* try to merge extents to the left */
1817 /* time to correct all indexes above */
1818 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1822 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1826 ext4_ext_drop_refs(npath
);
1829 ext4_ext_invalidate_cache(inode
);
1833 static int ext4_ext_walk_space(struct inode
*inode
, ext4_lblk_t block
,
1834 ext4_lblk_t num
, ext_prepare_callback func
,
1837 struct ext4_ext_path
*path
= NULL
;
1838 struct ext4_ext_cache cbex
;
1839 struct ext4_extent
*ex
;
1840 ext4_lblk_t next
, start
= 0, end
= 0;
1841 ext4_lblk_t last
= block
+ num
;
1842 int depth
, exists
, err
= 0;
1844 BUG_ON(func
== NULL
);
1845 BUG_ON(inode
== NULL
);
1847 while (block
< last
&& block
!= EXT_MAX_BLOCKS
) {
1849 /* find extent for this block */
1850 down_read(&EXT4_I(inode
)->i_data_sem
);
1851 path
= ext4_ext_find_extent(inode
, block
, path
);
1852 up_read(&EXT4_I(inode
)->i_data_sem
);
1854 err
= PTR_ERR(path
);
1859 depth
= ext_depth(inode
);
1860 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
1861 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
1865 ex
= path
[depth
].p_ext
;
1866 next
= ext4_ext_next_allocated_block(path
);
1870 /* there is no extent yet, so try to allocate
1871 * all requested space */
1874 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
1875 /* need to allocate space before found extent */
1877 end
= le32_to_cpu(ex
->ee_block
);
1878 if (block
+ num
< end
)
1880 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1881 + ext4_ext_get_actual_len(ex
)) {
1882 /* need to allocate space after found extent */
1887 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
1889 * some part of requested space is covered
1893 end
= le32_to_cpu(ex
->ee_block
)
1894 + ext4_ext_get_actual_len(ex
);
1895 if (block
+ num
< end
)
1901 BUG_ON(end
<= start
);
1904 cbex
.ec_block
= start
;
1905 cbex
.ec_len
= end
- start
;
1908 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
1909 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
1910 cbex
.ec_start
= ext4_ext_pblock(ex
);
1913 if (unlikely(cbex
.ec_len
== 0)) {
1914 EXT4_ERROR_INODE(inode
, "cbex.ec_len == 0");
1918 err
= func(inode
, next
, &cbex
, ex
, cbdata
);
1919 ext4_ext_drop_refs(path
);
1924 if (err
== EXT_REPEAT
)
1926 else if (err
== EXT_BREAK
) {
1931 if (ext_depth(inode
) != depth
) {
1932 /* depth was changed. we have to realloc path */
1937 block
= cbex
.ec_block
+ cbex
.ec_len
;
1941 ext4_ext_drop_refs(path
);
1949 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1950 __u32 len
, ext4_fsblk_t start
)
1952 struct ext4_ext_cache
*cex
;
1954 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1955 trace_ext4_ext_put_in_cache(inode
, block
, len
, start
);
1956 cex
= &EXT4_I(inode
)->i_cached_extent
;
1957 cex
->ec_block
= block
;
1959 cex
->ec_start
= start
;
1960 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1964 * ext4_ext_put_gap_in_cache:
1965 * calculate boundaries of the gap that the requested block fits into
1966 * and cache this gap
1969 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1972 int depth
= ext_depth(inode
);
1975 struct ext4_extent
*ex
;
1977 ex
= path
[depth
].p_ext
;
1979 /* there is no extent yet, so gap is [0;-] */
1981 len
= EXT_MAX_BLOCKS
;
1982 ext_debug("cache gap(whole file):");
1983 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1985 len
= le32_to_cpu(ex
->ee_block
) - block
;
1986 ext_debug("cache gap(before): %u [%u:%u]",
1988 le32_to_cpu(ex
->ee_block
),
1989 ext4_ext_get_actual_len(ex
));
1990 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1991 + ext4_ext_get_actual_len(ex
)) {
1993 lblock
= le32_to_cpu(ex
->ee_block
)
1994 + ext4_ext_get_actual_len(ex
);
1996 next
= ext4_ext_next_allocated_block(path
);
1997 ext_debug("cache gap(after): [%u:%u] %u",
1998 le32_to_cpu(ex
->ee_block
),
1999 ext4_ext_get_actual_len(ex
),
2001 BUG_ON(next
== lblock
);
2002 len
= next
- lblock
;
2008 ext_debug(" -> %u:%lu\n", lblock
, len
);
2009 ext4_ext_put_in_cache(inode
, lblock
, len
, 0);
2013 * ext4_ext_check_cache()
2014 * Checks to see if the given block is in the cache.
2015 * If it is, the cached extent is stored in the given
2016 * cache extent pointer. If the cached extent is a hole,
2017 * this routine should be used instead of
2018 * ext4_ext_in_cache if the calling function needs to
2019 * know the size of the hole.
2021 * @inode: The files inode
2022 * @block: The block to look for in the cache
2023 * @ex: Pointer where the cached extent will be stored
2024 * if it contains block
2026 * Return 0 if cache is invalid; 1 if the cache is valid
2028 static int ext4_ext_check_cache(struct inode
*inode
, ext4_lblk_t block
,
2029 struct ext4_ext_cache
*ex
){
2030 struct ext4_ext_cache
*cex
;
2031 struct ext4_sb_info
*sbi
;
2035 * We borrow i_block_reservation_lock to protect i_cached_extent
2037 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
2038 cex
= &EXT4_I(inode
)->i_cached_extent
;
2039 sbi
= EXT4_SB(inode
->i_sb
);
2041 /* has cache valid data? */
2042 if (cex
->ec_len
== 0)
2045 if (in_range(block
, cex
->ec_block
, cex
->ec_len
)) {
2046 memcpy(ex
, cex
, sizeof(struct ext4_ext_cache
));
2047 ext_debug("%u cached by %u:%u:%llu\n",
2049 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
2054 sbi
->extent_cache_misses
++;
2056 sbi
->extent_cache_hits
++;
2057 trace_ext4_ext_in_cache(inode
, block
, ret
);
2058 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
2063 * ext4_ext_in_cache()
2064 * Checks to see if the given block is in the cache.
2065 * If it is, the cached extent is stored in the given
2068 * @inode: The files inode
2069 * @block: The block to look for in the cache
2070 * @ex: Pointer where the cached extent will be stored
2071 * if it contains block
2073 * Return 0 if cache is invalid; 1 if the cache is valid
2076 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
2077 struct ext4_extent
*ex
)
2079 struct ext4_ext_cache cex
;
2082 if (ext4_ext_check_cache(inode
, block
, &cex
)) {
2083 ex
->ee_block
= cpu_to_le32(cex
.ec_block
);
2084 ext4_ext_store_pblock(ex
, cex
.ec_start
);
2085 ex
->ee_len
= cpu_to_le16(cex
.ec_len
);
2095 * removes index from the index block.
2097 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
2098 struct ext4_ext_path
*path
)
2103 /* free index block */
2105 leaf
= ext4_idx_pblock(path
->p_idx
);
2106 if (unlikely(path
->p_hdr
->eh_entries
== 0)) {
2107 EXT4_ERROR_INODE(inode
, "path->p_hdr->eh_entries == 0");
2110 err
= ext4_ext_get_access(handle
, inode
, path
);
2114 if (path
->p_idx
!= EXT_LAST_INDEX(path
->p_hdr
)) {
2115 int len
= EXT_LAST_INDEX(path
->p_hdr
) - path
->p_idx
;
2116 len
*= sizeof(struct ext4_extent_idx
);
2117 memmove(path
->p_idx
, path
->p_idx
+ 1, len
);
2120 le16_add_cpu(&path
->p_hdr
->eh_entries
, -1);
2121 err
= ext4_ext_dirty(handle
, inode
, path
);
2124 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
2125 trace_ext4_ext_rm_idx(inode
, leaf
);
2127 ext4_free_blocks(handle
, inode
, NULL
, leaf
, 1,
2128 EXT4_FREE_BLOCKS_METADATA
| EXT4_FREE_BLOCKS_FORGET
);
2133 * ext4_ext_calc_credits_for_single_extent:
2134 * This routine returns max. credits that needed to insert an extent
2135 * to the extent tree.
2136 * When pass the actual path, the caller should calculate credits
2139 int ext4_ext_calc_credits_for_single_extent(struct inode
*inode
, int nrblocks
,
2140 struct ext4_ext_path
*path
)
2143 int depth
= ext_depth(inode
);
2146 /* probably there is space in leaf? */
2147 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
2148 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
)) {
2151 * There are some space in the leaf tree, no
2152 * need to account for leaf block credit
2154 * bitmaps and block group descriptor blocks
2155 * and other metadata blocks still need to be
2158 /* 1 bitmap, 1 block group descriptor */
2159 ret
= 2 + EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
2164 return ext4_chunk_trans_blocks(inode
, nrblocks
);
2168 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2170 * if nrblocks are fit in a single extent (chunk flag is 1), then
2171 * in the worse case, each tree level index/leaf need to be changed
2172 * if the tree split due to insert a new extent, then the old tree
2173 * index/leaf need to be updated too
2175 * If the nrblocks are discontiguous, they could cause
2176 * the whole tree split more than once, but this is really rare.
2178 int ext4_ext_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
2181 int depth
= ext_depth(inode
);
2191 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
2192 struct ext4_extent
*ex
,
2193 ext4_fsblk_t
*partial_cluster
,
2194 ext4_lblk_t from
, ext4_lblk_t to
)
2196 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2197 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
2199 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2201 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2202 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2204 * For bigalloc file systems, we never free a partial cluster
2205 * at the beginning of the extent. Instead, we make a note
2206 * that we tried freeing the cluster, and check to see if we
2207 * need to free it on a subsequent call to ext4_remove_blocks,
2208 * or at the end of the ext4_truncate() operation.
2210 flags
|= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
;
2212 trace_ext4_remove_blocks(inode
, ex
, from
, to
, *partial_cluster
);
2214 * If we have a partial cluster, and it's different from the
2215 * cluster of the last block, we need to explicitly free the
2216 * partial cluster here.
2218 pblk
= ext4_ext_pblock(ex
) + ee_len
- 1;
2219 if (*partial_cluster
&& (EXT4_B2C(sbi
, pblk
) != *partial_cluster
)) {
2220 ext4_free_blocks(handle
, inode
, NULL
,
2221 EXT4_C2B(sbi
, *partial_cluster
),
2222 sbi
->s_cluster_ratio
, flags
);
2223 *partial_cluster
= 0;
2226 #ifdef EXTENTS_STATS
2228 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2229 spin_lock(&sbi
->s_ext_stats_lock
);
2230 sbi
->s_ext_blocks
+= ee_len
;
2231 sbi
->s_ext_extents
++;
2232 if (ee_len
< sbi
->s_ext_min
)
2233 sbi
->s_ext_min
= ee_len
;
2234 if (ee_len
> sbi
->s_ext_max
)
2235 sbi
->s_ext_max
= ee_len
;
2236 if (ext_depth(inode
) > sbi
->s_depth_max
)
2237 sbi
->s_depth_max
= ext_depth(inode
);
2238 spin_unlock(&sbi
->s_ext_stats_lock
);
2241 if (from
>= le32_to_cpu(ex
->ee_block
)
2242 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2246 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
2247 pblk
= ext4_ext_pblock(ex
) + ee_len
- num
;
2248 ext_debug("free last %u blocks starting %llu\n", num
, pblk
);
2249 ext4_free_blocks(handle
, inode
, NULL
, pblk
, num
, flags
);
2251 * If the block range to be freed didn't start at the
2252 * beginning of a cluster, and we removed the entire
2253 * extent, save the partial cluster here, since we
2254 * might need to delete if we determine that the
2255 * truncate operation has removed all of the blocks in
2258 if (pblk
& (sbi
->s_cluster_ratio
- 1) &&
2260 *partial_cluster
= EXT4_B2C(sbi
, pblk
);
2262 *partial_cluster
= 0;
2263 } else if (from
== le32_to_cpu(ex
->ee_block
)
2264 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
2270 start
= ext4_ext_pblock(ex
);
2272 ext_debug("free first %u blocks starting %llu\n", num
, start
);
2273 ext4_free_blocks(handle
, inode
, NULL
, start
, num
, flags
);
2276 printk(KERN_INFO
"strange request: removal(2) "
2277 "%u-%u from %u:%u\n",
2278 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
2285 * ext4_ext_rm_leaf() Removes the extents associated with the
2286 * blocks appearing between "start" and "end", and splits the extents
2287 * if "start" and "end" appear in the same extent
2289 * @handle: The journal handle
2290 * @inode: The files inode
2291 * @path: The path to the leaf
2292 * @start: The first block to remove
2293 * @end: The last block to remove
2296 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
2297 struct ext4_ext_path
*path
, ext4_fsblk_t
*partial_cluster
,
2298 ext4_lblk_t start
, ext4_lblk_t end
)
2300 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2301 int err
= 0, correct_index
= 0;
2302 int depth
= ext_depth(inode
), credits
;
2303 struct ext4_extent_header
*eh
;
2306 ext4_lblk_t ex_ee_block
;
2307 unsigned short ex_ee_len
;
2308 unsigned uninitialized
= 0;
2309 struct ext4_extent
*ex
;
2311 /* the header must be checked already in ext4_ext_remove_space() */
2312 ext_debug("truncate since %u in leaf\n", start
);
2313 if (!path
[depth
].p_hdr
)
2314 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
2315 eh
= path
[depth
].p_hdr
;
2316 if (unlikely(path
[depth
].p_hdr
== NULL
)) {
2317 EXT4_ERROR_INODE(inode
, "path[%d].p_hdr == NULL", depth
);
2320 /* find where to start removing */
2321 ex
= EXT_LAST_EXTENT(eh
);
2323 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2324 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2326 trace_ext4_ext_rm_leaf(inode
, start
, ex
, *partial_cluster
);
2328 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
2329 ex_ee_block
+ ex_ee_len
> start
) {
2331 if (ext4_ext_is_uninitialized(ex
))
2336 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block
,
2337 uninitialized
, ex_ee_len
);
2338 path
[depth
].p_ext
= ex
;
2340 a
= ex_ee_block
> start
? ex_ee_block
: start
;
2341 b
= ex_ee_block
+ex_ee_len
- 1 < end
?
2342 ex_ee_block
+ex_ee_len
- 1 : end
;
2344 ext_debug(" border %u:%u\n", a
, b
);
2346 /* If this extent is beyond the end of the hole, skip it */
2347 if (end
<= ex_ee_block
) {
2349 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2350 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2352 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
2353 EXT4_ERROR_INODE(inode
," bad truncate %u:%u\n",
2357 } else if (a
!= ex_ee_block
) {
2358 /* remove tail of the extent */
2359 num
= a
- ex_ee_block
;
2361 /* remove whole extent: excellent! */
2365 * 3 for leaf, sb, and inode plus 2 (bmap and group
2366 * descriptor) for each block group; assume two block
2367 * groups plus ex_ee_len/blocks_per_block_group for
2370 credits
= 7 + 2*(ex_ee_len
/EXT4_BLOCKS_PER_GROUP(inode
->i_sb
));
2371 if (ex
== EXT_FIRST_EXTENT(eh
)) {
2373 credits
+= (ext_depth(inode
)) + 1;
2375 credits
+= EXT4_MAXQUOTAS_TRANS_BLOCKS(inode
->i_sb
);
2377 err
= ext4_ext_truncate_extend_restart(handle
, inode
, credits
);
2381 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2385 err
= ext4_remove_blocks(handle
, inode
, ex
, partial_cluster
,
2391 /* this extent is removed; mark slot entirely unused */
2392 ext4_ext_store_pblock(ex
, 0);
2394 ex
->ee_len
= cpu_to_le16(num
);
2396 * Do not mark uninitialized if all the blocks in the
2397 * extent have been removed.
2399 if (uninitialized
&& num
)
2400 ext4_ext_mark_uninitialized(ex
);
2402 * If the extent was completely released,
2403 * we need to remove it from the leaf
2406 if (end
!= EXT_MAX_BLOCKS
- 1) {
2408 * For hole punching, we need to scoot all the
2409 * extents up when an extent is removed so that
2410 * we dont have blank extents in the middle
2412 memmove(ex
, ex
+1, (EXT_LAST_EXTENT(eh
) - ex
) *
2413 sizeof(struct ext4_extent
));
2415 /* Now get rid of the one at the end */
2416 memset(EXT_LAST_EXTENT(eh
), 0,
2417 sizeof(struct ext4_extent
));
2419 le16_add_cpu(&eh
->eh_entries
, -1);
2421 *partial_cluster
= 0;
2423 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2427 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block
, num
,
2428 ext4_ext_pblock(ex
));
2430 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
2431 ex_ee_len
= ext4_ext_get_actual_len(ex
);
2434 if (correct_index
&& eh
->eh_entries
)
2435 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2438 * If there is still a entry in the leaf node, check to see if
2439 * it references the partial cluster. This is the only place
2440 * where it could; if it doesn't, we can free the cluster.
2442 if (*partial_cluster
&& ex
>= EXT_FIRST_EXTENT(eh
) &&
2443 (EXT4_B2C(sbi
, ext4_ext_pblock(ex
) + ex_ee_len
- 1) !=
2444 *partial_cluster
)) {
2445 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2447 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2448 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2450 ext4_free_blocks(handle
, inode
, NULL
,
2451 EXT4_C2B(sbi
, *partial_cluster
),
2452 sbi
->s_cluster_ratio
, flags
);
2453 *partial_cluster
= 0;
2456 /* if this leaf is free, then we should
2457 * remove it from index block above */
2458 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
2459 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
2466 * ext4_ext_more_to_rm:
2467 * returns 1 if current index has to be freed (even partial)
2470 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
2472 BUG_ON(path
->p_idx
== NULL
);
2474 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
2478 * if truncate on deeper level happened, it wasn't partial,
2479 * so we have to consider current index for truncation
2481 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
2486 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
)
2488 struct super_block
*sb
= inode
->i_sb
;
2489 int depth
= ext_depth(inode
);
2490 struct ext4_ext_path
*path
;
2491 ext4_fsblk_t partial_cluster
= 0;
2495 ext_debug("truncate since %u\n", start
);
2497 /* probably first extent we're gonna free will be last in block */
2498 handle
= ext4_journal_start(inode
, depth
+ 1);
2500 return PTR_ERR(handle
);
2503 ext4_ext_invalidate_cache(inode
);
2505 trace_ext4_ext_remove_space(inode
, start
, depth
);
2508 * We start scanning from right side, freeing all the blocks
2509 * after i_size and walking into the tree depth-wise.
2511 depth
= ext_depth(inode
);
2512 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_NOFS
);
2514 ext4_journal_stop(handle
);
2517 path
[0].p_depth
= depth
;
2518 path
[0].p_hdr
= ext_inode_hdr(inode
);
2519 if (ext4_ext_check(inode
, path
[0].p_hdr
, depth
)) {
2525 while (i
>= 0 && err
== 0) {
2527 /* this is leaf block */
2528 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
2529 &partial_cluster
, start
,
2530 EXT_MAX_BLOCKS
- 1);
2531 /* root level has p_bh == NULL, brelse() eats this */
2532 brelse(path
[i
].p_bh
);
2533 path
[i
].p_bh
= NULL
;
2538 /* this is index block */
2539 if (!path
[i
].p_hdr
) {
2540 ext_debug("initialize header\n");
2541 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2544 if (!path
[i
].p_idx
) {
2545 /* this level hasn't been touched yet */
2546 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2547 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2548 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2550 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2552 /* we were already here, see at next index */
2556 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2559 if (ext4_ext_more_to_rm(path
+ i
)) {
2560 struct buffer_head
*bh
;
2561 /* go to the next level */
2562 ext_debug("move to level %d (block %llu)\n",
2563 i
+ 1, ext4_idx_pblock(path
[i
].p_idx
));
2564 memset(path
+ i
+ 1, 0, sizeof(*path
));
2565 bh
= sb_bread(sb
, ext4_idx_pblock(path
[i
].p_idx
));
2567 /* should we reset i_size? */
2571 if (WARN_ON(i
+ 1 > depth
)) {
2575 if (ext4_ext_check(inode
, ext_block_hdr(bh
),
2580 path
[i
+ 1].p_bh
= bh
;
2582 /* save actual number of indexes since this
2583 * number is changed at the next iteration */
2584 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2587 /* we finished processing this index, go up */
2588 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2589 /* index is empty, remove it;
2590 * handle must be already prepared by the
2591 * truncatei_leaf() */
2592 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2594 /* root level has p_bh == NULL, brelse() eats this */
2595 brelse(path
[i
].p_bh
);
2596 path
[i
].p_bh
= NULL
;
2598 ext_debug("return to level %d\n", i
);
2602 trace_ext4_ext_remove_space_done(inode
, start
, depth
, partial_cluster
,
2603 path
->p_hdr
->eh_entries
);
2605 /* If we still have something in the partial cluster and we have removed
2606 * even the first extent, then we should free the blocks in the partial
2607 * cluster as well. */
2608 if (partial_cluster
&& path
->p_hdr
->eh_entries
== 0) {
2609 int flags
= EXT4_FREE_BLOCKS_FORGET
;
2611 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
2612 flags
|= EXT4_FREE_BLOCKS_METADATA
;
2614 ext4_free_blocks(handle
, inode
, NULL
,
2615 EXT4_C2B(EXT4_SB(sb
), partial_cluster
),
2616 EXT4_SB(sb
)->s_cluster_ratio
, flags
);
2617 partial_cluster
= 0;
2620 /* TODO: flexible tree reduction should be here */
2621 if (path
->p_hdr
->eh_entries
== 0) {
2623 * truncate to zero freed all the tree,
2624 * so we need to correct eh_depth
2626 err
= ext4_ext_get_access(handle
, inode
, path
);
2628 ext_inode_hdr(inode
)->eh_depth
= 0;
2629 ext_inode_hdr(inode
)->eh_max
=
2630 cpu_to_le16(ext4_ext_space_root(inode
, 0));
2631 err
= ext4_ext_dirty(handle
, inode
, path
);
2635 ext4_ext_drop_refs(path
);
2639 ext4_journal_stop(handle
);
2645 * called at mount time
2647 void ext4_ext_init(struct super_block
*sb
)
2650 * possible initialization would be here
2653 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2655 printk(KERN_INFO
"EXT4-fs: file extents enabled");
2656 #ifdef AGGRESSIVE_TEST
2657 printk(", aggressive tests");
2659 #ifdef CHECK_BINSEARCH
2660 printk(", check binsearch");
2662 #ifdef EXTENTS_STATS
2667 #ifdef EXTENTS_STATS
2668 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2669 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2670 EXT4_SB(sb
)->s_ext_max
= 0;
2676 * called at umount time
2678 void ext4_ext_release(struct super_block
*sb
)
2680 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
))
2683 #ifdef EXTENTS_STATS
2684 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2685 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2686 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2687 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2688 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2689 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2690 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2695 /* FIXME!! we need to try to merge to left or right after zero-out */
2696 static int ext4_ext_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
2698 ext4_fsblk_t ee_pblock
;
2699 unsigned int ee_len
;
2702 ee_len
= ext4_ext_get_actual_len(ex
);
2703 ee_pblock
= ext4_ext_pblock(ex
);
2705 ret
= sb_issue_zeroout(inode
->i_sb
, ee_pblock
, ee_len
, GFP_NOFS
);
2713 * used by extent splitting.
2715 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2717 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2718 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2721 * ext4_split_extent_at() splits an extent at given block.
2723 * @handle: the journal handle
2724 * @inode: the file inode
2725 * @path: the path to the extent
2726 * @split: the logical block where the extent is splitted.
2727 * @split_flags: indicates if the extent could be zeroout if split fails, and
2728 * the states(init or uninit) of new extents.
2729 * @flags: flags used to insert new extent to extent tree.
2732 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2733 * of which are deterimined by split_flag.
2735 * There are two cases:
2736 * a> the extent are splitted into two extent.
2737 * b> split is not needed, and just mark the extent.
2739 * return 0 on success.
2741 static int ext4_split_extent_at(handle_t
*handle
,
2742 struct inode
*inode
,
2743 struct ext4_ext_path
*path
,
2748 ext4_fsblk_t newblock
;
2749 ext4_lblk_t ee_block
;
2750 struct ext4_extent
*ex
, newex
, orig_ex
;
2751 struct ext4_extent
*ex2
= NULL
;
2752 unsigned int ee_len
, depth
;
2755 ext_debug("ext4_split_extents_at: inode %lu, logical"
2756 "block %llu\n", inode
->i_ino
, (unsigned long long)split
);
2758 ext4_ext_show_leaf(inode
, path
);
2760 depth
= ext_depth(inode
);
2761 ex
= path
[depth
].p_ext
;
2762 ee_block
= le32_to_cpu(ex
->ee_block
);
2763 ee_len
= ext4_ext_get_actual_len(ex
);
2764 newblock
= split
- ee_block
+ ext4_ext_pblock(ex
);
2766 BUG_ON(split
< ee_block
|| split
>= (ee_block
+ ee_len
));
2768 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2772 if (split
== ee_block
) {
2774 * case b: block @split is the block that the extent begins with
2775 * then we just change the state of the extent, and splitting
2778 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2779 ext4_ext_mark_uninitialized(ex
);
2781 ext4_ext_mark_initialized(ex
);
2783 if (!(flags
& EXT4_GET_BLOCKS_PRE_IO
))
2784 ext4_ext_try_to_merge(inode
, path
, ex
);
2786 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2791 memcpy(&orig_ex
, ex
, sizeof(orig_ex
));
2792 ex
->ee_len
= cpu_to_le16(split
- ee_block
);
2793 if (split_flag
& EXT4_EXT_MARK_UNINIT1
)
2794 ext4_ext_mark_uninitialized(ex
);
2797 * path may lead to new leaf, not to original leaf any more
2798 * after ext4_ext_insert_extent() returns,
2800 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2802 goto fix_extent_len
;
2805 ex2
->ee_block
= cpu_to_le32(split
);
2806 ex2
->ee_len
= cpu_to_le16(ee_len
- (split
- ee_block
));
2807 ext4_ext_store_pblock(ex2
, newblock
);
2808 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2809 ext4_ext_mark_uninitialized(ex2
);
2811 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
, flags
);
2812 if (err
== -ENOSPC
&& (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
2813 err
= ext4_ext_zeroout(inode
, &orig_ex
);
2815 goto fix_extent_len
;
2816 /* update the extent length and mark as initialized */
2817 ex
->ee_len
= cpu_to_le32(ee_len
);
2818 ext4_ext_try_to_merge(inode
, path
, ex
);
2819 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2822 goto fix_extent_len
;
2825 ext4_ext_show_leaf(inode
, path
);
2829 ex
->ee_len
= orig_ex
.ee_len
;
2830 ext4_ext_dirty(handle
, inode
, path
+ depth
);
2835 * ext4_split_extents() splits an extent and mark extent which is covered
2836 * by @map as split_flags indicates
2838 * It may result in splitting the extent into multiple extents (upto three)
2839 * There are three possibilities:
2840 * a> There is no split required
2841 * b> Splits in two extents: Split is happening at either end of the extent
2842 * c> Splits in three extents: Somone is splitting in middle of the extent
2845 static int ext4_split_extent(handle_t
*handle
,
2846 struct inode
*inode
,
2847 struct ext4_ext_path
*path
,
2848 struct ext4_map_blocks
*map
,
2852 ext4_lblk_t ee_block
;
2853 struct ext4_extent
*ex
;
2854 unsigned int ee_len
, depth
;
2857 int split_flag1
, flags1
;
2859 depth
= ext_depth(inode
);
2860 ex
= path
[depth
].p_ext
;
2861 ee_block
= le32_to_cpu(ex
->ee_block
);
2862 ee_len
= ext4_ext_get_actual_len(ex
);
2863 uninitialized
= ext4_ext_is_uninitialized(ex
);
2865 if (map
->m_lblk
+ map
->m_len
< ee_block
+ ee_len
) {
2866 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2867 EXT4_EXT_MAY_ZEROOUT
: 0;
2868 flags1
= flags
| EXT4_GET_BLOCKS_PRE_IO
;
2870 split_flag1
|= EXT4_EXT_MARK_UNINIT1
|
2871 EXT4_EXT_MARK_UNINIT2
;
2872 err
= ext4_split_extent_at(handle
, inode
, path
,
2873 map
->m_lblk
+ map
->m_len
, split_flag1
, flags1
);
2878 ext4_ext_drop_refs(path
);
2879 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, path
);
2881 return PTR_ERR(path
);
2883 if (map
->m_lblk
>= ee_block
) {
2884 split_flag1
= split_flag
& EXT4_EXT_MAY_ZEROOUT
?
2885 EXT4_EXT_MAY_ZEROOUT
: 0;
2887 split_flag1
|= EXT4_EXT_MARK_UNINIT1
;
2888 if (split_flag
& EXT4_EXT_MARK_UNINIT2
)
2889 split_flag1
|= EXT4_EXT_MARK_UNINIT2
;
2890 err
= ext4_split_extent_at(handle
, inode
, path
,
2891 map
->m_lblk
, split_flag1
, flags
);
2896 ext4_ext_show_leaf(inode
, path
);
2898 return err
? err
: map
->m_len
;
2901 #define EXT4_EXT_ZERO_LEN 7
2903 * This function is called by ext4_ext_map_blocks() if someone tries to write
2904 * to an uninitialized extent. It may result in splitting the uninitialized
2905 * extent into multiple extents (up to three - one initialized and two
2907 * There are three possibilities:
2908 * a> There is no split required: Entire extent should be initialized
2909 * b> Splits in two extents: Write is happening at either end of the extent
2910 * c> Splits in three extents: Somone is writing in middle of the extent
2913 * - The extent pointed to by 'path' is uninitialized.
2914 * - The extent pointed to by 'path' contains a superset
2915 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2917 * Post-conditions on success:
2918 * - the returned value is the number of blocks beyond map->l_lblk
2919 * that are allocated and initialized.
2920 * It is guaranteed to be >= map->m_len.
2922 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
2923 struct inode
*inode
,
2924 struct ext4_map_blocks
*map
,
2925 struct ext4_ext_path
*path
)
2927 struct ext4_extent_header
*eh
;
2928 struct ext4_map_blocks split_map
;
2929 struct ext4_extent zero_ex
;
2930 struct ext4_extent
*ex
;
2931 ext4_lblk_t ee_block
, eof_block
;
2932 unsigned int ee_len
, depth
;
2937 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938 "block %llu, max_blocks %u\n", inode
->i_ino
,
2939 (unsigned long long)map
->m_lblk
, map
->m_len
);
2941 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
2942 inode
->i_sb
->s_blocksize_bits
;
2943 if (eof_block
< map
->m_lblk
+ map
->m_len
)
2944 eof_block
= map
->m_lblk
+ map
->m_len
;
2946 depth
= ext_depth(inode
);
2947 eh
= path
[depth
].p_hdr
;
2948 ex
= path
[depth
].p_ext
;
2949 ee_block
= le32_to_cpu(ex
->ee_block
);
2950 ee_len
= ext4_ext_get_actual_len(ex
);
2951 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
2953 trace_ext4_ext_convert_to_initialized_enter(inode
, map
, ex
);
2955 /* Pre-conditions */
2956 BUG_ON(!ext4_ext_is_uninitialized(ex
));
2957 BUG_ON(!in_range(map
->m_lblk
, ee_block
, ee_len
));
2958 BUG_ON(map
->m_lblk
+ map
->m_len
> ee_block
+ ee_len
);
2961 * Attempt to transfer newly initialized blocks from the currently
2962 * uninitialized extent to its left neighbor. This is much cheaper
2963 * than an insertion followed by a merge as those involve costly
2964 * memmove() calls. This is the common case in steady state for
2965 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2968 * Limitations of the current logic:
2969 * - L1: we only deal with writes at the start of the extent.
2970 * The approach could be extended to writes at the end
2971 * of the extent but this scenario was deemed less common.
2972 * - L2: we do not deal with writes covering the whole extent.
2973 * This would require removing the extent if the transfer
2975 * - L3: we only attempt to merge with an extent stored in the
2976 * same extent tree node.
2978 if ((map
->m_lblk
== ee_block
) && /*L1*/
2979 (map
->m_len
< ee_len
) && /*L2*/
2980 (ex
> EXT_FIRST_EXTENT(eh
))) { /*L3*/
2981 struct ext4_extent
*prev_ex
;
2982 ext4_lblk_t prev_lblk
;
2983 ext4_fsblk_t prev_pblk
, ee_pblk
;
2984 unsigned int prev_len
, write_len
;
2987 prev_lblk
= le32_to_cpu(prev_ex
->ee_block
);
2988 prev_len
= ext4_ext_get_actual_len(prev_ex
);
2989 prev_pblk
= ext4_ext_pblock(prev_ex
);
2990 ee_pblk
= ext4_ext_pblock(ex
);
2991 write_len
= map
->m_len
;
2994 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2995 * upon those conditions:
2996 * - C1: prev_ex is initialized,
2997 * - C2: prev_ex is logically abutting ex,
2998 * - C3: prev_ex is physically abutting ex,
2999 * - C4: prev_ex can receive the additional blocks without
3000 * overflowing the (initialized) length limit.
3002 if ((!ext4_ext_is_uninitialized(prev_ex
)) && /*C1*/
3003 ((prev_lblk
+ prev_len
) == ee_block
) && /*C2*/
3004 ((prev_pblk
+ prev_len
) == ee_pblk
) && /*C3*/
3005 (prev_len
< (EXT_INIT_MAX_LEN
- write_len
))) { /*C4*/
3006 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3010 trace_ext4_ext_convert_to_initialized_fastpath(inode
,
3013 /* Shift the start of ex by 'write_len' blocks */
3014 ex
->ee_block
= cpu_to_le32(ee_block
+ write_len
);
3015 ext4_ext_store_pblock(ex
, ee_pblk
+ write_len
);
3016 ex
->ee_len
= cpu_to_le16(ee_len
- write_len
);
3017 ext4_ext_mark_uninitialized(ex
); /* Restore the flag */
3019 /* Extend prev_ex by 'write_len' blocks */
3020 prev_ex
->ee_len
= cpu_to_le16(prev_len
+ write_len
);
3022 /* Mark the block containing both extents as dirty */
3023 ext4_ext_dirty(handle
, inode
, path
+ depth
);
3025 /* Update path to point to the right extent */
3026 path
[depth
].p_ext
= prev_ex
;
3028 /* Result: number of initialized blocks past m_lblk */
3029 allocated
= write_len
;
3034 WARN_ON(map
->m_lblk
< ee_block
);
3036 * It is safe to convert extent to initialized via explicit
3037 * zeroout only if extent is fully insde i_size or new_size.
3039 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3041 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3042 if (ee_len
<= 2*EXT4_EXT_ZERO_LEN
&&
3043 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3044 err
= ext4_ext_zeroout(inode
, ex
);
3048 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3051 ext4_ext_mark_initialized(ex
);
3052 ext4_ext_try_to_merge(inode
, path
, ex
);
3053 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3059 * 1. split the extent into three extents.
3060 * 2. split the extent into two extents, zeroout the first half.
3061 * 3. split the extent into two extents, zeroout the second half.
3062 * 4. split the extent into two extents with out zeroout.
3064 split_map
.m_lblk
= map
->m_lblk
;
3065 split_map
.m_len
= map
->m_len
;
3067 if (allocated
> map
->m_len
) {
3068 if (allocated
<= EXT4_EXT_ZERO_LEN
&&
3069 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3072 cpu_to_le32(map
->m_lblk
);
3073 zero_ex
.ee_len
= cpu_to_le16(allocated
);
3074 ext4_ext_store_pblock(&zero_ex
,
3075 ext4_ext_pblock(ex
) + map
->m_lblk
- ee_block
);
3076 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3079 split_map
.m_lblk
= map
->m_lblk
;
3080 split_map
.m_len
= allocated
;
3081 } else if ((map
->m_lblk
- ee_block
+ map
->m_len
<
3082 EXT4_EXT_ZERO_LEN
) &&
3083 (EXT4_EXT_MAY_ZEROOUT
& split_flag
)) {
3085 if (map
->m_lblk
!= ee_block
) {
3086 zero_ex
.ee_block
= ex
->ee_block
;
3087 zero_ex
.ee_len
= cpu_to_le16(map
->m_lblk
-
3089 ext4_ext_store_pblock(&zero_ex
,
3090 ext4_ext_pblock(ex
));
3091 err
= ext4_ext_zeroout(inode
, &zero_ex
);
3096 split_map
.m_lblk
= ee_block
;
3097 split_map
.m_len
= map
->m_lblk
- ee_block
+ map
->m_len
;
3098 allocated
= map
->m_len
;
3102 allocated
= ext4_split_extent(handle
, inode
, path
,
3103 &split_map
, split_flag
, 0);
3108 return err
? err
: allocated
;
3112 * This function is called by ext4_ext_map_blocks() from
3113 * ext4_get_blocks_dio_write() when DIO to write
3114 * to an uninitialized extent.
3116 * Writing to an uninitialized extent may result in splitting the uninitialized
3117 * extent into multiple /initialized uninitialized extents (up to three)
3118 * There are three possibilities:
3119 * a> There is no split required: Entire extent should be uninitialized
3120 * b> Splits in two extents: Write is happening at either end of the extent
3121 * c> Splits in three extents: Somone is writing in middle of the extent
3123 * One of more index blocks maybe needed if the extent tree grow after
3124 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3125 * complete, we need to split the uninitialized extent before DIO submit
3126 * the IO. The uninitialized extent called at this time will be split
3127 * into three uninitialized extent(at most). After IO complete, the part
3128 * being filled will be convert to initialized by the end_io callback function
3129 * via ext4_convert_unwritten_extents().
3131 * Returns the size of uninitialized extent to be written on success.
3133 static int ext4_split_unwritten_extents(handle_t
*handle
,
3134 struct inode
*inode
,
3135 struct ext4_map_blocks
*map
,
3136 struct ext4_ext_path
*path
,
3139 ext4_lblk_t eof_block
;
3140 ext4_lblk_t ee_block
;
3141 struct ext4_extent
*ex
;
3142 unsigned int ee_len
;
3143 int split_flag
= 0, depth
;
3145 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3146 "block %llu, max_blocks %u\n", inode
->i_ino
,
3147 (unsigned long long)map
->m_lblk
, map
->m_len
);
3149 eof_block
= (inode
->i_size
+ inode
->i_sb
->s_blocksize
- 1) >>
3150 inode
->i_sb
->s_blocksize_bits
;
3151 if (eof_block
< map
->m_lblk
+ map
->m_len
)
3152 eof_block
= map
->m_lblk
+ map
->m_len
;
3154 * It is safe to convert extent to initialized via explicit
3155 * zeroout only if extent is fully insde i_size or new_size.
3157 depth
= ext_depth(inode
);
3158 ex
= path
[depth
].p_ext
;
3159 ee_block
= le32_to_cpu(ex
->ee_block
);
3160 ee_len
= ext4_ext_get_actual_len(ex
);
3162 split_flag
|= ee_block
+ ee_len
<= eof_block
? EXT4_EXT_MAY_ZEROOUT
: 0;
3163 split_flag
|= EXT4_EXT_MARK_UNINIT2
;
3165 flags
|= EXT4_GET_BLOCKS_PRE_IO
;
3166 return ext4_split_extent(handle
, inode
, path
, map
, split_flag
, flags
);
3169 static int ext4_convert_unwritten_extents_endio(handle_t
*handle
,
3170 struct inode
*inode
,
3171 struct ext4_ext_path
*path
)
3173 struct ext4_extent
*ex
;
3177 depth
= ext_depth(inode
);
3178 ex
= path
[depth
].p_ext
;
3180 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3181 "block %llu, max_blocks %u\n", inode
->i_ino
,
3182 (unsigned long long)le32_to_cpu(ex
->ee_block
),
3183 ext4_ext_get_actual_len(ex
));
3185 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
3188 /* first mark the extent as initialized */
3189 ext4_ext_mark_initialized(ex
);
3191 /* note: ext4_ext_correct_indexes() isn't needed here because
3192 * borders are not changed
3194 ext4_ext_try_to_merge(inode
, path
, ex
);
3196 /* Mark modified extent as dirty */
3197 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
3199 ext4_ext_show_leaf(inode
, path
);
3203 static void unmap_underlying_metadata_blocks(struct block_device
*bdev
,
3204 sector_t block
, int count
)
3207 for (i
= 0; i
< count
; i
++)
3208 unmap_underlying_metadata(bdev
, block
+ i
);
3212 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3214 static int check_eofblocks_fl(handle_t
*handle
, struct inode
*inode
,
3216 struct ext4_ext_path
*path
,
3220 struct ext4_extent_header
*eh
;
3221 struct ext4_extent
*last_ex
;
3223 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3226 depth
= ext_depth(inode
);
3227 eh
= path
[depth
].p_hdr
;
3229 if (unlikely(!eh
->eh_entries
)) {
3230 EXT4_ERROR_INODE(inode
, "eh->eh_entries == 0 and "
3231 "EOFBLOCKS_FL set");
3234 last_ex
= EXT_LAST_EXTENT(eh
);
3236 * We should clear the EOFBLOCKS_FL flag if we are writing the
3237 * last block in the last extent in the file. We test this by
3238 * first checking to see if the caller to
3239 * ext4_ext_get_blocks() was interested in the last block (or
3240 * a block beyond the last block) in the current extent. If
3241 * this turns out to be false, we can bail out from this
3242 * function immediately.
3244 if (lblk
+ len
< le32_to_cpu(last_ex
->ee_block
) +
3245 ext4_ext_get_actual_len(last_ex
))
3248 * If the caller does appear to be planning to write at or
3249 * beyond the end of the current extent, we then test to see
3250 * if the current extent is the last extent in the file, by
3251 * checking to make sure it was reached via the rightmost node
3252 * at each level of the tree.
3254 for (i
= depth
-1; i
>= 0; i
--)
3255 if (path
[i
].p_idx
!= EXT_LAST_INDEX(path
[i
].p_hdr
))
3257 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3258 return ext4_mark_inode_dirty(handle
, inode
);
3262 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3264 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3265 * whether there are any buffers marked for delayed allocation. It returns '1'
3266 * on the first delalloc'ed buffer head found. If no buffer head in the given
3267 * range is marked for delalloc, it returns 0.
3268 * lblk_start should always be <= lblk_end.
3269 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3270 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3271 * block sooner). This is useful when blocks are truncated sequentially from
3272 * lblk_start towards lblk_end.
3274 static int ext4_find_delalloc_range(struct inode
*inode
,
3275 ext4_lblk_t lblk_start
,
3276 ext4_lblk_t lblk_end
,
3277 int search_hint_reverse
)
3279 struct address_space
*mapping
= inode
->i_mapping
;
3280 struct buffer_head
*head
, *bh
= NULL
;
3282 ext4_lblk_t i
, pg_lblk
;
3285 /* reverse search wont work if fs block size is less than page size */
3286 if (inode
->i_blkbits
< PAGE_CACHE_SHIFT
)
3287 search_hint_reverse
= 0;
3289 if (search_hint_reverse
)
3294 index
= i
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3296 while ((i
>= lblk_start
) && (i
<= lblk_end
)) {
3297 page
= find_get_page(mapping
, index
);
3301 if (!page_has_buffers(page
))
3304 head
= page_buffers(page
);
3309 pg_lblk
= index
<< (PAGE_CACHE_SHIFT
-
3312 if (unlikely(pg_lblk
< lblk_start
)) {
3314 * This is possible when fs block size is less
3315 * than page size and our cluster starts/ends in
3316 * middle of the page. So we need to skip the
3317 * initial few blocks till we reach the 'lblk'
3323 /* Check if the buffer is delayed allocated and that it
3324 * is not yet mapped. (when da-buffers are mapped during
3325 * their writeout, their da_mapped bit is set.)
3327 if (buffer_delay(bh
) && !buffer_da_mapped(bh
)) {
3328 page_cache_release(page
);
3329 trace_ext4_find_delalloc_range(inode
,
3330 lblk_start
, lblk_end
,
3331 search_hint_reverse
,
3335 if (search_hint_reverse
)
3339 } while ((i
>= lblk_start
) && (i
<= lblk_end
) &&
3340 ((bh
= bh
->b_this_page
) != head
));
3343 page_cache_release(page
);
3345 * Move to next page. 'i' will be the first lblk in the next
3348 if (search_hint_reverse
)
3352 i
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
3355 trace_ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3356 search_hint_reverse
, 0, 0);
3360 int ext4_find_delalloc_cluster(struct inode
*inode
, ext4_lblk_t lblk
,
3361 int search_hint_reverse
)
3363 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3364 ext4_lblk_t lblk_start
, lblk_end
;
3365 lblk_start
= lblk
& (~(sbi
->s_cluster_ratio
- 1));
3366 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
3368 return ext4_find_delalloc_range(inode
, lblk_start
, lblk_end
,
3369 search_hint_reverse
);
3373 * Determines how many complete clusters (out of those specified by the 'map')
3374 * are under delalloc and were reserved quota for.
3375 * This function is called when we are writing out the blocks that were
3376 * originally written with their allocation delayed, but then the space was
3377 * allocated using fallocate() before the delayed allocation could be resolved.
3378 * The cases to look for are:
3379 * ('=' indicated delayed allocated blocks
3380 * '-' indicates non-delayed allocated blocks)
3381 * (a) partial clusters towards beginning and/or end outside of allocated range
3382 * are not delalloc'ed.
3384 * |----c---=|====c====|====c====|===-c----|
3385 * |++++++ allocated ++++++|
3386 * ==> 4 complete clusters in above example
3388 * (b) partial cluster (outside of allocated range) towards either end is
3389 * marked for delayed allocation. In this case, we will exclude that
3392 * |----====c========|========c========|
3393 * |++++++ allocated ++++++|
3394 * ==> 1 complete clusters in above example
3397 * |================c================|
3398 * |++++++ allocated ++++++|
3399 * ==> 0 complete clusters in above example
3401 * The ext4_da_update_reserve_space will be called only if we
3402 * determine here that there were some "entire" clusters that span
3403 * this 'allocated' range.
3404 * In the non-bigalloc case, this function will just end up returning num_blks
3405 * without ever calling ext4_find_delalloc_range.
3408 get_reserved_cluster_alloc(struct inode
*inode
, ext4_lblk_t lblk_start
,
3409 unsigned int num_blks
)
3411 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3412 ext4_lblk_t alloc_cluster_start
, alloc_cluster_end
;
3413 ext4_lblk_t lblk_from
, lblk_to
, c_offset
;
3414 unsigned int allocated_clusters
= 0;
3416 alloc_cluster_start
= EXT4_B2C(sbi
, lblk_start
);
3417 alloc_cluster_end
= EXT4_B2C(sbi
, lblk_start
+ num_blks
- 1);
3419 /* max possible clusters for this allocation */
3420 allocated_clusters
= alloc_cluster_end
- alloc_cluster_start
+ 1;
3422 trace_ext4_get_reserved_cluster_alloc(inode
, lblk_start
, num_blks
);
3424 /* Check towards left side */
3425 c_offset
= lblk_start
& (sbi
->s_cluster_ratio
- 1);
3427 lblk_from
= lblk_start
& (~(sbi
->s_cluster_ratio
- 1));
3428 lblk_to
= lblk_from
+ c_offset
- 1;
3430 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3431 allocated_clusters
--;
3434 /* Now check towards right. */
3435 c_offset
= (lblk_start
+ num_blks
) & (sbi
->s_cluster_ratio
- 1);
3436 if (allocated_clusters
&& c_offset
) {
3437 lblk_from
= lblk_start
+ num_blks
;
3438 lblk_to
= lblk_from
+ (sbi
->s_cluster_ratio
- c_offset
) - 1;
3440 if (ext4_find_delalloc_range(inode
, lblk_from
, lblk_to
, 0))
3441 allocated_clusters
--;
3444 return allocated_clusters
;
3448 ext4_ext_handle_uninitialized_extents(handle_t
*handle
, struct inode
*inode
,
3449 struct ext4_map_blocks
*map
,
3450 struct ext4_ext_path
*path
, int flags
,
3451 unsigned int allocated
, ext4_fsblk_t newblock
)
3455 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3457 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3458 "block %llu, max_blocks %u, flags %d, allocated %u",
3459 inode
->i_ino
, (unsigned long long)map
->m_lblk
, map
->m_len
,
3461 ext4_ext_show_leaf(inode
, path
);
3463 trace_ext4_ext_handle_uninitialized_extents(inode
, map
, allocated
,
3466 /* get_block() before submit the IO, split the extent */
3467 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
3468 ret
= ext4_split_unwritten_extents(handle
, inode
, map
,
3471 * Flag the inode(non aio case) or end_io struct (aio case)
3472 * that this IO needs to conversion to written when IO is
3476 ext4_set_io_unwritten_flag(inode
, io
);
3478 ext4_set_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3479 if (ext4_should_dioread_nolock(inode
))
3480 map
->m_flags
|= EXT4_MAP_UNINIT
;
3483 /* IO end_io complete, convert the filled extent to written */
3484 if ((flags
& EXT4_GET_BLOCKS_CONVERT
)) {
3485 ret
= ext4_convert_unwritten_extents_endio(handle
, inode
,
3488 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3489 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
3495 /* buffered IO case */
3497 * repeat fallocate creation request
3498 * we already have an unwritten extent
3500 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
)
3503 /* buffered READ or buffered write_begin() lookup */
3504 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3506 * We have blocks reserved already. We
3507 * return allocated blocks so that delalloc
3508 * won't do block reservation for us. But
3509 * the buffer head will be unmapped so that
3510 * a read from the block returns 0s.
3512 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
3516 /* buffered write, writepage time, convert*/
3517 ret
= ext4_ext_convert_to_initialized(handle
, inode
, map
, path
);
3519 ext4_update_inode_fsync_trans(handle
, inode
, 1);
3526 map
->m_flags
|= EXT4_MAP_NEW
;
3528 * if we allocated more blocks than requested
3529 * we need to make sure we unmap the extra block
3530 * allocated. The actual needed block will get
3531 * unmapped later when we find the buffer_head marked
3534 if (allocated
> map
->m_len
) {
3535 unmap_underlying_metadata_blocks(inode
->i_sb
->s_bdev
,
3536 newblock
+ map
->m_len
,
3537 allocated
- map
->m_len
);
3538 allocated
= map
->m_len
;
3542 * If we have done fallocate with the offset that is already
3543 * delayed allocated, we would have block reservation
3544 * and quota reservation done in the delayed write path.
3545 * But fallocate would have already updated quota and block
3546 * count for this offset. So cancel these reservation
3548 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
3549 unsigned int reserved_clusters
;
3550 reserved_clusters
= get_reserved_cluster_alloc(inode
,
3551 map
->m_lblk
, map
->m_len
);
3552 if (reserved_clusters
)
3553 ext4_da_update_reserve_space(inode
,
3559 map
->m_flags
|= EXT4_MAP_MAPPED
;
3560 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0) {
3561 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
, path
,
3567 if (allocated
> map
->m_len
)
3568 allocated
= map
->m_len
;
3569 ext4_ext_show_leaf(inode
, path
);
3570 map
->m_pblk
= newblock
;
3571 map
->m_len
= allocated
;
3574 ext4_ext_drop_refs(path
);
3577 return err
? err
: allocated
;
3581 * get_implied_cluster_alloc - check to see if the requested
3582 * allocation (in the map structure) overlaps with a cluster already
3583 * allocated in an extent.
3584 * @sb The filesystem superblock structure
3585 * @map The requested lblk->pblk mapping
3586 * @ex The extent structure which might contain an implied
3587 * cluster allocation
3589 * This function is called by ext4_ext_map_blocks() after we failed to
3590 * find blocks that were already in the inode's extent tree. Hence,
3591 * we know that the beginning of the requested region cannot overlap
3592 * the extent from the inode's extent tree. There are three cases we
3593 * want to catch. The first is this case:
3595 * |--- cluster # N--|
3596 * |--- extent ---| |---- requested region ---|
3599 * The second case that we need to test for is this one:
3601 * |--------- cluster # N ----------------|
3602 * |--- requested region --| |------- extent ----|
3603 * |=======================|
3605 * The third case is when the requested region lies between two extents
3606 * within the same cluster:
3607 * |------------- cluster # N-------------|
3608 * |----- ex -----| |---- ex_right ----|
3609 * |------ requested region ------|
3610 * |================|
3612 * In each of the above cases, we need to set the map->m_pblk and
3613 * map->m_len so it corresponds to the return the extent labelled as
3614 * "|====|" from cluster #N, since it is already in use for data in
3615 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3616 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3617 * as a new "allocated" block region. Otherwise, we will return 0 and
3618 * ext4_ext_map_blocks() will then allocate one or more new clusters
3619 * by calling ext4_mb_new_blocks().
3621 static int get_implied_cluster_alloc(struct super_block
*sb
,
3622 struct ext4_map_blocks
*map
,
3623 struct ext4_extent
*ex
,
3624 struct ext4_ext_path
*path
)
3626 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3627 ext4_lblk_t c_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3628 ext4_lblk_t ex_cluster_start
, ex_cluster_end
;
3629 ext4_lblk_t rr_cluster_start
, rr_cluster_end
;
3630 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3631 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3632 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
3634 /* The extent passed in that we are trying to match */
3635 ex_cluster_start
= EXT4_B2C(sbi
, ee_block
);
3636 ex_cluster_end
= EXT4_B2C(sbi
, ee_block
+ ee_len
- 1);
3638 /* The requested region passed into ext4_map_blocks() */
3639 rr_cluster_start
= EXT4_B2C(sbi
, map
->m_lblk
);
3640 rr_cluster_end
= EXT4_B2C(sbi
, map
->m_lblk
+ map
->m_len
- 1);
3642 if ((rr_cluster_start
== ex_cluster_end
) ||
3643 (rr_cluster_start
== ex_cluster_start
)) {
3644 if (rr_cluster_start
== ex_cluster_end
)
3645 ee_start
+= ee_len
- 1;
3646 map
->m_pblk
= (ee_start
& ~(sbi
->s_cluster_ratio
- 1)) +
3648 map
->m_len
= min(map
->m_len
,
3649 (unsigned) sbi
->s_cluster_ratio
- c_offset
);
3651 * Check for and handle this case:
3653 * |--------- cluster # N-------------|
3654 * |------- extent ----|
3655 * |--- requested region ---|
3659 if (map
->m_lblk
< ee_block
)
3660 map
->m_len
= min(map
->m_len
, ee_block
- map
->m_lblk
);
3663 * Check for the case where there is already another allocated
3664 * block to the right of 'ex' but before the end of the cluster.
3666 * |------------- cluster # N-------------|
3667 * |----- ex -----| |---- ex_right ----|
3668 * |------ requested region ------|
3669 * |================|
3671 if (map
->m_lblk
> ee_block
) {
3672 ext4_lblk_t next
= ext4_ext_next_allocated_block(path
);
3673 map
->m_len
= min(map
->m_len
, next
- map
->m_lblk
);
3676 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 1);
3680 trace_ext4_get_implied_cluster_alloc_exit(sb
, map
, 0);
3686 * Block allocation/map/preallocation routine for extents based files
3689 * Need to be called with
3690 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3691 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3693 * return > 0, number of of blocks already mapped/allocated
3694 * if create == 0 and these are pre-allocated blocks
3695 * buffer head is unmapped
3696 * otherwise blocks are mapped
3698 * return = 0, if plain look up failed (blocks have not been allocated)
3699 * buffer head is unmapped
3701 * return < 0, error case.
3703 int ext4_ext_map_blocks(handle_t
*handle
, struct inode
*inode
,
3704 struct ext4_map_blocks
*map
, int flags
)
3706 struct ext4_ext_path
*path
= NULL
;
3707 struct ext4_extent newex
, *ex
, *ex2
;
3708 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3709 ext4_fsblk_t newblock
= 0;
3710 int free_on_err
= 0, err
= 0, depth
, ret
;
3711 unsigned int allocated
= 0, offset
= 0;
3712 unsigned int allocated_clusters
= 0;
3713 unsigned int punched_out
= 0;
3714 unsigned int result
= 0;
3715 struct ext4_allocation_request ar
;
3716 ext4_io_end_t
*io
= EXT4_I(inode
)->cur_aio_dio
;
3717 ext4_lblk_t cluster_offset
;
3719 ext_debug("blocks %u/%u requested for inode %lu\n",
3720 map
->m_lblk
, map
->m_len
, inode
->i_ino
);
3721 trace_ext4_ext_map_blocks_enter(inode
, map
->m_lblk
, map
->m_len
, flags
);
3723 /* check in cache */
3724 if (!(flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) &&
3725 ext4_ext_in_cache(inode
, map
->m_lblk
, &newex
)) {
3726 if (!newex
.ee_start_lo
&& !newex
.ee_start_hi
) {
3727 if ((sbi
->s_cluster_ratio
> 1) &&
3728 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3729 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3731 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3733 * block isn't allocated yet and
3734 * user doesn't want to allocate it
3738 /* we should allocate requested block */
3740 /* block is already allocated */
3741 if (sbi
->s_cluster_ratio
> 1)
3742 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3743 newblock
= map
->m_lblk
3744 - le32_to_cpu(newex
.ee_block
)
3745 + ext4_ext_pblock(&newex
);
3746 /* number of remaining blocks in the extent */
3747 allocated
= ext4_ext_get_actual_len(&newex
) -
3748 (map
->m_lblk
- le32_to_cpu(newex
.ee_block
));
3753 /* find extent for this block */
3754 path
= ext4_ext_find_extent(inode
, map
->m_lblk
, NULL
);
3756 err
= PTR_ERR(path
);
3761 depth
= ext_depth(inode
);
3764 * consistent leaf must not be empty;
3765 * this situation is possible, though, _during_ tree modification;
3766 * this is why assert can't be put in ext4_ext_find_extent()
3768 if (unlikely(path
[depth
].p_ext
== NULL
&& depth
!= 0)) {
3769 EXT4_ERROR_INODE(inode
, "bad extent address "
3770 "lblock: %lu, depth: %d pblock %lld",
3771 (unsigned long) map
->m_lblk
, depth
,
3772 path
[depth
].p_block
);
3777 ex
= path
[depth
].p_ext
;
3779 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
3780 ext4_fsblk_t ee_start
= ext4_ext_pblock(ex
);
3781 unsigned short ee_len
;
3784 * Uninitialized extents are treated as holes, except that
3785 * we split out initialized portions during a write.
3787 ee_len
= ext4_ext_get_actual_len(ex
);
3789 trace_ext4_ext_show_extent(inode
, ee_block
, ee_start
, ee_len
);
3791 /* if found extent covers block, simply return it */
3792 if (in_range(map
->m_lblk
, ee_block
, ee_len
)) {
3793 struct ext4_map_blocks punch_map
;
3794 ext4_fsblk_t partial_cluster
= 0;
3796 newblock
= map
->m_lblk
- ee_block
+ ee_start
;
3797 /* number of remaining blocks in the extent */
3798 allocated
= ee_len
- (map
->m_lblk
- ee_block
);
3799 ext_debug("%u fit into %u:%d -> %llu\n", map
->m_lblk
,
3800 ee_block
, ee_len
, newblock
);
3802 if ((flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) == 0) {
3804 * Do not put uninitialized extent
3807 if (!ext4_ext_is_uninitialized(ex
)) {
3808 ext4_ext_put_in_cache(inode
, ee_block
,
3812 ret
= ext4_ext_handle_uninitialized_extents(
3813 handle
, inode
, map
, path
, flags
,
3814 allocated
, newblock
);
3819 * Punch out the map length, but only to the
3822 punched_out
= allocated
< map
->m_len
?
3823 allocated
: map
->m_len
;
3826 * Sense extents need to be converted to
3827 * uninitialized, they must fit in an
3828 * uninitialized extent
3830 if (punched_out
> EXT_UNINIT_MAX_LEN
)
3831 punched_out
= EXT_UNINIT_MAX_LEN
;
3833 punch_map
.m_lblk
= map
->m_lblk
;
3834 punch_map
.m_pblk
= newblock
;
3835 punch_map
.m_len
= punched_out
;
3836 punch_map
.m_flags
= 0;
3838 /* Check to see if the extent needs to be split */
3839 if (punch_map
.m_len
!= ee_len
||
3840 punch_map
.m_lblk
!= ee_block
) {
3842 ret
= ext4_split_extent(handle
, inode
,
3843 path
, &punch_map
, 0,
3844 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
|
3845 EXT4_GET_BLOCKS_PRE_IO
);
3852 * find extent for the block at
3853 * the start of the hole
3855 ext4_ext_drop_refs(path
);
3858 path
= ext4_ext_find_extent(inode
,
3861 err
= PTR_ERR(path
);
3866 depth
= ext_depth(inode
);
3867 ex
= path
[depth
].p_ext
;
3868 ee_len
= ext4_ext_get_actual_len(ex
);
3869 ee_block
= le32_to_cpu(ex
->ee_block
);
3870 ee_start
= ext4_ext_pblock(ex
);
3874 ext4_ext_mark_uninitialized(ex
);
3876 ext4_ext_invalidate_cache(inode
);
3878 err
= ext4_ext_rm_leaf(handle
, inode
, path
,
3879 &partial_cluster
, map
->m_lblk
,
3880 map
->m_lblk
+ punched_out
);
3882 if (!err
&& path
->p_hdr
->eh_entries
== 0) {
3884 * Punch hole freed all of this sub tree,
3885 * so we need to correct eh_depth
3887 err
= ext4_ext_get_access(handle
, inode
, path
);
3889 ext_inode_hdr(inode
)->eh_depth
= 0;
3890 ext_inode_hdr(inode
)->eh_max
=
3891 cpu_to_le16(ext4_ext_space_root(
3894 err
= ext4_ext_dirty(
3895 handle
, inode
, path
);
3903 if ((sbi
->s_cluster_ratio
> 1) &&
3904 ext4_find_delalloc_cluster(inode
, map
->m_lblk
, 0))
3905 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3908 * requested block isn't allocated yet;
3909 * we couldn't try to create block if create flag is zero
3911 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0) {
3913 * put just found gap into cache to speed up
3914 * subsequent requests
3916 ext4_ext_put_gap_in_cache(inode
, path
, map
->m_lblk
);
3921 * Okay, we need to do block allocation.
3923 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
3924 newex
.ee_block
= cpu_to_le32(map
->m_lblk
);
3925 cluster_offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
-1);
3928 * If we are doing bigalloc, check to see if the extent returned
3929 * by ext4_ext_find_extent() implies a cluster we can use.
3931 if (cluster_offset
&& ex
&&
3932 get_implied_cluster_alloc(inode
->i_sb
, map
, ex
, path
)) {
3933 ar
.len
= allocated
= map
->m_len
;
3934 newblock
= map
->m_pblk
;
3935 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3936 goto got_allocated_blocks
;
3939 /* find neighbour allocated blocks */
3940 ar
.lleft
= map
->m_lblk
;
3941 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
3944 ar
.lright
= map
->m_lblk
;
3946 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
, &ex2
);
3950 /* Check if the extent after searching to the right implies a
3951 * cluster we can use. */
3952 if ((sbi
->s_cluster_ratio
> 1) && ex2
&&
3953 get_implied_cluster_alloc(inode
->i_sb
, map
, ex2
, path
)) {
3954 ar
.len
= allocated
= map
->m_len
;
3955 newblock
= map
->m_pblk
;
3956 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
3957 goto got_allocated_blocks
;
3961 * See if request is beyond maximum number of blocks we can have in
3962 * a single extent. For an initialized extent this limit is
3963 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3964 * EXT_UNINIT_MAX_LEN.
3966 if (map
->m_len
> EXT_INIT_MAX_LEN
&&
3967 !(flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3968 map
->m_len
= EXT_INIT_MAX_LEN
;
3969 else if (map
->m_len
> EXT_UNINIT_MAX_LEN
&&
3970 (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
))
3971 map
->m_len
= EXT_UNINIT_MAX_LEN
;
3973 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3974 newex
.ee_len
= cpu_to_le16(map
->m_len
);
3975 err
= ext4_ext_check_overlap(sbi
, inode
, &newex
, path
);
3977 allocated
= ext4_ext_get_actual_len(&newex
);
3979 allocated
= map
->m_len
;
3981 /* allocate new block */
3983 ar
.goal
= ext4_ext_find_goal(inode
, path
, map
->m_lblk
);
3984 ar
.logical
= map
->m_lblk
;
3986 * We calculate the offset from the beginning of the cluster
3987 * for the logical block number, since when we allocate a
3988 * physical cluster, the physical block should start at the
3989 * same offset from the beginning of the cluster. This is
3990 * needed so that future calls to get_implied_cluster_alloc()
3993 offset
= map
->m_lblk
& (sbi
->s_cluster_ratio
- 1);
3994 ar
.len
= EXT4_NUM_B2C(sbi
, offset
+allocated
);
3996 ar
.logical
-= offset
;
3997 if (S_ISREG(inode
->i_mode
))
3998 ar
.flags
= EXT4_MB_HINT_DATA
;
4000 /* disable in-core preallocation for non-regular files */
4002 if (flags
& EXT4_GET_BLOCKS_NO_NORMALIZE
)
4003 ar
.flags
|= EXT4_MB_HINT_NOPREALLOC
;
4004 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
4007 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4008 ar
.goal
, newblock
, allocated
);
4010 allocated_clusters
= ar
.len
;
4011 ar
.len
= EXT4_C2B(sbi
, ar
.len
) - offset
;
4012 if (ar
.len
> allocated
)
4015 got_allocated_blocks
:
4016 /* try to insert new extent into found leaf and return */
4017 ext4_ext_store_pblock(&newex
, newblock
+ offset
);
4018 newex
.ee_len
= cpu_to_le16(ar
.len
);
4019 /* Mark uninitialized */
4020 if (flags
& EXT4_GET_BLOCKS_UNINIT_EXT
){
4021 ext4_ext_mark_uninitialized(&newex
);
4023 * io_end structure was created for every IO write to an
4024 * uninitialized extent. To avoid unnecessary conversion,
4025 * here we flag the IO that really needs the conversion.
4026 * For non asycn direct IO case, flag the inode state
4027 * that we need to perform conversion when IO is done.
4029 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
)) {
4031 ext4_set_io_unwritten_flag(inode
, io
);
4033 ext4_set_inode_state(inode
,
4034 EXT4_STATE_DIO_UNWRITTEN
);
4036 if (ext4_should_dioread_nolock(inode
))
4037 map
->m_flags
|= EXT4_MAP_UNINIT
;
4041 if ((flags
& EXT4_GET_BLOCKS_KEEP_SIZE
) == 0)
4042 err
= check_eofblocks_fl(handle
, inode
, map
->m_lblk
,
4045 err
= ext4_ext_insert_extent(handle
, inode
, path
,
4047 if (err
&& free_on_err
) {
4048 int fb_flags
= flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
?
4049 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
: 0;
4050 /* free data blocks we just allocated */
4051 /* not a good idea to call discard here directly,
4052 * but otherwise we'd need to call it every free() */
4053 ext4_discard_preallocations(inode
);
4054 ext4_free_blocks(handle
, inode
, NULL
, ext4_ext_pblock(&newex
),
4055 ext4_ext_get_actual_len(&newex
), fb_flags
);
4059 /* previous routine could use block we allocated */
4060 newblock
= ext4_ext_pblock(&newex
);
4061 allocated
= ext4_ext_get_actual_len(&newex
);
4062 if (allocated
> map
->m_len
)
4063 allocated
= map
->m_len
;
4064 map
->m_flags
|= EXT4_MAP_NEW
;
4067 * Update reserved blocks/metadata blocks after successful
4068 * block allocation which had been deferred till now.
4070 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
4071 unsigned int reserved_clusters
;
4073 * Check how many clusters we had reserved this allocated range
4075 reserved_clusters
= get_reserved_cluster_alloc(inode
,
4076 map
->m_lblk
, allocated
);
4077 if (map
->m_flags
& EXT4_MAP_FROM_CLUSTER
) {
4078 if (reserved_clusters
) {
4080 * We have clusters reserved for this range.
4081 * But since we are not doing actual allocation
4082 * and are simply using blocks from previously
4083 * allocated cluster, we should release the
4084 * reservation and not claim quota.
4086 ext4_da_update_reserve_space(inode
,
4087 reserved_clusters
, 0);
4090 BUG_ON(allocated_clusters
< reserved_clusters
);
4091 /* We will claim quota for all newly allocated blocks.*/
4092 ext4_da_update_reserve_space(inode
, allocated_clusters
,
4094 if (reserved_clusters
< allocated_clusters
) {
4095 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4096 int reservation
= allocated_clusters
-
4099 * It seems we claimed few clusters outside of
4100 * the range of this allocation. We should give
4101 * it back to the reservation pool. This can
4102 * happen in the following case:
4104 * * Suppose s_cluster_ratio is 4 (i.e., each
4105 * cluster has 4 blocks. Thus, the clusters
4106 * are [0-3],[4-7],[8-11]...
4107 * * First comes delayed allocation write for
4108 * logical blocks 10 & 11. Since there were no
4109 * previous delayed allocated blocks in the
4110 * range [8-11], we would reserve 1 cluster
4112 * * Next comes write for logical blocks 3 to 8.
4113 * In this case, we will reserve 2 clusters
4114 * (for [0-3] and [4-7]; and not for [8-11] as
4115 * that range has a delayed allocated blocks.
4116 * Thus total reserved clusters now becomes 3.
4117 * * Now, during the delayed allocation writeout
4118 * time, we will first write blocks [3-8] and
4119 * allocate 3 clusters for writing these
4120 * blocks. Also, we would claim all these
4121 * three clusters above.
4122 * * Now when we come here to writeout the
4123 * blocks [10-11], we would expect to claim
4124 * the reservation of 1 cluster we had made
4125 * (and we would claim it since there are no
4126 * more delayed allocated blocks in the range
4127 * [8-11]. But our reserved cluster count had
4128 * already gone to 0.
4130 * Thus, at the step 4 above when we determine
4131 * that there are still some unwritten delayed
4132 * allocated blocks outside of our current
4133 * block range, we should increment the
4134 * reserved clusters count so that when the
4135 * remaining blocks finally gets written, we
4138 dquot_reserve_block(inode
,
4139 EXT4_C2B(sbi
, reservation
));
4140 spin_lock(&ei
->i_block_reservation_lock
);
4141 ei
->i_reserved_data_blocks
+= reservation
;
4142 spin_unlock(&ei
->i_block_reservation_lock
);
4148 * Cache the extent and update transaction to commit on fdatasync only
4149 * when it is _not_ an uninitialized extent.
4151 if ((flags
& EXT4_GET_BLOCKS_UNINIT_EXT
) == 0) {
4152 ext4_ext_put_in_cache(inode
, map
->m_lblk
, allocated
, newblock
);
4153 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4155 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4157 if (allocated
> map
->m_len
)
4158 allocated
= map
->m_len
;
4159 ext4_ext_show_leaf(inode
, path
);
4160 map
->m_flags
|= EXT4_MAP_MAPPED
;
4161 map
->m_pblk
= newblock
;
4162 map
->m_len
= allocated
;
4165 ext4_ext_drop_refs(path
);
4168 result
= (flags
& EXT4_GET_BLOCKS_PUNCH_OUT_EXT
) ?
4169 punched_out
: allocated
;
4171 trace_ext4_ext_map_blocks_exit(inode
, map
->m_lblk
,
4172 newblock
, map
->m_len
, err
? err
: result
);
4174 return err
? err
: result
;
4177 void ext4_ext_truncate(struct inode
*inode
)
4179 struct address_space
*mapping
= inode
->i_mapping
;
4180 struct super_block
*sb
= inode
->i_sb
;
4181 ext4_lblk_t last_block
;
4187 * finish any pending end_io work so we won't run the risk of
4188 * converting any truncated blocks to initialized later
4190 ext4_flush_completed_IO(inode
);
4193 * probably first extent we're gonna free will be last in block
4195 err
= ext4_writepage_trans_blocks(inode
);
4196 handle
= ext4_journal_start(inode
, err
);
4200 if (inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4201 page_len
= PAGE_CACHE_SIZE
-
4202 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4204 err
= ext4_discard_partial_page_buffers(handle
,
4205 mapping
, inode
->i_size
, page_len
, 0);
4211 if (ext4_orphan_add(handle
, inode
))
4214 down_write(&EXT4_I(inode
)->i_data_sem
);
4215 ext4_ext_invalidate_cache(inode
);
4217 ext4_discard_preallocations(inode
);
4220 * TODO: optimization is possible here.
4221 * Probably we need not scan at all,
4222 * because page truncation is enough.
4225 /* we have to know where to truncate from in crash case */
4226 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
4227 ext4_mark_inode_dirty(handle
, inode
);
4229 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
4230 >> EXT4_BLOCK_SIZE_BITS(sb
);
4231 err
= ext4_ext_remove_space(inode
, last_block
);
4233 /* In a multi-transaction truncate, we only make the final
4234 * transaction synchronous.
4237 ext4_handle_sync(handle
);
4239 up_write(&EXT4_I(inode
)->i_data_sem
);
4243 * If this was a simple ftruncate() and the file will remain alive,
4244 * then we need to clear up the orphan record which we created above.
4245 * However, if this was a real unlink then we were called by
4246 * ext4_delete_inode(), and we allow that function to clean up the
4247 * orphan info for us.
4250 ext4_orphan_del(handle
, inode
);
4252 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4253 ext4_mark_inode_dirty(handle
, inode
);
4254 ext4_journal_stop(handle
);
4257 static void ext4_falloc_update_inode(struct inode
*inode
,
4258 int mode
, loff_t new_size
, int update_ctime
)
4260 struct timespec now
;
4263 now
= current_fs_time(inode
->i_sb
);
4264 if (!timespec_equal(&inode
->i_ctime
, &now
))
4265 inode
->i_ctime
= now
;
4268 * Update only when preallocation was requested beyond
4271 if (!(mode
& FALLOC_FL_KEEP_SIZE
)) {
4272 if (new_size
> i_size_read(inode
))
4273 i_size_write(inode
, new_size
);
4274 if (new_size
> EXT4_I(inode
)->i_disksize
)
4275 ext4_update_i_disksize(inode
, new_size
);
4278 * Mark that we allocate beyond EOF so the subsequent truncate
4279 * can proceed even if the new size is the same as i_size.
4281 if (new_size
> i_size_read(inode
))
4282 ext4_set_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4288 * preallocate space for a file. This implements ext4's fallocate file
4289 * operation, which gets called from sys_fallocate system call.
4290 * For block-mapped files, posix_fallocate should fall back to the method
4291 * of writing zeroes to the required new blocks (the same behavior which is
4292 * expected for file systems which do not support fallocate() system call).
4294 long ext4_fallocate(struct file
*file
, int mode
, loff_t offset
, loff_t len
)
4296 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4299 unsigned int max_blocks
;
4304 struct ext4_map_blocks map
;
4305 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4308 * currently supporting (pre)allocate mode for extent-based
4311 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4314 /* Return error if mode is not supported */
4315 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
4318 if (mode
& FALLOC_FL_PUNCH_HOLE
)
4319 return ext4_punch_hole(file
, offset
, len
);
4321 trace_ext4_fallocate_enter(inode
, offset
, len
, mode
);
4322 map
.m_lblk
= offset
>> blkbits
;
4324 * We can't just convert len to max_blocks because
4325 * If blocksize = 4096 offset = 3072 and len = 2048
4327 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
4330 * credits to insert 1 extent into extent tree
4332 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4333 mutex_lock(&inode
->i_mutex
);
4334 ret
= inode_newsize_ok(inode
, (len
+ offset
));
4336 mutex_unlock(&inode
->i_mutex
);
4337 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
, ret
);
4340 flags
= EXT4_GET_BLOCKS_CREATE_UNINIT_EXT
;
4341 if (mode
& FALLOC_FL_KEEP_SIZE
)
4342 flags
|= EXT4_GET_BLOCKS_KEEP_SIZE
;
4344 * Don't normalize the request if it can fit in one extent so
4345 * that it doesn't get unnecessarily split into multiple
4348 if (len
<= EXT_UNINIT_MAX_LEN
<< blkbits
)
4349 flags
|= EXT4_GET_BLOCKS_NO_NORMALIZE
;
4351 while (ret
>= 0 && ret
< max_blocks
) {
4352 map
.m_lblk
= map
.m_lblk
+ ret
;
4353 map
.m_len
= max_blocks
= max_blocks
- ret
;
4354 handle
= ext4_journal_start(inode
, credits
);
4355 if (IS_ERR(handle
)) {
4356 ret
= PTR_ERR(handle
);
4359 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
4363 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4364 "returned error inode#%lu, block=%u, "
4365 "max_blocks=%u", __func__
,
4366 inode
->i_ino
, map
.m_lblk
, max_blocks
);
4368 ext4_mark_inode_dirty(handle
, inode
);
4369 ret2
= ext4_journal_stop(handle
);
4372 if ((map
.m_lblk
+ ret
) >= (EXT4_BLOCK_ALIGN(offset
+ len
,
4373 blkbits
) >> blkbits
))
4374 new_size
= offset
+ len
;
4376 new_size
= ((loff_t
) map
.m_lblk
+ ret
) << blkbits
;
4378 ext4_falloc_update_inode(inode
, mode
, new_size
,
4379 (map
.m_flags
& EXT4_MAP_NEW
));
4380 ext4_mark_inode_dirty(handle
, inode
);
4381 ret2
= ext4_journal_stop(handle
);
4385 if (ret
== -ENOSPC
&&
4386 ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
4390 mutex_unlock(&inode
->i_mutex
);
4391 trace_ext4_fallocate_exit(inode
, offset
, max_blocks
,
4392 ret
> 0 ? ret2
: ret
);
4393 return ret
> 0 ? ret2
: ret
;
4397 * This function convert a range of blocks to written extents
4398 * The caller of this function will pass the start offset and the size.
4399 * all unwritten extents within this range will be converted to
4402 * This function is called from the direct IO end io call back
4403 * function, to convert the fallocated extents after IO is completed.
4404 * Returns 0 on success.
4406 int ext4_convert_unwritten_extents(struct inode
*inode
, loff_t offset
,
4410 unsigned int max_blocks
;
4413 struct ext4_map_blocks map
;
4414 unsigned int credits
, blkbits
= inode
->i_blkbits
;
4416 map
.m_lblk
= offset
>> blkbits
;
4418 * We can't just convert len to max_blocks because
4419 * If blocksize = 4096 offset = 3072 and len = 2048
4421 max_blocks
= ((EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
) -
4424 * credits to insert 1 extent into extent tree
4426 credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
4427 while (ret
>= 0 && ret
< max_blocks
) {
4429 map
.m_len
= (max_blocks
-= ret
);
4430 handle
= ext4_journal_start(inode
, credits
);
4431 if (IS_ERR(handle
)) {
4432 ret
= PTR_ERR(handle
);
4435 ret
= ext4_map_blocks(handle
, inode
, &map
,
4436 EXT4_GET_BLOCKS_IO_CONVERT_EXT
);
4439 printk(KERN_ERR
"%s: ext4_ext_map_blocks "
4440 "returned error inode#%lu, block=%u, "
4441 "max_blocks=%u", __func__
,
4442 inode
->i_ino
, map
.m_lblk
, map
.m_len
);
4444 ext4_mark_inode_dirty(handle
, inode
);
4445 ret2
= ext4_journal_stop(handle
);
4446 if (ret
<= 0 || ret2
)
4449 return ret
> 0 ? ret2
: ret
;
4453 * Callback function called for each extent to gather FIEMAP information.
4455 static int ext4_ext_fiemap_cb(struct inode
*inode
, ext4_lblk_t next
,
4456 struct ext4_ext_cache
*newex
, struct ext4_extent
*ex
,
4464 struct fiemap_extent_info
*fieinfo
= data
;
4465 unsigned char blksize_bits
;
4467 blksize_bits
= inode
->i_sb
->s_blocksize_bits
;
4468 logical
= (__u64
)newex
->ec_block
<< blksize_bits
;
4470 if (newex
->ec_start
== 0) {
4472 * No extent in extent-tree contains block @newex->ec_start,
4473 * then the block may stay in 1)a hole or 2)delayed-extent.
4475 * Holes or delayed-extents are processed as follows.
4476 * 1. lookup dirty pages with specified range in pagecache.
4477 * If no page is got, then there is no delayed-extent and
4478 * return with EXT_CONTINUE.
4479 * 2. find the 1st mapped buffer,
4480 * 3. check if the mapped buffer is both in the request range
4481 * and a delayed buffer. If not, there is no delayed-extent,
4483 * 4. a delayed-extent is found, the extent will be collected.
4485 ext4_lblk_t end
= 0;
4486 pgoff_t last_offset
;
4489 pgoff_t start_index
= 0;
4490 struct page
**pages
= NULL
;
4491 struct buffer_head
*bh
= NULL
;
4492 struct buffer_head
*head
= NULL
;
4493 unsigned int nr_pages
= PAGE_SIZE
/ sizeof(struct page
*);
4495 pages
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4499 offset
= logical
>> PAGE_SHIFT
;
4501 last_offset
= offset
;
4503 ret
= find_get_pages_tag(inode
->i_mapping
, &offset
,
4504 PAGECACHE_TAG_DIRTY
, nr_pages
, pages
);
4506 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4507 /* First time, try to find a mapped buffer. */
4510 for (index
= 0; index
< ret
; index
++)
4511 page_cache_release(pages
[index
]);
4514 return EXT_CONTINUE
;
4519 /* Try to find the 1st mapped buffer. */
4520 end
= ((__u64
)pages
[index
]->index
<< PAGE_SHIFT
) >>
4522 if (!page_has_buffers(pages
[index
]))
4524 head
= page_buffers(pages
[index
]);
4531 if (end
>= newex
->ec_block
+
4533 /* The buffer is out of
4534 * the request range.
4538 if (buffer_mapped(bh
) &&
4539 end
>= newex
->ec_block
) {
4540 start_index
= index
- 1;
4541 /* get the 1st mapped buffer. */
4542 goto found_mapped_buffer
;
4545 bh
= bh
->b_this_page
;
4547 } while (bh
!= head
);
4549 /* No mapped buffer in the range found in this page,
4550 * We need to look up next page.
4553 /* There is no page left, but we need to limit
4556 newex
->ec_len
= end
- newex
->ec_block
;
4561 /*Find contiguous delayed buffers. */
4562 if (ret
> 0 && pages
[0]->index
== last_offset
)
4563 head
= page_buffers(pages
[0]);
4569 found_mapped_buffer
:
4570 if (bh
!= NULL
&& buffer_delay(bh
)) {
4571 /* 1st or contiguous delayed buffer found. */
4572 if (!(flags
& FIEMAP_EXTENT_DELALLOC
)) {
4574 * 1st delayed buffer found, record
4575 * the start of extent.
4577 flags
|= FIEMAP_EXTENT_DELALLOC
;
4578 newex
->ec_block
= end
;
4579 logical
= (__u64
)end
<< blksize_bits
;
4581 /* Find contiguous delayed buffers. */
4583 if (!buffer_delay(bh
))
4584 goto found_delayed_extent
;
4585 bh
= bh
->b_this_page
;
4587 } while (bh
!= head
);
4589 for (; index
< ret
; index
++) {
4590 if (!page_has_buffers(pages
[index
])) {
4594 head
= page_buffers(pages
[index
]);
4600 if (pages
[index
]->index
!=
4601 pages
[start_index
]->index
+ index
4603 /* Blocks are not contiguous. */
4609 if (!buffer_delay(bh
))
4610 /* Delayed-extent ends. */
4611 goto found_delayed_extent
;
4612 bh
= bh
->b_this_page
;
4614 } while (bh
!= head
);
4616 } else if (!(flags
& FIEMAP_EXTENT_DELALLOC
))
4620 found_delayed_extent
:
4621 newex
->ec_len
= min(end
- newex
->ec_block
,
4622 (ext4_lblk_t
)EXT_INIT_MAX_LEN
);
4623 if (ret
== nr_pages
&& bh
!= NULL
&&
4624 newex
->ec_len
< EXT_INIT_MAX_LEN
&&
4626 /* Have not collected an extent and continue. */
4627 for (index
= 0; index
< ret
; index
++)
4628 page_cache_release(pages
[index
]);
4632 for (index
= 0; index
< ret
; index
++)
4633 page_cache_release(pages
[index
]);
4637 physical
= (__u64
)newex
->ec_start
<< blksize_bits
;
4638 length
= (__u64
)newex
->ec_len
<< blksize_bits
;
4640 if (ex
&& ext4_ext_is_uninitialized(ex
))
4641 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4643 if (next
== EXT_MAX_BLOCKS
)
4644 flags
|= FIEMAP_EXTENT_LAST
;
4646 ret
= fiemap_fill_next_extent(fieinfo
, logical
, physical
,
4652 return EXT_CONTINUE
;
4654 /* fiemap flags we can handle specified here */
4655 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4657 static int ext4_xattr_fiemap(struct inode
*inode
,
4658 struct fiemap_extent_info
*fieinfo
)
4662 __u32 flags
= FIEMAP_EXTENT_LAST
;
4663 int blockbits
= inode
->i_sb
->s_blocksize_bits
;
4667 if (ext4_test_inode_state(inode
, EXT4_STATE_XATTR
)) {
4668 struct ext4_iloc iloc
;
4669 int offset
; /* offset of xattr in inode */
4671 error
= ext4_get_inode_loc(inode
, &iloc
);
4674 physical
= iloc
.bh
->b_blocknr
<< blockbits
;
4675 offset
= EXT4_GOOD_OLD_INODE_SIZE
+
4676 EXT4_I(inode
)->i_extra_isize
;
4678 length
= EXT4_SB(inode
->i_sb
)->s_inode_size
- offset
;
4679 flags
|= FIEMAP_EXTENT_DATA_INLINE
;
4681 } else { /* external block */
4682 physical
= EXT4_I(inode
)->i_file_acl
<< blockbits
;
4683 length
= inode
->i_sb
->s_blocksize
;
4687 error
= fiemap_fill_next_extent(fieinfo
, 0, physical
,
4689 return (error
< 0 ? error
: 0);
4693 * ext4_ext_punch_hole
4695 * Punches a hole of "length" bytes in a file starting
4698 * @inode: The inode of the file to punch a hole in
4699 * @offset: The starting byte offset of the hole
4700 * @length: The length of the hole
4702 * Returns the number of blocks removed or negative on err
4704 int ext4_ext_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
4706 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4707 struct super_block
*sb
= inode
->i_sb
;
4708 struct ext4_ext_cache cache_ex
;
4709 ext4_lblk_t first_block
, last_block
, num_blocks
, iblock
, max_blocks
;
4710 struct address_space
*mapping
= inode
->i_mapping
;
4711 struct ext4_map_blocks map
;
4713 loff_t first_page
, last_page
, page_len
;
4714 loff_t first_page_offset
, last_page_offset
;
4715 int ret
, credits
, blocks_released
, err
= 0;
4717 /* No need to punch hole beyond i_size */
4718 if (offset
>= inode
->i_size
)
4722 * If the hole extends beyond i_size, set the hole
4723 * to end after the page that contains i_size
4725 if (offset
+ length
> inode
->i_size
) {
4726 length
= inode
->i_size
+
4727 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
4731 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4732 EXT4_BLOCK_SIZE_BITS(sb
);
4733 last_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4735 first_page
= (offset
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
4736 last_page
= (offset
+ length
) >> PAGE_CACHE_SHIFT
;
4738 first_page_offset
= first_page
<< PAGE_CACHE_SHIFT
;
4739 last_page_offset
= last_page
<< PAGE_CACHE_SHIFT
;
4742 * Write out all dirty pages to avoid race conditions
4743 * Then release them.
4745 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
4746 err
= filemap_write_and_wait_range(mapping
,
4747 offset
, offset
+ length
- 1);
4753 /* Now release the pages */
4754 if (last_page_offset
> first_page_offset
) {
4755 truncate_inode_pages_range(mapping
, first_page_offset
,
4756 last_page_offset
-1);
4759 /* finish any pending end_io work */
4760 ext4_flush_completed_IO(inode
);
4762 credits
= ext4_writepage_trans_blocks(inode
);
4763 handle
= ext4_journal_start(inode
, credits
);
4765 return PTR_ERR(handle
);
4767 err
= ext4_orphan_add(handle
, inode
);
4772 * Now we need to zero out the non-page-aligned data in the
4773 * pages at the start and tail of the hole, and unmap the buffer
4774 * heads for the block aligned regions of the page that were
4775 * completely zeroed.
4777 if (first_page
> last_page
) {
4779 * If the file space being truncated is contained within a page
4780 * just zero out and unmap the middle of that page
4782 err
= ext4_discard_partial_page_buffers(handle
,
4783 mapping
, offset
, length
, 0);
4789 * zero out and unmap the partial page that contains
4790 * the start of the hole
4792 page_len
= first_page_offset
- offset
;
4794 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4795 offset
, page_len
, 0);
4801 * zero out and unmap the partial page that contains
4802 * the end of the hole
4804 page_len
= offset
+ length
- last_page_offset
;
4806 err
= ext4_discard_partial_page_buffers(handle
, mapping
,
4807 last_page_offset
, page_len
, 0);
4815 * If i_size is contained in the last page, we need to
4816 * unmap and zero the partial page after i_size
4818 if (inode
->i_size
>> PAGE_CACHE_SHIFT
== last_page
&&
4819 inode
->i_size
% PAGE_CACHE_SIZE
!= 0) {
4821 page_len
= PAGE_CACHE_SIZE
-
4822 (inode
->i_size
& (PAGE_CACHE_SIZE
- 1));
4825 err
= ext4_discard_partial_page_buffers(handle
,
4826 mapping
, inode
->i_size
, page_len
, 0);
4833 /* If there are no blocks to remove, return now */
4834 if (first_block
>= last_block
)
4837 down_write(&EXT4_I(inode
)->i_data_sem
);
4838 ext4_ext_invalidate_cache(inode
);
4839 ext4_discard_preallocations(inode
);
4842 * Loop over all the blocks and identify blocks
4843 * that need to be punched out
4845 iblock
= first_block
;
4846 blocks_released
= 0;
4847 while (iblock
< last_block
) {
4848 max_blocks
= last_block
- iblock
;
4850 memset(&map
, 0, sizeof(map
));
4851 map
.m_lblk
= iblock
;
4852 map
.m_len
= max_blocks
;
4853 ret
= ext4_ext_map_blocks(handle
, inode
, &map
,
4854 EXT4_GET_BLOCKS_PUNCH_OUT_EXT
);
4857 blocks_released
+= ret
;
4859 } else if (ret
== 0) {
4861 * If map blocks could not find the block,
4862 * then it is in a hole. If the hole was
4863 * not already cached, then map blocks should
4864 * put it in the cache. So we can get the hole
4867 memset(&cache_ex
, 0, sizeof(cache_ex
));
4868 if ((ext4_ext_check_cache(inode
, iblock
, &cache_ex
)) &&
4869 !cache_ex
.ec_start
) {
4871 /* The hole is cached */
4872 num_blocks
= cache_ex
.ec_block
+
4873 cache_ex
.ec_len
- iblock
;
4876 /* The block could not be identified */
4881 /* Map blocks error */
4886 if (num_blocks
== 0) {
4887 /* This condition should never happen */
4888 ext_debug("Block lookup failed");
4893 iblock
+= num_blocks
;
4896 if (blocks_released
> 0) {
4897 ext4_ext_invalidate_cache(inode
);
4898 ext4_discard_preallocations(inode
);
4902 ext4_handle_sync(handle
);
4904 up_write(&EXT4_I(inode
)->i_data_sem
);
4907 ext4_orphan_del(handle
, inode
);
4908 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4909 ext4_mark_inode_dirty(handle
, inode
);
4910 ext4_journal_stop(handle
);
4913 int ext4_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4914 __u64 start
, __u64 len
)
4916 ext4_lblk_t start_blk
;
4919 /* fallback to generic here if not in extents fmt */
4920 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4921 return generic_block_fiemap(inode
, fieinfo
, start
, len
,
4924 if (fiemap_check_flags(fieinfo
, EXT4_FIEMAP_FLAGS
))
4927 if (fieinfo
->fi_flags
& FIEMAP_FLAG_XATTR
) {
4928 error
= ext4_xattr_fiemap(inode
, fieinfo
);
4930 ext4_lblk_t len_blks
;
4933 start_blk
= start
>> inode
->i_sb
->s_blocksize_bits
;
4934 last_blk
= (start
+ len
- 1) >> inode
->i_sb
->s_blocksize_bits
;
4935 if (last_blk
>= EXT_MAX_BLOCKS
)
4936 last_blk
= EXT_MAX_BLOCKS
-1;
4937 len_blks
= ((ext4_lblk_t
) last_blk
) - start_blk
+ 1;
4940 * Walk the extent tree gathering extent information.
4941 * ext4_ext_fiemap_cb will push extents back to user.
4943 error
= ext4_ext_walk_space(inode
, start_blk
, len_blks
,
4944 ext4_ext_fiemap_cb
, fieinfo
);