macb: support statistics for GEM devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / delayed-ref.c
blob125cf76fcd086803d35bd257bdb54168486e0e0b
1 /*
2 * Copyright (C) 2009 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include "ctree.h"
23 #include "delayed-ref.h"
24 #include "transaction.h"
27 * delayed back reference update tracking. For subvolume trees
28 * we queue up extent allocations and backref maintenance for
29 * delayed processing. This avoids deep call chains where we
30 * add extents in the middle of btrfs_search_slot, and it allows
31 * us to buffer up frequently modified backrefs in an rb tree instead
32 * of hammering updates on the extent allocation tree.
36 * compare two delayed tree backrefs with same bytenr and type
38 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
39 struct btrfs_delayed_tree_ref *ref1)
41 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
42 if (ref1->root < ref2->root)
43 return -1;
44 if (ref1->root > ref2->root)
45 return 1;
46 } else {
47 if (ref1->parent < ref2->parent)
48 return -1;
49 if (ref1->parent > ref2->parent)
50 return 1;
52 return 0;
56 * compare two delayed data backrefs with same bytenr and type
58 static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
59 struct btrfs_delayed_data_ref *ref1)
61 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
62 if (ref1->root < ref2->root)
63 return -1;
64 if (ref1->root > ref2->root)
65 return 1;
66 if (ref1->objectid < ref2->objectid)
67 return -1;
68 if (ref1->objectid > ref2->objectid)
69 return 1;
70 if (ref1->offset < ref2->offset)
71 return -1;
72 if (ref1->offset > ref2->offset)
73 return 1;
74 } else {
75 if (ref1->parent < ref2->parent)
76 return -1;
77 if (ref1->parent > ref2->parent)
78 return 1;
80 return 0;
84 * entries in the rb tree are ordered by the byte number of the extent,
85 * type of the delayed backrefs and content of delayed backrefs.
87 static int comp_entry(struct btrfs_delayed_ref_node *ref2,
88 struct btrfs_delayed_ref_node *ref1)
90 if (ref1->bytenr < ref2->bytenr)
91 return -1;
92 if (ref1->bytenr > ref2->bytenr)
93 return 1;
94 if (ref1->is_head && ref2->is_head)
95 return 0;
96 if (ref2->is_head)
97 return -1;
98 if (ref1->is_head)
99 return 1;
100 if (ref1->type < ref2->type)
101 return -1;
102 if (ref1->type > ref2->type)
103 return 1;
104 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
105 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY) {
106 return comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref2),
107 btrfs_delayed_node_to_tree_ref(ref1));
108 } else if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY ||
109 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
110 return comp_data_refs(btrfs_delayed_node_to_data_ref(ref2),
111 btrfs_delayed_node_to_data_ref(ref1));
113 BUG();
114 return 0;
118 * insert a new ref into the rbtree. This returns any existing refs
119 * for the same (bytenr,parent) tuple, or NULL if the new node was properly
120 * inserted.
122 static struct btrfs_delayed_ref_node *tree_insert(struct rb_root *root,
123 struct rb_node *node)
125 struct rb_node **p = &root->rb_node;
126 struct rb_node *parent_node = NULL;
127 struct btrfs_delayed_ref_node *entry;
128 struct btrfs_delayed_ref_node *ins;
129 int cmp;
131 ins = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
132 while (*p) {
133 parent_node = *p;
134 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
135 rb_node);
137 cmp = comp_entry(entry, ins);
138 if (cmp < 0)
139 p = &(*p)->rb_left;
140 else if (cmp > 0)
141 p = &(*p)->rb_right;
142 else
143 return entry;
146 rb_link_node(node, parent_node, p);
147 rb_insert_color(node, root);
148 return NULL;
152 * find an head entry based on bytenr. This returns the delayed ref
153 * head if it was able to find one, or NULL if nothing was in that spot
155 static struct btrfs_delayed_ref_node *find_ref_head(struct rb_root *root,
156 u64 bytenr,
157 struct btrfs_delayed_ref_node **last)
159 struct rb_node *n = root->rb_node;
160 struct btrfs_delayed_ref_node *entry;
161 int cmp;
163 while (n) {
164 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
165 WARN_ON(!entry->in_tree);
166 if (last)
167 *last = entry;
169 if (bytenr < entry->bytenr)
170 cmp = -1;
171 else if (bytenr > entry->bytenr)
172 cmp = 1;
173 else if (!btrfs_delayed_ref_is_head(entry))
174 cmp = 1;
175 else
176 cmp = 0;
178 if (cmp < 0)
179 n = n->rb_left;
180 else if (cmp > 0)
181 n = n->rb_right;
182 else
183 return entry;
185 return NULL;
188 int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
189 struct btrfs_delayed_ref_head *head)
191 struct btrfs_delayed_ref_root *delayed_refs;
193 delayed_refs = &trans->transaction->delayed_refs;
194 assert_spin_locked(&delayed_refs->lock);
195 if (mutex_trylock(&head->mutex))
196 return 0;
198 atomic_inc(&head->node.refs);
199 spin_unlock(&delayed_refs->lock);
201 mutex_lock(&head->mutex);
202 spin_lock(&delayed_refs->lock);
203 if (!head->node.in_tree) {
204 mutex_unlock(&head->mutex);
205 btrfs_put_delayed_ref(&head->node);
206 return -EAGAIN;
208 btrfs_put_delayed_ref(&head->node);
209 return 0;
212 int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
213 struct list_head *cluster, u64 start)
215 int count = 0;
216 struct btrfs_delayed_ref_root *delayed_refs;
217 struct rb_node *node;
218 struct btrfs_delayed_ref_node *ref;
219 struct btrfs_delayed_ref_head *head;
221 delayed_refs = &trans->transaction->delayed_refs;
222 if (start == 0) {
223 node = rb_first(&delayed_refs->root);
224 } else {
225 ref = NULL;
226 find_ref_head(&delayed_refs->root, start, &ref);
227 if (ref) {
228 struct btrfs_delayed_ref_node *tmp;
230 node = rb_prev(&ref->rb_node);
231 while (node) {
232 tmp = rb_entry(node,
233 struct btrfs_delayed_ref_node,
234 rb_node);
235 if (tmp->bytenr < start)
236 break;
237 ref = tmp;
238 node = rb_prev(&ref->rb_node);
240 node = &ref->rb_node;
241 } else
242 node = rb_first(&delayed_refs->root);
244 again:
245 while (node && count < 32) {
246 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
247 if (btrfs_delayed_ref_is_head(ref)) {
248 head = btrfs_delayed_node_to_head(ref);
249 if (list_empty(&head->cluster)) {
250 list_add_tail(&head->cluster, cluster);
251 delayed_refs->run_delayed_start =
252 head->node.bytenr;
253 count++;
255 WARN_ON(delayed_refs->num_heads_ready == 0);
256 delayed_refs->num_heads_ready--;
257 } else if (count) {
258 /* the goal of the clustering is to find extents
259 * that are likely to end up in the same extent
260 * leaf on disk. So, we don't want them spread
261 * all over the tree. Stop now if we've hit
262 * a head that was already in use
264 break;
267 node = rb_next(node);
269 if (count) {
270 return 0;
271 } else if (start) {
273 * we've gone to the end of the rbtree without finding any
274 * clusters. start from the beginning and try again
276 start = 0;
277 node = rb_first(&delayed_refs->root);
278 goto again;
280 return 1;
284 * helper function to update an extent delayed ref in the
285 * rbtree. existing and update must both have the same
286 * bytenr and parent
288 * This may free existing if the update cancels out whatever
289 * operation it was doing.
291 static noinline void
292 update_existing_ref(struct btrfs_trans_handle *trans,
293 struct btrfs_delayed_ref_root *delayed_refs,
294 struct btrfs_delayed_ref_node *existing,
295 struct btrfs_delayed_ref_node *update)
297 if (update->action != existing->action) {
299 * this is effectively undoing either an add or a
300 * drop. We decrement the ref_mod, and if it goes
301 * down to zero we just delete the entry without
302 * every changing the extent allocation tree.
304 existing->ref_mod--;
305 if (existing->ref_mod == 0) {
306 rb_erase(&existing->rb_node,
307 &delayed_refs->root);
308 existing->in_tree = 0;
309 btrfs_put_delayed_ref(existing);
310 delayed_refs->num_entries--;
311 if (trans->delayed_ref_updates)
312 trans->delayed_ref_updates--;
313 } else {
314 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
315 existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
317 } else {
318 WARN_ON(existing->type == BTRFS_TREE_BLOCK_REF_KEY ||
319 existing->type == BTRFS_SHARED_BLOCK_REF_KEY);
321 * the action on the existing ref matches
322 * the action on the ref we're trying to add.
323 * Bump the ref_mod by one so the backref that
324 * is eventually added/removed has the correct
325 * reference count
327 existing->ref_mod += update->ref_mod;
332 * helper function to update the accounting in the head ref
333 * existing and update must have the same bytenr
335 static noinline void
336 update_existing_head_ref(struct btrfs_delayed_ref_node *existing,
337 struct btrfs_delayed_ref_node *update)
339 struct btrfs_delayed_ref_head *existing_ref;
340 struct btrfs_delayed_ref_head *ref;
342 existing_ref = btrfs_delayed_node_to_head(existing);
343 ref = btrfs_delayed_node_to_head(update);
344 BUG_ON(existing_ref->is_data != ref->is_data);
346 if (ref->must_insert_reserved) {
347 /* if the extent was freed and then
348 * reallocated before the delayed ref
349 * entries were processed, we can end up
350 * with an existing head ref without
351 * the must_insert_reserved flag set.
352 * Set it again here
354 existing_ref->must_insert_reserved = ref->must_insert_reserved;
357 * update the num_bytes so we make sure the accounting
358 * is done correctly
360 existing->num_bytes = update->num_bytes;
364 if (ref->extent_op) {
365 if (!existing_ref->extent_op) {
366 existing_ref->extent_op = ref->extent_op;
367 } else {
368 if (ref->extent_op->update_key) {
369 memcpy(&existing_ref->extent_op->key,
370 &ref->extent_op->key,
371 sizeof(ref->extent_op->key));
372 existing_ref->extent_op->update_key = 1;
374 if (ref->extent_op->update_flags) {
375 existing_ref->extent_op->flags_to_set |=
376 ref->extent_op->flags_to_set;
377 existing_ref->extent_op->update_flags = 1;
379 kfree(ref->extent_op);
383 * update the reference mod on the head to reflect this new operation
385 existing->ref_mod += update->ref_mod;
389 * helper function to actually insert a head node into the rbtree.
390 * this does all the dirty work in terms of maintaining the correct
391 * overall modification count.
393 static noinline int add_delayed_ref_head(struct btrfs_trans_handle *trans,
394 struct btrfs_delayed_ref_node *ref,
395 u64 bytenr, u64 num_bytes,
396 int action, int is_data)
398 struct btrfs_delayed_ref_node *existing;
399 struct btrfs_delayed_ref_head *head_ref = NULL;
400 struct btrfs_delayed_ref_root *delayed_refs;
401 int count_mod = 1;
402 int must_insert_reserved = 0;
405 * the head node stores the sum of all the mods, so dropping a ref
406 * should drop the sum in the head node by one.
408 if (action == BTRFS_UPDATE_DELAYED_HEAD)
409 count_mod = 0;
410 else if (action == BTRFS_DROP_DELAYED_REF)
411 count_mod = -1;
414 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
415 * the reserved accounting when the extent is finally added, or
416 * if a later modification deletes the delayed ref without ever
417 * inserting the extent into the extent allocation tree.
418 * ref->must_insert_reserved is the flag used to record
419 * that accounting mods are required.
421 * Once we record must_insert_reserved, switch the action to
422 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
424 if (action == BTRFS_ADD_DELAYED_EXTENT)
425 must_insert_reserved = 1;
426 else
427 must_insert_reserved = 0;
429 delayed_refs = &trans->transaction->delayed_refs;
431 /* first set the basic ref node struct up */
432 atomic_set(&ref->refs, 1);
433 ref->bytenr = bytenr;
434 ref->num_bytes = num_bytes;
435 ref->ref_mod = count_mod;
436 ref->type = 0;
437 ref->action = 0;
438 ref->is_head = 1;
439 ref->in_tree = 1;
441 head_ref = btrfs_delayed_node_to_head(ref);
442 head_ref->must_insert_reserved = must_insert_reserved;
443 head_ref->is_data = is_data;
445 INIT_LIST_HEAD(&head_ref->cluster);
446 mutex_init(&head_ref->mutex);
448 trace_btrfs_delayed_ref_head(ref, head_ref, action);
450 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
452 if (existing) {
453 update_existing_head_ref(existing, ref);
455 * we've updated the existing ref, free the newly
456 * allocated ref
458 kfree(ref);
459 } else {
460 delayed_refs->num_heads++;
461 delayed_refs->num_heads_ready++;
462 delayed_refs->num_entries++;
463 trans->delayed_ref_updates++;
465 return 0;
469 * helper to insert a delayed tree ref into the rbtree.
471 static noinline int add_delayed_tree_ref(struct btrfs_trans_handle *trans,
472 struct btrfs_delayed_ref_node *ref,
473 u64 bytenr, u64 num_bytes, u64 parent,
474 u64 ref_root, int level, int action)
476 struct btrfs_delayed_ref_node *existing;
477 struct btrfs_delayed_tree_ref *full_ref;
478 struct btrfs_delayed_ref_root *delayed_refs;
480 if (action == BTRFS_ADD_DELAYED_EXTENT)
481 action = BTRFS_ADD_DELAYED_REF;
483 delayed_refs = &trans->transaction->delayed_refs;
485 /* first set the basic ref node struct up */
486 atomic_set(&ref->refs, 1);
487 ref->bytenr = bytenr;
488 ref->num_bytes = num_bytes;
489 ref->ref_mod = 1;
490 ref->action = action;
491 ref->is_head = 0;
492 ref->in_tree = 1;
494 full_ref = btrfs_delayed_node_to_tree_ref(ref);
495 if (parent) {
496 full_ref->parent = parent;
497 ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
498 } else {
499 full_ref->root = ref_root;
500 ref->type = BTRFS_TREE_BLOCK_REF_KEY;
502 full_ref->level = level;
504 trace_btrfs_delayed_tree_ref(ref, full_ref, action);
506 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
508 if (existing) {
509 update_existing_ref(trans, delayed_refs, existing, ref);
511 * we've updated the existing ref, free the newly
512 * allocated ref
514 kfree(ref);
515 } else {
516 delayed_refs->num_entries++;
517 trans->delayed_ref_updates++;
519 return 0;
523 * helper to insert a delayed data ref into the rbtree.
525 static noinline int add_delayed_data_ref(struct btrfs_trans_handle *trans,
526 struct btrfs_delayed_ref_node *ref,
527 u64 bytenr, u64 num_bytes, u64 parent,
528 u64 ref_root, u64 owner, u64 offset,
529 int action)
531 struct btrfs_delayed_ref_node *existing;
532 struct btrfs_delayed_data_ref *full_ref;
533 struct btrfs_delayed_ref_root *delayed_refs;
535 if (action == BTRFS_ADD_DELAYED_EXTENT)
536 action = BTRFS_ADD_DELAYED_REF;
538 delayed_refs = &trans->transaction->delayed_refs;
540 /* first set the basic ref node struct up */
541 atomic_set(&ref->refs, 1);
542 ref->bytenr = bytenr;
543 ref->num_bytes = num_bytes;
544 ref->ref_mod = 1;
545 ref->action = action;
546 ref->is_head = 0;
547 ref->in_tree = 1;
549 full_ref = btrfs_delayed_node_to_data_ref(ref);
550 if (parent) {
551 full_ref->parent = parent;
552 ref->type = BTRFS_SHARED_DATA_REF_KEY;
553 } else {
554 full_ref->root = ref_root;
555 ref->type = BTRFS_EXTENT_DATA_REF_KEY;
557 full_ref->objectid = owner;
558 full_ref->offset = offset;
560 trace_btrfs_delayed_data_ref(ref, full_ref, action);
562 existing = tree_insert(&delayed_refs->root, &ref->rb_node);
564 if (existing) {
565 update_existing_ref(trans, delayed_refs, existing, ref);
567 * we've updated the existing ref, free the newly
568 * allocated ref
570 kfree(ref);
571 } else {
572 delayed_refs->num_entries++;
573 trans->delayed_ref_updates++;
575 return 0;
579 * add a delayed tree ref. This does all of the accounting required
580 * to make sure the delayed ref is eventually processed before this
581 * transaction commits.
583 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
584 u64 bytenr, u64 num_bytes, u64 parent,
585 u64 ref_root, int level, int action,
586 struct btrfs_delayed_extent_op *extent_op)
588 struct btrfs_delayed_tree_ref *ref;
589 struct btrfs_delayed_ref_head *head_ref;
590 struct btrfs_delayed_ref_root *delayed_refs;
591 int ret;
593 BUG_ON(extent_op && extent_op->is_data);
594 ref = kmalloc(sizeof(*ref), GFP_NOFS);
595 if (!ref)
596 return -ENOMEM;
598 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
599 if (!head_ref) {
600 kfree(ref);
601 return -ENOMEM;
604 head_ref->extent_op = extent_op;
606 delayed_refs = &trans->transaction->delayed_refs;
607 spin_lock(&delayed_refs->lock);
610 * insert both the head node and the new ref without dropping
611 * the spin lock
613 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
614 action, 0);
615 BUG_ON(ret);
617 ret = add_delayed_tree_ref(trans, &ref->node, bytenr, num_bytes,
618 parent, ref_root, level, action);
619 BUG_ON(ret);
620 spin_unlock(&delayed_refs->lock);
621 return 0;
625 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
627 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
628 u64 bytenr, u64 num_bytes,
629 u64 parent, u64 ref_root,
630 u64 owner, u64 offset, int action,
631 struct btrfs_delayed_extent_op *extent_op)
633 struct btrfs_delayed_data_ref *ref;
634 struct btrfs_delayed_ref_head *head_ref;
635 struct btrfs_delayed_ref_root *delayed_refs;
636 int ret;
638 BUG_ON(extent_op && !extent_op->is_data);
639 ref = kmalloc(sizeof(*ref), GFP_NOFS);
640 if (!ref)
641 return -ENOMEM;
643 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
644 if (!head_ref) {
645 kfree(ref);
646 return -ENOMEM;
649 head_ref->extent_op = extent_op;
651 delayed_refs = &trans->transaction->delayed_refs;
652 spin_lock(&delayed_refs->lock);
655 * insert both the head node and the new ref without dropping
656 * the spin lock
658 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr, num_bytes,
659 action, 1);
660 BUG_ON(ret);
662 ret = add_delayed_data_ref(trans, &ref->node, bytenr, num_bytes,
663 parent, ref_root, owner, offset, action);
664 BUG_ON(ret);
665 spin_unlock(&delayed_refs->lock);
666 return 0;
669 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
670 u64 bytenr, u64 num_bytes,
671 struct btrfs_delayed_extent_op *extent_op)
673 struct btrfs_delayed_ref_head *head_ref;
674 struct btrfs_delayed_ref_root *delayed_refs;
675 int ret;
677 head_ref = kmalloc(sizeof(*head_ref), GFP_NOFS);
678 if (!head_ref)
679 return -ENOMEM;
681 head_ref->extent_op = extent_op;
683 delayed_refs = &trans->transaction->delayed_refs;
684 spin_lock(&delayed_refs->lock);
686 ret = add_delayed_ref_head(trans, &head_ref->node, bytenr,
687 num_bytes, BTRFS_UPDATE_DELAYED_HEAD,
688 extent_op->is_data);
689 BUG_ON(ret);
691 spin_unlock(&delayed_refs->lock);
692 return 0;
696 * this does a simple search for the head node for a given extent.
697 * It must be called with the delayed ref spinlock held, and it returns
698 * the head node if any where found, or NULL if not.
700 struct btrfs_delayed_ref_head *
701 btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
703 struct btrfs_delayed_ref_node *ref;
704 struct btrfs_delayed_ref_root *delayed_refs;
706 delayed_refs = &trans->transaction->delayed_refs;
707 ref = find_ref_head(&delayed_refs->root, bytenr, NULL);
708 if (ref)
709 return btrfs_delayed_node_to_head(ref);
710 return NULL;