iwlwifi: fix skb usage after free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / mmzone.h
blobb345e6d8b2ccb5adf62780e657c1d8ae01e20b4d
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
36 #define PAGE_ALLOC_COSTLY_ORDER 3
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
50 extern int page_group_by_mobility_disabled;
52 static inline int get_pageblock_migratetype(struct page *page)
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
62 struct pglist_data;
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114 #endif
115 NR_VM_ZONE_STAT_ITEMS };
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
130 enum lru_list {
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 LRU_UNEVICTABLE,
136 NR_LRU_LISTS
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
143 static inline int is_file_lru(enum lru_list l)
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
148 static inline int is_active_lru(enum lru_list l)
150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
153 static inline int is_unevictable_lru(enum lru_list l)
155 return (l == LRU_UNEVICTABLE);
158 enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
169 struct per_cpu_pages {
170 int count; /* number of pages in the list */
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
178 struct per_cpu_pageset {
179 struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 s8 stat_threshold;
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 } ____cacheline_aligned_in_smp;
189 #ifdef CONFIG_NUMA
190 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
191 #else
192 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
193 #endif
195 #endif /* !__GENERATING_BOUNDS.H */
197 enum zone_type {
198 #ifdef CONFIG_ZONE_DMA
200 * ZONE_DMA is used when there are devices that are not able
201 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
202 * carve out the portion of memory that is needed for these devices.
203 * The range is arch specific.
205 * Some examples
207 * Architecture Limit
208 * ---------------------------
209 * parisc, ia64, sparc <4G
210 * s390 <2G
211 * arm Various
212 * alpha Unlimited or 0-16MB.
214 * i386, x86_64 and multiple other arches
215 * <16M.
217 ZONE_DMA,
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
221 * x86_64 needs two ZONE_DMAs because it supports devices that are
222 * only able to do DMA to the lower 16M but also 32 bit devices that
223 * can only do DMA areas below 4G.
225 ZONE_DMA32,
226 #endif
228 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
229 * performed on pages in ZONE_NORMAL if the DMA devices support
230 * transfers to all addressable memory.
232 ZONE_NORMAL,
233 #ifdef CONFIG_HIGHMEM
235 * A memory area that is only addressable by the kernel through
236 * mapping portions into its own address space. This is for example
237 * used by i386 to allow the kernel to address the memory beyond
238 * 900MB. The kernel will set up special mappings (page
239 * table entries on i386) for each page that the kernel needs to
240 * access.
242 ZONE_HIGHMEM,
243 #endif
244 ZONE_MOVABLE,
245 __MAX_NR_ZONES
248 #ifndef __GENERATING_BOUNDS_H
251 * When a memory allocation must conform to specific limitations (such
252 * as being suitable for DMA) the caller will pass in hints to the
253 * allocator in the gfp_mask, in the zone modifier bits. These bits
254 * are used to select a priority ordered list of memory zones which
255 * match the requested limits. See gfp_zone() in include/linux/gfp.h
258 #if MAX_NR_ZONES < 2
259 #define ZONES_SHIFT 0
260 #elif MAX_NR_ZONES <= 2
261 #define ZONES_SHIFT 1
262 #elif MAX_NR_ZONES <= 4
263 #define ZONES_SHIFT 2
264 #else
265 #error ZONES_SHIFT -- too many zones configured adjust calculation
266 #endif
268 struct zone_reclaim_stat {
270 * The pageout code in vmscan.c keeps track of how many of the
271 * mem/swap backed and file backed pages are refeferenced.
272 * The higher the rotated/scanned ratio, the more valuable
273 * that cache is.
275 * The anon LRU stats live in [0], file LRU stats in [1]
277 unsigned long recent_rotated[2];
278 unsigned long recent_scanned[2];
281 * accumulated for batching
283 unsigned long nr_saved_scan[NR_LRU_LISTS];
286 struct zone {
287 /* Fields commonly accessed by the page allocator */
289 /* zone watermarks, access with *_wmark_pages(zone) macros */
290 unsigned long watermark[NR_WMARK];
293 * When free pages are below this point, additional steps are taken
294 * when reading the number of free pages to avoid per-cpu counter
295 * drift allowing watermarks to be breached
297 unsigned long percpu_drift_mark;
300 * We don't know if the memory that we're going to allocate will be freeable
301 * or/and it will be released eventually, so to avoid totally wasting several
302 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
303 * to run OOM on the lower zones despite there's tons of freeable ram
304 * on the higher zones). This array is recalculated at runtime if the
305 * sysctl_lowmem_reserve_ratio sysctl changes.
307 unsigned long lowmem_reserve[MAX_NR_ZONES];
309 #ifdef CONFIG_NUMA
310 int node;
312 * zone reclaim becomes active if more unmapped pages exist.
314 unsigned long min_unmapped_pages;
315 unsigned long min_slab_pages;
316 struct per_cpu_pageset *pageset[NR_CPUS];
317 #else
318 struct per_cpu_pageset pageset[NR_CPUS];
319 #endif
321 * free areas of different sizes
323 spinlock_t lock;
324 #ifdef CONFIG_MEMORY_HOTPLUG
325 /* see spanned/present_pages for more description */
326 seqlock_t span_seqlock;
327 #endif
328 struct free_area free_area[MAX_ORDER];
330 #ifndef CONFIG_SPARSEMEM
332 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
333 * In SPARSEMEM, this map is stored in struct mem_section
335 unsigned long *pageblock_flags;
336 #endif /* CONFIG_SPARSEMEM */
339 ZONE_PADDING(_pad1_)
341 /* Fields commonly accessed by the page reclaim scanner */
342 spinlock_t lru_lock;
343 struct zone_lru {
344 struct list_head list;
345 } lru[NR_LRU_LISTS];
347 struct zone_reclaim_stat reclaim_stat;
349 unsigned long pages_scanned; /* since last reclaim */
350 unsigned long flags; /* zone flags, see below */
352 /* Zone statistics */
353 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
356 * prev_priority holds the scanning priority for this zone. It is
357 * defined as the scanning priority at which we achieved our reclaim
358 * target at the previous try_to_free_pages() or balance_pgdat()
359 * invokation.
361 * We use prev_priority as a measure of how much stress page reclaim is
362 * under - it drives the swappiness decision: whether to unmap mapped
363 * pages.
365 * Access to both this field is quite racy even on uniprocessor. But
366 * it is expected to average out OK.
368 int prev_priority;
371 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
372 * this zone's LRU. Maintained by the pageout code.
374 unsigned int inactive_ratio;
377 ZONE_PADDING(_pad2_)
378 /* Rarely used or read-mostly fields */
381 * wait_table -- the array holding the hash table
382 * wait_table_hash_nr_entries -- the size of the hash table array
383 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
385 * The purpose of all these is to keep track of the people
386 * waiting for a page to become available and make them
387 * runnable again when possible. The trouble is that this
388 * consumes a lot of space, especially when so few things
389 * wait on pages at a given time. So instead of using
390 * per-page waitqueues, we use a waitqueue hash table.
392 * The bucket discipline is to sleep on the same queue when
393 * colliding and wake all in that wait queue when removing.
394 * When something wakes, it must check to be sure its page is
395 * truly available, a la thundering herd. The cost of a
396 * collision is great, but given the expected load of the
397 * table, they should be so rare as to be outweighed by the
398 * benefits from the saved space.
400 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
401 * primary users of these fields, and in mm/page_alloc.c
402 * free_area_init_core() performs the initialization of them.
404 wait_queue_head_t * wait_table;
405 unsigned long wait_table_hash_nr_entries;
406 unsigned long wait_table_bits;
409 * Discontig memory support fields.
411 struct pglist_data *zone_pgdat;
412 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
413 unsigned long zone_start_pfn;
416 * zone_start_pfn, spanned_pages and present_pages are all
417 * protected by span_seqlock. It is a seqlock because it has
418 * to be read outside of zone->lock, and it is done in the main
419 * allocator path. But, it is written quite infrequently.
421 * The lock is declared along with zone->lock because it is
422 * frequently read in proximity to zone->lock. It's good to
423 * give them a chance of being in the same cacheline.
425 unsigned long spanned_pages; /* total size, including holes */
426 unsigned long present_pages; /* amount of memory (excluding holes) */
429 * rarely used fields:
431 const char *name;
432 } ____cacheline_internodealigned_in_smp;
434 typedef enum {
435 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
436 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
437 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
438 } zone_flags_t;
440 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
442 set_bit(flag, &zone->flags);
445 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
447 return test_and_set_bit(flag, &zone->flags);
450 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
452 clear_bit(flag, &zone->flags);
455 static inline int zone_is_all_unreclaimable(const struct zone *zone)
457 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
460 static inline int zone_is_reclaim_locked(const struct zone *zone)
462 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
465 static inline int zone_is_oom_locked(const struct zone *zone)
467 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
470 #ifdef CONFIG_SMP
471 unsigned long zone_nr_free_pages(struct zone *zone);
472 #else
473 #define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
474 #endif /* CONFIG_SMP */
477 * The "priority" of VM scanning is how much of the queues we will scan in one
478 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
479 * queues ("queue_length >> 12") during an aging round.
481 #define DEF_PRIORITY 12
483 /* Maximum number of zones on a zonelist */
484 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
486 #ifdef CONFIG_NUMA
489 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
490 * allocations to a single node for GFP_THISNODE.
492 * [0] : Zonelist with fallback
493 * [1] : No fallback (GFP_THISNODE)
495 #define MAX_ZONELISTS 2
499 * We cache key information from each zonelist for smaller cache
500 * footprint when scanning for free pages in get_page_from_freelist().
502 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
503 * up short of free memory since the last time (last_fullzone_zap)
504 * we zero'd fullzones.
505 * 2) The array z_to_n[] maps each zone in the zonelist to its node
506 * id, so that we can efficiently evaluate whether that node is
507 * set in the current tasks mems_allowed.
509 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
510 * indexed by a zones offset in the zonelist zones[] array.
512 * The get_page_from_freelist() routine does two scans. During the
513 * first scan, we skip zones whose corresponding bit in 'fullzones'
514 * is set or whose corresponding node in current->mems_allowed (which
515 * comes from cpusets) is not set. During the second scan, we bypass
516 * this zonelist_cache, to ensure we look methodically at each zone.
518 * Once per second, we zero out (zap) fullzones, forcing us to
519 * reconsider nodes that might have regained more free memory.
520 * The field last_full_zap is the time we last zapped fullzones.
522 * This mechanism reduces the amount of time we waste repeatedly
523 * reexaming zones for free memory when they just came up low on
524 * memory momentarilly ago.
526 * The zonelist_cache struct members logically belong in struct
527 * zonelist. However, the mempolicy zonelists constructed for
528 * MPOL_BIND are intentionally variable length (and usually much
529 * shorter). A general purpose mechanism for handling structs with
530 * multiple variable length members is more mechanism than we want
531 * here. We resort to some special case hackery instead.
533 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
534 * part because they are shorter), so we put the fixed length stuff
535 * at the front of the zonelist struct, ending in a variable length
536 * zones[], as is needed by MPOL_BIND.
538 * Then we put the optional zonelist cache on the end of the zonelist
539 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
540 * the fixed length portion at the front of the struct. This pointer
541 * both enables us to find the zonelist cache, and in the case of
542 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
543 * to know that the zonelist cache is not there.
545 * The end result is that struct zonelists come in two flavors:
546 * 1) The full, fixed length version, shown below, and
547 * 2) The custom zonelists for MPOL_BIND.
548 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
550 * Even though there may be multiple CPU cores on a node modifying
551 * fullzones or last_full_zap in the same zonelist_cache at the same
552 * time, we don't lock it. This is just hint data - if it is wrong now
553 * and then, the allocator will still function, perhaps a bit slower.
557 struct zonelist_cache {
558 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
559 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
560 unsigned long last_full_zap; /* when last zap'd (jiffies) */
562 #else
563 #define MAX_ZONELISTS 1
564 struct zonelist_cache;
565 #endif
568 * This struct contains information about a zone in a zonelist. It is stored
569 * here to avoid dereferences into large structures and lookups of tables
571 struct zoneref {
572 struct zone *zone; /* Pointer to actual zone */
573 int zone_idx; /* zone_idx(zoneref->zone) */
577 * One allocation request operates on a zonelist. A zonelist
578 * is a list of zones, the first one is the 'goal' of the
579 * allocation, the other zones are fallback zones, in decreasing
580 * priority.
582 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
583 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
585 * To speed the reading of the zonelist, the zonerefs contain the zone index
586 * of the entry being read. Helper functions to access information given
587 * a struct zoneref are
589 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
590 * zonelist_zone_idx() - Return the index of the zone for an entry
591 * zonelist_node_idx() - Return the index of the node for an entry
593 struct zonelist {
594 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
595 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
596 #ifdef CONFIG_NUMA
597 struct zonelist_cache zlcache; // optional ...
598 #endif
601 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
602 struct node_active_region {
603 unsigned long start_pfn;
604 unsigned long end_pfn;
605 int nid;
607 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
609 #ifndef CONFIG_DISCONTIGMEM
610 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
611 extern struct page *mem_map;
612 #endif
615 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
616 * (mostly NUMA machines?) to denote a higher-level memory zone than the
617 * zone denotes.
619 * On NUMA machines, each NUMA node would have a pg_data_t to describe
620 * it's memory layout.
622 * Memory statistics and page replacement data structures are maintained on a
623 * per-zone basis.
625 struct bootmem_data;
626 typedef struct pglist_data {
627 struct zone node_zones[MAX_NR_ZONES];
628 struct zonelist node_zonelists[MAX_ZONELISTS];
629 int nr_zones;
630 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
631 struct page *node_mem_map;
632 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
633 struct page_cgroup *node_page_cgroup;
634 #endif
635 #endif
636 struct bootmem_data *bdata;
637 #ifdef CONFIG_MEMORY_HOTPLUG
639 * Must be held any time you expect node_start_pfn, node_present_pages
640 * or node_spanned_pages stay constant. Holding this will also
641 * guarantee that any pfn_valid() stays that way.
643 * Nests above zone->lock and zone->size_seqlock.
645 spinlock_t node_size_lock;
646 #endif
647 unsigned long node_start_pfn;
648 unsigned long node_present_pages; /* total number of physical pages */
649 unsigned long node_spanned_pages; /* total size of physical page
650 range, including holes */
651 int node_id;
652 wait_queue_head_t kswapd_wait;
653 struct task_struct *kswapd;
654 int kswapd_max_order;
655 } pg_data_t;
657 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
658 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
659 #ifdef CONFIG_FLAT_NODE_MEM_MAP
660 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
661 #else
662 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
663 #endif
664 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
666 #include <linux/memory_hotplug.h>
668 void get_zone_counts(unsigned long *active, unsigned long *inactive,
669 unsigned long *free);
670 void build_all_zonelists(void);
671 void wakeup_kswapd(struct zone *zone, int order);
672 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
673 int classzone_idx, int alloc_flags);
674 enum memmap_context {
675 MEMMAP_EARLY,
676 MEMMAP_HOTPLUG,
678 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
679 unsigned long size,
680 enum memmap_context context);
682 #ifdef CONFIG_HAVE_MEMORY_PRESENT
683 void memory_present(int nid, unsigned long start, unsigned long end);
684 #else
685 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
686 #endif
688 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
689 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
690 #endif
693 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
695 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
697 static inline int populated_zone(struct zone *zone)
699 return (!!zone->present_pages);
702 extern int movable_zone;
704 static inline int zone_movable_is_highmem(void)
706 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
707 return movable_zone == ZONE_HIGHMEM;
708 #else
709 return 0;
710 #endif
713 static inline int is_highmem_idx(enum zone_type idx)
715 #ifdef CONFIG_HIGHMEM
716 return (idx == ZONE_HIGHMEM ||
717 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
718 #else
719 return 0;
720 #endif
723 static inline int is_normal_idx(enum zone_type idx)
725 return (idx == ZONE_NORMAL);
729 * is_highmem - helper function to quickly check if a struct zone is a
730 * highmem zone or not. This is an attempt to keep references
731 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
732 * @zone - pointer to struct zone variable
734 static inline int is_highmem(struct zone *zone)
736 #ifdef CONFIG_HIGHMEM
737 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
738 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
739 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
740 zone_movable_is_highmem());
741 #else
742 return 0;
743 #endif
746 static inline int is_normal(struct zone *zone)
748 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
751 static inline int is_dma32(struct zone *zone)
753 #ifdef CONFIG_ZONE_DMA32
754 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
755 #else
756 return 0;
757 #endif
760 static inline int is_dma(struct zone *zone)
762 #ifdef CONFIG_ZONE_DMA
763 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
764 #else
765 return 0;
766 #endif
769 /* These two functions are used to setup the per zone pages min values */
770 struct ctl_table;
771 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
772 void __user *, size_t *, loff_t *);
773 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
774 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
775 void __user *, size_t *, loff_t *);
776 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
777 void __user *, size_t *, loff_t *);
778 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
779 void __user *, size_t *, loff_t *);
780 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
781 void __user *, size_t *, loff_t *);
783 extern int numa_zonelist_order_handler(struct ctl_table *, int,
784 void __user *, size_t *, loff_t *);
785 extern char numa_zonelist_order[];
786 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
788 #ifndef CONFIG_NEED_MULTIPLE_NODES
790 extern struct pglist_data contig_page_data;
791 #define NODE_DATA(nid) (&contig_page_data)
792 #define NODE_MEM_MAP(nid) mem_map
794 #else /* CONFIG_NEED_MULTIPLE_NODES */
796 #include <asm/mmzone.h>
798 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
800 extern struct pglist_data *first_online_pgdat(void);
801 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
802 extern struct zone *next_zone(struct zone *zone);
805 * for_each_online_pgdat - helper macro to iterate over all online nodes
806 * @pgdat - pointer to a pg_data_t variable
808 #define for_each_online_pgdat(pgdat) \
809 for (pgdat = first_online_pgdat(); \
810 pgdat; \
811 pgdat = next_online_pgdat(pgdat))
813 * for_each_zone - helper macro to iterate over all memory zones
814 * @zone - pointer to struct zone variable
816 * The user only needs to declare the zone variable, for_each_zone
817 * fills it in.
819 #define for_each_zone(zone) \
820 for (zone = (first_online_pgdat())->node_zones; \
821 zone; \
822 zone = next_zone(zone))
824 #define for_each_populated_zone(zone) \
825 for (zone = (first_online_pgdat())->node_zones; \
826 zone; \
827 zone = next_zone(zone)) \
828 if (!populated_zone(zone)) \
829 ; /* do nothing */ \
830 else
832 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
834 return zoneref->zone;
837 static inline int zonelist_zone_idx(struct zoneref *zoneref)
839 return zoneref->zone_idx;
842 static inline int zonelist_node_idx(struct zoneref *zoneref)
844 #ifdef CONFIG_NUMA
845 /* zone_to_nid not available in this context */
846 return zoneref->zone->node;
847 #else
848 return 0;
849 #endif /* CONFIG_NUMA */
853 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
854 * @z - The cursor used as a starting point for the search
855 * @highest_zoneidx - The zone index of the highest zone to return
856 * @nodes - An optional nodemask to filter the zonelist with
857 * @zone - The first suitable zone found is returned via this parameter
859 * This function returns the next zone at or below a given zone index that is
860 * within the allowed nodemask using a cursor as the starting point for the
861 * search. The zoneref returned is a cursor that represents the current zone
862 * being examined. It should be advanced by one before calling
863 * next_zones_zonelist again.
865 struct zoneref *next_zones_zonelist(struct zoneref *z,
866 enum zone_type highest_zoneidx,
867 nodemask_t *nodes,
868 struct zone **zone);
871 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
872 * @zonelist - The zonelist to search for a suitable zone
873 * @highest_zoneidx - The zone index of the highest zone to return
874 * @nodes - An optional nodemask to filter the zonelist with
875 * @zone - The first suitable zone found is returned via this parameter
877 * This function returns the first zone at or below a given zone index that is
878 * within the allowed nodemask. The zoneref returned is a cursor that can be
879 * used to iterate the zonelist with next_zones_zonelist by advancing it by
880 * one before calling.
882 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
883 enum zone_type highest_zoneidx,
884 nodemask_t *nodes,
885 struct zone **zone)
887 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
888 zone);
892 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
893 * @zone - The current zone in the iterator
894 * @z - The current pointer within zonelist->zones being iterated
895 * @zlist - The zonelist being iterated
896 * @highidx - The zone index of the highest zone to return
897 * @nodemask - Nodemask allowed by the allocator
899 * This iterator iterates though all zones at or below a given zone index and
900 * within a given nodemask
902 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
903 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
904 zone; \
905 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
908 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
909 * @zone - The current zone in the iterator
910 * @z - The current pointer within zonelist->zones being iterated
911 * @zlist - The zonelist being iterated
912 * @highidx - The zone index of the highest zone to return
914 * This iterator iterates though all zones at or below a given zone index.
916 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
917 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
919 #ifdef CONFIG_SPARSEMEM
920 #include <asm/sparsemem.h>
921 #endif
923 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
924 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
925 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
927 return 0;
929 #endif
931 #ifdef CONFIG_FLATMEM
932 #define pfn_to_nid(pfn) (0)
933 #endif
935 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
936 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
938 #ifdef CONFIG_SPARSEMEM
941 * SECTION_SHIFT #bits space required to store a section #
943 * PA_SECTION_SHIFT physical address to/from section number
944 * PFN_SECTION_SHIFT pfn to/from section number
946 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
948 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
949 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
951 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
953 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
954 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
956 #define SECTION_BLOCKFLAGS_BITS \
957 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
959 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
960 #error Allocator MAX_ORDER exceeds SECTION_SIZE
961 #endif
963 struct page;
964 struct page_cgroup;
965 struct mem_section {
967 * This is, logically, a pointer to an array of struct
968 * pages. However, it is stored with some other magic.
969 * (see sparse.c::sparse_init_one_section())
971 * Additionally during early boot we encode node id of
972 * the location of the section here to guide allocation.
973 * (see sparse.c::memory_present())
975 * Making it a UL at least makes someone do a cast
976 * before using it wrong.
978 unsigned long section_mem_map;
980 /* See declaration of similar field in struct zone */
981 unsigned long *pageblock_flags;
982 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
984 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
985 * section. (see memcontrol.h/page_cgroup.h about this.)
987 struct page_cgroup *page_cgroup;
988 unsigned long pad;
989 #endif
992 #ifdef CONFIG_SPARSEMEM_EXTREME
993 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
994 #else
995 #define SECTIONS_PER_ROOT 1
996 #endif
998 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
999 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
1000 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1002 #ifdef CONFIG_SPARSEMEM_EXTREME
1003 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1004 #else
1005 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1006 #endif
1008 static inline struct mem_section *__nr_to_section(unsigned long nr)
1010 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1011 return NULL;
1012 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1014 extern int __section_nr(struct mem_section* ms);
1015 extern unsigned long usemap_size(void);
1018 * We use the lower bits of the mem_map pointer to store
1019 * a little bit of information. There should be at least
1020 * 3 bits here due to 32-bit alignment.
1022 #define SECTION_MARKED_PRESENT (1UL<<0)
1023 #define SECTION_HAS_MEM_MAP (1UL<<1)
1024 #define SECTION_MAP_LAST_BIT (1UL<<2)
1025 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1026 #define SECTION_NID_SHIFT 2
1028 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1030 unsigned long map = section->section_mem_map;
1031 map &= SECTION_MAP_MASK;
1032 return (struct page *)map;
1035 static inline int present_section(struct mem_section *section)
1037 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1040 static inline int present_section_nr(unsigned long nr)
1042 return present_section(__nr_to_section(nr));
1045 static inline int valid_section(struct mem_section *section)
1047 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1050 static inline int valid_section_nr(unsigned long nr)
1052 return valid_section(__nr_to_section(nr));
1055 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1057 return __nr_to_section(pfn_to_section_nr(pfn));
1060 static inline int pfn_valid(unsigned long pfn)
1062 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1063 return 0;
1064 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1067 static inline int pfn_present(unsigned long pfn)
1069 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1070 return 0;
1071 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1075 * These are _only_ used during initialisation, therefore they
1076 * can use __initdata ... They could have names to indicate
1077 * this restriction.
1079 #ifdef CONFIG_NUMA
1080 #define pfn_to_nid(pfn) \
1081 ({ \
1082 unsigned long __pfn_to_nid_pfn = (pfn); \
1083 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1085 #else
1086 #define pfn_to_nid(pfn) (0)
1087 #endif
1089 #define early_pfn_valid(pfn) pfn_valid(pfn)
1090 void sparse_init(void);
1091 #else
1092 #define sparse_init() do {} while (0)
1093 #define sparse_index_init(_sec, _nid) do {} while (0)
1094 #endif /* CONFIG_SPARSEMEM */
1096 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1097 bool early_pfn_in_nid(unsigned long pfn, int nid);
1098 #else
1099 #define early_pfn_in_nid(pfn, nid) (1)
1100 #endif
1102 #ifndef early_pfn_valid
1103 #define early_pfn_valid(pfn) (1)
1104 #endif
1106 void memory_present(int nid, unsigned long start, unsigned long end);
1107 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1110 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1111 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1112 * pfn_valid_within() should be used in this case; we optimise this away
1113 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1115 #ifdef CONFIG_HOLES_IN_ZONE
1116 #define pfn_valid_within(pfn) pfn_valid(pfn)
1117 #else
1118 #define pfn_valid_within(pfn) (1)
1119 #endif
1121 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1123 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1124 * associated with it or not. In FLATMEM, it is expected that holes always
1125 * have valid memmap as long as there is valid PFNs either side of the hole.
1126 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1127 * entire section.
1129 * However, an ARM, and maybe other embedded architectures in the future
1130 * free memmap backing holes to save memory on the assumption the memmap is
1131 * never used. The page_zone linkages are then broken even though pfn_valid()
1132 * returns true. A walker of the full memmap must then do this additional
1133 * check to ensure the memmap they are looking at is sane by making sure
1134 * the zone and PFN linkages are still valid. This is expensive, but walkers
1135 * of the full memmap are extremely rare.
1137 int memmap_valid_within(unsigned long pfn,
1138 struct page *page, struct zone *zone);
1139 #else
1140 static inline int memmap_valid_within(unsigned long pfn,
1141 struct page *page, struct zone *zone)
1143 return 1;
1145 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1147 #endif /* !__GENERATING_BOUNDS.H */
1148 #endif /* !__ASSEMBLY__ */
1149 #endif /* _LINUX_MMZONE_H */