iwlwifi: fix skb usage after free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / strip / strip.c
blob698aade79d40a3eb921415d0e4befef4b9a3217c
1 /*
2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
17 * Version: @(#)strip.c 1.3 July 1997
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
64 * v1.3 July 1997 (SC)
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
71 #ifdef MODULE
72 static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
73 #else
74 static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
75 #endif
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
81 /************************************************************************/
82 /* Header files */
84 #include <linux/kernel.h>
85 #include <linux/module.h>
86 #include <linux/init.h>
87 #include <linux/bitops.h>
88 #include <asm/system.h>
89 #include <asm/uaccess.h>
91 # include <linux/ctype.h>
92 #include <linux/string.h>
93 #include <linux/mm.h>
94 #include <linux/interrupt.h>
95 #include <linux/in.h>
96 #include <linux/tty.h>
97 #include <linux/errno.h>
98 #include <linux/netdevice.h>
99 #include <linux/inetdevice.h>
100 #include <linux/etherdevice.h>
101 #include <linux/skbuff.h>
102 #include <linux/if_arp.h>
103 #include <linux/if_strip.h>
104 #include <linux/proc_fs.h>
105 #include <linux/seq_file.h>
106 #include <linux/serial.h>
107 #include <linux/serialP.h>
108 #include <linux/rcupdate.h>
109 #include <linux/compat.h>
110 #include <net/arp.h>
111 #include <net/net_namespace.h>
113 #include <linux/ip.h>
114 #include <linux/tcp.h>
115 #include <linux/time.h>
116 #include <linux/jiffies.h>
118 /************************************************************************/
119 /* Useful structures and definitions */
122 * A MetricomKey identifies the protocol being carried inside a Metricom
123 * Starmode packet.
126 typedef union {
127 __u8 c[4];
128 __u32 l;
129 } MetricomKey;
132 * An IP address can be viewed as four bytes in memory (which is what it is) or as
133 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
136 typedef union {
137 __u8 b[4];
138 __u32 l;
139 } IPaddr;
142 * A MetricomAddressString is used to hold a printable representation of
143 * a Metricom address.
146 typedef struct {
147 __u8 c[24];
148 } MetricomAddressString;
150 /* Encapsulation can expand packet of size x to 65/64x + 1
151 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
152 * 1 1 1-18 1 4 ? 1
153 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
154 * We allow 31 bytes for the stars, the key, the address and the <CR>s
156 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
159 * A STRIP_Header is never really sent over the radio, but making a dummy
160 * header for internal use within the kernel that looks like an Ethernet
161 * header makes certain other software happier. For example, tcpdump
162 * already understands Ethernet headers.
165 typedef struct {
166 MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
167 MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
168 unsigned short protocol; /* The protocol type, using Ethernet codes */
169 } STRIP_Header;
171 typedef struct {
172 char c[60];
173 } MetricomNode;
175 #define NODE_TABLE_SIZE 32
176 typedef struct {
177 struct timeval timestamp;
178 int num_nodes;
179 MetricomNode node[NODE_TABLE_SIZE];
180 } MetricomNodeTable;
182 enum { FALSE = 0, TRUE = 1 };
185 * Holds the radio's firmware version.
187 typedef struct {
188 char c[50];
189 } FirmwareVersion;
192 * Holds the radio's serial number.
194 typedef struct {
195 char c[18];
196 } SerialNumber;
199 * Holds the radio's battery voltage.
201 typedef struct {
202 char c[11];
203 } BatteryVoltage;
205 typedef struct {
206 char c[8];
207 } char8;
209 enum {
210 NoStructure = 0, /* Really old firmware */
211 StructuredMessages = 1, /* Parsable AT response msgs */
212 ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
215 struct strip {
216 int magic;
218 * These are pointers to the malloc()ed frame buffers.
221 unsigned char *rx_buff; /* buffer for received IP packet */
222 unsigned char *sx_buff; /* buffer for received serial data */
223 int sx_count; /* received serial data counter */
224 int sx_size; /* Serial buffer size */
225 unsigned char *tx_buff; /* transmitter buffer */
226 unsigned char *tx_head; /* pointer to next byte to XMIT */
227 int tx_left; /* bytes left in XMIT queue */
228 int tx_size; /* Serial buffer size */
231 * STRIP interface statistics.
234 unsigned long rx_packets; /* inbound frames counter */
235 unsigned long tx_packets; /* outbound frames counter */
236 unsigned long rx_errors; /* Parity, etc. errors */
237 unsigned long tx_errors; /* Planned stuff */
238 unsigned long rx_dropped; /* No memory for skb */
239 unsigned long tx_dropped; /* When MTU change */
240 unsigned long rx_over_errors; /* Frame bigger than STRIP buf. */
242 unsigned long pps_timer; /* Timer to determine pps */
243 unsigned long rx_pps_count; /* Counter to determine pps */
244 unsigned long tx_pps_count; /* Counter to determine pps */
245 unsigned long sx_pps_count; /* Counter to determine pps */
246 unsigned long rx_average_pps; /* rx packets per second * 8 */
247 unsigned long tx_average_pps; /* tx packets per second * 8 */
248 unsigned long sx_average_pps; /* sent packets per second * 8 */
250 #ifdef EXT_COUNTERS
251 unsigned long rx_bytes; /* total received bytes */
252 unsigned long tx_bytes; /* total received bytes */
253 unsigned long rx_rbytes; /* bytes thru radio i/f */
254 unsigned long tx_rbytes; /* bytes thru radio i/f */
255 unsigned long rx_sbytes; /* tot bytes thru serial i/f */
256 unsigned long tx_sbytes; /* tot bytes thru serial i/f */
257 unsigned long rx_ebytes; /* tot stat/err bytes */
258 unsigned long tx_ebytes; /* tot stat/err bytes */
259 #endif
262 * Internal variables.
265 struct list_head list; /* Linked list of devices */
267 int discard; /* Set if serial error */
268 int working; /* Is radio working correctly? */
269 int firmware_level; /* Message structuring level */
270 int next_command; /* Next periodic command */
271 unsigned int user_baud; /* The user-selected baud rate */
272 int mtu; /* Our mtu (to spot changes!) */
273 long watchdog_doprobe; /* Next time to test the radio */
274 long watchdog_doreset; /* Time to do next reset */
275 long gratuitous_arp; /* Time to send next ARP refresh */
276 long arp_interval; /* Next ARP interval */
277 struct timer_list idle_timer; /* For periodic wakeup calls */
278 MetricomAddress true_dev_addr; /* True address of radio */
279 int manual_dev_addr; /* Hack: See note below */
281 FirmwareVersion firmware_version; /* The radio's firmware version */
282 SerialNumber serial_number; /* The radio's serial number */
283 BatteryVoltage battery_voltage; /* The radio's battery voltage */
286 * Other useful structures.
289 struct tty_struct *tty; /* ptr to TTY structure */
290 struct net_device *dev; /* Our device structure */
293 * Neighbour radio records
296 MetricomNodeTable portables;
297 MetricomNodeTable poletops;
301 * Note: manual_dev_addr hack
303 * It is not possible to change the hardware address of a Metricom radio,
304 * or to send packets with a user-specified hardware source address, thus
305 * trying to manually set a hardware source address is a questionable
306 * thing to do. However, if the user *does* manually set the hardware
307 * source address of a STRIP interface, then the kernel will believe it,
308 * and use it in certain places. For example, the hardware address listed
309 * by ifconfig will be the manual address, not the true one.
310 * (Both addresses are listed in /proc/net/strip.)
311 * Also, ARP packets will be sent out giving the user-specified address as
312 * the source address, not the real address. This is dangerous, because
313 * it means you won't receive any replies -- the ARP replies will go to
314 * the specified address, which will be some other radio. The case where
315 * this is useful is when that other radio is also connected to the same
316 * machine. This allows you to connect a pair of radios to one machine,
317 * and to use one exclusively for inbound traffic, and the other
318 * exclusively for outbound traffic. Pretty neat, huh?
320 * Here's the full procedure to set this up:
322 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
323 * and st1 for incoming packets
325 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
326 * which is the real hardware address of st1 (inbound radio).
327 * Now when it sends out packets, it will masquerade as st1, and
328 * replies will be sent to that radio, which is exactly what we want.
330 * 3. Set the route table entry ("route add default ..." or
331 * "route add -net ...", as appropriate) to send packets via the st0
332 * interface (outbound radio). Do not add any route which sends packets
333 * out via the st1 interface -- that radio is for inbound traffic only.
335 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
336 * This tells the STRIP driver to "shut down" that interface and not
337 * send any packets through it. In particular, it stops sending the
338 * periodic gratuitous ARP packets that a STRIP interface normally sends.
339 * Also, when packets arrive on that interface, it will search the
340 * interface list to see if there is another interface who's manual
341 * hardware address matches its own real address (i.e. st0 in this
342 * example) and if so it will transfer ownership of the skbuff to
343 * that interface, so that it looks to the kernel as if the packet
344 * arrived on that interface. This is necessary because when the
345 * kernel sends an ARP packet on st0, it expects to get a reply on
346 * st0, and if it sees the reply come from st1 then it will ignore
347 * it (to be accurate, it puts the entry in the ARP table, but
348 * labelled in such a way that st0 can't use it).
350 * Thanks to Petros Maniatis for coming up with the idea of splitting
351 * inbound and outbound traffic between two interfaces, which turned
352 * out to be really easy to implement, even if it is a bit of a hack.
354 * Having set a manual address on an interface, you can restore it
355 * to automatic operation (where the address is automatically kept
356 * consistent with the real address of the radio) by setting a manual
357 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
358 * This 'turns off' manual override mode for the device address.
360 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
361 * radio addresses the packets were sent and received from, so that you
362 * can see what is really going on with packets, and which interfaces
363 * they are really going through.
367 /************************************************************************/
368 /* Constants */
371 * CommandString1 works on all radios
372 * Other CommandStrings are only used with firmware that provides structured responses.
374 * ats319=1 Enables Info message for node additions and deletions
375 * ats319=2 Enables Info message for a new best node
376 * ats319=4 Enables checksums
377 * ats319=8 Enables ACK messages
380 static const int MaxCommandStringLength = 32;
381 static const int CompatibilityCommand = 1;
383 static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
384 static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
385 static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
386 static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
387 static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
388 static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
389 typedef struct {
390 const char *string;
391 long length;
392 } StringDescriptor;
394 static const StringDescriptor CommandString[] = {
395 {CommandString0, sizeof(CommandString0) - 1},
396 {CommandString1, sizeof(CommandString1) - 1},
397 {CommandString2, sizeof(CommandString2) - 1},
398 {CommandString3, sizeof(CommandString3) - 1},
399 {CommandString4, sizeof(CommandString4) - 1},
400 {CommandString5, sizeof(CommandString5) - 1}
403 #define GOT_ALL_RADIO_INFO(S) \
404 ((S)->firmware_version.c[0] && \
405 (S)->battery_voltage.c[0] && \
406 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
408 static const char hextable[16] = "0123456789ABCDEF";
410 static const MetricomAddress zero_address;
411 static const MetricomAddress broadcast_address =
412 { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
414 static const MetricomKey SIP0Key = { "SIP0" };
415 static const MetricomKey ARP0Key = { "ARP0" };
416 static const MetricomKey ATR_Key = { "ATR " };
417 static const MetricomKey ACK_Key = { "ACK_" };
418 static const MetricomKey INF_Key = { "INF_" };
419 static const MetricomKey ERR_Key = { "ERR_" };
421 static const long MaxARPInterval = 60 * HZ; /* One minute */
424 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
425 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
426 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
427 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
428 * long, including IP header, UDP header, and NFS header. Setting the STRIP
429 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
431 static const unsigned short MAX_SEND_MTU = 1152;
432 static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
433 static const unsigned short DEFAULT_STRIP_MTU = 1152;
434 static const int STRIP_MAGIC = 0x5303;
435 static const long LongTime = 0x7FFFFFFF;
437 /************************************************************************/
438 /* Global variables */
440 static LIST_HEAD(strip_list);
441 static DEFINE_SPINLOCK(strip_lock);
443 /************************************************************************/
444 /* Macros */
446 /* Returns TRUE if text T begins with prefix P */
447 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
449 /* Returns TRUE if text T of length L is equal to string S */
450 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
452 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
453 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
454 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
456 #define READHEX16(X) ((__u16)(READHEX(X)))
458 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
460 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
462 #define JIFFIE_TO_SEC(X) ((X) / HZ)
465 /************************************************************************/
466 /* Utility routines */
468 static int arp_query(unsigned char *haddr, u32 paddr,
469 struct net_device *dev)
471 struct neighbour *neighbor_entry;
472 int ret = 0;
474 neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
476 if (neighbor_entry != NULL) {
477 neighbor_entry->used = jiffies;
478 if (neighbor_entry->nud_state & NUD_VALID) {
479 memcpy(haddr, neighbor_entry->ha, dev->addr_len);
480 ret = 1;
482 neigh_release(neighbor_entry);
484 return ret;
487 static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
488 __u8 * end)
490 static const int MAX_DumpData = 80;
491 __u8 pkt_text[MAX_DumpData], *p = pkt_text;
493 *p++ = '\"';
495 while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
496 if (*ptr == '\\') {
497 *p++ = '\\';
498 *p++ = '\\';
499 } else {
500 if (*ptr >= 32 && *ptr <= 126) {
501 *p++ = *ptr;
502 } else {
503 sprintf(p, "\\%02X", *ptr);
504 p += 3;
507 ptr++;
510 if (ptr == end)
511 *p++ = '\"';
512 *p++ = 0;
514 printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
518 /************************************************************************/
519 /* Byte stuffing/unstuffing routines */
521 /* Stuffing scheme:
522 * 00 Unused (reserved character)
523 * 01-3F Run of 2-64 different characters
524 * 40-7F Run of 1-64 different characters plus a single zero at the end
525 * 80-BF Run of 1-64 of the same character
526 * C0-FF Run of 1-64 zeroes (ASCII 0)
529 typedef enum {
530 Stuff_Diff = 0x00,
531 Stuff_DiffZero = 0x40,
532 Stuff_Same = 0x80,
533 Stuff_Zero = 0xC0,
534 Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
536 Stuff_CodeMask = 0xC0,
537 Stuff_CountMask = 0x3F,
538 Stuff_MaxCount = 0x3F,
539 Stuff_Magic = 0x0D /* The value we are eliminating */
540 } StuffingCode;
542 /* StuffData encodes the data starting at "src" for "length" bytes.
543 * It writes it to the buffer pointed to by "dst" (which must be at least
544 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
545 * larger than the input for pathological input, but will usually be smaller.
546 * StuffData returns the new value of the dst pointer as its result.
547 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
548 * between calls, allowing an encoded packet to be incrementally built up
549 * from small parts. On the first call, the "__u8 *" pointed to should be
550 * initialized to NULL; between subsequent calls the calling routine should
551 * leave the value alone and simply pass it back unchanged so that the
552 * encoder can recover its current state.
555 #define StuffData_FinishBlock(X) \
556 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
558 static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
559 __u8 ** code_ptr_ptr)
561 __u8 *end = src + length;
562 __u8 *code_ptr = *code_ptr_ptr;
563 __u8 code = Stuff_NoCode, count = 0;
565 if (!length)
566 return (dst);
568 if (code_ptr) {
570 * Recover state from last call, if applicable
572 code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
573 count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
576 while (src < end) {
577 switch (code) {
578 /* Stuff_NoCode: If no current code, select one */
579 case Stuff_NoCode:
580 /* Record where we're going to put this code */
581 code_ptr = dst++;
582 count = 0; /* Reset the count (zero means one instance) */
583 /* Tentatively start a new block */
584 if (*src == 0) {
585 code = Stuff_Zero;
586 src++;
587 } else {
588 code = Stuff_Same;
589 *dst++ = *src++ ^ Stuff_Magic;
591 /* Note: We optimistically assume run of same -- */
592 /* which will be fixed later in Stuff_Same */
593 /* if it turns out not to be true. */
594 break;
596 /* Stuff_Zero: We already have at least one zero encoded */
597 case Stuff_Zero:
598 /* If another zero, count it, else finish this code block */
599 if (*src == 0) {
600 count++;
601 src++;
602 } else {
603 StuffData_FinishBlock(Stuff_Zero + count);
605 break;
607 /* Stuff_Same: We already have at least one byte encoded */
608 case Stuff_Same:
609 /* If another one the same, count it */
610 if ((*src ^ Stuff_Magic) == code_ptr[1]) {
611 count++;
612 src++;
613 break;
615 /* else, this byte does not match this block. */
616 /* If we already have two or more bytes encoded, finish this code block */
617 if (count) {
618 StuffData_FinishBlock(Stuff_Same + count);
619 break;
621 /* else, we only have one so far, so switch to Stuff_Diff code */
622 code = Stuff_Diff;
623 /* and fall through to Stuff_Diff case below
624 * Note cunning cleverness here: case Stuff_Diff compares
625 * the current character with the previous two to see if it
626 * has a run of three the same. Won't this be an error if
627 * there aren't two previous characters stored to compare with?
628 * No. Because we know the current character is *not* the same
629 * as the previous one, the first test below will necessarily
630 * fail and the send half of the "if" won't be executed.
633 /* Stuff_Diff: We have at least two *different* bytes encoded */
634 case Stuff_Diff:
635 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
636 if (*src == 0) {
637 StuffData_FinishBlock(Stuff_DiffZero +
638 count);
640 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
641 else if ((*src ^ Stuff_Magic) == dst[-1]
642 && dst[-1] == dst[-2]) {
643 /* Back off the last two characters we encoded */
644 code += count - 2;
645 /* Note: "Stuff_Diff + 0" is an illegal code */
646 if (code == Stuff_Diff + 0) {
647 code = Stuff_Same + 0;
649 StuffData_FinishBlock(code);
650 code_ptr = dst - 2;
651 /* dst[-1] already holds the correct value */
652 count = 2; /* 2 means three bytes encoded */
653 code = Stuff_Same;
655 /* else, another different byte, so add it to the block */
656 else {
657 *dst++ = *src ^ Stuff_Magic;
658 count++;
660 src++; /* Consume the byte */
661 break;
663 if (count == Stuff_MaxCount) {
664 StuffData_FinishBlock(code + count);
667 if (code == Stuff_NoCode) {
668 *code_ptr_ptr = NULL;
669 } else {
670 *code_ptr_ptr = code_ptr;
671 StuffData_FinishBlock(code + count);
673 return (dst);
677 * UnStuffData decodes the data at "src", up to (but not including) "end".
678 * It writes the decoded data into the buffer pointed to by "dst", up to a
679 * maximum of "dst_length", and returns the new value of "src" so that a
680 * follow-on call can read more data, continuing from where the first left off.
682 * There are three types of results:
683 * 1. The source data runs out before extracting "dst_length" bytes:
684 * UnStuffData returns NULL to indicate failure.
685 * 2. The source data produces exactly "dst_length" bytes:
686 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
687 * 3. "dst_length" bytes are extracted, with more remaining.
688 * UnStuffData returns new_src < end to indicate that there are more bytes
689 * to be read.
691 * Note: The decoding may be destructive, in that it may alter the source
692 * data in the process of decoding it (this is necessary to allow a follow-on
693 * call to resume correctly).
696 static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
697 __u32 dst_length)
699 __u8 *dst_end = dst + dst_length;
700 /* Sanity check */
701 if (!src || !end || !dst || !dst_length)
702 return (NULL);
703 while (src < end && dst < dst_end) {
704 int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
705 switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
706 case Stuff_Diff:
707 if (src + 1 + count >= end)
708 return (NULL);
709 do {
710 *dst++ = *++src ^ Stuff_Magic;
712 while (--count >= 0 && dst < dst_end);
713 if (count < 0)
714 src += 1;
715 else {
716 if (count == 0)
717 *src = Stuff_Same ^ Stuff_Magic;
718 else
719 *src =
720 (Stuff_Diff +
721 count) ^ Stuff_Magic;
723 break;
724 case Stuff_DiffZero:
725 if (src + 1 + count >= end)
726 return (NULL);
727 do {
728 *dst++ = *++src ^ Stuff_Magic;
730 while (--count >= 0 && dst < dst_end);
731 if (count < 0)
732 *src = Stuff_Zero ^ Stuff_Magic;
733 else
734 *src =
735 (Stuff_DiffZero + count) ^ Stuff_Magic;
736 break;
737 case Stuff_Same:
738 if (src + 1 >= end)
739 return (NULL);
740 do {
741 *dst++ = src[1] ^ Stuff_Magic;
743 while (--count >= 0 && dst < dst_end);
744 if (count < 0)
745 src += 2;
746 else
747 *src = (Stuff_Same + count) ^ Stuff_Magic;
748 break;
749 case Stuff_Zero:
750 do {
751 *dst++ = 0;
753 while (--count >= 0 && dst < dst_end);
754 if (count < 0)
755 src += 1;
756 else
757 *src = (Stuff_Zero + count) ^ Stuff_Magic;
758 break;
761 if (dst < dst_end)
762 return (NULL);
763 else
764 return (src);
768 /************************************************************************/
769 /* General routines for STRIP */
772 * set_baud sets the baud rate to the rate defined by baudcode
774 static void set_baud(struct tty_struct *tty, speed_t baudrate)
776 struct ktermios old_termios;
778 mutex_lock(&tty->termios_mutex);
779 old_termios =*(tty->termios);
780 tty_encode_baud_rate(tty, baudrate, baudrate);
781 tty->ops->set_termios(tty, &old_termios);
782 mutex_unlock(&tty->termios_mutex);
786 * Convert a string to a Metricom Address.
789 #define IS_RADIO_ADDRESS(p) ( \
790 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
791 (p)[4] == '-' && \
792 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
794 static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
796 if (!IS_RADIO_ADDRESS(p))
797 return (1);
798 addr->c[0] = 0;
799 addr->c[1] = 0;
800 addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
801 addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
802 addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
803 addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
804 return (0);
808 * Convert a Metricom Address to a string.
811 static __u8 *radio_address_to_string(const MetricomAddress * addr,
812 MetricomAddressString * p)
814 sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
815 addr->c[4], addr->c[5]);
816 return (p->c);
820 * Note: Must make sure sx_size is big enough to receive a stuffed
821 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
822 * big enough to receive a large radio neighbour list (currently 4K).
825 static int allocate_buffers(struct strip *strip_info, int mtu)
827 struct net_device *dev = strip_info->dev;
828 int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
829 int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
830 __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
831 __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
832 __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
833 if (r && s && t) {
834 strip_info->rx_buff = r;
835 strip_info->sx_buff = s;
836 strip_info->tx_buff = t;
837 strip_info->sx_size = sx_size;
838 strip_info->tx_size = tx_size;
839 strip_info->mtu = dev->mtu = mtu;
840 return (1);
842 kfree(r);
843 kfree(s);
844 kfree(t);
845 return (0);
849 * MTU has been changed by the IP layer.
850 * We could be in
851 * an upcall from the tty driver, or in an ip packet queue.
853 static int strip_change_mtu(struct net_device *dev, int new_mtu)
855 struct strip *strip_info = netdev_priv(dev);
856 int old_mtu = strip_info->mtu;
857 unsigned char *orbuff = strip_info->rx_buff;
858 unsigned char *osbuff = strip_info->sx_buff;
859 unsigned char *otbuff = strip_info->tx_buff;
861 if (new_mtu > MAX_SEND_MTU) {
862 printk(KERN_ERR
863 "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
864 strip_info->dev->name, MAX_SEND_MTU);
865 return -EINVAL;
868 spin_lock_bh(&strip_lock);
869 if (!allocate_buffers(strip_info, new_mtu)) {
870 printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
871 strip_info->dev->name);
872 spin_unlock_bh(&strip_lock);
873 return -ENOMEM;
876 if (strip_info->sx_count) {
877 if (strip_info->sx_count <= strip_info->sx_size)
878 memcpy(strip_info->sx_buff, osbuff,
879 strip_info->sx_count);
880 else {
881 strip_info->discard = strip_info->sx_count;
882 strip_info->rx_over_errors++;
886 if (strip_info->tx_left) {
887 if (strip_info->tx_left <= strip_info->tx_size)
888 memcpy(strip_info->tx_buff, strip_info->tx_head,
889 strip_info->tx_left);
890 else {
891 strip_info->tx_left = 0;
892 strip_info->tx_dropped++;
895 strip_info->tx_head = strip_info->tx_buff;
896 spin_unlock_bh(&strip_lock);
898 printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
899 strip_info->dev->name, old_mtu, strip_info->mtu);
901 kfree(orbuff);
902 kfree(osbuff);
903 kfree(otbuff);
904 return 0;
907 static void strip_unlock(struct strip *strip_info)
910 * Set the timer to go off in one second.
912 strip_info->idle_timer.expires = jiffies + 1 * HZ;
913 add_timer(&strip_info->idle_timer);
914 netif_wake_queue(strip_info->dev);
920 * If the time is in the near future, time_delta prints the number of
921 * seconds to go into the buffer and returns the address of the buffer.
922 * If the time is not in the near future, it returns the address of the
923 * string "Not scheduled" The buffer must be long enough to contain the
924 * ascii representation of the number plus 9 charactes for the " seconds"
925 * and the null character.
927 #ifdef CONFIG_PROC_FS
928 static char *time_delta(char buffer[], long time)
930 time -= jiffies;
931 if (time > LongTime / 2)
932 return ("Not scheduled");
933 if (time < 0)
934 time = 0; /* Don't print negative times */
935 sprintf(buffer, "%ld seconds", time / HZ);
936 return (buffer);
939 /* get Nth element of the linked list */
940 static struct strip *strip_get_idx(loff_t pos)
942 struct strip *str;
943 int i = 0;
945 list_for_each_entry_rcu(str, &strip_list, list) {
946 if (pos == i)
947 return str;
948 ++i;
950 return NULL;
953 static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
954 __acquires(RCU)
956 rcu_read_lock();
957 return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
960 static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
962 struct list_head *l;
963 struct strip *s;
965 ++*pos;
966 if (v == SEQ_START_TOKEN)
967 return strip_get_idx(1);
969 s = v;
970 l = &s->list;
971 list_for_each_continue_rcu(l, &strip_list) {
972 return list_entry(l, struct strip, list);
974 return NULL;
977 static void strip_seq_stop(struct seq_file *seq, void *v)
978 __releases(RCU)
980 rcu_read_unlock();
983 static void strip_seq_neighbours(struct seq_file *seq,
984 const MetricomNodeTable * table,
985 const char *title)
987 /* We wrap this in a do/while loop, so if the table changes */
988 /* while we're reading it, we just go around and try again. */
989 struct timeval t;
991 do {
992 int i;
993 t = table->timestamp;
994 if (table->num_nodes)
995 seq_printf(seq, "\n %s\n", title);
996 for (i = 0; i < table->num_nodes; i++) {
997 MetricomNode node;
999 spin_lock_bh(&strip_lock);
1000 node = table->node[i];
1001 spin_unlock_bh(&strip_lock);
1002 seq_printf(seq, " %s\n", node.c);
1004 } while (table->timestamp.tv_sec != t.tv_sec
1005 || table->timestamp.tv_usec != t.tv_usec);
1009 * This function prints radio status information via the seq_file
1010 * interface. The interface takes care of buffer size and over
1011 * run issues.
1013 * The buffer in seq_file is PAGESIZE (4K)
1014 * so this routine should never print more or it will get truncated.
1015 * With the maximum of 32 portables and 32 poletops
1016 * reported, the routine outputs 3107 bytes into the buffer.
1018 static void strip_seq_status_info(struct seq_file *seq,
1019 const struct strip *strip_info)
1021 char temp[32];
1022 MetricomAddressString addr_string;
1024 /* First, we must copy all of our data to a safe place, */
1025 /* in case a serial interrupt comes in and changes it. */
1026 int tx_left = strip_info->tx_left;
1027 unsigned long rx_average_pps = strip_info->rx_average_pps;
1028 unsigned long tx_average_pps = strip_info->tx_average_pps;
1029 unsigned long sx_average_pps = strip_info->sx_average_pps;
1030 int working = strip_info->working;
1031 int firmware_level = strip_info->firmware_level;
1032 long watchdog_doprobe = strip_info->watchdog_doprobe;
1033 long watchdog_doreset = strip_info->watchdog_doreset;
1034 long gratuitous_arp = strip_info->gratuitous_arp;
1035 long arp_interval = strip_info->arp_interval;
1036 FirmwareVersion firmware_version = strip_info->firmware_version;
1037 SerialNumber serial_number = strip_info->serial_number;
1038 BatteryVoltage battery_voltage = strip_info->battery_voltage;
1039 char *if_name = strip_info->dev->name;
1040 MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1041 MetricomAddress dev_dev_addr =
1042 *(MetricomAddress *) strip_info->dev->dev_addr;
1043 int manual_dev_addr = strip_info->manual_dev_addr;
1044 #ifdef EXT_COUNTERS
1045 unsigned long rx_bytes = strip_info->rx_bytes;
1046 unsigned long tx_bytes = strip_info->tx_bytes;
1047 unsigned long rx_rbytes = strip_info->rx_rbytes;
1048 unsigned long tx_rbytes = strip_info->tx_rbytes;
1049 unsigned long rx_sbytes = strip_info->rx_sbytes;
1050 unsigned long tx_sbytes = strip_info->tx_sbytes;
1051 unsigned long rx_ebytes = strip_info->rx_ebytes;
1052 unsigned long tx_ebytes = strip_info->tx_ebytes;
1053 #endif
1055 seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1056 seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1057 radio_address_to_string(&true_dev_addr, &addr_string);
1058 seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1059 if (manual_dev_addr) {
1060 radio_address_to_string(&dev_dev_addr, &addr_string);
1061 seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1063 seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1064 !firmware_level ? "Should be upgraded" :
1065 firmware_version.c);
1066 if (firmware_level >= ChecksummedMessages)
1067 seq_printf(seq, " (Checksums Enabled)");
1068 seq_printf(seq, "\n");
1069 seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1070 seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1071 seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1072 seq_printf(seq, " Receive packet rate: %ld packets per second\n",
1073 rx_average_pps / 8);
1074 seq_printf(seq, " Transmit packet rate: %ld packets per second\n",
1075 tx_average_pps / 8);
1076 seq_printf(seq, " Sent packet rate: %ld packets per second\n",
1077 sx_average_pps / 8);
1078 seq_printf(seq, " Next watchdog probe:\t%s\n",
1079 time_delta(temp, watchdog_doprobe));
1080 seq_printf(seq, " Next watchdog reset:\t%s\n",
1081 time_delta(temp, watchdog_doreset));
1082 seq_printf(seq, " Next gratuitous ARP:\t");
1084 if (!memcmp
1085 (strip_info->dev->dev_addr, zero_address.c,
1086 sizeof(zero_address)))
1087 seq_printf(seq, "Disabled\n");
1088 else {
1089 seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1090 seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1091 JIFFIE_TO_SEC(arp_interval));
1094 if (working) {
1095 #ifdef EXT_COUNTERS
1096 seq_printf(seq, "\n");
1097 seq_printf(seq,
1098 " Total bytes: \trx:\t%lu\ttx:\t%lu\n",
1099 rx_bytes, tx_bytes);
1100 seq_printf(seq,
1101 " thru radio: \trx:\t%lu\ttx:\t%lu\n",
1102 rx_rbytes, tx_rbytes);
1103 seq_printf(seq,
1104 " thru serial port: \trx:\t%lu\ttx:\t%lu\n",
1105 rx_sbytes, tx_sbytes);
1106 seq_printf(seq,
1107 " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1108 rx_ebytes, tx_ebytes);
1109 #endif
1110 strip_seq_neighbours(seq, &strip_info->poletops,
1111 "Poletops:");
1112 strip_seq_neighbours(seq, &strip_info->portables,
1113 "Portables:");
1118 * This function is exports status information from the STRIP driver through
1119 * the /proc file system.
1121 static int strip_seq_show(struct seq_file *seq, void *v)
1123 if (v == SEQ_START_TOKEN)
1124 seq_printf(seq, "strip_version: %s\n", StripVersion);
1125 else
1126 strip_seq_status_info(seq, (const struct strip *)v);
1127 return 0;
1131 static const struct seq_operations strip_seq_ops = {
1132 .start = strip_seq_start,
1133 .next = strip_seq_next,
1134 .stop = strip_seq_stop,
1135 .show = strip_seq_show,
1138 static int strip_seq_open(struct inode *inode, struct file *file)
1140 return seq_open(file, &strip_seq_ops);
1143 static const struct file_operations strip_seq_fops = {
1144 .owner = THIS_MODULE,
1145 .open = strip_seq_open,
1146 .read = seq_read,
1147 .llseek = seq_lseek,
1148 .release = seq_release,
1150 #endif
1154 /************************************************************************/
1155 /* Sending routines */
1157 static void ResetRadio(struct strip *strip_info)
1159 struct tty_struct *tty = strip_info->tty;
1160 static const char init[] = "ate0q1dt**starmode\r**";
1161 StringDescriptor s = { init, sizeof(init) - 1 };
1164 * If the radio isn't working anymore,
1165 * we should clear the old status information.
1167 if (strip_info->working) {
1168 printk(KERN_INFO "%s: No response: Resetting radio.\n",
1169 strip_info->dev->name);
1170 strip_info->firmware_version.c[0] = '\0';
1171 strip_info->serial_number.c[0] = '\0';
1172 strip_info->battery_voltage.c[0] = '\0';
1173 strip_info->portables.num_nodes = 0;
1174 do_gettimeofday(&strip_info->portables.timestamp);
1175 strip_info->poletops.num_nodes = 0;
1176 do_gettimeofday(&strip_info->poletops.timestamp);
1179 strip_info->pps_timer = jiffies;
1180 strip_info->rx_pps_count = 0;
1181 strip_info->tx_pps_count = 0;
1182 strip_info->sx_pps_count = 0;
1183 strip_info->rx_average_pps = 0;
1184 strip_info->tx_average_pps = 0;
1185 strip_info->sx_average_pps = 0;
1187 /* Mark radio address as unknown */
1188 *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1189 if (!strip_info->manual_dev_addr)
1190 *(MetricomAddress *) strip_info->dev->dev_addr =
1191 zero_address;
1192 strip_info->working = FALSE;
1193 strip_info->firmware_level = NoStructure;
1194 strip_info->next_command = CompatibilityCommand;
1195 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1196 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1198 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1199 if (strip_info->user_baud > 38400) {
1201 * Subtle stuff: Pay attention :-)
1202 * If the serial port is currently at the user's selected (>38.4) rate,
1203 * then we temporarily switch to 19.2 and issue the ATS304 command
1204 * to tell the radio to switch to the user's selected rate.
1205 * If the serial port is not currently at that rate, that means we just
1206 * issued the ATS304 command last time through, so this time we restore
1207 * the user's selected rate and issue the normal starmode reset string.
1209 if (strip_info->user_baud == tty_get_baud_rate(tty)) {
1210 static const char b0[] = "ate0q1s304=57600\r";
1211 static const char b1[] = "ate0q1s304=115200\r";
1212 static const StringDescriptor baudstring[2] =
1213 { {b0, sizeof(b0) - 1}
1214 , {b1, sizeof(b1) - 1}
1216 set_baud(tty, 19200);
1217 if (strip_info->user_baud == 57600)
1218 s = baudstring[0];
1219 else if (strip_info->user_baud == 115200)
1220 s = baudstring[1];
1221 else
1222 s = baudstring[1]; /* For now */
1223 } else
1224 set_baud(tty, strip_info->user_baud);
1227 tty->ops->write(tty, s.string, s.length);
1228 #ifdef EXT_COUNTERS
1229 strip_info->tx_ebytes += s.length;
1230 #endif
1234 * Called by the driver when there's room for more data. If we have
1235 * more packets to send, we send them here.
1238 static void strip_write_some_more(struct tty_struct *tty)
1240 struct strip *strip_info = tty->disc_data;
1242 /* First make sure we're connected. */
1243 if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1244 !netif_running(strip_info->dev))
1245 return;
1247 if (strip_info->tx_left > 0) {
1248 int num_written =
1249 tty->ops->write(tty, strip_info->tx_head,
1250 strip_info->tx_left);
1251 strip_info->tx_left -= num_written;
1252 strip_info->tx_head += num_written;
1253 #ifdef EXT_COUNTERS
1254 strip_info->tx_sbytes += num_written;
1255 #endif
1256 } else { /* Else start transmission of another packet */
1258 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
1259 strip_unlock(strip_info);
1263 static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1265 __u16 sum = 0;
1266 __u8 *p = buffer;
1267 while (p < end)
1268 sum += *p++;
1269 end[3] = hextable[sum & 0xF];
1270 sum >>= 4;
1271 end[2] = hextable[sum & 0xF];
1272 sum >>= 4;
1273 end[1] = hextable[sum & 0xF];
1274 sum >>= 4;
1275 end[0] = hextable[sum & 0xF];
1276 return (end + 4);
1279 static unsigned char *strip_make_packet(unsigned char *buffer,
1280 struct strip *strip_info,
1281 struct sk_buff *skb)
1283 __u8 *ptr = buffer;
1284 __u8 *stuffstate = NULL;
1285 STRIP_Header *header = (STRIP_Header *) skb->data;
1286 MetricomAddress haddr = header->dst_addr;
1287 int len = skb->len - sizeof(STRIP_Header);
1288 MetricomKey key;
1290 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1292 if (header->protocol == htons(ETH_P_IP))
1293 key = SIP0Key;
1294 else if (header->protocol == htons(ETH_P_ARP))
1295 key = ARP0Key;
1296 else {
1297 printk(KERN_ERR
1298 "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1299 strip_info->dev->name, ntohs(header->protocol));
1300 return (NULL);
1303 if (len > strip_info->mtu) {
1304 printk(KERN_ERR
1305 "%s: Dropping oversized transmit packet: %d bytes\n",
1306 strip_info->dev->name, len);
1307 return (NULL);
1311 * If we're sending to ourselves, discard the packet.
1312 * (Metricom radios choke if they try to send a packet to their own address.)
1314 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1315 printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1316 strip_info->dev->name);
1317 return (NULL);
1321 * If this is a broadcast packet, send it to our designated Metricom
1322 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1324 if (haddr.c[0] == 0xFF) {
1325 __be32 brd = 0;
1326 struct in_device *in_dev;
1328 rcu_read_lock();
1329 in_dev = __in_dev_get_rcu(strip_info->dev);
1330 if (in_dev == NULL) {
1331 rcu_read_unlock();
1332 return NULL;
1334 if (in_dev->ifa_list)
1335 brd = in_dev->ifa_list->ifa_broadcast;
1336 rcu_read_unlock();
1338 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1339 if (!arp_query(haddr.c, brd, strip_info->dev)) {
1340 printk(KERN_ERR
1341 "%s: Unable to send packet (no broadcast hub configured)\n",
1342 strip_info->dev->name);
1343 return (NULL);
1346 * If we are the broadcast hub, don't bother sending to ourselves.
1347 * (Metricom radios choke if they try to send a packet to their own address.)
1349 if (!memcmp
1350 (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1351 return (NULL);
1354 *ptr++ = 0x0D;
1355 *ptr++ = '*';
1356 *ptr++ = hextable[haddr.c[2] >> 4];
1357 *ptr++ = hextable[haddr.c[2] & 0xF];
1358 *ptr++ = hextable[haddr.c[3] >> 4];
1359 *ptr++ = hextable[haddr.c[3] & 0xF];
1360 *ptr++ = '-';
1361 *ptr++ = hextable[haddr.c[4] >> 4];
1362 *ptr++ = hextable[haddr.c[4] & 0xF];
1363 *ptr++ = hextable[haddr.c[5] >> 4];
1364 *ptr++ = hextable[haddr.c[5] & 0xF];
1365 *ptr++ = '*';
1366 *ptr++ = key.c[0];
1367 *ptr++ = key.c[1];
1368 *ptr++ = key.c[2];
1369 *ptr++ = key.c[3];
1371 ptr =
1372 StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1373 &stuffstate);
1375 if (strip_info->firmware_level >= ChecksummedMessages)
1376 ptr = add_checksum(buffer + 1, ptr);
1378 *ptr++ = 0x0D;
1379 return (ptr);
1382 static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1384 MetricomAddress haddr;
1385 unsigned char *ptr = strip_info->tx_buff;
1386 int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1387 int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1388 && !doreset;
1389 __be32 addr, brd;
1392 * 1. If we have a packet, encapsulate it and put it in the buffer
1394 if (skb) {
1395 char *newptr = strip_make_packet(ptr, strip_info, skb);
1396 strip_info->tx_pps_count++;
1397 if (!newptr)
1398 strip_info->tx_dropped++;
1399 else {
1400 ptr = newptr;
1401 strip_info->sx_pps_count++;
1402 strip_info->tx_packets++; /* Count another successful packet */
1403 #ifdef EXT_COUNTERS
1404 strip_info->tx_bytes += skb->len;
1405 strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1406 #endif
1407 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1408 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1413 * 2. If it is time for another tickle, tack it on, after the packet
1415 if (doprobe) {
1416 StringDescriptor ts = CommandString[strip_info->next_command];
1417 #if TICKLE_TIMERS
1419 struct timeval tv;
1420 do_gettimeofday(&tv);
1421 printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
1422 strip_info->next_command, tv.tv_sec % 100,
1423 tv.tv_usec);
1425 #endif
1426 if (ptr == strip_info->tx_buff)
1427 *ptr++ = 0x0D;
1429 *ptr++ = '*'; /* First send "**" to provoke an error message */
1430 *ptr++ = '*';
1432 /* Then add the command */
1433 memcpy(ptr, ts.string, ts.length);
1435 /* Add a checksum ? */
1436 if (strip_info->firmware_level < ChecksummedMessages)
1437 ptr += ts.length;
1438 else
1439 ptr = add_checksum(ptr, ptr + ts.length);
1441 *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1443 /* Cycle to next periodic command? */
1444 if (strip_info->firmware_level >= StructuredMessages)
1445 if (++strip_info->next_command >=
1446 ARRAY_SIZE(CommandString))
1447 strip_info->next_command = 0;
1448 #ifdef EXT_COUNTERS
1449 strip_info->tx_ebytes += ts.length;
1450 #endif
1451 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1452 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1453 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1457 * 3. Set up the strip_info ready to send the data (if any).
1459 strip_info->tx_head = strip_info->tx_buff;
1460 strip_info->tx_left = ptr - strip_info->tx_buff;
1461 set_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
1463 * 4. Debugging check to make sure we're not overflowing the buffer.
1465 if (strip_info->tx_size - strip_info->tx_left < 20)
1466 printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1467 strip_info->dev->name, strip_info->tx_left,
1468 strip_info->tx_size - strip_info->tx_left);
1471 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1472 * the buffer, strip_write_some_more will send it after the reset has finished
1474 if (doreset) {
1475 ResetRadio(strip_info);
1476 return;
1479 if (1) {
1480 struct in_device *in_dev;
1482 brd = addr = 0;
1483 rcu_read_lock();
1484 in_dev = __in_dev_get_rcu(strip_info->dev);
1485 if (in_dev) {
1486 if (in_dev->ifa_list) {
1487 brd = in_dev->ifa_list->ifa_broadcast;
1488 addr = in_dev->ifa_list->ifa_local;
1491 rcu_read_unlock();
1496 * 6. If it is time for a periodic ARP, queue one up to be sent.
1497 * We only do this if:
1498 * 1. The radio is working
1499 * 2. It's time to send another periodic ARP
1500 * 3. We really know what our address is (and it is not manually set to zero)
1501 * 4. We have a designated broadcast address configured
1502 * If we queue up an ARP packet when we don't have a designated broadcast
1503 * address configured, then the packet will just have to be discarded in
1504 * strip_make_packet. This is not fatal, but it causes misleading information
1505 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1506 * being sent, when in fact they are not, because they are all being dropped
1507 * in the strip_make_packet routine.
1509 if (strip_info->working
1510 && (long) jiffies - strip_info->gratuitous_arp >= 0
1511 && memcmp(strip_info->dev->dev_addr, zero_address.c,
1512 sizeof(zero_address))
1513 && arp_query(haddr.c, brd, strip_info->dev)) {
1514 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1515 strip_info->dev->name, strip_info->arp_interval / HZ); */
1516 strip_info->gratuitous_arp =
1517 jiffies + strip_info->arp_interval;
1518 strip_info->arp_interval *= 2;
1519 if (strip_info->arp_interval > MaxARPInterval)
1520 strip_info->arp_interval = MaxARPInterval;
1521 if (addr)
1522 arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */
1523 strip_info->dev, /* Device to send packet on */
1524 addr, /* Source IP address this ARP packet comes from */
1525 NULL, /* Destination HW address is NULL (broadcast it) */
1526 strip_info->dev->dev_addr, /* Source HW address is our HW address */
1527 strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */
1531 * 7. All ready. Start the transmission
1533 strip_write_some_more(strip_info->tty);
1536 /* Encapsulate a datagram and kick it into a TTY queue. */
1537 static netdev_tx_t strip_xmit(struct sk_buff *skb, struct net_device *dev)
1539 struct strip *strip_info = netdev_priv(dev);
1541 if (!netif_running(dev)) {
1542 printk(KERN_ERR "%s: xmit call when iface is down\n",
1543 dev->name);
1544 return NETDEV_TX_BUSY;
1547 netif_stop_queue(dev);
1549 del_timer(&strip_info->idle_timer);
1552 if (time_after(jiffies, strip_info->pps_timer + HZ)) {
1553 unsigned long t = jiffies - strip_info->pps_timer;
1554 unsigned long rx_pps_count =
1555 DIV_ROUND_CLOSEST(strip_info->rx_pps_count*HZ*8, t);
1556 unsigned long tx_pps_count =
1557 DIV_ROUND_CLOSEST(strip_info->tx_pps_count*HZ*8, t);
1558 unsigned long sx_pps_count =
1559 DIV_ROUND_CLOSEST(strip_info->sx_pps_count*HZ*8, t);
1561 strip_info->pps_timer = jiffies;
1562 strip_info->rx_pps_count = 0;
1563 strip_info->tx_pps_count = 0;
1564 strip_info->sx_pps_count = 0;
1566 strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1567 strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1568 strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1570 if (rx_pps_count / 8 >= 10)
1571 printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1572 strip_info->dev->name, rx_pps_count / 8);
1573 if (tx_pps_count / 8 >= 10)
1574 printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
1575 strip_info->dev->name, tx_pps_count / 8);
1576 if (sx_pps_count / 8 >= 10)
1577 printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
1578 strip_info->dev->name, sx_pps_count / 8);
1581 spin_lock_bh(&strip_lock);
1583 strip_send(strip_info, skb);
1585 spin_unlock_bh(&strip_lock);
1587 if (skb)
1588 dev_kfree_skb(skb);
1589 return NETDEV_TX_OK;
1593 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1594 * to send for an extended period of time, the watchdog processing still gets
1595 * done to ensure that the radio stays in Starmode
1598 static void strip_IdleTask(unsigned long parameter)
1600 strip_xmit(NULL, (struct net_device *) parameter);
1604 * Create the MAC header for an arbitrary protocol layer
1606 * saddr!=NULL means use this specific address (n/a for Metricom)
1607 * saddr==NULL means use default device source address
1608 * daddr!=NULL means use this destination address
1609 * daddr==NULL means leave destination address alone
1610 * (e.g. unresolved arp -- kernel will call
1611 * rebuild_header later to fill in the address)
1614 static int strip_header(struct sk_buff *skb, struct net_device *dev,
1615 unsigned short type, const void *daddr,
1616 const void *saddr, unsigned len)
1618 struct strip *strip_info = netdev_priv(dev);
1619 STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1621 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1622 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1624 header->src_addr = strip_info->true_dev_addr;
1625 header->protocol = htons(type);
1627 /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1629 if (!daddr)
1630 return (-dev->hard_header_len);
1632 header->dst_addr = *(MetricomAddress *) daddr;
1633 return (dev->hard_header_len);
1637 * Rebuild the MAC header. This is called after an ARP
1638 * (or in future other address resolution) has completed on this
1639 * sk_buff. We now let ARP fill in the other fields.
1640 * I think this should return zero if packet is ready to send,
1641 * or non-zero if it needs more time to do an address lookup
1644 static int strip_rebuild_header(struct sk_buff *skb)
1646 #ifdef CONFIG_INET
1647 STRIP_Header *header = (STRIP_Header *) skb->data;
1649 /* Arp find returns zero if if knows the address, */
1650 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1651 return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1652 #else
1653 return 0;
1654 #endif
1658 /************************************************************************/
1659 /* Receiving routines */
1662 * This function parses the response to the ATS300? command,
1663 * extracting the radio version and serial number.
1665 static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1667 __u8 *p, *value_begin, *value_end;
1668 int len;
1670 /* Determine the beginning of the second line of the payload */
1671 p = ptr;
1672 while (p < end && *p != 10)
1673 p++;
1674 if (p >= end)
1675 return;
1676 p++;
1677 value_begin = p;
1679 /* Determine the end of line */
1680 while (p < end && *p != 10)
1681 p++;
1682 if (p >= end)
1683 return;
1684 value_end = p;
1685 p++;
1687 len = value_end - value_begin;
1688 len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1689 if (strip_info->firmware_version.c[0] == 0)
1690 printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1691 strip_info->dev->name, len, value_begin);
1692 sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1694 /* Look for the first colon */
1695 while (p < end && *p != ':')
1696 p++;
1697 if (p >= end)
1698 return;
1699 /* Skip over the space */
1700 p += 2;
1701 len = sizeof(SerialNumber) - 1;
1702 if (p + len <= end) {
1703 sprintf(strip_info->serial_number.c, "%.*s", len, p);
1704 } else {
1705 printk(KERN_DEBUG
1706 "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1707 end - p, len);
1712 * This function parses the response to the ATS325? command,
1713 * extracting the radio battery voltage.
1715 static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1717 int len;
1719 len = sizeof(BatteryVoltage) - 1;
1720 if (ptr + len <= end) {
1721 sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1722 } else {
1723 printk(KERN_DEBUG
1724 "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1725 end - ptr, len);
1730 * This function parses the responses to the AT~LA and ATS311 commands,
1731 * which list the radio's neighbours.
1733 static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1735 table->num_nodes = 0;
1736 while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1737 MetricomNode *node = &table->node[table->num_nodes++];
1738 char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1739 while (ptr < end && *ptr <= 32)
1740 ptr++;
1741 while (ptr < end && dst < limit && *ptr != 10)
1742 *dst++ = *ptr++;
1743 *dst++ = 0;
1744 while (ptr < end && ptr[-1] != 10)
1745 ptr++;
1747 do_gettimeofday(&table->timestamp);
1750 static int get_radio_address(struct strip *strip_info, __u8 * p)
1752 MetricomAddress addr;
1754 if (string_to_radio_address(&addr, p))
1755 return (1);
1757 /* See if our radio address has changed */
1758 if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1759 MetricomAddressString addr_string;
1760 radio_address_to_string(&addr, &addr_string);
1761 printk(KERN_INFO "%s: Radio address = %s\n",
1762 strip_info->dev->name, addr_string.c);
1763 strip_info->true_dev_addr = addr;
1764 if (!strip_info->manual_dev_addr)
1765 *(MetricomAddress *) strip_info->dev->dev_addr =
1766 addr;
1767 /* Give the radio a few seconds to get its head straight, then send an arp */
1768 strip_info->gratuitous_arp = jiffies + 15 * HZ;
1769 strip_info->arp_interval = 1 * HZ;
1771 return (0);
1774 static int verify_checksum(struct strip *strip_info)
1776 __u8 *p = strip_info->sx_buff;
1777 __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1778 u_short sum =
1779 (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1780 (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1781 while (p < end)
1782 sum -= *p++;
1783 if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1784 strip_info->firmware_level = ChecksummedMessages;
1785 printk(KERN_INFO "%s: Radio provides message checksums\n",
1786 strip_info->dev->name);
1788 return (sum == 0);
1791 static void RecvErr(char *msg, struct strip *strip_info)
1793 __u8 *ptr = strip_info->sx_buff;
1794 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1795 DumpData(msg, strip_info, ptr, end);
1796 strip_info->rx_errors++;
1799 static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1800 const __u8 * msg, u_long len)
1802 if (has_prefix(msg, len, "001")) { /* Not in StarMode! */
1803 RecvErr("Error Msg:", strip_info);
1804 printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1805 strip_info->dev->name, sendername);
1808 else if (has_prefix(msg, len, "002")) { /* Remap handle */
1809 /* We ignore "Remap handle" messages for now */
1812 else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1813 RecvErr("Error Msg:", strip_info);
1814 printk(KERN_INFO "%s: Destination radio name is unknown\n",
1815 strip_info->dev->name);
1818 else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1819 strip_info->watchdog_doreset = jiffies + LongTime;
1820 #if TICKLE_TIMERS
1822 struct timeval tv;
1823 do_gettimeofday(&tv);
1824 printk(KERN_INFO
1825 "**** Got ERR_004 response at %02d.%06d\n",
1826 tv.tv_sec % 100, tv.tv_usec);
1828 #endif
1829 if (!strip_info->working) {
1830 strip_info->working = TRUE;
1831 printk(KERN_INFO "%s: Radio now in starmode\n",
1832 strip_info->dev->name);
1834 * If the radio has just entered a working state, we should do our first
1835 * probe ASAP, so that we find out our radio address etc. without delay.
1837 strip_info->watchdog_doprobe = jiffies;
1839 if (strip_info->firmware_level == NoStructure && sendername) {
1840 strip_info->firmware_level = StructuredMessages;
1841 strip_info->next_command = 0; /* Try to enable checksums ASAP */
1842 printk(KERN_INFO
1843 "%s: Radio provides structured messages\n",
1844 strip_info->dev->name);
1846 if (strip_info->firmware_level >= StructuredMessages) {
1848 * If this message has a valid checksum on the end, then the call to verify_checksum
1849 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1850 * code from verify_checksum is ignored here.)
1852 verify_checksum(strip_info);
1854 * If the radio has structured messages but we don't yet have all our information about it,
1855 * we should do probes without delay, until we have gathered all the information
1857 if (!GOT_ALL_RADIO_INFO(strip_info))
1858 strip_info->watchdog_doprobe = jiffies;
1862 else if (has_prefix(msg, len, "005")) /* Bad count specification */
1863 RecvErr("Error Msg:", strip_info);
1865 else if (has_prefix(msg, len, "006")) /* Header too big */
1866 RecvErr("Error Msg:", strip_info);
1868 else if (has_prefix(msg, len, "007")) { /* Body too big */
1869 RecvErr("Error Msg:", strip_info);
1870 printk(KERN_ERR
1871 "%s: Error! Packet size too big for radio.\n",
1872 strip_info->dev->name);
1875 else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1876 RecvErr("Error Msg:", strip_info);
1877 printk(KERN_ERR
1878 "%s: Radio name contains illegal character\n",
1879 strip_info->dev->name);
1882 else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1883 RecvErr("Error Msg:", strip_info);
1885 else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1886 RecvErr("Error Msg:", strip_info);
1888 else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1889 RecvErr("Error Msg:", strip_info);
1891 else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1892 RecvErr("Error Msg:", strip_info);
1894 else
1895 RecvErr("Error Msg:", strip_info);
1898 static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1899 __u8 * end)
1901 u_long len;
1902 __u8 *p = ptr;
1903 while (p < end && p[-1] != 10)
1904 p++; /* Skip past first newline character */
1905 /* Now ptr points to the AT command, and p points to the text of the response. */
1906 len = p - ptr;
1908 #if TICKLE_TIMERS
1910 struct timeval tv;
1911 do_gettimeofday(&tv);
1912 printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
1913 ptr, tv.tv_sec % 100, tv.tv_usec);
1915 #endif
1917 if (has_prefix(ptr, len, "ATS300?"))
1918 get_radio_version(strip_info, p, end);
1919 else if (has_prefix(ptr, len, "ATS305?"))
1920 get_radio_address(strip_info, p);
1921 else if (has_prefix(ptr, len, "ATS311?"))
1922 get_radio_neighbours(&strip_info->poletops, p, end);
1923 else if (has_prefix(ptr, len, "ATS319=7"))
1924 verify_checksum(strip_info);
1925 else if (has_prefix(ptr, len, "ATS325?"))
1926 get_radio_voltage(strip_info, p, end);
1927 else if (has_prefix(ptr, len, "AT~LA"))
1928 get_radio_neighbours(&strip_info->portables, p, end);
1929 else
1930 RecvErr("Unknown AT Response:", strip_info);
1933 static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1935 /* Currently we don't do anything with ACKs from the radio */
1938 static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1940 if (ptr + 16 > end)
1941 RecvErr("Bad Info Msg:", strip_info);
1944 static struct net_device *get_strip_dev(struct strip *strip_info)
1946 /* If our hardware address is *manually set* to zero, and we know our */
1947 /* real radio hardware address, try to find another strip device that has been */
1948 /* manually set to that address that we can 'transfer ownership' of this packet to */
1949 if (strip_info->manual_dev_addr &&
1950 !memcmp(strip_info->dev->dev_addr, zero_address.c,
1951 sizeof(zero_address))
1952 && memcmp(&strip_info->true_dev_addr, zero_address.c,
1953 sizeof(zero_address))) {
1954 struct net_device *dev;
1955 read_lock_bh(&dev_base_lock);
1956 for_each_netdev(&init_net, dev) {
1957 if (dev->type == strip_info->dev->type &&
1958 !memcmp(dev->dev_addr,
1959 &strip_info->true_dev_addr,
1960 sizeof(MetricomAddress))) {
1961 printk(KERN_INFO
1962 "%s: Transferred packet ownership to %s.\n",
1963 strip_info->dev->name, dev->name);
1964 read_unlock_bh(&dev_base_lock);
1965 return (dev);
1968 read_unlock_bh(&dev_base_lock);
1970 return (strip_info->dev);
1974 * Send one completely decapsulated datagram to the next layer.
1977 static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
1978 __u16 packetlen)
1980 struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
1981 if (!skb) {
1982 printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
1983 strip_info->dev->name);
1984 strip_info->rx_dropped++;
1985 } else {
1986 memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
1987 sizeof(STRIP_Header));
1988 memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
1989 packetlen);
1990 skb->dev = get_strip_dev(strip_info);
1991 skb->protocol = header->protocol;
1992 skb_reset_mac_header(skb);
1994 /* Having put a fake header on the front of the sk_buff for the */
1995 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
1996 /* fake header before we hand the packet up to the next layer. */
1997 skb_pull(skb, sizeof(STRIP_Header));
1999 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2000 strip_info->rx_packets++;
2001 strip_info->rx_pps_count++;
2002 #ifdef EXT_COUNTERS
2003 strip_info->rx_bytes += packetlen;
2004 #endif
2005 netif_rx(skb);
2009 static void process_IP_packet(struct strip *strip_info,
2010 STRIP_Header * header, __u8 * ptr,
2011 __u8 * end)
2013 __u16 packetlen;
2015 /* Decode start of the IP packet header */
2016 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2017 if (!ptr) {
2018 RecvErr("IP Packet too short", strip_info);
2019 return;
2022 packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2024 if (packetlen > MAX_RECV_MTU) {
2025 printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2026 strip_info->dev->name, packetlen);
2027 strip_info->rx_dropped++;
2028 return;
2031 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2033 /* Decode remainder of the IP packet */
2034 ptr =
2035 UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2036 if (!ptr) {
2037 RecvErr("IP Packet too short", strip_info);
2038 return;
2041 if (ptr < end) {
2042 RecvErr("IP Packet too long", strip_info);
2043 return;
2046 header->protocol = htons(ETH_P_IP);
2048 deliver_packet(strip_info, header, packetlen);
2051 static void process_ARP_packet(struct strip *strip_info,
2052 STRIP_Header * header, __u8 * ptr,
2053 __u8 * end)
2055 __u16 packetlen;
2056 struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2058 /* Decode start of the ARP packet */
2059 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2060 if (!ptr) {
2061 RecvErr("ARP Packet too short", strip_info);
2062 return;
2065 packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2067 if (packetlen > MAX_RECV_MTU) {
2068 printk(KERN_INFO
2069 "%s: Dropping oversized received ARP packet: %d bytes\n",
2070 strip_info->dev->name, packetlen);
2071 strip_info->rx_dropped++;
2072 return;
2075 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2076 strip_info->dev->name, packetlen,
2077 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2079 /* Decode remainder of the ARP packet */
2080 ptr =
2081 UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2082 if (!ptr) {
2083 RecvErr("ARP Packet too short", strip_info);
2084 return;
2087 if (ptr < end) {
2088 RecvErr("ARP Packet too long", strip_info);
2089 return;
2092 header->protocol = htons(ETH_P_ARP);
2094 deliver_packet(strip_info, header, packetlen);
2098 * process_text_message processes a <CR>-terminated block of data received
2099 * from the radio that doesn't begin with a '*' character. All normal
2100 * Starmode communication messages with the radio begin with a '*',
2101 * so any text that does not indicates a serial port error, a radio that
2102 * is in Hayes command mode instead of Starmode, or a radio with really
2103 * old firmware that doesn't frame its Starmode responses properly.
2105 static void process_text_message(struct strip *strip_info)
2107 __u8 *msg = strip_info->sx_buff;
2108 int len = strip_info->sx_count;
2110 /* Check for anything that looks like it might be our radio name */
2111 /* (This is here for backwards compatibility with old firmware) */
2112 if (len == 9 && get_radio_address(strip_info, msg) == 0)
2113 return;
2115 if (text_equal(msg, len, "OK"))
2116 return; /* Ignore 'OK' responses from prior commands */
2117 if (text_equal(msg, len, "ERROR"))
2118 return; /* Ignore 'ERROR' messages */
2119 if (has_prefix(msg, len, "ate0q1"))
2120 return; /* Ignore character echo back from the radio */
2122 /* Catch other error messages */
2123 /* (This is here for backwards compatibility with old firmware) */
2124 if (has_prefix(msg, len, "ERR_")) {
2125 RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2126 return;
2129 RecvErr("No initial *", strip_info);
2133 * process_message processes a <CR>-terminated block of data received
2134 * from the radio. If the radio is not in Starmode or has old firmware,
2135 * it may be a line of text in response to an AT command. Ideally, with
2136 * a current radio that's properly in Starmode, all data received should
2137 * be properly framed and checksummed radio message blocks, containing
2138 * either a starmode packet, or a other communication from the radio
2139 * firmware, like "INF_" Info messages and &COMMAND responses.
2141 static void process_message(struct strip *strip_info)
2143 STRIP_Header header = { zero_address, zero_address, 0 };
2144 __u8 *ptr = strip_info->sx_buff;
2145 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2146 __u8 sendername[32], *sptr = sendername;
2147 MetricomKey key;
2149 /*HexDump("Receiving", strip_info, ptr, end); */
2151 /* Check for start of address marker, and then skip over it */
2152 if (*ptr == '*')
2153 ptr++;
2154 else {
2155 process_text_message(strip_info);
2156 return;
2159 /* Copy out the return address */
2160 while (ptr < end && *ptr != '*'
2161 && sptr < ARRAY_END(sendername) - 1)
2162 *sptr++ = *ptr++;
2163 *sptr = 0; /* Null terminate the sender name */
2165 /* Check for end of address marker, and skip over it */
2166 if (ptr >= end || *ptr != '*') {
2167 RecvErr("No second *", strip_info);
2168 return;
2170 ptr++; /* Skip the second '*' */
2172 /* If the sender name is "&COMMAND", ignore this 'packet' */
2173 /* (This is here for backwards compatibility with old firmware) */
2174 if (!strcmp(sendername, "&COMMAND")) {
2175 strip_info->firmware_level = NoStructure;
2176 strip_info->next_command = CompatibilityCommand;
2177 return;
2180 if (ptr + 4 > end) {
2181 RecvErr("No proto key", strip_info);
2182 return;
2185 /* Get the protocol key out of the buffer */
2186 key.c[0] = *ptr++;
2187 key.c[1] = *ptr++;
2188 key.c[2] = *ptr++;
2189 key.c[3] = *ptr++;
2191 /* If we're using checksums, verify the checksum at the end of the packet */
2192 if (strip_info->firmware_level >= ChecksummedMessages) {
2193 end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2194 if (ptr > end) {
2195 RecvErr("Missing Checksum", strip_info);
2196 return;
2198 if (!verify_checksum(strip_info)) {
2199 RecvErr("Bad Checksum", strip_info);
2200 return;
2204 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2207 * Fill in (pseudo) source and destination addresses in the packet.
2208 * We assume that the destination address was our address (the radio does not
2209 * tell us this). If the radio supplies a source address, then we use it.
2211 header.dst_addr = strip_info->true_dev_addr;
2212 string_to_radio_address(&header.src_addr, sendername);
2214 #ifdef EXT_COUNTERS
2215 if (key.l == SIP0Key.l) {
2216 strip_info->rx_rbytes += (end - ptr);
2217 process_IP_packet(strip_info, &header, ptr, end);
2218 } else if (key.l == ARP0Key.l) {
2219 strip_info->rx_rbytes += (end - ptr);
2220 process_ARP_packet(strip_info, &header, ptr, end);
2221 } else if (key.l == ATR_Key.l) {
2222 strip_info->rx_ebytes += (end - ptr);
2223 process_AT_response(strip_info, ptr, end);
2224 } else if (key.l == ACK_Key.l) {
2225 strip_info->rx_ebytes += (end - ptr);
2226 process_ACK(strip_info, ptr, end);
2227 } else if (key.l == INF_Key.l) {
2228 strip_info->rx_ebytes += (end - ptr);
2229 process_Info(strip_info, ptr, end);
2230 } else if (key.l == ERR_Key.l) {
2231 strip_info->rx_ebytes += (end - ptr);
2232 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2233 } else
2234 RecvErr("Unrecognized protocol key", strip_info);
2235 #else
2236 if (key.l == SIP0Key.l)
2237 process_IP_packet(strip_info, &header, ptr, end);
2238 else if (key.l == ARP0Key.l)
2239 process_ARP_packet(strip_info, &header, ptr, end);
2240 else if (key.l == ATR_Key.l)
2241 process_AT_response(strip_info, ptr, end);
2242 else if (key.l == ACK_Key.l)
2243 process_ACK(strip_info, ptr, end);
2244 else if (key.l == INF_Key.l)
2245 process_Info(strip_info, ptr, end);
2246 else if (key.l == ERR_Key.l)
2247 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2248 else
2249 RecvErr("Unrecognized protocol key", strip_info);
2250 #endif
2253 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2254 (X) == TTY_FRAME ? "Framing Error" : \
2255 (X) == TTY_PARITY ? "Parity Error" : \
2256 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2259 * Handle the 'receiver data ready' interrupt.
2260 * This function is called by the 'tty_io' module in the kernel when
2261 * a block of STRIP data has been received, which can now be decapsulated
2262 * and sent on to some IP layer for further processing.
2265 static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2266 char *fp, int count)
2268 struct strip *strip_info = tty->disc_data;
2269 const unsigned char *end = cp + count;
2271 if (!strip_info || strip_info->magic != STRIP_MAGIC
2272 || !netif_running(strip_info->dev))
2273 return;
2275 spin_lock_bh(&strip_lock);
2276 #if 0
2278 struct timeval tv;
2279 do_gettimeofday(&tv);
2280 printk(KERN_INFO
2281 "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2282 count, tv.tv_sec % 100, tv.tv_usec);
2284 #endif
2286 #ifdef EXT_COUNTERS
2287 strip_info->rx_sbytes += count;
2288 #endif
2290 /* Read the characters out of the buffer */
2291 while (cp < end) {
2292 if (fp && *fp)
2293 printk(KERN_INFO "%s: %s on serial port\n",
2294 strip_info->dev->name, TTYERROR(*fp));
2295 if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */
2296 /* If we have some characters in the buffer, discard them */
2297 strip_info->discard = strip_info->sx_count;
2298 strip_info->rx_errors++;
2301 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2302 if (strip_info->sx_count > 0 || *cp >= ' ') {
2303 if (*cp == 0x0D) { /* If end of packet, decide what to do with it */
2304 if (strip_info->sx_count > 3000)
2305 printk(KERN_INFO
2306 "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2307 strip_info->dev->name,
2308 strip_info->sx_count,
2309 end - cp - 1,
2310 strip_info->
2311 discard ? " (discarded)" :
2312 "");
2313 if (strip_info->sx_count >
2314 strip_info->sx_size) {
2315 strip_info->rx_over_errors++;
2316 printk(KERN_INFO
2317 "%s: sx_buff overflow (%d bytes total)\n",
2318 strip_info->dev->name,
2319 strip_info->sx_count);
2320 } else if (strip_info->discard)
2321 printk(KERN_INFO
2322 "%s: Discarding bad packet (%d/%d)\n",
2323 strip_info->dev->name,
2324 strip_info->discard,
2325 strip_info->sx_count);
2326 else
2327 process_message(strip_info);
2328 strip_info->discard = 0;
2329 strip_info->sx_count = 0;
2330 } else {
2331 /* Make sure we have space in the buffer */
2332 if (strip_info->sx_count <
2333 strip_info->sx_size)
2334 strip_info->sx_buff[strip_info->
2335 sx_count] =
2336 *cp;
2337 strip_info->sx_count++;
2340 cp++;
2342 spin_unlock_bh(&strip_lock);
2346 /************************************************************************/
2347 /* General control routines */
2349 static int set_mac_address(struct strip *strip_info,
2350 MetricomAddress * addr)
2353 * We're using a manually specified address if the address is set
2354 * to anything other than all ones. Setting the address to all ones
2355 * disables manual mode and goes back to automatic address determination
2356 * (tracking the true address that the radio has).
2358 strip_info->manual_dev_addr =
2359 memcmp(addr->c, broadcast_address.c,
2360 sizeof(broadcast_address));
2361 if (strip_info->manual_dev_addr)
2362 *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2363 else
2364 *(MetricomAddress *) strip_info->dev->dev_addr =
2365 strip_info->true_dev_addr;
2366 return 0;
2369 static int strip_set_mac_address(struct net_device *dev, void *addr)
2371 struct strip *strip_info = netdev_priv(dev);
2372 struct sockaddr *sa = addr;
2373 printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2374 set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2375 return 0;
2378 static struct net_device_stats *strip_get_stats(struct net_device *dev)
2380 struct strip *strip_info = netdev_priv(dev);
2381 static struct net_device_stats stats;
2383 memset(&stats, 0, sizeof(struct net_device_stats));
2385 stats.rx_packets = strip_info->rx_packets;
2386 stats.tx_packets = strip_info->tx_packets;
2387 stats.rx_dropped = strip_info->rx_dropped;
2388 stats.tx_dropped = strip_info->tx_dropped;
2389 stats.tx_errors = strip_info->tx_errors;
2390 stats.rx_errors = strip_info->rx_errors;
2391 stats.rx_over_errors = strip_info->rx_over_errors;
2392 return (&stats);
2396 /************************************************************************/
2397 /* Opening and closing */
2400 * Here's the order things happen:
2401 * When the user runs "slattach -p strip ..."
2402 * 1. The TTY module calls strip_open;;
2403 * 2. strip_open calls strip_alloc
2404 * 3. strip_alloc calls register_netdev
2405 * 4. register_netdev calls strip_dev_init
2406 * 5. then strip_open finishes setting up the strip_info
2408 * When the user runs "ifconfig st<x> up address netmask ..."
2409 * 6. strip_open_low gets called
2411 * When the user runs "ifconfig st<x> down"
2412 * 7. strip_close_low gets called
2414 * When the user kills the slattach process
2415 * 8. strip_close gets called
2416 * 9. strip_close calls dev_close
2417 * 10. if the device is still up, then dev_close calls strip_close_low
2418 * 11. strip_close calls strip_free
2421 /* Open the low-level part of the STRIP channel. Easy! */
2423 static int strip_open_low(struct net_device *dev)
2425 struct strip *strip_info = netdev_priv(dev);
2427 if (strip_info->tty == NULL)
2428 return (-ENODEV);
2430 if (!allocate_buffers(strip_info, dev->mtu))
2431 return (-ENOMEM);
2433 strip_info->sx_count = 0;
2434 strip_info->tx_left = 0;
2436 strip_info->discard = 0;
2437 strip_info->working = FALSE;
2438 strip_info->firmware_level = NoStructure;
2439 strip_info->next_command = CompatibilityCommand;
2440 strip_info->user_baud = tty_get_baud_rate(strip_info->tty);
2442 printk(KERN_INFO "%s: Initializing Radio.\n",
2443 strip_info->dev->name);
2444 ResetRadio(strip_info);
2445 strip_info->idle_timer.expires = jiffies + 1 * HZ;
2446 add_timer(&strip_info->idle_timer);
2447 netif_wake_queue(dev);
2448 return (0);
2453 * Close the low-level part of the STRIP channel. Easy!
2456 static int strip_close_low(struct net_device *dev)
2458 struct strip *strip_info = netdev_priv(dev);
2460 if (strip_info->tty == NULL)
2461 return -EBUSY;
2462 clear_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags);
2463 netif_stop_queue(dev);
2466 * Free all STRIP frame buffers.
2468 kfree(strip_info->rx_buff);
2469 strip_info->rx_buff = NULL;
2470 kfree(strip_info->sx_buff);
2471 strip_info->sx_buff = NULL;
2472 kfree(strip_info->tx_buff);
2473 strip_info->tx_buff = NULL;
2475 del_timer(&strip_info->idle_timer);
2476 return 0;
2479 static const struct header_ops strip_header_ops = {
2480 .create = strip_header,
2481 .rebuild = strip_rebuild_header,
2485 static const struct net_device_ops strip_netdev_ops = {
2486 .ndo_open = strip_open_low,
2487 .ndo_stop = strip_close_low,
2488 .ndo_start_xmit = strip_xmit,
2489 .ndo_set_mac_address = strip_set_mac_address,
2490 .ndo_get_stats = strip_get_stats,
2491 .ndo_change_mtu = strip_change_mtu,
2495 * This routine is called by DDI when the
2496 * (dynamically assigned) device is registered
2499 static void strip_dev_setup(struct net_device *dev)
2502 * Finish setting up the DEVICE info.
2505 dev->trans_start = 0;
2506 dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2508 dev->flags = 0;
2509 dev->mtu = DEFAULT_STRIP_MTU;
2510 dev->type = ARPHRD_METRICOM; /* dtang */
2511 dev->hard_header_len = sizeof(STRIP_Header);
2513 * netdev_priv(dev) Already holds a pointer to our struct strip
2516 *(MetricomAddress *)dev->broadcast = broadcast_address;
2517 dev->dev_addr[0] = 0;
2518 dev->addr_len = sizeof(MetricomAddress);
2520 dev->header_ops = &strip_header_ops,
2521 dev->netdev_ops = &strip_netdev_ops;
2525 * Free a STRIP channel.
2528 static void strip_free(struct strip *strip_info)
2530 spin_lock_bh(&strip_lock);
2531 list_del_rcu(&strip_info->list);
2532 spin_unlock_bh(&strip_lock);
2534 strip_info->magic = 0;
2536 free_netdev(strip_info->dev);
2541 * Allocate a new free STRIP channel
2543 static struct strip *strip_alloc(void)
2545 struct list_head *n;
2546 struct net_device *dev;
2547 struct strip *strip_info;
2549 dev = alloc_netdev(sizeof(struct strip), "st%d",
2550 strip_dev_setup);
2552 if (!dev)
2553 return NULL; /* If no more memory, return */
2556 strip_info = netdev_priv(dev);
2557 strip_info->dev = dev;
2559 strip_info->magic = STRIP_MAGIC;
2560 strip_info->tty = NULL;
2562 strip_info->gratuitous_arp = jiffies + LongTime;
2563 strip_info->arp_interval = 0;
2564 init_timer(&strip_info->idle_timer);
2565 strip_info->idle_timer.data = (long) dev;
2566 strip_info->idle_timer.function = strip_IdleTask;
2569 spin_lock_bh(&strip_lock);
2570 rescan:
2572 * Search the list to find where to put our new entry
2573 * (and in the process decide what channel number it is
2574 * going to be)
2576 list_for_each(n, &strip_list) {
2577 struct strip *s = hlist_entry(n, struct strip, list);
2579 if (s->dev->base_addr == dev->base_addr) {
2580 ++dev->base_addr;
2581 goto rescan;
2585 sprintf(dev->name, "st%ld", dev->base_addr);
2587 list_add_tail_rcu(&strip_info->list, &strip_list);
2588 spin_unlock_bh(&strip_lock);
2590 return strip_info;
2594 * Open the high-level part of the STRIP channel.
2595 * This function is called by the TTY module when the
2596 * STRIP line discipline is called for. Because we are
2597 * sure the tty line exists, we only have to link it to
2598 * a free STRIP channel...
2601 static int strip_open(struct tty_struct *tty)
2603 struct strip *strip_info = tty->disc_data;
2606 * First make sure we're not already connected.
2609 if (strip_info && strip_info->magic == STRIP_MAGIC)
2610 return -EEXIST;
2613 * We need a write method.
2616 if (tty->ops->write == NULL || tty->ops->set_termios == NULL)
2617 return -EOPNOTSUPP;
2620 * OK. Find a free STRIP channel to use.
2622 if ((strip_info = strip_alloc()) == NULL)
2623 return -ENFILE;
2626 * Register our newly created device so it can be ifconfig'd
2627 * strip_dev_init() will be called as a side-effect
2630 if (register_netdev(strip_info->dev) != 0) {
2631 printk(KERN_ERR "strip: register_netdev() failed.\n");
2632 strip_free(strip_info);
2633 return -ENFILE;
2636 strip_info->tty = tty;
2637 tty->disc_data = strip_info;
2638 tty->receive_room = 65536;
2640 tty_driver_flush_buffer(tty);
2643 * Restore default settings
2646 strip_info->dev->type = ARPHRD_METRICOM; /* dtang */
2649 * Set tty options
2652 tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */
2653 tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
2654 tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
2656 printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2657 strip_info->dev->name);
2660 * Done. We have linked the TTY line to a channel.
2662 return (strip_info->dev->base_addr);
2666 * Close down a STRIP channel.
2667 * This means flushing out any pending queues, and then restoring the
2668 * TTY line discipline to what it was before it got hooked to STRIP
2669 * (which usually is TTY again).
2672 static void strip_close(struct tty_struct *tty)
2674 struct strip *strip_info = tty->disc_data;
2677 * First make sure we're connected.
2680 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2681 return;
2683 unregister_netdev(strip_info->dev);
2685 tty->disc_data = NULL;
2686 strip_info->tty = NULL;
2687 printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2688 strip_info->dev->name);
2689 strip_free(strip_info);
2690 tty->disc_data = NULL;
2694 /************************************************************************/
2695 /* Perform I/O control calls on an active STRIP channel. */
2697 static int strip_ioctl(struct tty_struct *tty, struct file *file,
2698 unsigned int cmd, unsigned long arg)
2700 struct strip *strip_info = tty->disc_data;
2703 * First make sure we're connected.
2706 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2707 return -EINVAL;
2709 switch (cmd) {
2710 case SIOCGIFNAME:
2711 if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2712 return -EFAULT;
2713 break;
2714 case SIOCSIFHWADDR:
2716 MetricomAddress addr;
2717 //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2718 if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2719 return -EFAULT;
2720 return set_mac_address(strip_info, &addr);
2722 default:
2723 return tty_mode_ioctl(tty, file, cmd, arg);
2724 break;
2726 return 0;
2729 #ifdef CONFIG_COMPAT
2730 static long strip_compat_ioctl(struct tty_struct *tty, struct file *file,
2731 unsigned int cmd, unsigned long arg)
2733 switch (cmd) {
2734 case SIOCGIFNAME:
2735 case SIOCSIFHWADDR:
2736 return strip_ioctl(tty, file, cmd,
2737 (unsigned long)compat_ptr(arg));
2739 return -ENOIOCTLCMD;
2741 #endif
2743 /************************************************************************/
2744 /* Initialization */
2746 static struct tty_ldisc_ops strip_ldisc = {
2747 .magic = TTY_LDISC_MAGIC,
2748 .name = "strip",
2749 .owner = THIS_MODULE,
2750 .open = strip_open,
2751 .close = strip_close,
2752 .ioctl = strip_ioctl,
2753 #ifdef CONFIG_COMPAT
2754 .compat_ioctl = strip_compat_ioctl,
2755 #endif
2756 .receive_buf = strip_receive_buf,
2757 .write_wakeup = strip_write_some_more,
2761 * Initialize the STRIP driver.
2762 * This routine is called at boot time, to bootstrap the multi-channel
2763 * STRIP driver
2766 static char signon[] __initdata =
2767 KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2769 static int __init strip_init_driver(void)
2771 int status;
2773 printk(signon, StripVersion);
2777 * Fill in our line protocol discipline, and register it
2779 if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2780 printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2781 status);
2784 * Register the status file with /proc
2786 proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2788 return status;
2791 module_init(strip_init_driver);
2793 static const char signoff[] __exitdata =
2794 KERN_INFO "STRIP: Module Unloaded\n";
2796 static void __exit strip_exit_driver(void)
2798 int i;
2799 struct list_head *p,*n;
2801 /* module ref count rules assure that all entries are unregistered */
2802 list_for_each_safe(p, n, &strip_list) {
2803 struct strip *s = list_entry(p, struct strip, list);
2804 strip_free(s);
2807 /* Unregister with the /proc/net file here. */
2808 proc_net_remove(&init_net, "strip");
2810 if ((i = tty_unregister_ldisc(N_STRIP)))
2811 printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2813 printk(signoff);
2816 module_exit(strip_exit_driver);
2818 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2819 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2820 MODULE_LICENSE("Dual BSD/GPL");
2822 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");